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Abstract. Windblown dust emissions are geverned-controlled by near-surface wind speed and seil-sediment erodibility, the

latter influeneed-by-hydroclimate-conditions-and-tand-usemodulated by hydroclimate and land-use conditions. Accurate repre-
sentations of %ﬂﬂﬂﬂm&eﬁﬂwm%mm critical for reproducing historical dust

variability and projecting €us

the relative importance of wind speed versus five hydroclimate drivers in explaining the historical (1980-2014) variabilit

of dust emissions from global drylands. In hyperarid areas, models show poor agreement in the simulated dust variability,
with only +09% out of 210 pairwise-compatisons—showing-inter-model comparisons exhibiting significant positive correla-
tions. In contrast, arid and semiarid zones;-the-models-display-a-dipele-areas exhibit a dual pattern driven by a "double-edged
sword" effect of land surface memory: models with coherent hydroclimate variability show impreved-better agreement, whereas

those with divergent hydroclimate representations show inereased-disagreement—Meost-models-larger disagreement. While
the ESMs capture the dominant influenee-role of wind speed on-dust-emissions-in hyperarid areasexeept-GFPL-ESM4-and

respeetively—Incorperating-the—, they diverge markedly in the relative contributions of wind and hydroclimate drivers in arid

and semiarid areas. Replacing the Zender et al. 2003) dust scheme with the Kok et al. (2014) scheme in CESM and E3SM

influences while reducing wind speed contributions to simulated dust variability. MERRA-2 reanalysis produces stronger
wind influences than most ESMs over global drylands. These results underscore the need to-improve-the-representations—of
neatr-surface-winds—for improved low-level wind simulations in hyperarid areas and hydroclimate-and-land-surfaceprocesses
more realistic land surface and hydroclimate representations in arid and semiarid areas to reduce model-uneertainties-in-dust

emisston-estimatesuncertainties in global dust emission simulations.
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1 Introduction

and-wind-erostvitynear-surface wind speed and the supply and erodibility of fine-grain sediments, which collectively determine
the timing, location, duration, intensity;—and—-impaets-and intensity of dust events¢?). The most abundant sediment—supply
sediment supply is typically found in lew-relief-areas-low-relief regions with thick layers of fine;-uneonselidated-materials
generated-via-unconsolidated materials produced by weathering, fluvial, and/or aeolian processes (?)—The-sediment-avaitability

for-airborne-dust-productionis—stronghy-affeeted-by—(Bullard and Livingstone, 2002; Bullard et al., 2011). The erodibility of

these fine materials depends on environmental conditions such as surface soil moisture and sarface-armoring (e.g., vegetation,
soil efuskﬁeﬁ-efedib}eeeafse—pamelescrusts) which determine the minimum or threshold-wind-vetocity required-to-initiate-dust

he-threshold wind velocity

eapture-the-environmental-controls-on-thethat must be reached to initiate the saltation-sandblasting process (e.g., Zender and Kwon, 2005; S

- The environmental controls of dust

emission have been incorporated into Earth system models (ESMs) via parameterizations of dust emission fluxes as a function
of various atmospheric, land surface, and soil parameters, many of which are interactively determined within the models. For

example, the horizontal saltation dust flux is calculated as a function of the third or fourth power of wind velocity, reflecting the

dominant role of infrequent, high-wind events in dust production (e.g., Owen, 1964; Bagnold, 1974; White, 1979; Kok et al., 2012

. Early parameterizations in ESMs use static dust source functions to represent the spatially Varying sediment supply, with high

ﬁwmwmmmmgmmwm
WWWMWWHhOM accountmg for depletion or replenishment over
ihity-, In addition, the sediment erodibility is
closely connected with hydroclimate and land surface processes in ESMs. Speeificatly;a-bare sottfraction-seating factoris-For
example, surface soil moisture, which is simulated by the land model component, is often used to exelude-non-erodible-strfaces
account for increases in erosion thresholds due to enhanced soil particle cohesion under wet conditions (Fécan et al., 1999).
Many ESMs also use the bare soil fraction to adjust dust emissions from areas partially covered by snow, ice, or vegetation. Veg-
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etation also inereases-acts to increase the aerodynamic surface roughness and reduces-the-wind-stress-actingreduce the available
wind shear stress exerting on erodible surfaces, which can be represented by a-drag-partitioningscheme 2 2)In-addition; ESMs

~
this effect is currently not considered in most ESMs (Raupach et al., 1993; Marticorena and Bergametti, 1995; Shao, 2001).

The-Numerous studies have evaluated the consistency and performance of current ESMs in simulating the global dust cycle
under the Aerosol Comparisons between Observations and Models (AeroCom) initiative and Coupled Model Intercompari-

son Project (CMIP)
Textor et al., 2006; Huneeus et al., 2011; Kim et al., 2014; Wu et al., 2020; Glif} et al., 2021; Zhao et al., 2022; Kim et al., 2024
. Overall, these studies suggest that modern- day dust aerosol column burden is reasonably constrained by ground- and satellite-

based aerosol optical depth (AOD)

toretrievals, leading to better inter-model agreement than those in dust emission and deposition estimates. ?-suggested-that
medel-tunings-Knippertz and Todd (2012) pointed out that model tuning to match satellite observations, e.g., via the use of

dust source functions, induee-induces a compensational effect between dust emission and deposition, both of which lack

direct observational constraints at g}ebaksea}esthe lobal scale. Indeed, previous AeroCom and CMIP model intercompar-

substantial discrepancies in global dust emission estimates, with differences spanning an order of magnitude, as well as
ersistent difficulties in reproducing historical dust variability and its relationships with key driving factors (Huneeus et al., 2011; Evan et al

. Kok et al. (2023) further suggested that current ESMs failed to capture the large-increase of global dust burden since prein-

dustrial times, likely due to inaccurate model representations of historieat-the climate and land-use ehanges-drivers of dust

emissions, and/or the dust sensitivity to these

land-surface-changes—driving factors.

The model discrepancies can be exptained;—atteastin—part—partly explained by the choice of dust emission schemes.
Earlier-generation-schemes-relied-on-empiricaltemporatty-invariant-Earlier schemes rely on static dust source functions to
shift emissions towards satellite-observed W%WW%M

, Whereas newer ¢




95 invelve-mere-extensive-input-parameters-with-greater-uneertaintiesparameterizations replace prescribed dust source functions
with more explicit formulations of sediment erodibility that increase the dust emission sensitivity to soil-moisture-dependent

erosion thresholds (e.g., Kok et al., 2014b; Leung et al., 2023). Dust schemes also differ in how they represent the sandblastin
Ginoux et al., 2001

efficiency, defined as the ratio of the vertical dust flux to the saltation flux: some schemes assume a global constant (e.

=2

» Whereas more sophisticated schemes account for the dependence of sandblasting efficiency on soil properties and wind speed
100 (e.g., Zender et al., 2003; Kok et al., 2014b). The choice of wind speed also varies: seme-while some dust schemes use 10-m
wind-speeds-for-simphieity;-while-winds, others use friction velocity s-which-better-ecaptures-the-wind-which more accurately
Wstress acting on seiFeMrQQl\bAlgNsurfaces but requires m#efmﬁﬁeﬂ»eﬁ—su#aee—reughﬁess—Bee&use

—specification of surface roughness length. In general, more sophisticated schemes,
105 which are derived based on small-scale wind tunnel experiments, require more extensive input parameters which are often
poorly constrained at climate model grid levels, necessitating assumptions and empirical tunings. For instance, due to limited
data availability, surface aerodynamic roughness is often prescribed as a global constant or based on static satellite-derived

., Peng et al., 2012; Tegen et al., 2019). ESM-simulated soil water content may lack the accuracy or dynamic range

required by dust emission parameterizations. As a result, some models apply additional tunings or alternative treatments of soil
2003;

3

110 moisture effects (e.g., Zender et al. Volodin and Kostrykin, 2016), while others disable the soil moisture dependence

2

entirely (e.g., Noije et al., 2021; Shevliakova et al., 2024).
Even with-when using the same dust emission scheme, ESMs can diverge—substantiaystill diverge in dust emission
simulations due to differences in model configurations (e.g., horizontal resolution, vertical levels), input datasets, parame-

ter tunings, and coupled parameterizationsphysical processes. For instance, the bare soil fraction is determined from land cover

115 type, vegetation fraction, and snowareal-/ice area extent, all of which may differ betweenESMs—In-particular—vegetation
eover-across ESMs. Vegetation cover itself may be prescribed from a-fixed-satellite climatology or simulated interactively.
Further-diserepaneies-may-resultfrom-differencesin-ESMs also differ in their representations of soil properties (e.g., hydraulic
conductivity), soil column structure (e.g., number and thickness of layers), and hydrologic-processes-land surface hydrologic
formulations (e.g., precipitation, runoff, evaporation), which ultimately—determine—the-watercontent-of topsett-ayers—and

120 consequently-the-threshold-wind-veloeitycollectively determine the surface soil moisture needed by dust emission schemes. The
soil moisture effect-on-threshold-wind-veloeity-is-alseo-effects may be treated inconsistently, e.g., in ealeulating-theresidue-how
models define the residue moisture level below which seibmeistare-dust emission is assumed to have-ne-effects-on-dustemission

Moreover, ESMs employ different pafafﬁetef&aﬁeﬂﬁfe%planetary boundary layer and subgﬂdjafeeesses—whiehﬂffeet—fhe
125

layer-and-land-surface—processessurface flux parameterizations, which influence the simulation of near-surface winds and
extreme wind events pertinent to dust mobilization and transport. Given the inherent differences in dust process representations
and the lack of direct observational constraints, it is thus not surprising that dustemission-estimates-are-strongly- model-dependentESM-simu
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dust emission fluxes exhibit substantial discrepancies, as documented in previous AeroCom and CMIP intercomparison studies.
Therefore, ESM-simulated dust emissions are best viewed as an unconstrained, model-specific quantity characterized b
a dynamic range defined by the parameterizations, configurations, and parameter tunings of individual models, similar to

Koster et al. (2009)’s view on root-zone soil moisture.
While pas i

to-windandhydroetimate model discrepancies in global dust emission estimates are well documented, a key remaining question
is how consistently and accurately current ESMs represent the interannual variability of dust emission and its sensitivity
mmdnvers Addressmg mes&quewewtms essential for understanding and reducing model
predicting dust responses to
climate and land-use changes. In this study, we provide—a-detated-assessment-offocus on the interannual variability and

conditions—in—modulating—the—dust—variabihity—within—of ESM-simulated dust emissions from global drylands and apply a
statistical framework to diagnose the physical controls of dust emissions. Based on fully-coupled historical simulations from

a suite of

White ESMs and two aerosol reanalysis products, we examine the extent of inter-model agreement in simulating the interannual
dust variability across different climate aridity regimes and quantify the relative importance of a common set of physical
W&Mwmm& satellite-derived dust optical-depth
»A0D and insitu dust

measurements provide valuable constraints on dust variabilit ., Prospero and Lamb, 2003; Voss and Evan, 2020), they in-

tegrate information{rom-the effects of emission, transport, and deposition, making it difficult to isolate the emission process

asitself, Also, due

and its physical controls, rather than validating individual model performance against observations.
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Table 1. Summary of the-Earth system models and aerosol reanalysis datasets considered in this study. Dust source function (DSF) eelumn
indicates whether an-empirieal-a static dust source function is used. Leaf area index (LAI) eetumn-indicates whether LAT is treated as a

prognostic variable. D, +is the dust particle diameter upper limit. . is friction velocity. u1o is 10-m wind velocity.

Model Resolution D Wind DSF LAI Dust Scheme Refe
CESM2-CAM-Zender CESM2-WACCM-Zender 0.9°x1.25° 10 u? Y Y 2Zender et al. (2003) 2Ge
CESM2-WACEM-ZenderCESM2-CAM-Zender 0.9°x1.25° 10 u? Y Y 2Zender et al. (2003) 2-All
CESM2-CAM-Kok 0.9°x1.25° 10 u? N Y 2-Kok et al. (2014b) 2Li.
E3SM2-Zender 1°x1° 10 ul Y ¥-N_ 2Zender et al. (2003) 2-Fel
E3SM3-Kok 1°x1° 10 u’ N Y Kok et al, (2014b) Xie ¢
CanESM>5.0_ 282x28 - wio Y *Y  *Pengetal (2012) Swal
CanESMS5-+CanESM5. 1 2.8°x2.8°  Bulk- ud Y Y 2-Peng et al. (2012) 2-Sig
CNRM-ESM2.1 14°x1.4° 20 ul N Y 2-Tegen et al. (2002) 2-5¢1
EC-Earth3-AerChem 2°x3° 20 ul Y N 2-Tegen et al. (2002) 2-No
GISS-E2.1-OMA 2°%2.5° 32 uly Y N 2-Miller et al. (2006) 2Mi
GISS-E2.1-MATRIX 2°%2.5° 32 uly Y N 2-Miller et al. (2006) 2-Mi
GISS-E2.2-OMA 2°%2.5° 32 uly Y N 2-Miller et al. (2006) 2-Ril
GEDE-ESM4125125° 2042 Y- ¥ 22 HadGEM3-GC31  0.6°x0.8° 63 ul Y N 2-Woodward (2011) 2Ro
UKESM1.0 1.25°x1.9° 63 u? N Y 2-Woodward (2001) 2-We
INM-CMS.0 1.5°x2° Bulk~  ul N N 2-Volodin and Kostrykin (2016)  2-Vo
IPSL-CM6A-LR 1.26°x2.5° Butk- iy Y Y 2-Balkanski et al. (2004) 2Ly
MRI-ESM2.0 1.9°x1.9° 20 u? N N 2-Shao et al. (1996) 2-Yu
MIROC6 14°x1.4° 10 ufy N Y 2-Takemura et al. (2009) 2-Tat
MIROC-ES2L 2.8°x2.8° 10 ufy N Y 2-Takemura et al. (2009) 2-Ha
MPI-ESM-1.2 1.9°x1.9°  Butk- ul Y Y 2-Tegen et al. (2019) 2Me
NorESM2 0.9°x1.25° 10 ul Y N 2Zender et al. (2003) 2-Sel
MERRA2-MERRA-2 0.5°x0.63° 20 uly Y N 2-Ginoux et al. (2001) 2Ra
JRAero LI°x1.1° 20 ul N N 2-Shao et al. (1996) 2-Yu

The remainder of this paper is organized as follows. Section 2 describes the ESMs and reanalysis-datasets-considered-in-this
study--aerosol reanalysis datasets and the dominance analysis techniqueused-to-guantify-thejoint-and-relative-influence-of-dust
emission-drivers. Section 3 presents the-intercomparison-of-dustinterannual-variability-results on comparing model-simulated
dust emission fluxes and the relative influenee-influences of wind speed and-hydroclimate-conditions—The-conelusions-are



2 Data and Approach

170 2.1 ESMs and aerosol reanalysis produets-

as summarized in Table 1, including 18 are-models from the CMIP6 historical—fully-coupled-experiments—fully coupled
historical experiment (1980- 2014) ‘We-For each model, we use the first ensemble member (r111p1f1) from-each-model-un-

175 less otherwise stated.

CESM variants use the same dust emission scheme of Zender et al. (2003) (hereafter the Zender scheme) but use-different

atmospherie—schemes:—different atmospheric components: the Community Atmosphere Model (CESM2-CAM-Zender) vs-
versus the Whole Atmosphere Community Climate Model (CESM2-WACCM-Zender);-with-major-differencesin-the-vertieat
180 ﬁemmﬁm%%mmwm
(Feng et al., 2022; Xie et al., 2023). A key difference between the two schemes is that, the Zender scheme relies on a prescribed,
time-invariant dust source function that shifts emissions towards contemporary dust source regions, whereas the Kok scheme
prescribed dust source functions (Kok et al., 2014a). The paired CESM and E3SM experiments allow us to examine how.
Nonetheless, it is important to note that comparing these experiments is complicated by additional model differences. For
components with observationally constrained mineral optical properties (Li et al., 2024
feedback on meteorology and dust emissions. Similarly, E3SM3 incorporates extensive model updates relative to E3SM2,
which may affect near-surface meteorological and land surface conditions relevant to dust emissions (Xie et al., 2025).
Several other model families share common heritage but differ in physics options and configurations. For example, CanESMS. 1

incorporated physics and technical changes that improved mean climate and dust simulations relative to CanESMS5.0 (Sigmond et al., 2023
195 . Three GISS-E2 models use the same dust scheme of-2-from Miller et al. (2006) but differ in model version (2.1 vs. 2.2) and

aerosol microphysics sehemesscheme: One-Moment Aerosol (OMA; ensemble member rlilp3fl) vs—versus Multiconfigu-

ration Aerosol TRacker of mIXing state (MATRIX; ensemble member rlilp5fl) 22)(Rind et al., 2020; Miller et al., 2021).

190 . This may lead to inconsistent radiative

UKESMI1.0 is buitt-upon-developed based on the HadGEM3-GC3.1 general circulation model;—whieh-. They use the same
dust scheme of-2-but-differin-from Woodward (2001) but employ different parameter tunings and dust source representations
200 (H—Similarly;-(Woodward et al., 2022). MIROC-ES2L is-based-en-builds upon the MIROC general circulation model version

5.2 (MIROCS) ?)(Hajima et al., 2020), while MIROCG6 incorporates updated-physies—which-physics updates that improved



the mean climate state and internal variability relative-compared to MIROCS (2)(Tatebe et al., 2019). Both MIROC-ES2L and

205

210

Wefurther-compare-the ESMs-The ESMs are further compared with two aerosol reanalysis products with dust emission flux
215 output: Modern-Era Retrospective Analysis for Research and Applications version-Version 2 (MERRA2MERRA-2, 1980-
2014) ¢5(Gelaro et al., 2017), and Japanese Reanalysis for Aerosol (JRAero, 2011-2017) (2)-MERRAZ-is-produced-by-the

A OO 1ation—and e

220

model. In JRAero, dust emission is simulated using the Shao et al. (1996) energy-based scheme ;-same-as-(same as in MRI-

ESM2.0¢2?

o d d ond A
S ar—a a ta

aHS N\ MERRA

225 . In both MERRA-2 and JRAero, the meteorological inputs for dust emission calculations are constrained via data assimilation
of in situ and remote sensing observations (including surface and upper-air wind measurements), which improves near-surface
also benefits from assimilation of observation-corrected precipitation. While both reanalyses assimilate bias-corrected total
AOD ;which-provides-some-constraint-on-the-dustcolumn-burden-but doesnot-direetly-constrain-dustemisstonsfrom satellites,

230 the AOD assimilation is expected to have limited influence on dust emission simulations.

We-evatuate-the-consisteney-between To facilitate the comparison among ESMs and reanalysis productsin-representing-the

annual-vartabthity-oftotal- dustem S, s ofa A ompartSon-acro S, on—du o FEeSTOnS; divid

global-dust-souree-areas-, we classify global drylands into three climate zones:hyperaridzones—hyperarid, arid, and semiarid;
based-semiarid—based on the aridity index (Al), defined as the ratio of +970-2066-climatological mean precipitation to po-

235 tential evapotranspiration using-the-data-frem-2?—The-hyperarid-for 1970-2000 following (Zomer et al., 2022). Dry subhumid
areas are not considered due to their negligible dust contributions. The hyperarid climate zone is defined as AI<0.05, arid

ST attoh—— O
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Figure 1. Definitions of hyperarid;-arid;-and-semtarid-climate aridity zones for model intercomparisons.

hyperarid areas primarily cover North Africa, Arabian Peninsula, Iranian Plateau, and Tarim Basin. Arid and semiarid zenes

areas cover other major dust sources, including the Sahel (North Africa), Turan Depression (Central Asia), Gobi Desert (East

Asia), Thar Desert (South Asia), Kalahari Desert (Southern Africa), Chihuahua Desert (North America), Patagonia steppe
(South America), and the Great Sandy and Simpson Deserts (Australia). The-rationale-of-this-climate-zone-based-analysisis

SpeeifieattyGenerally, hyperarid areas are expeeted-to-be-dominated by permanently dry, barren surfaces with very-low hy-
droclimate variability, and-thus-such that dust emission is expected to be primarily controlled by wind speed. Whereas;-the
In contrast, arid and semiarid zones-are-expected—to-exhibitinereased-areas experience greater precipitation and hydrocli-
mate variability-resulting-in-fluctuations, which are expected to exert stronger influence on the-sediment-availabilitysediment
erodibility and dust emissions.

2.2 Dominance analysis technique

Past-studies-have-Previous studies commonly used linear regression coefficients to quantify dust-sensitivities-the dust sensitivity
to its physical drivers {e-g5222)(e.g., Pu and Ginoux, 2016; Aryal and Evans, 2021; Zhao et al., 2022). In multiple linear re-
gression, a regression coefficient represents the mean change in the response variable per—(e.g., dust emission flux or AOD)
associated with a unit change in a given predictor, while holding all other predictors constant. This interpretation assumes mu-

tual independence among predictors, an assumption that is often violated by strong correlations among hydroeclimate-variables:
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As-aresultdust emission drivers. Consequently, linear regression coefficients may—yield-can cause misleading inference of

pfedieteﬁmpefeaﬁee—.—Mefeeveﬂhe relative importance of predictors. In addition, regression coefficients, standardized or not,
may not provide a i R A he—varvine e rAR e

comparing predictor importance across different ESMs, due to their inconsistent dynamic ranges.
In this study, we app}fuse the dominance analyms technique to quantlfy the relative mﬂueﬂeeﬁfwﬂaaﬂdﬁydfee}mafe

We-use the monthty importance of multiple correlated predictors in explaining the variability of monthly total dust emission
fluxes simulated by individual ESMs and the MERRA-2 reanalysis. JRAero is excluded from this analysis due to missing.
predictor data. Although the ESMs differ in how they partition total emissions into discrete size modes or bins, the size
partitioning has minor effects on diagnosing the emission process itself. The predictors considered here operate upstream
of the size partitioning, and control the initiation and magnitude of total dust emission flux—as—the-response—variable-and

eonsidersix—predietorsrather than its size-resolved characteristics. Here we consider a common set of six predictors from
each model: 10-m wind speed, total precipitation (including liquid and solid phases), water content in the uppermost soil

layerthereafter-as-setlmeistare), 2-m specific humidity, 2-m air temperature, and leaf area index (LAI). Fhe-total-dustemission

are—chosen—beeause—they—are—Among them, 10-m wind speed represents the wind shear stress driving dust mobilization
while the remaining variables collectively represent the hydroclimate controls on sediment erodibility. The selected predictors
are either directly used as-input-parameters—in—dustfhux—ealewlations—in_dust emission parameterizations or strongly corre-

lated with dust emission intensity, as suaggested-shown in numerous studies

; Xi and Sokoli

. Note that we donot not include all the physical drivers represented in each model because of limited data availability in the
CMIP6 online archive, and because some models incorporate additional drivers not used by others. Hence we focus on a

10
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common set of six readily available predictors to provide a consistent and fair comparison across the ESMs and MERRA-2
reanalysis.
Dominance analy51s is peffefmed—fefﬂl-}—ESNH—aﬂd—MERRA% lied to the ESMs and MERRA-2 over grld cells with

Nnonzero et

by subtracting month-wise climatological means

datainto-and then normalized to 0-1 range via min-max 1

fraction-in-orderto-isolate-the-influence-of the-seleeted-predietors—The-scaling, Dominance analysis quantifies the marginal
contribution of each predictor to the total explained variance (R?) by evaluating all possible subset models (27 — 1 subsets for p.
predictors) in a multiple linear regression framework (Budescu, 1993: Azen and Budescu, 2003). The approach first calculates
the average incremental contribution of each predictor to the total R? across all subset models of the same size (i.e.. models with
the same number of predictors). These incremental R? values are then averaged to obtain the predictor’s overall contribution
to the total R?, A key feature of this approach is that the sum of individual predictor contributions equals the total R? of the

full model (i.e., with all predictors included), thereby allowing the partitioning of total explained variance among correlated

redictors. The resulting grid-level te%a}ﬂﬂéjafeehetef-speetﬁeMRz values from the ESMs and MERRA-2 are used
spatial variability of predictor influences over
different climate zones within each model, and the inter-model consistency in the-total-explained-variance-and-predictorrelative

impertanee-representing the relative importance of wind speed versus hydroclimate drivers.

to assess the i

3 Results
3.1 Climatological distribution

Figure 2 displays the climatological mean annual dust fluxes-frem-emission fluxes from the 21 ESMs, the-model-their ensemble
mean, and MERRAZ-and-JRAero-datasets-for-the-the MERRA-2 and JRAero reanalyses during 2005-2014 period-(2004-2013
for CESM2-CAM-Kok and 2011-2017 for JRAero). All datasets capture the global dust belt stretching from West Africa across
the Middle East to East Asia, as well as the-less-intense-weaker sources in the Americas and Australia. Among the ESMs,
E3SM3-Kok and HadGEM?2-GC31 simulate the most extensive dust-emitting areas ineluding-extending to high-latitude and
subhumid areas. Taeontrast"CESM2-CAM-Zender, CESM2-WACCM-Zender ;-and NorESM?2 simulate-diserete-and-limited

dust-emitting-areas-by-exeluding-areas-with-restrict emissions to regions where the dust source function vatues-below-exceeds
0.1+, resulting in discrete and spatially limited emission patterns. Conversely, E3SM2-Zender uses-the-otiginal-unmodified
2-employs the original dust source function and-thus-produeces-of Zender et al. (2003), producing a more spatially continuous
emission pattern (Fig. 2e).

The-globaltotal-dust flux-varies greatly among the ESMs-Global annual dust emissions simulated by the ESMs vary greatly,

1

ranging from 890 to 7727 Tg yr~" with nearly an order of magnitude difference (Fig. 2a—2u). The medel-ensemble mean

11



1912 Tg yr

(a) CESM2-CAM-Zender 2174 Tg yr!

2643 Tg yr!

/3

(h) IPSL-CMBA 1754 Tg yr-!
E =< 7 o T = -

1061 Tg yr!

1568 Tg yr

-1

—

(0) HadGEM3-GC3.1

-1

1214 Tg y

0 5222 Tg yi

6561 Tgyr' (t) MIROC6

1090 Tg y
— — e 2

1

(F) MRI-ESM2,
———

1 1

0"

2857 Tg yr-!

,"’.-:". =

1605

Tg yr!

2780 Tg yr!

E——— T
100 1000

Figure 2. Climatological mean dust emission fluxes from (a—u) individual-21 Earth system models, (v) model ensemble mean, (w) MERRA2
MERRA-2 reanalysis, and (x) JRAero reanalysis. Global annual total dust-emissions are displayed on each panel.

12



estimate is2786-Fe—yr—_(Fig. 2v) is 2857 Tg yr_! with a standard deviation of +82+-1835 Tg yr—!, corresponding to a
diversity of 6564% (defined as the ratio of standard deviation to medel-ensemble mean). Based on models with a-dust-size
upper-an upper particle size limit of 20 zm, global dust emissions vary from +662-1061 to 6561 Tg yr~!, with a mean of 3642
325 3048 Tg yr~! and diversity of 51%-This-uncertainty range-is-consistent-with-prior-55%. The ensemble mean is close to JRAero
2780 Tg yr— !, Fig. 2x), but considerably higher than MERRA-2 (1605 Tg yr—!, Fig. 2w). Also, the ensemble mean exhibits
a more spatially homogeneous pattern over North Africa and the Arabian Peninsula, whereas MERRA-2 and JRAero display.
more heterogeneous and localized emission patterns.
The model discrepancies in dust emission magnitude are consistent with previous assessments. For example, >Huneeus et al. (2011)_
330 compared 14 modelsfrom-AeroCom Phase I models and reported a global dust emission range of 5004400 Tg yr—! with-a
diversityof-(diversity=58%: ), of which seven using a
20 pm-and-reported-a—flux-of-um upper size limit yielded 9804300 Tg yr—! with-a-diversityof-(diversity=46%). Similarly,
2-GliB et al. (2021) compared 14 AeroCom Phase III models and feuné-reported a range of 850-5650 Tg yr~! with a di-

versity of 64%. 2-Based on 15 CMIP5 models, Wu et al. (2020) reported a range of 740-8200 Tg yr—! with-adiversityof

335 (diversity=66%base
MMMM&Q&%@%@&MO 3600 Tg yr*1 mm%%)
More recently, 2-ecompared-Zhao et al. (2022) examined 15 medels{rom-the-CMIP6 AMIP experiment-models and reported
a range of 1400-7600 Tg yr—! with a diversity of 61%. PaststudiestogetherCollectively, these studies, along with our re-
sults, indicate-persistentlarge-demonstrate persistent large model uncertainties in global dust emissiens;-despite-improvements
340 emission estimates despite advances in model resolutions and physics parameterizations, which reflects the unobservable,
model-specific nature of dust emission fluxes.

345 andecalized-patterns—
Figure 3 displays the fractional-contributions of different climate zones to global dust emissions. Based on the model
ensemble mean, global dust emissions are partitioned as 61% from hyperarid, 27% from arid, and 5% from semiarid zones.
In comparison, MERRA-2 and JRAero allocate the majority of dust emissions to hyperarid and arid zones, with negligible
contributions from the semiarid zone.
350 The hyperarid zone accounts for more than half of global tetal-emissions-in-most ESMs-exeept-two-models-emissions in
all ESMs except CanESMS5.0, CanESMS5. 1, and INM-CMS5.0;-beth-of-which-. These models simulate relatlvely uniform emis-

sion patterns with less than 50% from th

two—medelshyperarid areas, possibly related to their dust emission parameterizations. As noted in Z—improper—parameter

tuning-Sigmond et al. (2023), parameter tunings related to the hybridization of dust tracers caused spurious dust events and
355 inaceurate-dust-distributionsin CanESM5-+.0. An 1nterp01at10n error in the bare soil fraction also disterted-the-model’s—dust

~contributed to dust simulation biases in
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Figure 3. Contributions of different climate zones to global annual dust emissions. Numbers indicate percentages above 5%.

CanESMS.0 and CanESMS.1 compared to other CMIP6 models and satellite aerosol observations (Sigmond et al., 2023).
The newer CanESMS.1 simulates 20% less dust globally but similar spatial distributions compared to CanESMS.0. In INM-
CM35.0, the vertical dust flux is calculated as a function of frietion-veloeity-ontywind speed alone, without accounting for the

360 dependenee-ofland surface effects on the threshold wind velocity entandsurface-conditions(22)(Volodin and Kostrykin, 2016; Volodin, 20
. While this simplification may be appropriate for fh&hypefaﬁé—zeﬂelmaw it can m&educ—wgmﬁeaﬂf%iases

overestimate emissions over arid and semiarid

dustemissionsareas where increased soil wetness and vegetation cover suppress dust mobilization.
Over-the-arid-elimatezone-the-dustemissionfractionranges-Contributions of the arid zone range from 8% (CESM2-CAM-
365 Kok) to 37% (UKESM-1.0), reflecting substantialindicating substantial model discrepancies compared to the hyperarid zone.
The discrepancies among-the ESMs—These-diserepaneies-become even larger over the semiarid zone, where the eontribution
emission fraction ranges from less than 1% to 18%. Three- ESMs-Particularly, four models allocate more than 10% of-dust-to the
semiarid zone: CanESM5.0 (16%), CanESMS.1 (18%), INM-CM5.0 (15%), and UKESM1.0 (12%). ThusOverall, as the cli-
mate zone-shifts 1 Wﬁom hyperarld to semiarid, fhe«ESMs—shewla%gewhserep&nerem&he&esﬁmafe&eﬁelaﬂ*e

he-model-estimated
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dust source strengths become less consistent, revealing increasing uncertainty in how ESMs represent dust sensmvny to hy-

droclimate conditions. B4

375 Among the ESMs, CESM2-CAM-Zender - CESM2-WACCM-Zenderand- NorESM2-producesimilar-and CESM2-WACCM-Zender
roduce nearly identical total emissions and regional-fractionsspatial patterns, suggesting that the choice between CAM and
WACCM has-minimal-influence-when—thesame-dust-scheme(Zender)-is—usedatmospheric components has minimal effect.

The paired CESM and E3SM experimentsshow-different-changes-in-regional-fractions-—For-instanee;-, however, show opposite
tendencies: contributions of the hyperarid zone fraction-inereases-increase from 61% in CESM2-CAM-Zender to 88% in

380 CESM2-CAM-Kok, but shghtly deefea%e%w from 63% in E3SM2-Zender to 58% in E3SM3-Kok. The GISS-E2 mod-

ton-is-produce consistent distributions across
different climate zones, although total emissions are about 40% lower when using the MATRIX aerosol scheme-—This-could

i, possibly due to parameter tunings or underrepresentation
of coarse dust particles—<(diameter>5 pmédiameter) in the MATRIX modal size distribution, as peinted-outby—2-—noted in

385 Bauer et al. (2022).
UKESM1.0 simutates-emits nearly twice as much dust as HadGEM3-GC3.1, along-with-slightly-mere-even-and exhibits

slightly more uniform spatial distributions. As described in ?Woodward et al. (2022), UKESM1.0 is built er-upon HadGEM3-

els sh

GC3.1 but applies medel-parameter tunings that enhance friction velocity and suppress soil moisture—These-tunings—are

expected—to—inerease—, effectively increasing the wind gustiness and soil WM@W
390 UKESMlﬂ—fhefebybsffeﬂgfheﬂmgdﬂsPemtssteﬂs—HKESM}

. The three Japanese models
(MRI-ESM2.0, MIROC-ES2L, and MIROC6) eﬂ%ﬁhfg&éﬁefﬂﬁ%wmwln total emissions and, to a lesser
degree;regional-extent, spatial distributions. MRI-ESM2.0 produces similar regional fractions to JRAero but nearly twice-the
total-emissionsdoubles the total amount. Despite using the same dust schemeparameterization, MIROC-ES2L preduces-emits

395 roughly five times more dust than MIROCG6. This discrepancy can be largely explained by the-stronger winds in MIROC-
ES2L, which produces 50% higher global mean wind speed than MIROC6. Moreover, MIROCS6 prescribes non-zero LAI even

in hyperarid regions—whichdikelyfarthersappresses-dust-emissions-areas, likely further suppressing dust generation relative
to MIROC-ES2L (Hiroaki Tatebe, personal communications).

3.2 Interannual variability

400 This section evaluates-the-consisteney-among-the-examines the consistency of ESMs in simulating the interannual variability

of dust emissions. Monthly dust emission fluxes from all ESMs are first regridded to a common resolution of 0.9°x1.25°
(the native grid of CESM2). To remove the influence of annual cycles, we-subtract-the-month-wise climatological means are

subtracted from each grid cell --yielding-to calculate deseasonalized dust emission flux anomalies. Spearman’s rank correlation

coefficients are then calculated between the deseasonalized-anomalies-for-all-possible-model-pairsmonthly anomalies for eve
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Figure 4. Percentage of statistically significant (p<0.1), positive correlations out of every—pessible—210 pairwise comparisons of
deseasonalized monthly dust emission fluxes from 21 Earth system models. Black contours represent-indicate the model ensemble mean

annuak-dust-emission flux of 10 and 100 Tg yr L.

possible model pair. With 21 ESMs, this yields-results in 210 pairwise comparisons. To quantify the extent-ef-inter-model
overall model agreement, we calculate the percentage of model pairs that-exhibit-exhibiting statistically significant (p<0.1),
positive correlations;which-is-displayed-inFig—4—. A higher percentage indicates stronger inter-medel-model agreement in
simulating the interannual-variability-of-dust-emissions—dust variability, and vice versa. The results are displayed in Fig. 4.
Despite its dominant eentributions-contribution to global dust emissions, the hyperarid zone shews-generally-exhibits poor
model agreement, with generally less than 10% of pairwise comparisons yieldingstatisticatly-significantsshowing statistically

significant positive correlations. Because dust emissions from hyperarid areas are primarily—controlled-by-predominantly
controlled by near-surface wind speed, this weak-poor agreement reflects inconsistent wind simulations i#-among the ESMs.

Indeed, we find that only 10% of model pairs produce statistically—significant;positively—eorrelated—-wind—variab

hyperarid-zonepositively correlated monthly mean wind speed anomalies. Similarly, -Evan (2018) reported that dust-producing
winds over the Sahara are-mainty-Desert are driven by large-scale meteorological processes and that most CMIP5 models failed

to capture the near-surface wind variability. These results suggest that aceurately-representing-improving near-surface winds-is
eritical-for reducing-model-diserepaneies-in-dust-wind simulations can potentially reduce discrepancies in simulating the dust

emission variability over hyperarid areasregions.

Compared-In contrast to the hyperarid zone, arid and semiarid zones{(sueh-zones—such as the Sahel, South Asia, East Asta
and-Australia)yexhibitsignificantly-strongermedel-and Central Asia, Australia, and North America—exhibit significantly better
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Figure 5. Spearman’s rank correlation coefficients between dust emission flux anomalies averaged over hyperarid, arid, and semiarid cli-
mate zones. Dots indicate statistically significant correlations (p<0.1). Summary tables are based on Earth system models only (MERRA2

MERRA-2 and JRAero not included).

agreement. To tHustrate-further assess how model consistency varies with elimate—zonesaridity, Fig. 5 presents the-pairwise
correlation matrices based on dust emission flux anomalies averaged over hyperarid, arid, and semiarid zones. The percentage
of statistically significant, positively correlated model pairs increases from +69% in the hyperarid zone to +413% in the arid

zone and +716% in the semiarid zone

. Meanwhile, the semiarid zone exhibits-shows a larger

percentage of negatively correlated model pairs (15%)-compared-to-hyperarid(516%) than the hyperarid (6%) and arid (67%)
zones. This dipele-dual pattern suggests that as the climate regime transitions from hyperarid to semiarid, the ESMs exhibit both

stronger agreement and worsened-heightened disagreement in simulating dust-emission-variability-the interannual variability
on sediment erodibility in semiarid environment such as temperate grasslands and steppes ;—dust-emissions—are-—stronghy

. In these regions, factors such as precipitation, soil moisture, and vegetation growth-decay-eyelewhich-exertstronglagged
inflaence-on—thesoil-erodibility(22)growth—decay cycles have lagged and long-lasting effects on sediment erodibility. For
example, dry anomalies during the prier-wet-seasen(e.g-reduced-snowfall-or-rainfall-wet season, accelerated-snow-retreat)

ean-subsequently-such as reduced rainfall or earlier snowmelt, can reduce soil inter-particle cohesion and suppress vegetation
growth, thereby prolonging bare soil exposure and increasing the wind erosion risk. This delayed dust-emission-response-to

preceding-drought-exemplifies-the-effect-of response exemplifies the land surface memory -whereby-effect, in which the slow
adjustment of land-surface-states{such-assotl-meoisturesnow-coverand-vegetation)-soil and vegetation conditions over weeks
to months influences subsequent dust emission potentials long after the initial hydroclimate forcing (e.g., drought). Therefore,

17

Shinoda and Nandintsetseg, 2011; Nandintsetseg and Shinoda,



445

450

455

460

(a) Hyperarid zone (b) Arid zone (c) Semiarid zone

04 N: 100 (15) 04 N: 113 (14) 04 N: 110 (34)
03] Slope: 0.14(0.22) 03] Slope: 0.19(0.31) 03] Slope: 0.19(0.32) M
c T ]r:0.29 (0.55) c 12031 (0.74) c 1% 032 (0.55)
8 . 2 2
Fi 0.2 F 0.2 Fi 0.2
£ . . £ £
w 0.1 ba ¥ o w 0.1 w01
k7] i - k] k]
3 o, Yo e . 3 =
a o S A-Reta2 Q 0 Q o
£ w £ £
2 -0.14 . 2 -0.14 g -0.14
o o o
£ -0.2 £ -0.2 £ -0.24
o o Q
o o o
-0.34 -0.34 -0.3 .
-0.4 T T T T T T -0.4 T T T T T T -0.4 T T T T T T
-08 -06 -04 -02 0 02 04 06 08 -0.8 -06 -04 -02 0 02 04 06 08 -0.8 -06 -04 -02 0 02 04 06 08
Corr. Coef. in Hydroclimate Variability Corr. Coef. in Hydroclimate Variability Corr. Coef. in Hydroclimate Variability

Figure 6. Statistical associations between pairwise model correlation coefficients (p<0.1 shown in red) in dust emission fluxes and

hydroclimate variability over (a) hyperarid, (b) arid, and (c) semiarid climate zones.

we speetate-hypothesize that the simultaneous increase of-both-medel-consisteney-and-divergenee-in both model agreement

Mnee

and disagreement from hyperarid to semiarid zones reflects a ““double-edged sword™” effect of land surface memory: models

~

with coherent representations of hydroclimate variability tend to converge in the simulated dust emission-variability (i.e., more

positive correlations), while-whereas those with divergent hydroclimate representations diverge in the dust variability (i.e.,

more negative correlations).

To verify this hypothesis, we examine the statistical association between pairwise model correlations in dust emissions and
those in hydroclimate variability. Specifically, we firs : tneiple-perform a principal component analysis (PCA) of
the five hydroclimate variables (i.e., precipitation, soil moisture, specific humidity, air temperature, LAI) separately for the
hyperarid, arid, and semiarid zones. The leading prineiple-principal component (PC1), which explains at least 40% of the total
variance in all zones, is used as a proxy for the dominant hydroclimate variability. Spearman’s rank correlation coefficients
are then ealeulated-computed for all pairwise medel-comparisons of deseasonalized monthly PC1 values, following the same
approach as in Fig. 5.

Figure 6 compares the correlation coefficients for model pairs with the same sign (i.e., either-both positive or both negative)
in dust emission fluxes and hydroclimate PC1. The regression slope and coefficient of determination (r?) quantify the degree
of statistical association between medel-inter-model correlations in dust emission and hydroclimate variability. The positive
assoctationin-relationships across all climate zones suggests-suggest that ESMs with stronger consensus in hydroclimate vari-
ability also tend to produce more consistent dust variability;-and-viee-versa. More importantly, both-the number of significantly
correlated model pairs (NV) and correlation strength (slope and 72) show significant increases from hyperarid to semiarid

zones. This result-finding supports our hypothesis regarding-on the dual role of land surface memory: it enhanees-tends to
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Figure 7. Total explained variance (R?) in dust emission fluxes by six near-surface predictors (wind speed, precipitation, soil moisture,
specific humidity, air temperature, and LAI) in Earth system models and MERRA2ZMERRA-2. Global mean R? values are shown on each

panel.

improve agreement among ESMs with coherent hydroclimate representations, while simultaneously exaeerbating-amplifying

disagreement among those with divergent hydroclimate variability.
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3.3 Relative importance of wind speed versus hydroclimate drivers

34 Relativei £ wind-and-hvdreek 1

In this section, we present the

on the joint and relative influences of wind speed and hydroclimate drivers on the dust-emission—variability-simulated dust
variability within individual ESMs. Figure 7 presents-the-total-variance-explained{shows the total R? y-by-near-surface-wind

and-MIERRAZ2by the selected six predictors. Results for CESM2-WACCM-Zender and NorESM2 are very similar to those of
for CESM2-CAM-Zender and thus not shown.

TFhe-ESMs-exhibit substantial-differences The ESMs show large discrepancies in the total R?, reflecting atarge-spread-in
the-internal-model-variability-and-inherent differences in the coupling strength between dust emission and the six-selected

predictors. CanESM5-1-yields-the-lowest-global-When ranked by the global mean R2, CanESM35.0 and CanESMS5.1 show
the lowest explanatory power of the selected predictors, followed by MPI-ESM1.2, MIROC6, and EC-Earth3-AerChem;-in

ity. The low explanatory-power-may-total

r-factors.

R? can be explained by several res

We only consider six common predictors and may omit other predictors that are specific to some models (such as stem area
index). Model biases (see Sect. 3.1) may weaken or distort the relationships-between-dust-emissions-and-the-predietors—The
use-of-over-simplified-relationship between dust emission and its physical drivers. Using simplified parameterizations and/or
static land surface input W%WW%&WM@H&WMWW
to hydroclimate conditions. In addition, €4
because dust emission is governed by highly nonlinear threshold processes, its dependence on the predictors may deviate from
the }inearity-assumption-in-linear assumption underlying dominance analysis. As shown in Fig. 7, the-total R? values tend
to-be-much-are generally lower in arid and semiarid zenes-than—in-the-hyperarid-zonearcas than in hyperarid areas, likely
due to increased nonhneanty between dust emission and hydroclimate variables wh&eh—dtmmtshe&&xet&eeﬂeeﬂv&explaﬂa{efy

ower of multilinear regression.
Despite these limitations, most ESMs produce significant total R? valuesevermajorsouree-areas, especially in the-hyperarid

zone-where-thetotal-hyperarid areas with R? exeeeds-0-6-Switchingfrom-the Zender-to-generally above 0.5. Replacing the
Zender with the Kok dust scheme leads-to-generatty-towergenerally reduces the total R? vatesin-in both CESM and E3SM
(Fig. 7a—d). Fhe-GISS-E2 models show little differences between the OMA erMAFRESCand MATRIX aerosol schemes, and a
modest increase from version 2.1 to 2.2. UKESM1.0 and HadGEM3-GC3.1 show minimal differences, both with-showing high

R? values globally. MIROC6 yields lower R? than MIROC-ES2L, especialty-over-the-hyperarid-zone- MERRA2-particularly
in hyperarid areas. MERRA-2 produces higher R? than most ESMs, especially everin arid and semiarid zones—ta-summary;
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Figure 8. The ratio of wind-associated R? to the combined R? of five hydroclimate variables (precipitation, soil moisture, specific humidit
air temperature, and LAI) in Earth system models and MERRA-2.

Figure 8 presents the ratio of wind-speed-assoeiated-the wind-associated R? to the combined R? of five hydroclimate vari-

ables (precipitation, soil moisture, specific humidity, air temperature, and LAI). In all ESMsexeept-GFPE-ESM4, the wind-
to-hydroclimate R? ratio is well above 1 over the-hyperaridzonehyperarid areas, which is consistent with the dominantrole

505 ofparameterization of vertical dust flux as a power-law function of wind speed in eontrolling-dust-emissions-frompersistently
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Figure 9. Fractional contributions of wind-dominated, equally-important, and hydroclimate-dominated regimes to global dust emissions in

Earth system models and MERRAZMERRA-2.

dry-barren-surfaces-all models, and the expectation that dust emission from permanently dry and sparsely vegetated surfaces
is primarily controlled by wind speed. In contrast, arid and semiarid zenes-exhibit-greater-diserepaneiesareas exhibit much
larger inconsistency, with ratios either above or below 1 depending on the model. This reflects-increased-model-diserepaneies
regarding-behavior may be due to inconsistent representations of hydroclimate controls on sediment erodibility, which in
turn leads to disagreement in the relative importance of wind and-hydreeclimate-driversintransitional-regions—where-versus
hydroclimate drivers. For example, most ESMs incorporate soil moisture as a correction to the erosion threshold velocity.
M%W&WWMM emission
nsswitched off. Such inconsistencies inevitably produce
varying coupling strengths between dust emission and hydroclimate variables across models.

Based on the wind-to-hydroclimate R? ratios, we classify global dust-emitting areas into three regimes: wind-dominated

(ratio>1.2), hydroclimate-dominated (ratio<0.8), and equally-important (0.8—1.2). We-ther-Then we calculate the fractions of
dust emissions eriginating-from-the-three-regimes—n-from these regimes within each model. The results are displayed in Fig.
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9. The ESMs show general agreement in the “equally-important” regime, with most models preducing-simulating less than
10% of-dustfrom regions where wind and hydroclimate drivers have nearly equal inflaence-on-dustemissions—GFDE-ESM4
produces-the-highestcontribution-(12%)-in-this-regime—contributions.

The wind-dominated regime eontributes-the-majority-of global-dustemissions-{>accounts for more than 80% )-dust emissions
in most ESMsand-MERRA?2, consistent with the dominant contribution of the hyperarid zone (Fig. 3). Hewever;-three-medels
yield-anomalouslylow—contributions—GEDLE-ESM4+36%);-Two_models yield significantly lower estimates: INM-CM5.0
(5443%) and CanESM5+(75. Niw%) %ﬂmﬂ%%eaﬁbeﬁep}aﬁled—byﬁffefeiﬁeaﬁeﬂ%As shown in Fig. 3, INM-CM5-0

negligible-influence-on-dustemissiensregions compared with other models. For CESM and E3SM, switchingfrom-the Zender
to-replacing the Zender with Kok dust scheme slightly reduces the wind-dominated dust fraction: from 85% to 8679% in

CESM, and from 99% to 96% in E3SM. The three GISS-E2 models yield similar estimatesregardless-of-model-version-or
aerosol-scheme;-with-82—85results, with 87-90% dust from the wind-dominated regime. SimitarhyLikewise, UKESM1.0 and
HadGEM3-GC3.1 yield simitar-nearly identical estimates, with 90% of dust emitted-from wind-dominated regions. MERRA2
MERRA-2 simulates 98% emissions from the-wind-dominated regimeareas, higher than most ESMs. Three models produce

significantly higher contributions from semiarid areas than others: CanESMS5.0 (29%), CanESM5.1 (21%), and INM-CMS5.0

3

Here-wefurtherevaluate-the-contribution-To further assess the relative importance of wind speed versus hydroclimate drivers
we compute the fractional contributions of wind speed to the total R? in-different-climatezones—For-each-climate zone—we

use-ridgeline-plots—to-ithastrate-the-at each model grid cell. The statistical distributions of grid-level wind-speed-assoeiated
wind-associated R? fractions —TFheresults-are displayed in Fig. 10. In fheﬂége}meja}e%s Nvgva if the median value-of-wind

speed-asseeiated-wind-associated R”
means-indicates that wind speed dominates the-dust variability at more than half of the grld cells —H-the-median-value-is-within
a climate zone. Conversely, if the median falls below 50%, tabittty i i

than-half-efthe-hydroclimate drivers exert dominant control over the majority of grid cells.
In the hyperarid zone (Fig. 10a), mestESMs-and-MERRA2-the majority of ESMs capture the dominant eentrol-of-wind

%emmmmm R? fractions exceeding 80%. The three GISS-E2 models

Odisplay slightly lower wind contributions (67-74%).
Two-models—stand-out-as—notable-outhiers: GFDLE-ESM4-and-In _contrast, CESM2-CAM-Kok ;-both-of-which-exhibitlarge

fraction exceeds 50%, it
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Figure 10. Ridgeline plots ef-for the fractional contributions of wind speed to the total R2 over (a) hyperarid, (b) arid, and (c) semiarid

climate zones. Black vertical lines -—+espeetivetyindicate median values. Color

shading represent-the-represents mean total R? values.

and-tranian—Plateaun—(Fig—8h—Similarty, CESM2-CAM-Keok-exhibits large-spatial-variability-greater spatial variability and
lower wind influence with a median wine-wind-associated | R2 fraction of 64%-driven-by-dominant-63%, consistent with the
model’s elevated hydroclimate influence over West Africa and the Tarim Basin {as shown in Fig. 8b)-In-comparisorr. Compared
to CESM2-CAM-Kok, CESM2-CAM-Zender captures the dominant-wind-influence-expected wind dominance with a median
vatue-of-860f 87 %. The suboptimal-performanee-of-enhanced hydroclimate influence in CESM2-CAM-Kok relative to CESM2-
CAM-Zender persists even when comparing common dust-producing-areas-in-the-dust-emitting areas in these two models.

In the arid zone (Fig. 10b), the-total R? is-generatlysmatler-due—to-values are generally lower, again reflecting reduced

explanatory power of the selected predictors. The ESMs also-show-larger-disagreement-exhibit greater discrepancies in the
relative importance of wind and-hydrechmate-drivers—The-influence-ofwindspeed-isreduced-and-more—variable; but-st

remains-dominant-speed versus hydroclimate drivers in the arid zone. Specifically, wind speed remains the dominant driver of
dust variability in most ESMsand-MERRA2-The-, despite increased spatial variability. The three GISS-E2 models produee
relatively-equal-importanee-of-simulate nearly equal wind and hydroclimate drivers—In-contrastfourmodels—GFDL-ESM4;
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influences. INM-CM5.0, MIROC-ES2L and MIRO

roduce median wind-associated R? fractionfallingfractions well below 50%, indieating-signifying a transition from wind- to
hydroclimate-dominated regimes. CESM2-CAM-Kok also refleets-displays this transition, although to a smaller extent with a
median value-of46%-of 44% and large spatial variability. In both CESM and E3SM, switechingfrom-the ZendertoKekscheme

replacing the Zender with Kok dust scheme weakens the wind influence and strengthens the hydroclimate influence, with the
median wind-associated R? fraction declining from 56% to 44% in CESM and from 86% to 74% in E3SM. This is somewhat
consistent with previous findings that the more physically based sediment erodibility formulations in the Kok scheme which
enhanees-enhance the dust sensitivity to tmate-variabilityas toushy-s stedHn-2climate variability relative to the

Results for the semiarid zone (Fig. 10c) are considered less robust due to significantly smaller dust-emitting areas ot
weakens, while hydroclimate divers-drivers become more important. The magnitude-of-this-shiftresulting change of predictor
relative importance, however, varies widelyJleading—totarger-diserepanciesconsiderably. Specifically, hydroclmate-drivers
wind dominance, albeit with increased spatial variability. Hydroclimate dominance persists and strengthens in CESM2-CAM-
Kok, GEBE-ESM4:-INM-CMS5.0, MIROC-ES2L and MIROCS6, same-as-consistent with their behaviors in the arid zone. The
foHewing-ESMs-display-a-elear-transition-In contrast, the following models transition from wind- to hydroclimate-dominated
regimes: E3SM2-Zender, CNRM-ESM2.1, CanESM5.0, CanESMS.1, HadGEM3-GC3.1, and-UKESM1.0 and MRI-ESM2.0.
IPSE-EM6A-and-GISS-E2 models also-show-inereased-and IPSL-CM6A exhibit moderate increases of hydroclimate influ-

ence, though-to-alesserextent—The remaining ESMs-and-MERRA2-continue-to-display-dominance-of-wind-speed;-albei

inereased-spatial-variabilityresulting in roughly equal importance of wind and hydroclimate drivers. Compared to the ESMs
MERRA-2 generally produces dominant wind influence across all three climate zones.

in-the-hyperarid-zone—To identify the speeifie-drivers-of-these-anemaliessources of hydroclimate influence in the ESMs, Fig.
11 presents the median fractional contributions of five hydroclimate variables to the total R? in each model. The contribution
attributed to specific humidity can largely be interpreted as a soil moisture effect, given the strong coupling between near-surface
humidity and surface soil water content through evapotranspiration. In hyperarid regions, dust variability is expected to be

ne-Thus, anomalously large hydroclimate contributions
in some ESMs may be explained by a—combination—of-two-two possible mechanisms: (1) the hydroclimate—variability—is
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Figure 11. Median factional contributions of hydroclimate variables-drivers to the total explained variance (R?) in Earth system models and

MERRAZ-MERRA-2 over (a) hyperarid, (b) arid, and (c) semiarid climate zones. Hydroclimate variables are precipitation (P), soil moisture

(SM), specific humidity (SH), air temperature (T), and leaf area index (LAI).

model overestimates hydroclimate variabilit
thereby producing spurious correlations with dust emissions regardless of whether the hydroclimate variable is explicitly used

in-GFPE-ESM4-(Fig—Ha)-—model reasonably represents hydroclimate variability but overestimates dust sensitivity to _the
hydroclimate variable, indicating a potential bias in the parameterization itself. Understanding the causes for the statistically
inferred predictor influences would require detailed knowledge of the physical parameterizations and model configurations
specific to each ESM.

The-abnormal-In the hyperarid zone, the hydroclimate influence in CESM2-CAM-Kok may-be-parthy-explained-by—dust

emission-parameterizations-is associated with precipitation and specific humidity, which may partly reflect the increased dust
sensitivity to soil moisture in the Kok scheme ;which-introduces-enh aneced-sensitivity-to-the-thresheld-wind-veloeity-compared

prca REa-auSt-Sou t O anda ofSta 1o P S arry a O Ppro g POn O—1utd fa anda

land-use-changes-—relative to the Zender scheme (Kok et al., 2014a). Another possible reason is the relatively-short simulation
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period in-for CESM2-CAM-Kok (2004-2013), which may not fully-eapture-the-tong-term-adequately capture the full range of
dust variability and predictor influence-relationships as in CESM2-CAM-Zender (1980-2014). In this regard, the E3SM ex-

periments provide a more robust comparison between the Zender-and-icek-two dust schemes. As shown in Fig. 11a, the E3SM
moedels-exhibitboth E3SM2-Zender and E3SM3-Kok produce the expected negligible hydroclimate influence in the hyperarid

zone‘fegafd}es&ef—fhe&usﬁehemeﬂsed In the arid zone, however, E3SM3-Kok shews—highefmhydrochmate
influence than E3SM2-Zenderdue

evidenee-, consistent with previous findings that the Kok scheme amplifies the dust emissien-sensitivity to hydroclimate con-

ditions —compared to the Zender scheme (Kok et al., 2014a). GISS models exhibit elevated influences from specific humidit
and soil moisture, which explains their moderate wind contributions as shown in Fig. 10a.
In the arid zone (Fig. 11b), mestESMs—show-enhanced-influencefrom-the enhanced hydroclimate influence is primaril

associated with soil moisture and spemﬁc humldlty w‘lsvtvg% consistent with empmea}fwdeﬂee—ﬂ%a%befh#aﬂ&b}es

MW%%lmmmmmer hydroclimate variables,
LAI ean-be-eithermay be prescribed from climatology or si interactively
simulated by dynamic vegetation model components (Table 1). Models using prescribed LAI af&e*peeted%e%hewmma}
WWWMWJWWMIW%MW

weak influence on dust emissions.

M%M@LCMW be explamed by the-strong-ecoupled-between
o o ssingtheir

arameterizations of the bare soil fraction eutputfrom-the-CMIP6-archiveas a function of LAL

4 Conclusions

This study evaluates-diserepaneies-and-biases-examines discrepancies among 21 ESMs in representing the interannual variabil-

ity of windblown dust emissions and the relative importance of near-surface wind speed and-versus five hydroclimate drivers

(precipitation, soil moisture, specific humidity, air temperature, and LAI) -

different climate aridity zones (hyperarid, arid, and semiarid);-and-furtherexamines-theeffeet. Recognizing the unconstrained
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model-specific nature of dust emission para

sehemesfluxes, we use the dominance analysis technique to quantify the relative influence of a common set of six physical
drivers within each model.

The hy

655

deficiencies-and-over-simplifications-in-dustemission-representationsextent of inter-model agreement in dust variability varies
strongly with climate aridity. In the hyperarid zone, the ESMs exhibit poor agreementw&ﬂ%eael&refheﬁaﬂdwﬂ%%{%%
in-simulating-the-dust-variability, with only i i isti
WM&Q%WW%&%&M%W&QMW

660 in model-simulated near-surface wind speeds. In arid and semiarid zones, the ESMs exhibit a dipele-pattern-with-beth-improved
ined-dual pattern driven by a "double-edged sword" effect

of land surface memory: models with coherent representations of hydroclimate variability tend to converge in their simulated
dust variability, while-whereas those with divergent hydroclimate representations diverge in dust emission responses.
The relative influence-of-wind-and-importance of wind speed versus hydroclimate drivers also varies with climate regimes-
665 Most-aridity. In hyperarid areas, most ESMs capture the dominant-control-expected dominance of wind speed and weak
m%mmwmmfﬁmmmw&w%mm@g%CESMZ -CAM-Kok

exhibits elevated influences from precipitation and G
%ffeﬂgmﬂueﬂeeffem—pfec—fp&&&emspemﬁc hum1d1ty,

670

+by-thephysieally-based-seil-which may partly result from the more physically based sediment erodibility formulations in the 2-
scheme-whichreplaces-the-use-of predefined-dustsoureefunetionsKok et al. (2014b) scheme relative to the Zender et al. (2003)
scheme. A similar pa&effrbehawor is found in E3SM, where swﬁehmg%mm—fhel{eme—lsehemﬁ&eﬂgﬂaeﬂs—thehydfeehmﬁe

675 meteefe}egya—fufﬂaeﬁe*peﬁmeﬂ%s—af&re lacing the Zender et al. (2003) scheme with the Kok et al. (2014b scheme reduces
the wind dominance and enhances the hydroclimate influence on dust emission. Due to confounding model changes in
the CESM and E3SM experiments, however, targeted experiments will be needed to isolate the effeets—of-dustemission

effect of dust parameterization choice on the dust sensitivity. In arid and semiarid zones;-the-influence-of-wind-speed-areas,
680 wind influence generally weakens while the-hydroclimate influence strengthens in all ESMs. However, the relative impor-

less consistent, with contrasting model behaviors in retaining wind dominance or shifting toward hydroclimate dominance or

near-equal importance. Compared to the ESMs, the MERRA-2 aerosol reanalysis generally produce stronger wind influence
685 and weaker hydroclimate influence than-the-ESMs=—across all climate regimes.
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T-summary-this-stadyprovidesnew-Note that the physical drivers considered in this study may not fully represent all the
dust emission driving factors for specific emission schemes; instead, we focus on a common set of drivers for all models to
rovide a fair comparison across the ESMs. Therefore, the inferred relative importance from this analysis is limited to those

common drivers considered and their influences on dust emissions in different models. Also, because of the statistical nature of

690 dominance analysis, the predictor importance results shall be interpreted with caution when linking to model parameterizations.
Despite these limitations, this study introduces a new framework for model intercomparison and yields new insights into
how current ESMs represent the temperal-variability and physical éﬂvef%ﬁfwmdb}ew&duﬁkefm%ﬂeﬂ%e%%meapﬂﬁe

ineonsisteneies—in—the—simulated—controls of dust emissions across different climate aridity regimes. Overall, our findings
695 highlight two promising directions for reducing model uncertainties in dust emission simulations: (1) improving the representation

of near-surface wi

vartability-wind speeds and gustiness in hyperarid regions, and (2) enhancing the representation of hydroclimate and land

surface processes -

700 eonditiensthat modulate sediment erodibility in arid and semiarid areas.

Data availability. Model comparison and dominance analysis results are available at https://doi.org/10.5281/zenodo.17666380.

Author contributions. Conceptualization and methodology - Xin Xi; Data curation and analysis - Xinzhu Li, Xin Xi, Longlei Li, Yan Feng;

Writing of original draft - Xinzhu Li, Xin Xi. Review and editing of draft - Xinzhu Li, Xin Xi, Longlei Li, Yan Feng.

Competing interests. The authors declare no competing interests.

705  Acknowledgements. X.L.and X.X. are partially supported by the NASA Land-Cover and Land-Use Change Program (grant SONSSC20K 1480).
Y.F. acknowledges the support of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy (DOE),

Office of Science, Office of Biological and Environmental Research-

POE-Office-of-Seience-, under contract DE-AC02-06CH11357. All authors thank the E3SM project team for their efforts in developin

and supporting the E3SM. L.L. acknowledges support from the-b-S-—DPepartment-of Energy(DOE-)-DOE under award DE-SC0021302,
710  and from the Earth Surface Mineral Dust Source Investigation (EMIT), a National-Aeronatties-and-Space-Administration (NASAH)-NASA

Earth Ventures-Instrument (EVI-4) mission. He also acknowledges the high-performance computing resources provided by Derecho at the
National Center for Atmospheric Research (NCAR), through NCAR’s Computational and Information Systems Laboratory (CISL), which is

sponsored by the National Science Foundation (NSF). Fhe-All authors acknowledge the World Climate Research Programme for coordinat-

29


https://doi.org/10.5281/zenodo.17666380

ing and promoting CMIP6, and thank the climate modeling groups for producing and making available their model output, the Earth System
715  Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.

30



720

725

730

735

740

745

750

References

Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F.,, and Otto-Bliesner, B. L.:
Improved dust representation in the Community Atmosphere Model, Journal of Advances in Modeling Earth Systems, 6, 541-570,
https://doi.org/10.1002/2013MS000279, 2015.

Aryal, Y. N. and Evans, S.: Global Dust Variability Explained by Drought Sensitivity in CMIP6 Models, Journal of Geophysical Research:
Earth Surface, 126, https://doi.org/10.1029/2021JF006073, 2021.

Azen, R. and Budescu, D. V.: The Dominance Analysis Approach for Comparing Predictors in Multiple Regression, Psychological Methods,
8, 129-148, https://doi.org/10.1037/1082-989X.8.2.129, 2003.

Bagnold, R. A.: The Physics of Blown Sand and Desert Dunes, Springer Dordrecht, 1 edn., ISBN 978-94-009-5684-1, https://doi.org/10.
1007/978-94-009-5682-7, 1974.

Balkanski, Y., Schulz, M., Claquin, T., Moulin, C., and Ginoux, P.: Global Emissions of Mineral Aerosol: Formulation and Validation using
Satellite Imagery, in: Emissions of Atmospheric Trace Compounds, edited by Granier, C., Artaxo, P., and Reeves, C. E., pp. 239-267,
Springer, https://doi.org/10.1007/978-1-4020-2167-1_6, 2004.

Bauer, S. E., Tsigaridis, K., Faluvegi, G., Nazarenko, L., Miller, R. L., Kelley, M., and Schmidt, G.: The Turning Point of the Aerosol Era,
Journal of Advances in Modeling Earth Systems, 14, https://doi.org/10.1029/2022MS003070, 2022.

Budescu, D. V.: Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression, Psycholog-
ical Bulletin, 114, 542-551, https://doi.org/10.1037/0033-2909.114.3.542, 1993.

Bullard, J. E. and Livingstone, I.: Interactions between aeolian and fluvial systems in dryland environments, Area, 34, 8-16,
https://doi.org/10.1111/1475-4762.00052, 2002.

Bullard, J. E., Harrison, S. P, Baddock, M. C., Drake, N., Gill, T. E., McTainsh, G., and Sun, Y.: Preferential dust sources: A ge-
omorphological classification designed for use in global dust-cycle models, Journal of Geophysical Research: Earth Surface, 116,
https://doi.org/10.1029/2011JF002061, 2011.

Cowie, S. M., Marsham, J. H., and Knippertz, P.: The importance of rare, high-wind events for dust uplift in northern Africa, Geophysical
Research Letters, 42, 8208-8215, https://doi.org/10.1002/2015GL065819, 2015.

Csavina, J., Field, J., Félix, O., Corral-Avitia, A. Y., Sdez, A. E., and Betterton, E. A.: Effect of wind speed and rel-
ative humidity on atmospheric dust concentrations in semi-arid climates, Science of the Total Environment, 487, 82-90,
https://doi.org/10.1016/j.scitotenv.2014.03.138, 2014.

Engelstaedter, S., Kohfeld, K. E., Tegen, 1., and Harrison, S. P.: Controls of dust emissions by vegetation and topographic depressions: An
evaluation using dust storm frequency data, Geophysical Research Letters, 30, https://doi.org/10.1029/2002GL016471, iISBN: 0094-8276,
2003.

Evan, A. T.. Surface Winds and Dust Biases in Climate Models, Geophysical Research Letters, 45, 1079-1085,
https://doi.org/10.1002/2017GL076353, 2018.

Evan, A. T., Flamant, C., Fiedler, S., and Doherty, O.: An analysis of aeolian dust in climate models, Geophysical Research Letters, 41,
5996-6001, https://doi.org/10.1002/2014GL060545, 2014.

Evans, S., Ginoux, P., Malyshev, S., and Shevliakova, E.: Climate-vegetation interaction and amplification of Australian dust variability,

Geophysical Research Letters, 43, 11,823-11,830, https://doi.org/10.1002/2016GL071016, publisher: John Wiley & Sons, Ltd, 2016.

31


https://doi.org/10.1002/2013MS000279
https://doi.org/10.1029/2021JF006073
https://doi.org/10.1037/1082-989X.8.2.129
https://doi.org/10.1007/978-94-009-5682-7
https://doi.org/10.1007/978-94-009-5682-7
https://doi.org/10.1007/978-94-009-5682-7
https://doi.org/10.1007/978-1-4020-2167-1_6
https://doi.org/10.1029/2022MS003070
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1111/1475-4762.00052
https://doi.org/10.1029/2011JF002061
https://doi.org/10.1002/2015GL065819
https://doi.org/10.1016/j.scitotenv.2014.03.138
https://doi.org/10.1029/2002GL016471
https://doi.org/10.1002/2017GL076353
https://doi.org/10.1002/2014GL060545
https://doi.org/10.1002/2016GL071016

755

760

765

770

775

780

785

Feng, Y., Wang, H., Rasch, P. J., Zhang, K., Lin, W., Tang, Q., Xie, S., Hamilton, D. S., Mahowald, N., and Yu, H.: Global Dust Cycle and
Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution, Journal of Advances in Modeling Earth Systems,
https://doi.org/10.1029/2021MS002909, 2022.

Fécan, F., Marticorena, B., and Bergametti, G.: Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to
soil moisture for arid and semi-arid areas, Annales Geophysicae, 17, 149, https://doi.org/10.1007/s005850050744, 1999.

Gelaro, R., McCarty, W., Sudrez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle,
R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. d., Gu, W,, Kim, G. K., Koster, R.,
Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and
Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30, 5419-5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., Mclnerny, J., Liu,
H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S.,
Neale, R. B., Simpson, L. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version
6 (WACCMO), Journal of Geophysical Research: Atmospheres, 124, 12 380-12 403, https://doi.org/10.1029/2019JD030943, publisher:
Blackwell Publishing Ltd, 2019.

Ginoux, P., Chin, M., Tegen, L., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of dust aerosols simulated
with the GOCART model, Journal of Geophysical Research Atmospheres, 106, 20 255-20 273, https://doi.org/10.1029/2000JD000053,
2001.

GliB, J., Mortier, A., Schulz, M., Andrews, E., Balkanski, Y., Bauer, S. E., Benedictow, A. M. K., Bian, H., Checa-Garcia, R., Chin, M.,
Ginoux, P., Griesfeller, J. J., Heckel, A., Kipling, Z., Kirkevig, A., Kokkola, H., Laj, P., Sager, P. L., Lund, M. T., Myhre, C. L., Matsui,
H., Myhre, G., Neubauer, D., Noije, T. V., North, P, Olivié, D. J. L., Rémy, S., Sogacheva, L., Takemura, T., Tsigaridis, K., and Tsyro,
S. G.: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- And space-based remote
sensing as well as surface in situ observations, Atmospheric Chemistry and Physics, 21, 87-128, https://doi.org/10.5194/acp-21-87-2021,
2021.

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A.,
Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of
biogeochemical processes and feedbacks, Geoscientific Model Development, 13, 2197-2244, https://doi.org/10.5194/gmd-13-2197-2020,
2020.

Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T,
Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller,
R., Morcrette, J. J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison
in AeroCom phase i, Atmospheric Chemistry and Physics, 11, 7781-7816, https://doi.org/10.5194/acp-11-7781-2011, iSBN: 1680-7324
Publisher: Copernicus Publications, 2011.

Kim, D., Chin, M., Yu, H., Diehl, T., Tan, Q., Kahn, R. A., Tsigaridis, K., Bauer, S. E., Takemura, T., Pozzoli, L., Bellouin, N., Schulz, M.,
Peyridieu, S., Chédin, A., and Koffi, B.: Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis
and comparison with remote sensing data, Journal of Geophysical Research, 119, 6259-6277, https://doi.org/10.1002/2013JD021099,
2014.

32


https://doi.org/10.1029/2021MS002909
https://doi.org/10.1007/s005850050744
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2019JD030943
https://doi.org/10.1029/2000JD000053
https://doi.org/10.5194/acp-21-87-2021
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/acp-11-7781-2011
https://doi.org/10.1002/2013JD021099

790

795

800

805

810

815

820

825

Kim, D., Chin, M., Schuster, G., Yu, H., Takemura, T., Tuccella, P., Ginoux, P., Liu, X., Shi, Y., Matsui, H., Tsigaridis, K., Bauer, S. E.,
Kok, J. F., and Schulz, M.: Where Dust Comes From: Global Assessment of Dust Source Attributions With AeroCom Models, Journal of
Geophysical Research: Atmospheres, 129, €2024JD041 377, https://doi.org/https://doi.org/10.1029/2024JD041377, publisher: John Wiley
& Sons, Ltd, 2024.

Kim, H. and Choi, M.: Impact of soil moisture on dust outbreaks in East Asia: Using satellite and assimilation data, Geophysical Research
Letters, 42, 2789-2796, https://doi.org/https://doi.org/10.1002/2015GL063325, publisher: John Wiley & Sons, Ltd, 2015.

Knippertz, P. and Todd, M. C.: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications
for modeling, Reviews of Geophysics, 50, https://doi.org/10.1029/2011RG000362, 2012.

Kok, J. F,, Parteli, E. J. R., Michaels, T. L., and Karam, D. B.: The physics of wind-blown sand and dust, Reports on Progress in Physics, 75,
https://doi.org/10.1088/0034-4885/75/10/106901, 2012.

Kok, J. F., Albani, S., Mahowald, N. M., and Ward, D. S.: An improved dust emission model - Part 2: Evaluation in the Community
Earth System Model, with implications for the use of dust source functions, Atmospheric Chemistry and Physics, 14, 13 043-13 061,
https://doi.org/10.5194/acp-14-13043-2014, 2014a.

Kok, J. F., Mahowald, N. M., Fratini, G., Gillies, J. A., Ishizuka, M., Leys, J. F., Mikami, M., Park, M. S., Park, S. U, Pelt, R. S. V,,
and Zobeck, T. M.: An improved dust emission model - Part 1: Model description and comparison against measurements, Atmospheric
Chemistry and Physics, 14, 13 023-13 041, https://doi.org/10.5194/acp-14-13023-2014, 2014b.

Kok, J. E, Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T., He, C., and Leung, D. M.: Mineral dust aerosol
impacts on global climate and climate change, Nature Reviews Earth and Environment, 4, 71-86, https://doi.org/10.1038/s43017-022-
00379-5, 2023.

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the nature of soil moisture in land surface models,
Journal of Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1, 2009.

Leung, D. M., Kok, J. F, Li, L., Okin, G. S., Prigent, C., Klose, M., Garcia-Pando, C. P., Menut, L., Mahowald, N. M., Lawrence, D. M.,
and Chamecki, M.: A new process-based and scale-aware desert dust emission scheme for global climate models - Part I: Description
and evaluation against inverse modeling emissions, Atmospheric Chemistry and Physics, 23, 6487-6523, https://doi.org/10.5194/acp-23-
6487-2023, 2023.

Li, L., Mahowald, N. M., Kok, J. F,, Liu, X., Wu, M., Leung, D. M., Hamilton, D. S., Emmons, L. K., Huang, Y., Sexton, N., Meng, J.,
and Wan, J.: Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model
(version 6.1), Geoscientific Model Development, 15, 8181-8219, https://doi.org/10.5194/gmd-15-8181-2022, 2022.

Li, L., Mahowald, N. M., Ageitos, M. G., Obiso, V., Miller, R. L., Garcia-Pando, C. P., Biagio, C. D., Formenti, P., Brodrick, P. G., Clark,
R. N., Green, R. O., Kokaly, R., Swayze, G., and Thompson, D. R.: Improved constraints on hematite refractive index for estimating
climatic effects of dust aerosols, Communications Earth & Environment, 5, 295, https://doi.org/10.1038/s43247-024-01441-4, 2024.

Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Contoux, C., Cozic, A., Cugnet,
D., Dufresne, J.-L., Ethé, C., Foujols, M.-A., Ghattas, J., Hauglustaine, D., Hu, R.-M., Kageyama, M., Khodri, M., Lebas, N., Lev-
avasseur, G., Marchand, M., Ottlé, C., Peylin, P., Sima, A., Szopa, S., Thiéblemont, R., Vuichard, N., and Boucher, O.: Implementation
of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model, Journal of Advances in Modeling Earth Systems, 12, e2019MS001 940,
https://doi.org/https://doi.org/10.1029/2019MS001940, publisher: John Wiley & Sons, Ltd, 2020.

Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, Journal of

Geophysical Research, 100, https://doi.org/10.1029/95jd00690, 1995.

33


https://doi.org/https://doi.org/10.1029/2024JD041377
https://doi.org/https://doi.org/10.1002/2015GL063325
https://doi.org/10.1029/2011RG000362
https://doi.org/10.1088/0034-4885/75/10/106901
https://doi.org/10.5194/acp-14-13043-2014
https://doi.org/10.5194/acp-14-13023-2014
https://doi.org/10.1038/s43017-022-00379-5
https://doi.org/10.1038/s43017-022-00379-5
https://doi.org/10.1038/s43017-022-00379-5
https://doi.org/10.1175/2009JCLI2832.1
https://doi.org/10.5194/acp-23-6487-2023
https://doi.org/10.5194/acp-23-6487-2023
https://doi.org/10.5194/acp-23-6487-2023
https://doi.org/10.5194/gmd-15-8181-2022
https://doi.org/10.1038/s43247-024-01441-4
https://doi.org/https://doi.org/10.1029/2019MS001940
https://doi.org/10.1029/95jd00690

830

835

840

845

850

855

860

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, 1., Fiedler,
S., Flaschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns,
T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,
Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Mobis, B., Miiller, W. A., Nabel, J. E. M. S., Nam, C. C. W, Notz, D.,
Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H.,
Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, L., Stevens, B., Storch, J.-S. v.,
Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System
Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, Journal of Advances in Modeling Earth Systems, 11, 998-1038,
https://doi.org/https://doi.org/10.1029/2018MS001400, publisher: John Wiley & Sons, Ltd, 2019.

Miller, R. L., Cakmur, R. V., Perlwitz, J., Geogdzhayev, 1. V., Ginoux, P., Koch, D., Kohfeld, K. E., Prigent, C., Ruedy, R., Schmidt, G. A.,
and Tegen, I.: Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model,
Journal of Geophysical Research Atmospheres, 111, https://doi.org/10.1029/2005JD005796, 2006.

Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Kelley, M., Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, 1., Bauer,
M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I, Cruz, C. A., Genio, A. D. D., Elsaesser, G. S., Faluvegi, G.,
Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., McDermid, S., Mezuman,
K., Murray, L. T., Oinas, V., Orbe, C., Garcia-Pando, C. P., Perlwitz, J. P.,, Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S.,
Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M. S.: CMIP6 Historical Simulations (1850-2014) With GISS-E2.1,
Journal of Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2019MS002034, 2021.

Nandintsetseg, B. and Shinoda, M.: Land surface memory effects on dust emission in a Mongolian temperate grassland, Journal of Geophys-
ical Research: Biogeosciences, 120, 414-427, https://doi.org/10.1002/2014JG002708, 2015.

Noije, T. V., Bergman, T., Sager, P. L., O’Donnell, D., Makkonen, R., Gong¢alves-Ageitos, M., Doscher, R., Fladrich, U., Hardenberg, J. V.,
Keskinen, J. P., Korhonen, H., Laakso, A., Myriokefalitakis, S., Ollinaho, P., Garcid-Pando, C. P., Reerink, T., Schrédner, R., Wyser, K.,
and Yang, S.: EC-Earth3-AerChem: A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6,
Geoscientific Model Development, 14, 5637-5668, https://doi.org/10.5194/gmd-14-5637-2021, 2021.

Owen, P. R.: Saltation of uniform grains in air, Journal of Fluid Mechanics, 20, 225-242, https://doi.org/10.1017/S0022112064001173, 1964.

Peng, Y., Salzen, K. V., and Li, J.: Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM,
Atmospheric Chemistry and Physics, 12, 6891-6914, https://doi.org/10.5194/acp-12-6891-2012, 2012.

Prospero, J. M. and Lamb, P. J.: African Droughts and Dust Transport to the Caribbean: Climate Change Implications, Science, 302, 1024—
1027, https://doi.org/10.1126/science.1089915, publisher: American Association for the Advancement of Science, 2003.

Prospero, J. M., Ginoux, P, Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of global sources of atmospheric
soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Reviews of Geophysics,
40, 2—-1-2-31, https://doi.org/10.1029/2000RG0O00095, iSBN: 8755-1209, 2002.

Pu, B. and Ginoux, P.: The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria, Atmospheric Chemistry and Physics,
16, 13 431-13 448, https://doi.org/10.5194/acp-16-13431-2016, 2016.

Pu, B. and Ginoux, P.: How reliable are CMIP5 models in simulating dust optical depth?, Atmospheric Chemistry and Physics, 18, 12491—
12510, https://doi.org/10.5194/acp-18-12491-2018, 2018.

34


https://doi.org/https://doi.org/10.1029/2018MS001400
https://doi.org/10.1029/2005JD005796
https://doi.org/10.1029/2019MS002034
https://doi.org/10.1002/2014JG002708
https://doi.org/10.5194/gmd-14-5637-2021
https://doi.org/10.1017/S0022112064001173
https://doi.org/10.5194/acp-12-6891-2012
https://doi.org/10.1126/science.1089915
https://doi.org/10.1029/2000RG000095
https://doi.org/10.5194/acp-16-13431-2016
https://doi.org/10.5194/acp-18-12491-2018

865

870

875

880

885

890

895

Randles, C. A., Silva, A. M. d., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair,
J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation
evaluation, Journal of Climate, 30, 6823-6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.

Raupach, M. R., Gillette, D. A., and Leys, J. F.: The effect of roughness elements on wind erosion threshold, Journal of Geophysical Research:
Atmospheres, 98, 3023-3029, https://doi.org/10.1029/92JD01922, 1993.

Ravi, S., Zobeck, T. E. D. M., Over, T. M., Okin, G. S., and D’Odorico, P.: On the effect of moisture bonding forces in air-dry soils on thresh-
old friction velocity of wind erosion, Sedimentology, 53, 597-609, https://doi.org/https://doi.org/10.1111/j.1365-3091.2006.00775.x, pub-
lisher: John Wiley & Sons, Ltd, 2006.

Rind, D., Orbe, C., Jonas, J., Nazarenko, L., Zhou, T., Kelley, M., Lacis, A., Shindell, D., Faluvegi, G., Romanou, A., Russell, G., Tausnev, N.,
Bauer, M., and Schmidt, G.: GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—Model Structure, Climatology,
Variability, and Climate Sensitivity, Journal of Geophysical Research: Atmospheres, 125, https://doi.org/10.1029/2019JD032204, 2020.

Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D.,
Schiemann, R., Seddon, J., Vanniere, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1
model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999-5028, https://doi.org/10.5194/gmd-12-4999-2019,
publisher: Copernicus Publications, 2019.

Seland, O., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y. C., Kirkevig,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, 1., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
0., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview
of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations,
Geoscientific Model Development, 13, 6165-6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.

Shao, Y.. A model for mineral dust emission, Journal of Geophysical Research Atmospheres, 106, 20239-20254,
https://doi.org/10.1029/2001JD900171, 2001.

Shao, Y., Raupach, M. R., and Leys, J. F.: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region,
Australian Journal of Soil Research, 34, 309-342, https://doi.org/10.1071/SR9960309, 1996.

Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle:
An emerging core theme in Earth system science, Aeolian Research, 2, 181-204, https://doi.org/10.1016/j.ae0lia.2011.02.001, 2011.

Shevliakova, E., Malyshev, S., Martinez-Cano, 1., Milly, P. C. D., Pacala, S. W., Ginoux, P., Dunne, K. A., Dunne, J. P., Dupuis, C.,
Findell, K. L., Ghannam, K., Horowitz, L. W., Knutson, T. R., Krasting, J. P, Naik, V., Phillipps, P, Zadeh, N., Yu, Y., Zeng, F,, and
Zeng, Y.: The Land Component LM4.1 of the GFDL Earth System Model ESM4.1: Model Description and Characteristics of Land Sur-
face Climate and Carbon Cycling in the Historical Simulation, Journal of Advances in Modeling Earth Systems, 16, €2023MS003 922,
https://doi.org/https://doi.org/10.1029/2023MS003922, publisher: John Wiley & Sons, Ltd, 2024.

Shinoda, M. and Nandintsetseg, B.: Soil moisture and vegetation memories in a cold, arid climate, Global and Planetary Change, 79, 110-117,
https://doi.org/10.1016/j.gloplacha.2011.08.005, 2011.

Sigmond, M., Anstey, J., Arora, V., Digby, R., Gillett, N., Kharin, V., Merryfield, W., Reader, C., Scinocca, J., Swart, N., Virgin, J., Abraham,
C., Cole, J., Lambert, N., Lee, W. S., Liang, Y., Malinina, E., Rieger, L., Salzen, K. V., Seiler, C., Seinen, C., Shao, A., Sospedra-
Alfonso, R., Wang, L., and Yang, D.: Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis:
CanESMS5.0 and CanESMS5.1, Geoscientific Model Development, 16, 6553—-6591, https://doi.org/10.5194/gmd-16-6553-2023, 2023.

35


https://doi.org/10.1175/JCLI-D-16-0609.1
https://doi.org/10.1029/92JD01922
https://doi.org/https://doi.org/10.1111/j.1365-3091.2006.00775.x
https://doi.org/10.1029/2019JD032204
https://doi.org/10.5194/gmd-12-4999-2019
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.1029/2001JD900171
https://doi.org/10.1071/SR9960309
https://doi.org/10.1016/j.aeolia.2011.02.001
https://doi.org/https://doi.org/10.1029/2023MS003922
https://doi.org/10.1016/j.gloplacha.2011.08.005
https://doi.org/10.5194/gmd-16-6553-2023

900

905

910

915

920

925

930

935

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. E, Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S.,
Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., Salzen, K. V., Yang,
D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geoscientific Model Development, 12, 4823-4873,
https://doi.org/10.5194/gmd-12-4823-2019, 2019.

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J. E., Moine, M. P., Msadek, R., Ribes, A., Rocher, M., Roehrig,
R., Salas-y Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Ethé, C., and Madec, G.:
Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate, Journal
of Advances in Modeling Earth Systems, 11, 4182-4227, https://doi.org/10.1029/2019MS001791, 2019.

Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O’Ishi, R., and Abe-Ouchi, A.: A simulation of the global distribution
and radiative forcing of soil dust aerosols at the Last Glacial Maximum, Atmospheric Chemistry and Physics, 9, 3061-3073,
https://doi.org/10.5194/acp-9-3061-2009, 2009.

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S.,
Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O’Ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka,
T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity
in MIROC®6, Geoscientific Model Development, 12, 2727-2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.

Tegen, 1., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann, M.: Impact of vegetation and preferential source areas on global
dust aerosol: Results from a model study, Journal of Geophysical Research Atmospheres, 107, https://doi.org/10.1029/2001JD000963,
2002.

Tegen, 1., Neubauer, D., Ferrachat, S., Drian, C. S. L., Bey, 1., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S.,
Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol-climate model
echam6.3-ham?2.3 -Part 1: Aerosol evaluation, Geoscientific Model Development, 12, 1643—-1677, https://doi.org/10.5194/gmd-12-1643-
2019, 2019.

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl,
T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, L.,
Iversen, T., Kloster, S., Koch, D., Kirkevag, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F.,, Liu, X., Montanaro, V., Myhre,
G., Penner, J., Pitari, G., Reddy, S., Seland, Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol
life cycles within AeroCom, Atmospheric Chemistry and Physics, 6, 1777-1813, https://doi.org/10.5194/acp-6-1777-2006, 2006.

Volodin, E. M.: Possible Climate Change in Russia in the 21st Century Based on the INM-CM5-0 Climate Model, Russian Meteorology and
Hydrology, 47, 327-333, https://doi.org/10.3103/S1068373922050016, 2022.

Volodin, E. M. and Kostrykin, S. V.: The aerosol module in the INM RAS climate model, Russian Meteorology and Hydrology, 41, 519-528,
https://doi.org/10.3103/S106837391608001X, 2016.

Voss, K. K. and Evan, A. T.: A new satellite-based global climatology of dust aerosol optical depth, Journal of Applied Meteorology and
Climatology, 59, 83—102, https://doi.org/10.1175/JAMC-D-19-0194.1, 2020.

White, B. R.: Soil transport by winds on Mars, Journal of Geophysical Research: Solid Earth, 84, 4643-4651,
https://doi.org/10.1029/JB084iB09p04643, 1979.

Woodward, S.: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model, Journal of

Geophysical Research Atmospheres, 106, 18 155-18 166, https://doi.org/10.1029/2000JD900795, 2001.

36


https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1029/2019MS001791
https://doi.org/10.5194/acp-9-3061-2009
https://doi.org/10.5194/gmd-12-2727-2019
https://doi.org/10.1029/2001JD000963
https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.5194/acp-6-1777-2006
https://doi.org/10.3103/S1068373922050016
https://doi.org/10.3103/S106837391608001X
https://doi.org/10.1175/JAMC-D-19-0194.1
https://doi.org/10.1029/JB084iB09p04643
https://doi.org/10.1029/2000JD900795

940

945

950

955

960

965

Woodward, S.: Hadley Centre Technical Note 87 - Mineral dust in HadGEM2, Tech. rep., Met Office, backup Publisher: Met Office, 2011.

Woodward, S., Sellar, A. A., Tang, Y., Stringer, M., Yool, A., Robertson, E., and Wiltshire, A.: The simulation of mineral dust in the United
Kingdom Earth System Model UKESM 1, Atmospheric Chemistry and Physics, 22, 14 503—14 528, https://doi.org/10.5194/acp-22-14503-
2022, 2022.

Wu, C., Lin, Z., and Liu, X.: The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models,
Atmospheric Chemistry and Physics, 20, 10401-10425, https://doi.org/10.5194/acp-20-10401-2020, 2020.

Xi, X. and Sokolik, I. N.: Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages, Journal of
Geophysical Research: Atmospheres, 120, 12 175-12 197, https://doi.org/10.1002/2015JD024092, 2015a.

Xi, X. and Sokolik, I. N.: Seasonal dynamics of threshold friction velocity and dust emission in Central Asia, Journal of Geophysical
Research: Atmospheres, 120, 1536—1564, https://doi.org/10.1002/2014JD022471, 2015b.

Xie, S., Terai, C., Wang, H., Tang, Q., Fan, J., Burrows, S., Lin, W., Wu, M., Song, X., Zhang, Y., Taylor, M., Golaz, J.-C., Benedict, J.,
Chen, C.-C., Feng, Y., Hannah, W., Ke, Z., Shan, Y., Larson, V., and Bader, D.: The Energy Exascale Earth System Model Version 3. Part
I: Overview of the Atmospheric Component, Under Review, https://doi.org/10.22541/essoar.174456922.21825772/v1, 2025.

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S.,
Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The meteorological research institute Earth system model
version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component, Journal of the Meteorological Society of Japan,
97, 931-965, https://doi.org/10.2151/jmsj.2019-051, 2019.

Yumimoto, K., Tanaka, T. Y., Oshima, N., and Maki, T.: JRAero: The Japanese Reanalysis for Aerosol v1.0, Geoscientific Model Develop-
ment, 10, 3225-3253, https://doi.org/10.5194/gmd-10-3225-2017, iISBN: 1991-9603 Publisher: Copernicus Publications, 2017.

Zender, C. S. and Kwon, E. Y.: Regional contrasts in dust emission responses to climate, Journal of Geophysical Research Atmospheres,
110, https://doi.org/10.1029/2004JD005501, 2005.

Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology,
Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002jd002775, 2003.

Zhao, A., Ryder, C. L., and Wilcox, L. J.: How well do the CMIP6 models simulate dust aerosols?, Atmospheric Chemistry and Physics, 22,
2095-2119, https://doi.org/10.5194/acp-22-2095-2022, 2022.

Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential Evapotranspiration Database, Scientific Data, 9,
https://doi.org/10.1038/s41597-022-01493-1, 2022.

Zou, X. K. and Zhai, P. M.: Relationship between vegetation coverage and spring dust storms over northern China, Journal of Geophysical

Research: Atmospheres, 109, https://doi.org/10.1029/2003jd003913, 2004.

37


https://doi.org/10.5194/acp-22-14503-2022
https://doi.org/10.5194/acp-22-14503-2022
https://doi.org/10.5194/acp-22-14503-2022
https://doi.org/10.5194/acp-20-10401-2020
https://doi.org/10.1002/2015JD024092
https://doi.org/10.1002/2014JD022471
https://doi.org/10.22541/essoar.174456922.21825772/v1
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.5194/gmd-10-3225-2017
https://doi.org/10.1029/2004JD005501
https://doi.org/10.1029/2002jd002775
https://doi.org/10.5194/acp-22-2095-2022
https://doi.org/10.1038/s41597-022-01493-1
https://doi.org/10.1029/2003jd003913

