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Abstract.

Dustemisston-is-medulated-Windblown dust emissions are governed by near-surface wind speed and land-surface-conditions

WNW
influence of these drivers in Earth system models (E
%WMHWWMMAMWMMM@M@Q
projecting dust responses to future climate and land-use changes. Here we evaluate the model consistency in simulating the
Ww@wﬁgmwmwmd speed and five-hydroclimate-variablesin

tonshydroclimate drivers within 21
&Qm% the models show-exhibit
poor agreement in simulating-dust variability,

e—with only 10% out
of 210 pairwise comparisons showing significant positive correlations. In arid and semiarid regions;-the-dust-vartability—is
shaped-by-a-dual-zones, the models display a dipole pattern driven by a "double-edged sword" effect of land surface mem-

ory: models with coherent hydroclimate variability eenverge-in-dustrespenses,—while-show improved agreement, whereas
those with divergent hydroclimate representations lead-te-show increased disagreement. Adthough-al-Most models capture the

display large spatial variability and anomalously high sensitivity to soil moisture and precipitation, respectively. Incorporating
the Kok et al. (2014) scheme in CESM and E3SM generally enhances-the-hydroctimate-influence-compared-to-amplifies the
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representations-of-hydroelimate-variability-need to improve the representations of near-surface winds in hyperarid areas and
hydroclimate and land surface processes in predicting-dustresponses-to-climate-variations-and-changesarid and semiarid areas

to reduce model uncertainties in dust emission estimates.

1 Introduction

Wind-blown-dustfrom-dryland-regions-Windblown dust aerosol is an essential element of the Earth’s biogeochemical cy-
cle, but has become a global concern due to its transboundary,-multifaceted-wide-ranging impacts on the climate, publie
healthecosystems, agriculture, and secioeconomic-wel-beingsociety. Dust emission is modulated by a number of atmospheric
and land surface parametersrelated-to-variables which can be grouped into three broad drivers: sediment supply, sediment avail-
ability, and wind erosivity, which collectively determine the dust-event-timing, location, duration, and-intensityintensity, and
impacts of dust events (Xi, 2023). The most abundant sediment supply is typically found in low relief areas with thick layers of
fine, unconsolidated materials pfeelueed%yﬁggpgmweathermg, fluvial, and/or aeolian processes (Bryant, 2013). These

The sediment.

availability for airborne dust production is strongly affected by soil moisture and surface armoring ;-such-as(e.g., vegeta-
tion, soil erusts;-and-crust, non-erodible p&f&e}e&éB&HafePeFal—EGH%—The—wdtmem—mw{a{%h{y is-modulated-primartly-by
oarse particles) which determine the
minimum or threshold wind velocity required to initiate mobilization—dust mobilization (Bullard et al., 2011). To initiate dust
WMM&WMWWWWIW erosiv-
ity is dominated by rareinfrequent, high wind events which

mechanism-Knippertz; 2044 generate sufficient drag to mobilize soil particles via saltation and sandblasting mechanisms. De-
pending on the relative importance of the three drivers, dust emission may fall into one of three distinct regimes: supply-limited,

where a lack of suitable-sized sediments restricts dust emission; availability-limited, where fine sediments are present but are

protected-against-wind-protected against erosion; and transport capacity-limited, where sediments are dry and exposed -but
the-but near-surface winds are too weak to initiate-dust-entrainmentmobilize the particles.

The physical-three dust emission drivers have been incorporated inte-globalcoupled-acroselmedels-erin global aerosol-climate
models and Earth system models (ESMs) to represent-the-environmental-control-of-capture the environmental controls on the
dust cycle. mme%mmwpb%wdﬁkmwwm a time-invariant dust

source function whi

sediment supply, with high values generally associated with topographic depressions containing abundant alluvial or lacustrine

deposits (Prespero-et-al;2002)Dustmodelsgenerally-assume-(Ginoux et al., 2001; Prospero et al., 2002; Zender et al., 2003
. These areas are generally assumed to have an unlimited sediment supply, without accounting for sediment-depletion or re-

plenishment over time (Zhang et al., 2016a). The hydfeehﬁﬁrafe—medﬁ}afmeﬁsedlment availability is represented-by-multiple

strongly coupled with the hydroclimate
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variability in ESMs. Specifically, a bare soil fraction feﬂeeeuﬂkfeﬁfh&pfeseﬂe&e#scahn factor is often used to exclude
non-erodible surfaces su

which can be represented by a

. In addition, ESMs incorporate the role of

soil moisture in enhancing the threshold wind velocity or suppressing dust emissions if the soil water content exceeds a
iven threshold (e.g., Fécan et al., 1999) Finally, ESMs parameterize the horizontal dust flux as the third or fourth power of
wind ¢ speed once the threshold wind velocit

is reached. This nonlinear relationship, combined with the skewed distribution of wind speeds, g}ebal—dﬂ%t—efmssmwe

wmetevems—reﬁazﬂﬁsehaﬂeﬁgmg reflect the dominant contributions of rare, high-wind events to global dust emissions (Cowie et al., 2015; B

. Representing dust-producing wind events in ESMs remains a major challenge, since peak-wind generation mechanisms ;-sueh
as-downdraftsfrom-moisteonveetion-(such as convective downdrafts) often occur at spatial scales smaller than the typical grid

spacing of ¢

The Aerosol Comparisons between Observations and Models (AeroCom) initiative and Coupled Model Intercomparison

Project (CMIP) have facilitated the eemp&&sefreé intercomparison of ESMs in simulating the global dust cycle w-ESMs

—Jn-general-the-contempeorary-dust-(Textor et al., 2006; Huneeus et al.
. Generally, the modern-day dust aerosol column burden is reasonably constrained by ground- and satellite-based aerosol op-

2

tical depth (AOD) observations over continental outflow areas, resulting in better model agreement than-these-in-compared to

dust emission and deposition —Knippertz-and-Todd(20412)-argued-estimates. Knippertz and Todd (2012) suggested that model
tunings to match satellite ebservations—often—threugh—dust-seurcefunctions—ean—observations, e.g., via the use of dust

source functions, induce a compensational effect between dust emission and deposition, both of which lack relabte-obser-

vational constraints at global scales. A

Indeed, previous AeroCom and CMIP model intercomparisons consistently show larege discrepancies in the global total and
regional distribution of dust emissions (Huneeus et al., 2011; Wu et al., 2020; GliB et al., 2021; Zhao et al., 2022). While most

ESMs roughly capture the annual cycle of dust over major source regions, they struggle in reproducing the dust interannual

. Recent studies suggested that all CMIP models failed to repreduce-African-dust-variability-due-to-poerrepresentations—of

BYESMs (Cakmur et al., 2004; Grini et al., 2005; Ridle

2011; Kim et al., 2014; Wu et al., 2020; Glif3 et al., 2021; Zhao et a

variability and relationships with wind speed and soil bareness (Pu and Ginoux, 2018; Evan et al., 2014; Evan, 2018; Wu et al., 2018



95 global dust burden since preindustrial times, likely due to inaccurate model representations of historical climate and land-use
changes and/or the dust sensitivity to these changes Kok et al. (2023); Leung et al. (2025). Together, these studies underscore
the persistent uncertainties and limited predictive capability of ESMs in simulating the response of windblown dust emissions
to hydroclimate variability and land surface changes.

The model discrepancies &nd—bﬂ%e%emcwevg@jvavlggg at least paf&wbeexp}aﬂﬁébydiffﬁeﬂflmw

100 dust emission schemesan . Earlier-generation schemes

representations-of the-dustflux-dependenee-on-shift emissions towards satellite-observed hotspot regions (Ginoux et al., 2001; Zender et al.

whereas newer schemes adopt more mechanistic approaches that account for sediment availability as a function of land sur-
105 face conditionsand-sandblastingeffieieney, thereby eliminating the need for dust source functions —While-such-schemes-offer

Kok et al., 2014b). These process-based schemes also introduce more realistic parameterizations of sandblasting efficiency to

P

represent the momentum transfer from salting soil grains to the entrainment of fine particles into the atmosphere (Zender et al., 2003; Kok et
. With improved model phy51cs theyrequire-process-based schemes usually involve more extensive input parameters Tseme-of

110 —One-example-is-the-with greater uncertainties. The choice of wind speed in-dust-flux-—caleulations—Seme-models-also varies:
some schemes use 10-m winds-wind speeds for simplicity, whereas-while others use friction velocity, which mere-aceurately
fepfeseﬂt&lgeNtthuArAe,svthe wind stress exerted-acting on soil surfaces —Hewever-estimating-friction-veloeity requires-the

: intsbut requires information on surface
roughness. Because surface roughness length is poorly constrained by observations, models employ varying assumptions and

tunings to account for its effects on dust emission (e.g., Peng et al., 2012; Albani et al., 2015; Tegen et al., 2019).

Even amoeng ESMs-coupled-with the same dust scheme, s

ESMs can diverge substantially due to differences in model configurations (e.g., horizontal resolution, vertical levels), param-

eter tunings, and coupled physteal-parameterizations. For exampleinstance, the bare soil fraction is eemputed-based-on-the
land-/water-mask;tand-cover-determined from land type, vegetation fraction, and snow eeverareal extent, all of which may

120 vary-by-modeldiffer between ESMs. In particular, vegetation fraction-cover may be prescribed from a fixed climatology or

115

column _structure (e.g., number
memmgmﬂmﬁ evaporatlonﬁﬂéﬂﬂﬁ%fﬁmmwmeesses—%geﬂaeﬁ
125  these processesaffect the topsoil-water contentand-ultimately.), which ultimately determine the water content of top soil layers.
and consequently the threshold wind velocity. Furthermore,parameterizations-of-The soil moisture effect on threshold wind
velocity is also treated inconsistently, e.g., in calculating the residue level below which soil moisture is assumed to have no




effects on dust emission (e.g., Fécan et al., 1999; Evans et al., 2016; Volodin and Kostrykin, 2016). Moreover, ESMs emplo

130 r-and subgrid processes, which affect the

momentum transfer from the atmosphere to the surface. Because of the strong coupling between dust emission and multiple
atmespherie-boundary layer and land surface processes, it is not surprising that dust emission fluxes-estimates are strongly

model-dependent.

““““ nd-While past studies have documented
135 the large model diversity in the eotteetive and climatological dust cycle (e.g., Pu and Ginoux, 2018; Wu et al., 2020; Zhao et al., 2022; Ary:
» key guestions remain as to whether current ESMs consistently capture the temporal variability of historical dust emissions
and their sensitivities to wind and hydroclimate drivers. Addressing these questions is essential for understanding and reducing
model uncertainties in projecting dust emission responses to future changes in climate and land use. In this study, we provide
a detailed assessment of the interannual variability and physical drivers of dust emissions, by quantifying the inherent rel-

140 ative influence of wqﬁdﬁme}—hydfeelmw&dfwef&near surface wind speed and hydroclimate conditions in modulating the
dust variability -

within a suite of

state-of-the-art ESMs. Compared to previous studies, we shift the focus from climatological means to temporal variability and
move beyond documenting uncertainties to diagnosing their physical origins, thereby offering critical insights for improving.
the dust representation in ESMs.

145 A major challenge in evaluating dust models is the lack of direct, global observational constraints on dust emission fluxes.

While satellite-derived dust optical depth and long-term surface concentration records provide valuable insights into dust
., Prospero and Lamb, 2003; Zender and Kwon, 2005; Ginoux et al., 2012)

variabilit ; they integrate information from emission,

transport, and deposition, making it difficult to isolate the emission process (the focus of this work). Therefore, rather than

validating absolute model performance against observations, we focus on diagnosing the inter-model consistency of simulated
150 dust emission variability. Here we treat model-simulated dust emission flux as a-an unobservable, model-specific quantity,

AN AAAAAAAAAANA

which is characterized by a dynamic range defined by the dust-scheme-and-coupled-processes-within-individual- ESMs—The

internal model variability, parameterizations, parameter uncertainties, and model configurations. This approach is analogous to
Koster et al. (2009)’s view of root-zone soil moisture and reflects the fact that model-simulated dust emission fluxes produced

Mmmmmm
155 W@%apprommatmns of the true state whi

true—value—of-dust-emission—fluxes—ties—they aim to reproduce, their true information content lie not necessarily in their

the absolute magnitudes but in their

160
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speed and hydroclimate conditions over different climate regimes (i.e., hyperarid, arid and semiarid), this study provides new

insights into the-model discrepancies and biases ef-global-dustemisston-simulations—in dust emission representations.

The remainder of this paper is struetured-organized as follows. Section 2 describes the ESMs and aeresolreanalysis-datasets
reanalysis datasets considered in this study, and the dominance analysis technique used to_quantify the joint and relative
@ﬁ%(wfcimﬂwvwvwm Section 3 presents the intercomparison of climatological-mean;—spatial-contribution—and

s;--dust interannual variability and the relative impertance-of-wind-and-hydroclimate
driversinfluence of wind speed and hydroclimate conditions. The conclusions are summarized in Section 4.

2 Data and Approach
2.1 Globalmoedels-ESMs and aerosol-reanalysis products

Table 1 summarizes the

ESMs and reanalysis products eensidered-analyzed in

this study-—These-inchidefully-coupled simulations—from—, which differ in model resolution, vegetation process, and dust
emission parameterizations, among other aspects. Among the 21 ESMs, 18 are from the CMIP6 modelsfor-the period-of
1950-26+4—Unless—otherwise-speeified;—we-historical, fully-coupled experiments (1980-2014). We use the first ensemble
member (rlilplfl) from each model—dn-the—, unless otherwise stated. CMIP6 archive;—two-configurations—of-the-consists
of several model families that share common heritage but differ in physics options and configurations. For instance, two
Community Earth System Model (CESM) share-thesame—configurations employ the dust scheme of Zender et al. (2003)
(hereafter referred-to-as-the Zender scheme) ;-but use different atmospheric medulesschemes: Community Atmosphere Model
(EAMCESM2-CAM-Zender) vs. Whole Atmosphere Community Climate Model (WACEM)—The-key-difference-between
CAM-and-WACCEM-lies-in-their CESM2-WACCM-Zender), with major differences in the vertical extent and representation-of
upper atmospheric processes. The-three-Three GISS-E2 models use the same dust scheme deseribed-in-Miller-et-al(2006)
but-differ-by-of Miller et al. (2006) but differ in model version (2.1 vs. 2.2) and aerosol microphysics schemes: One-Moment
Aerosol (OMA; ensemble member rlilp3fl) vs. Multiconfiguration Aerosol TRacker of mIXing state (MATRIX; ensem-
ble member rlilp5fl) (Milleretat;202H(Miller et al,, 2021; Rind et al., 2020). UKESMI.0 is built upon the HadGEM3-
GC3.1 general circulation model, which share-use the same dust scheme of Woodward (2001) s-but differ in parameter
tuning-tunings and dust source representation-representations (Woodward et al., 2022). Similarly, MIROC-ES2L is developed
based on the MIROC rmodel—both-using-the-general cireulation model version 5.2 (MIROCS) (Hajima et al., 2020), while
MIROCG incorporates updated physics which improved the mean climate state and internal variability relative to MIROCS

Tatebe et al., 2019). Both MIROC-ES2L and MIROC6 adopt the dust scheme from SPRINTARS(Speetral Radiation-Transport
MedelHor-Aerosol-Speeies)-the SPRINTARS aerosol module (Takemura et al., 2009).



Table 1. Summary of dustemissionparameterizations—in-the Earth system models and aerosol reanalysis datasets considered in this study.
Dust source function (DSF:) column indicates whether an empirical dust source function is used. #=frictton-vetoeityLeaf area index (LAI
column indicates whether LAT is a prognostic variable. #D,,, +6-m-wind-speeddust particle diameter upper limit. tws-sottmotsture—ro; surface

Model BrrarResolution D,  Wind  DSF
CESM2-CAM-Zender 0.9°x1.25° 10 Zender-etat(2003) Fruneats
CESM2-WACCM-Zender ~ Same-as- CESM2-CAM-Zender 0.9°x1.25° 10 Ul Y

CESM2-CAM-Kok 0.9°x1.25° 10 uf Ne-BSEN
E3SM2-Zender Same as CESM2-CAM-Zender except using the original DSE_1°x1° 10} Y

E3SM3-Kok Sameas CESM2-CAM-Kok 19x 12 10 Ul Y

CanESM35-1 2.8°x2.8° Bulk  u? Tegen et ab 20021 Y
CNRM-ESM2.1 14°x1.4° 20wl NoDSEN
EC-Earth3-AerChem 2°x3° 20 ud TFegenetal(26002)-Y
GISS-E2.1-OMA 2°%2.5° 32 wluf, Gineuxeral(200DY
GISS-E2.1-MATRIX Same as GISS-E2.1-OMA 2°x2.5° 32 uly Y

GISS-E2.2-OMA Sarme-as-GISS-E24H-OMA 2°%2.5° 32 Uiy Y

GFDL-ESM4 1°x1.25° 20wl Ginowx-etalk+200H-Y_
HadGEM3-GC31 0.6°x0.8°. 63 ul Ginouxetak+2001-Y
UKESM1.0 125°%1.9° 63 ul NobBSEN
INM-CMS5.0 1.5°%2° Bulk  u} NobBSEN
IPSL-CM6A-LR 1.26°%2.5° Bulk w>uj,  Sechulzeral~2009-Y
MRI-ESM2.0 1.9°x1.9° 20wl Ne-BSEN

MIROC6 14°x1.4° 10 «*ufy  NeBSEN
MIROC-ES2L Same-asMIROC6 2.8°x2.8° 10 ufy N

MPI-ESM-1.2 1.9°x1.9° Bulk  u? Tegen ek ab 20021 Y
NorESM2 S as CHSM2-CAM-Zonder 0,97 x 1,25° 10 Ul Y

MERRA2 0.5°%0.63° 20  wPuy  Ginewxeral{(200H-Y
JRAero Same-asMRIFESM2:6 1,1°x1.1° 20 b N




195

ased-consider an updated CESM
2004-2013) with the dust scheme of Kok et al. (2014b) (hereafter the Kok scheme; CESM2-CAM-Kok) (Li et al., 2022a), and

two-simulations—from-the Energy Exascale Earth System Model (E3SM)-for-, 1980-2014:-one-) using the Zender seheme

(E3SM2- Zender) —&ﬂd—th&e&xer—ﬂsmg&x&léelesehem&and Kok (E3SM3-Kok) éFeﬂgeFal—’éOQ%%—SEh&Zeﬂéefﬂié—Kek

200

he-schemes

Feng et al., 2022; Xie et al., 2025). The key difference between the two schemes is that the Kok scheme adopts mere-physically

hysically based soil erodibility parameterizations and eliminates
the use of empirical dust source functions unlike the Zender scheme. These paired €ESM-and-experiments allow us to

205 evaluate how the choice of dust schemes (Zender vs. Kok) or models (CESM VS. E3SM%tmﬁ}&&eﬂﬁ—aHe’WLeva}uafmghew

noting-) affect dust emission simulations. Nonetheless, we should point out that CESM2-CAM-Kok simulates dust as min-

eral components

210  and-dustemissions via different radiative feedbackwith observationally constrained mineral optical properties (Li et al., 2024)
s Whereas CESM2-CAM-Zender does not account for particle mineralogy and simulates different dust optical properties that
may affect dust radiative feedback on meteorology. Also, E3SM3 includes extensive updates over E3SM2 that may affect the
near-surface meteorological and land surface conditions relevant to dust emissions (Xie et al., 2025).

We alse—further compare the ESMs with two aerosol reanalysis products: Modern-Era Retrospective Analysis for Re-
215 search and Applications version 2 (MERRA2, 1986—20441980-2014) (Gelaro et al., 2017), and Japanese Reanalysis for

Aerosol (JRAero, 20H—26+72011-2017) (Yumimoto et al., 2017). Uﬂhke—ﬂ&e—free-fuﬂmﬂﬁaﬂy-ee&p}edGM}PMfm&&&eﬂ%

dfwefrbyhisteﬂeal—fefemgs‘MERRAZ an

bias-corrected-satelite-aerosol-observations—MERRAZ2utilizesthe-is produced by the GEOS-5 data assimilation system with
220 radiatively-coupled Goddard Chemistry ;—AerosetsRadiation——Aerosol Radiation and Transport (GOCART) modulewithin

GEOS-5-modelingsystem;-in-which-dust-emission-, Dust emission in GOCART is represented using the Ginoux et al. (2001)
parameterization—JIRAere~-scheme. JRAero is produced by the Japan Meteorologlcal Agency ris-based-on-the- MASINGAR

mk-2 global aerosol transport modelan

WWMM@M@%@ -based schemeof Shao-etal-(1996),
225 same as thatusedinthe MRI-ESM?2.0 a ~(Yumimoto et al., 2017 °
- The meteorological and land surface conditions in MERRAZ2 and JR Aero are constrained by observational data assimilation,
and thus are expected to better capture historical climate and land cover changes than the ESMs. MERRA2 and JRAero also
benefit from assimilation of bias-corrected total AOD, which provides some constraint on the dust column burden but does not
directly constrain dust emissions.
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Ameriea(SAM)—The-in representing the interannual variability of total dust emission fluxes. To facilitate comparison across
common dust-emitting regions, we divide global dust source areas into three climate zonesare-; hyperarid, arid, and semiarid,
defined-based on the aridity index (Al) ;-which-is-ealeulated-defined as the ratio of elimatologieal-1970-2000 climatological
mean precipitation to potential evapotranspiration over1+970-2000—Speeificatty-the-using the data from Zomer et al. (2022)
._The hyperarid zone is defined by-as AI<0.05, arid zone by-as 0.05<AI<0.2, and semiarid zone by-as 0.2<AI<0.5. As
shown-in-Fig—2?-hyperarid-regions—cover-most-of-Using these climatologically defined zones allows us to assess model

discrepancies over common dust-emitting areas. Figure 1 shows that the hyperarid zone primarily covers North Africa, the
Middle-EastArabian Peninsula, Iranian Plateau, and Tarim Basin. Arid and semiarid zones include-other-major-dust-sourees;

sueh-as-cover other major sources, including the Sahel (North Africa), Turan Depression (Central Asia), Gobi Desert (East
Asia), Thar Desert (South Asia), Kalahari Desert (Southern Africa), Chihuahua Desert (North America), Patagonia steppe
(South America), and the Great Sandy and Simpson Deserts (Australia). The rationale of this climate zone-based analysis is
that the relative importance of wind speed versus hydroclimate conditions is expected to depend strongly on climate regime.
Specifically, hyperarid areas are expected to be dominated by permanently dry, barren surfaces with very low hydroclimate
variability, and thus dust emission is primarily controlled by wind speed. Whereas, the arid and semiarid zones are expected to
exhibit increased precipitation and hydroclimate variability resulting in stronger influence on the sediment availability.

2.2 Dominance Analysisanalysis technique

Past studies have eemmenty-used linear regression coefficients to quantify the-influence-of physical-drivers-on-dustemission
dust sensitivities to its physical drivers (e.g., Pu and Ginoux, 2016; Aryal and Evans, 2021; Zhao et al., 2022). In a-multiple lin-

ear regressionframework-the-coefficient-associated-with-agivenpredieter, a regression coefficient represents the mean change

in the response variable per unit change in that-a given predictor, holding all other predictors constant. This interpretation 5

hewever-assumes mutual independence among predietors—an-predictors, an assumption that is often violated in-dust-studies;

strong correlations among hydroclimate variables. As a result, the-linear regression coefficients may yield misleading inference
of the-predictor-influeneepredictor importance. Moreover, the-regression coefficients, standardized or not, may not provide a
consistent-meastre-of predictorimportance-across-models-direct comparison of predictor influence due to the varying dynamic
ranges in different-modelsESMs.

In this study, we apply the dominance analysis technlque to quantlfy the evef&}kﬂﬂueﬂeeﬂﬂekfe}aﬂve—lmpeffaﬂe&relatlve

influence of wind and hydroclimate drivers in
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Figure 1. Definitions of nine-geographieregions-hyperarid, arid, and three-semiarid climate zonesanatyzed-in-this-stady. Thenineregions
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Deminanee-analysis—evalaates—on dust variability. Dominance analysis quantifies the marginal contribution of each pre-
270 dictor to the total explained variance (R?) by-comparing-in the response variable by evaluating all possible subset models
2P — 1 subsets for p predictors) in a multiple linear regression framework (Budescu, 1993; Azen and Budescu, 2003). With-six

predietors-this-yields-63-possible-combinations-ef predietors—For each predictor, the method calculates its average incremental
contribution to the total R? across all subset models of the same size (i.e., models with the same number of predictors)—These
values-are-then-averaged-across-all-subsetsizes-to-yield-, and then average these values to obtain the predictor’s unique contribu-

275 tion to the total R%. A key advantage-of dominanee-analysisproperty of this method is that the sum of the-individuat-individual
predictor contributions equals the R? of the full model (i.e., with all predictors included), thereby allowing the partitioning of the
totakexplained variance among correlated predictors. The predictor-specific R? ameng-a-commen setof eorrelated predietorsin
a-consistent-and-comparable-manner—values can thus be interpreted as the portions of total variance in the response variable
that are uniquely and jointly attributed to each predictor, accounting for their interactions and multicollinearity.

10



280 We use the monthly total dust emission flux as the response variable and consider six predictors: 10-m wind speed, total

recipitation (including liquid and solid phases), water content in the uppermost soil layer (hereafter as soil moisture), 2-m

2

specific humidity, 2-m air temperature, and leaf area index (LAI). The total dust emission flux is a bulk quantity that represents

the source strength. Although ESMs differ in how they partition the total flux into discrete particle size bins—a key factor
influencing dust transport and atmospheric lifetime—we expect the size partitioning to have minimal impact on diagnosing the
285 emission process itself, particularly its sensitivity to the selected predictors. The primary drivers of emission variability operate
upstream of the size partitioning of mobilized soil particles. The six predictors are chosen because they are either directly

used as input parameters in dust flux calculations or strongly correlated with dust emission intensity, as suggested in numerous

studies (e.g., Engelstaedter et al., 2003; RAVI et al., 2006; Zou and Zhai, 2004; Sokolik et al., 2021; Cowie et al., 2015; Kim and Choi, 20

. Among them, wind speed represents the wind erosivity driver, while the remaining variables collectively represent the
290 hydroclimate effect on sediment availability.
Dominance analysis is performed for all ESMs and MERRA?2 over grid cells with nonzero dust-emissions-inESMs-and

missions using deseasonalized and normalized data. JRAero is excluded from the dominance analysis due to miss-

ing predictors )

295 removedfrombeoth-and its short time span. We first subtract month-wise climatological means from the monthly dust fluxes and

predictors, and a
across predictors-In-models-where then convert the deseasonalized data into 0-1 range via min-max normalization. For ESMs
that use bare soil fraction is-tised-as a scaling factor in dust flux calculations (e.g., INM-EMS5:0CNRM-ESM2.1, INM-CM5.0,
UKESM1.0), the dust fluxes-are-flux is first normalized by the bare soil fraction in order to isolate the influence of the selected

300 predictors. The grid-level total and predictor-specific R? values are used to assess the internal spatial variability (i.e., within

each climate zone) and inter-model consistency in the total explained variance and predictor relative importance.

3 Results

3.1 Climatological meandistribution

305 AEROCOM-and-CMIPS-models-Figure 2 displays the meaﬁmmmmmmmdust fluxes from 21 ESMs, the model
ensemble mean, and thee MERRA?2 and JRAero reana
datasets for the 2005-2014 period (2004-2013 %ﬁmzm 1-2017 y—Mest-medels—for
JRAero). All datasets capture the global dust belt stretching from West Africa to East Asia, along-with-as well as the less intense
sources in the Americas and Australia. E3SM3-Kok and HadGEM2-GC31 simulate the most spatially-extensive dust-emitting

310 areas rincluding high-latitude and subhumid regionsareas. In contrast, CESM2-CAM-Zender, CESM2-WACCM-Zender, and
NorESM2 simulate discrete and limited dust-emitting areas -due-to-the-use-of-a-truncated-version-of the Zenderet-al-{2003)-
by excluding areas with dust source function s-which-exeludes-grid-cells-with-values below 0.1. Unlike- CESM2-CAM-Zender;
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Figure 2. Climatological mean dust emission fluxes from (a—u) individual ESMsEarth system models, (v) model ensemble mean, (w)

MERRA?Z? reanalysis, and (x) JRAero reanalysis. Global annual total dust emissions are displayed on each panel.
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E3SM2-Zender uses the original, untrunreated-unmodified Zender et al. (2003) dust source function and thus produces a more

spatially continuous pattern (Fig. 2e).

Global-annual-total-emissions—vary-The global total dust flux varies greatly among the ESMs, ranging from 890 to 7727 Tg

yr~! -with nearly an order of magnitude difference (Fig. 2a—a))a—2u). The model ensemble mean estimate is 2786 Tg yr—?

(Fig. 2v) +with a standard deviation of 1821 Tg yr—!

deviation to the-model ensemble mean). Based on the-13-medels-which-simulate-particle-diameters-up-te-models with a dust

1 1

, corresponding to a diversity of 65% (defined as the ratio of standard

size upper limit of 20 um, global annual-dust emissions vary from 1062 to 6561 Tg yr—

and diversity of 51%. The-uncertainty-ranges-are-This uncertainty range is consistent with prior assessments. For example,
Huneeus et al. (2011) compared 14 models from AeroCom Phase I and reported a global dust emission range of 500-4400

Tg yr—! with a diversity of 58%. Out of the 14 models, 7 models considered the-diameterrange-of-0—20-particle diameters
up to 20 um and reported an-emission—a flux of 980-4300 Tg yr—! with a diversity of 46%. Similarly, Glif et al. (2021)
compared 14 AeroCom Phase III models and found a range of 850-5650 Tg yr—! with a diversity of 64%. Wu et al. (2020)
reported a range of 740-8200 Tg yr—' with a diversity of 66% aeress-based on 15 CMIP5 models. Out of the 15 models,

with a mean of 3012 Tg yr~

7 models considering the-a diameter range of 020 um yielded 740-3600 Tg yr~! with a diversity of 43%. More recently,
Zhao et al. (2022) compared 15 models from the CMIP6 AMIP expenment and found-r Ma range of 1400-7600 Tg
yr~! with a diversity of 61%. i i

in-quantifying-Past studies, together with our results, indicate persistent large uncertainties in global dust emissions, despite

resolutions and physics.
The model ensemble mean global annual-dust-emission—rate-total dust flux is significantly higher than that of MERRA2

(1605 Tg yr~!, Fig. 2w), but closely ahgns with JRAero (2780 Tg yr—!, Fig. 2x). Overalln general, the model ensem-

improvements in model

ble mean exhibits a more spatially

ions-homogeneous pattern over North
%Mreﬁ)mrﬂl@glv%whereas MERRAZ2 and JRAero display more loealized-and-clustered-patterns;perhaps-due-to

and localized patterns.

32 G hie distributi

Figure-3-a-presents-Figure 3 displays the fractional contributions of ﬂmegeegﬁpmﬁegieﬂ&c@mm%mo global
ating-The hyperarid zone

dust emissions. N

accounts for more than half of the-g

Among-the-medels;-global total emissions in most ESMs except two models: CanESMS5.1 and INM-CM5.0, both of which
simulate relatively uniform emissiens-emission patterns with less than 50% from the hyperarid zone (Fig. 26G;-¢))—with-enly
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Figure 3. Fractional-contributions-Contributions of dust-emisstons—from-different ta)-geographieregions—and—-(b)-climate zones to global

annual dust emissions. Numbers indicate percentages above 5%.

-, 2q). This may be due to known deficiencies

of these two models. As noted in Sigmond et al. (2023), improper parameter tuning related to the hybridization of dust tracers
has-beenshown-to-induce-excessive-mass-corrections-and-caused spurious dust events sresulting-in-degraded-representations

350 of-dustseurce-distributions(Sigmend-et-al-2023)—In-addition;—an-and inaccurate dust distributions in CanESM5.1. An in-
terpolation error in the bare soil fraction distorted—the-also distorted the model’s dust source characterization, feading—te
resulting in poor agreement with satellite observations (Sigmond et al., 2023). In INM-CMS5.0, dust-fluxes-are-caleulated-as
the-fourth-pewer-the vertical dust flux is calculated as a function of friction velocity only, without accounting for the effeets-of
dependence of threshold wind velocity on land surface conditions on-the-erosion-threshold-(Volodin-and-Keostrykin; 2016)-The

355 o . ) . RV Ir . .

Volodin and Kostrykin, 2016; Volodin, 2022). While this simplification may be aj

introduce significant biases over arid and semiarid zones where hydroclimate conditions play an increasingly important role in

dust emissions.

Over the arid climate zone, the dust emission fraction ranges from 8% (CESM2-CAM-Kok) to 37% (UKESM-1.0), reflectin
360 substantial discrepancies among the ESMs. These discrepancies become even larger over the semiarid zone, where the contribution

ropriate for the hyperarid zone, it can

14



365

370

375

380

385

390

395

ranges from less than 1% to 18%. Three ESMs allocate more than 10% of dust to the semiarid zone: CanESMS.1 (18%),
INM-CM5.0 (15%), and UKESM1.0 (12%). Thus, as the climate zone shifts from hyperarid to semiarid, the ESMs show
larger discrepancies in their estimates of relative source strength. This climate zone-based comparison offers a first-order view.
of model representations of the dust sensitivity to hydroclimate conditions. Based on the model ensemble mean, global dust
emissions are partitioned as 61% from hyperarid, 27% from arid, and 5% from semiarid zones. In contrast, MERRA2 and

JRAero produce most dust from hyperarid and arid zones, with negligible contributions from the semiarid zone,
Among the ESMs, CESM2-CAM-Zender, CESM2-WACCM-Zender ;-and NorESM2 produce similar total emissions and

regional fractions-

the-MiddleEast;—signifieantly-higher-than—, suggesting that the choice between CAM and WACCM has minimal influence

when the same dust scheme (Zender) is used. The paired CESM and E3SM experiments show different changes in regional
fractions. For instance, the hyperarid zone fraction increases from 61% in CESM2-CAM-Zender 66%%—14eweve1%to 88% in
CESM2-CAM-Kok:

but slightly decreases from 63% in E3SM2-Zender to 58% in E3SM3-Kok. The GISS-E2 models exhibit-minimal-show no

differences in the regional du

W%Wmmwwmwmgg@%& 40% lower

when using &

Afhe—MAfPRHéfneda{—s&edﬁthMGﬂﬂﬂéeﬁepfeseiﬁthe MATRIX aerosol scheme. This could be due to different model tunin
parameters, or underestimation of coarse dust particles (>5 pim diameter) - which-may-contribute-toloweremissions-than- OMA-

in the MATRIX modal size distribution, as pointed out by Bauer et al. (2022). UKESM 1.0 simulates nearly twice as much
dust as HadGEM3-GC3.1and-, along with slightly more even distributions. As described in Woodward et al. (2022), UKESM1.0

tch—1s built

on HadGEM3-GC3.1

tunings that enhance friction velocity and suppress the
parameter-soil moisture. These tunings are expected to increase the s

emission—wind gustiness and soil dryness in UKESM1.0-—tn—addition;—, thereby strengthening dust emissions. UKESM1.0
exclades—dust-also excludes emissions from seasonally vegetated areasregions, resulting in smaller dust-emitting areas (Fig.
2p) compared to HadGEM3-GC3.1 -

(Fig. 20). The three Japanese models (MRI-ESM2.0, MIROC-ES2L, and MIROC®6) exhibit large differences in total emis-

sions and, to a lesser extentdegree, regional distributions. MRI-ESM2.0 produces nearly-double-s W

to JRAero but nearly twice the total emissionse
meteorological-data-and-in-tuningparameters. Despite using the same dust scheme, MIROC-ES2L produces five times more
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dust than MIROCS6. This discrepancy istargely-driven-bystrongernear-surface-can be largely explained by the stronger winds
in MIROC-ES2L—We-find-thatthe-, which produces 50% higher global mean wind speed in MIROC-ES2L-is-about-50%-higher
than-thatia-than MIROC6. Furthermere-the-preseribed-Adin-Moreover, MIROCS is-prescribes non-zero LAI even in hyper-

arid regions, which likely eontributes-to-loweremissions-ecompared-further suppresses dust emissions relative to MIROC-ES2L
(Hiroaki Tatebe, personal eommunieationcommunications).

3.2 Interannual variability

In-this-seetion——we-assess-the-degree-of-inter-model-agreement-This section evaluates the consistency among the ESMs in
simulating the interannual variability of dust emissions. Monthly dust emission fluxes from all models-are-ESMs are first
regridded to a common grid-resolution of 0.9°x1.25° --and-then-deseasonalized-by-subtracting-(the native grid of CESM2). To
remove the influence of annual cycles, we subtract the month-wise climatological average-atmeans from each grid cell, yielding
deseasonalized dust emission anomalies. Spearman’s rank correlation coefficients are then eemputed-calculated between the
~anomalies for all possible

model pairs. With 21 ESMsand-2reanalysis-products), this yields 253-unique-pairings210 pairwise comparisons. To quantify the
overall-medel-extent of inter-model agreement, we calculate the percentage of model pairs exhibiting-that exhibit statistically

deseasonalized du

significant (i-e5p<0.1), positive correlations—, which is displayed in Fig. 4. A higher percentage indicates stronger model

its dominant contributions to global dust emissions, the hyperarid zone shows generally poor model agreement with less
than




Percentage of positively correlated model pairs, %

Figure 4. Percentage of statistically significant (p<0.1), positive correlations out of every possible pairwise comparisons of monthly dust

emission fluxes from 23-glebat-21 Earth system models. Black contours represent the model ensemble mean annual dust flux of 10 and 100
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HadGEM3-GC3 1 -and betweenr MIROC6H-and MIROC-ES2E10% of pairwise comparisons yielding statistically significant

H-Nerth-Afrieashewspoer-meodelagreement—with-Because dust emissions from hyperarid areas are primarily controlled
by wind speed, this weak agreement reflects inconsistent wind simulations in the ESMs. Indeed, we find that only 10% of

hyperarid zone. Similarly, Evan (2018) reported that dust-producing winds over the Sahara are mainly driven by large-scale
meteorological processes and that most CMIP5 models failed to capture the near-surface wind variability. These results suggest
that accurately representing near-surface winds is critical for reducing model discrepancies in dust variability over hyperarid

areas.

the hyperarid zone, arid and semiarid zones (such as the Sahel, South Asia, East Asia and Australia) exhibit significantl

stronger model agreement. To illustrate how model consistency varies with hydroclimate-conditionsclimate zones, Fig. 3.2
presents the pairwise correlation matrices of-deseasonalized-dust-fluxesfor-based on dust flux anomalies averaged over hyper-
arid, arid, and semiarid elimate-zones. The proportion-of-positively-correlated-percentage of statistically significant, positively
g\)/rgglatedwwvrrvlgggl pairs increases from 10% in hyperarid-regions-the hyperarid zone to 14% in arid-regions-the arid zone and
17% in semni the semiarid zone, indicating progressively higher model
agreement in regions where dust emissions are mere-sensitive-te-increasingly influenced by hydroclimate and land surface
' tbi Meanwhile, the semiarid zone exhibits a larger percentage
of negatively correlated model pairs (15%) Mmhyperarld (5%) and arid (6%) regions—This-dual-patternindiecates
zones. This dipole pattern suggests that as the climate regime transitions from hyperarid to semiarid, global-medels-display
inereases in-both-consisteney and-divergenee in-the-dust the ESMs exhibit both stronger agreement and worsened disagreement
in simulating dust emission variability,

conditions. H
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Figure 6. Statistical associations between the pairwise model correlation coefficients (p<0.1 shown in red) in deseasonatized-dust emission

fluxes and hydroclimate variability averaged-over (a) hyperarid, (b) arid, and (c) semiarid regionsclimate zones. Hydroelimate-variabitity

What causes sueh-a-this complex behavior?

dust-emissionplay-an-impertant rote—tn-semtarid-regions—In semiarid environment such as temperate grasslands and steppe

ecosystems;-dust-emissionis-steppes, dust emissions are strongly modulated by antecedent land surface conditions in addition
to wind speed, such as snow-eoverprecipitation, soil moisture, and vegetation growth-decay cycle, which exert strong lagged

vinfluence on

WM}W@W dry anomalies durin the prior we
season (e.g.,
snow retreat) can subsequently suppress vegetation growth, thereby extending-the-duration-of-prolonging bare soil exposure
and enhanecing-the-soil-erodibilityincreasing wind erosion risk. This delayed dust respense-emission response to preceding
drought exemplifies the effect of land surface memory, where-persistentlandsurface-conditions-influence-subsequent-climate
proeesses—Thuswhereby the slow adjustment of land surface states (such as soil moisture, snow cover, and vegetation) over

weeks to months influences subsequent dust emission long after the initial forcing (e.g., drought). Therefore, we speculate that
the simultaneous increase in isagreen i tari s} ig of both model consistenc

and divergence from hyperarid to semiarid zones reflects a "double-edged sword" effect of land surface memory: models
with coherent representations of hydroclimate variability tend-to-converge-in-their-dust-emission-responses-converge in the
simulated dust emission variability (i.e., more positive correlations), while those with divergent hydroclimate representations

tend-to-diverge-in-dustresponses-diverge in the dust variability (i.e., more negative correlations).
To test-yerify this hypothesis, we examine the statistical association between inter-model-pairwise model correlations in dust

reduced snowfall or rainfall, accelerated

emisstonfluxes-emissions and those in hydroclimate eenditiensvariability. Specifically, we perform-first perform a principle
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component analysis (PCA) of menthly-meanthydreclimate—variablesfor-each—elimatezone—Thefirst-the five hydroclimate

variables (i.e., precipitation, soil moisture, specific humidity, air temperature, LAI) for the hyperarid, arid, and semiarid zones.

The leading principle component (PC1), which aceeunts—for-explains at least 40% of tetal-varianeesthe total variance in all
zones, is used to-represent-as a proxy for the dominant hydroclimate variabilityfor-each-elimate—zone—Then;—. Spearman’s

rank correlation coefficients are eemputed-then calculated for all pairwise model comparisons of deseasonalized monthly PC1

values, similar-to-the-dust-flax-ecemparisensfollowing the same approach as in Fig. 3.2.

Figure-6-disptays-the-pairwise-Figure 6 compares the correlation coefficients for model pairs with same-sign-correlationsin
the-dust-fhux-and-PCl-the same sign (i.e., either both positive or both negative) in dust emission fluxes and hydroclimate PCI1.

The regression slope and coefficient of determination (r2) heree-quantify the degree of statistical association between model

consisteneiesin-the-dustcorrelations in dust emission and hydroclimate variability. The positive association aeross-in all climate

tonns- ESMs with stronger consensus in hydroclimate
variability tend to produce more consistent dust variability, while-models-that-diverge-in-hydroclimaterepresentations-exhibit

zones suggests that m

aridand vice versa. More importantly,
both the number of %&H%Heal&y—ﬁgmﬁeaﬂt—meéel—pmﬁ—aﬂd—fh& significantly correlated model pairs (N) and correlation strength
(slope and r?) inerease-progressively-thus-providing support-for-show significant increases from hyperarid to semiarid zones.
This result supports our hypothesis regarding the dual role of land surface memory: it enhances agreement among medels
with-coherent representations-of-hydroelimate-dynamiesESMs with coherent hydroclimate representations, while simultane-
ously exacerbating disagreement among those with divergent hydroclimate variability. Fhis-finding-underscores-theimpeortance

3.3 Relative importance of wind and hydroclimate drivers

In this section, we present the dominance analysis results-en-of the collective and relative influence of wind and hydroclimate

vartables—drivers on the dust ﬁe%amaa%wambﬂﬁywﬁ%mESMs—md—MER&A%—%gemmswn variability. Figure 7 presents

the total variance explained (R%
near-surface wind speed ;-and five hydroclimate variables (precipitation, soil moisture, specific humidity, air temperature, and

LAI) in the ESMs and MERRA2. Results for CESM2-WACCM-Zender and NorESM2 are very similar to those of CESM2-
CAM-Zender and thus not shown.

The models-ESMs exhibit substantial differences in the total R?, reflecting varying-degrees-of-a large spread in the internal
model variability and differenecesin-the-coupling strength between dust emission and theirphysieal-drivers—Ameong-the ESMs;
MWCMESMS 1 yields the lowest MRQg}eb&Hy followed by MPI-ESM1.2, MIROC6, and EC-
Earth3-AerChem, hat-in which the selected predictors
explain enly-a-a relatively small fraction of the ﬁmﬁk&ed—éus%tbﬂmﬁeseﬁede}sm The low Rexplanatory
power may be explained by several reasons. For-example;known-model-errors-and-artifacts-Specifically, model deficiencies
and errors (e.g., in CanESM5.1, as-diseussedin-Section 3.1;-may-distort-or-weaken-) may weaken or distort the relationships

v R 2 V
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Figure 7. Total explained variance (R?) in dust emission fluxes by six near-surface predictors (wind speed, precipitation, soil moisture,

specific humidity, air temperature ;-and feaf-area-indexLAl) in the-deseasonatized-monthly-dust-fhaxesEarth system models and MERRAZ2.

Global mean R? values are shown on each panel.
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Figure 8. The ratio of WMW%R2 to the combined R? of five hydroclimate variables (precipitation, soil
moisture, specific humidity, air temperature -teaf-areaindexand LAI) in Earth system models and MERRAZ2.

23



535

540

545

550

555

560

565

between dust emissions and the

predictors. The use of over-simplified dﬁ%ﬁ%ﬁ%ﬁ&&%ﬁﬁ%ﬁ&ﬁmﬁmﬁﬂmﬁﬁd&m
static land surface input (e.g., in INM-CM5.0) may weaken the dust—predictor relationship. In addition, dust emission s
inherently-nonlinear-and-involves inherently nonlinear processes and thus its relationship with the predictors may deviate from
the linearity assumption in dominance analysis. As shown in Fig. 7, the total R? is-generally-lowest over semiarid-and-subhumid

regions;likelyrefleeting-the-values tend to be much lower in arid and semiarid zones than in the hyperarid zone, likely due to
increased nonlinearity between dust emission and hydroclimate variables which diminishes their collective explanatory power

in a multilinear regression framework. Finally, the use of monthly mean-model output due to data ava11ab1l1ty, may dampen

the short-term variability in

nsand statistical

association between dust emission and the predictors.
Despite these limitations, most medelsproducesignifieant- ESMs produce significant total R? values -indieating-that-the

scheme-generally-leads-to-over major source areas, especially in the hyperarid zone where the total R? exceeds 0.6. Switchin
from the Zender to Kok dust scheme leads to generally lower R? values in CESM globalty;-and-in-and E3SM ever-most
fegieﬂs—exeep{»eeﬂffa}ﬁiekEasFAﬁa—}fr Fig. 7a—d). The GISS-E2 models ;-switching-the- OMA-and-MATRE-mierophysies

’ —show little differences between the OMA or MATRIX

schemes, and a modest increase from version 2.1 to 2.2yields-a-modestinerease. UKESM1.0 and HadGEM3-GC3.1 show
minimal differencesin-total-, both with high R? values globally. MIROC6 ylelds stgfﬂﬁeaﬂﬁyblower R? vatues-than MIROC-

m—Seeﬁe&%%—Gempamé%eﬂae%SMs—es ecially over the hyperarid zone. MERRA2 y}éd%ﬂglm%g&@b&kme&wproduces
higher R? M@M& especmlly over semiari

arid and semiarid zones. In summary, there are
large spatial variability within individual ESMs and large inter-model discrepancies in the variance explained by the selected
predictors.

Figure-To assess the relative importance of wind and hydroclimate drivers, Fig. 8 dlsplays the ratio of the-wind speed-
associated R? to the combined R? of hy

driversfive hydroclimate variables. In all ESMs except GFDL-ESM4, the wind-to-hydroclimate R? ratio is well above 1 over

hyperarid-regions;refleeting-the hyperarid zone, which is consistent with the dominant role of wind speed in driving-controlling
dust emissions from persistently dry, bare-barren surfaces. In contrast, therattos-exhibittarge-variability-over-arid and semiarid

regions;with-values-both-above-and-below-1-zones exhibit greater discrepancies, with ratios either above or below 1 dependin,
on the model. This reflects increased model ésagfeemeﬁ%mregardmg the relative 1mportance of wind and hydro-

climate drivers in transitional

toregions where dust emission is increasingly influenced by hydroclimate and land surface conditions.
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Figure 9. Fractional contributions of three-regimes{wind-dominated, equally-important, and hydroclimate-dominated )-regimes to global
dust emissions in gtebat-Earth system models and MERRA2.

Based on the wind-to-hydroclimate R? ratios, we classify global dustseuree-dust-emitting areas into three regimes: wind-
dominated (ratio>1.2), hydroclimate-dominated (ratio<0.8), and equally-important (0.8-1.2). Fer-each-medel—~we-We then
calculate the fractions of dust emissions originating from each-regimethe three regimes in each model. The results are displayed
in Fig. 9. The ESMs show general eonsisterey-agreement in the “equally-important” regime, with most models simutating
producing less than 10% of glebal-dust-emissions-dust from regions where wind and hydroclimate drivers have nearly equal
contributionsinfluence on dust emissions. GFDL-ESM4 yields-produces the highest contribution (12%) in this regime;—while

he-The wind-dominated regimeregime contributes
the majority of global dust emissions (>80%) in most ESMs and MERRA?2, consistent with the dominant rele-ef permanently
dry;-barren-areas-in-global-dust-produetion—contribution of the hyperarid zone (Fig. 3). However, three models deviatefrom-this
pattern—yield anomalously low contributions: GFDL-ESM4 and-(36%), INM-CMS5.0 simutate-tess-than-60%of emissionsfrom

; o) and Can . o~ 5
i i He—(54% d CanESMS5.1 wi i (75% i
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WHW)MWbC explained by different reasons. %%INM CM5.0 and

CanESM5.1

roduce relatively spatially homogeneous

emission pattern, which explains the lower contributions from hyperarid or wind-dominated areas. In comparison, the low
estimate in GFDL-ESM4 is driven-by-due to the model’s anomalously strong hydroclimate influence over hyperarid-regionsthe

hyperarid zone. As shown in Fig. 8i, GFDL-ESM4 exhibits heterogeneous-markedly low wind-to-hydroclimate R2—ratios—

Eastratios (<1) over North Africa, Arabian Peninsula, and Iranian Plateau--
which are consequently misclassified into the hydroclimate-dominated regime. These regions are characterized by scarce
recipitation and very low hydroclimate variability, which is expected to have negligible influence on dust emissions. For

CESM and E3SMmedels, switching from the Zender to Kok dust scheme reduces—thepropertion—of-dust-emissionsfrom
slightly reduces the wind-dominated regionsdust fraction: from 85% to 80% in CESM, and from 99% to 96% in E3SM. These

alarger-share-of emisstons-to-transitionalregtons—The GISS-E2 models show-minimal-differences-between-model-versions-or

aerosol-schemes;-within-the-range-of-yield similar estimates regardless of model version or aerosol scheme, with 82-85% dust
from the wind-dominated regime. Similarly, UKESM1.0 and HadGEM3-GC3.1 produce-identieal-yield similar estimates, with
90% of emisstons-dust emitted from wind-dominated regions. MERRA2 simulates 98% emissions from the wind-dominated

regime, higher than most ESMs.
Fig—9-The above analysis not only confirms the anomalous dust spatial-emission patterns in CanESMS5.1 and INM-CM5.0

{as-seen-a Wy&m Fig. 3}, but also identifies GFDL-ESM4 as an outlier mepfeseﬁﬁﬁgfheﬂcelﬂaveﬂﬁﬂueﬁeeﬂ#

to its misrepresentation of predictor relative importance. Here we further evaluate the contribution of wind speed to the total R?
in different climate zones. For each

climate zone, we use ridgeline plots to illustrate the statistical distributions of grid-level wind speed-associated R? fractions.
The results are displayed in Fig. 10. A-median-In the ridgeline plots, if the median value of wind speed-associated R? fraetion
fractions (denoted by a red vertical line in Fig. 10) is above 50%indicates-that-wind-speed-contributes-to-mere-than-, it means
dust-vasiability-at., the dust variability is dominated by hydroclimate drivers at more than half of the grid cells.

In hyperarid-regions;—the hyperarid zone (Fig. 10a), most ESMs and MERRA?2 and-mest-ESMs-exhibit-dominant-wind
eontrolscapture the dominant control of wind speed, with the median wind-R2 fraction—fractions exceeding 80%. The three

GISS-E2 models show slighthyreduced-wind-inflaenee-similar spatial variability, with slightly lower median values (~70%).
In-eentrast"Two models stand out as notable outliers: GFDL-ESM4 and CESM2-CAM-Kokexhibit-significanthylower-wind

influence-and-greater-spatial-vartability-, both of which exhibit large variability and low median values. In particular, GFDL-
ESM4 yields a median wind R? fraction of 42%, indicating that-half-of the-grid-cells-are-dominated by -hydroelimate-drivers
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Figure 10. Ridgeline plots of grid-level-the fractional contributions of wind speed to the total R? over (a) hyperarid, (b) arid, and (c) semiarid

regtonsclimate zones. Red-(blue)-verticaHinesindieate The median tand mean )-values are denoted by red and blue vertical lines, respectively.
Color shading represent the mean total R? of-all-predietorsvalues.

ig-an overestimated

sensitivity to hydroclimate drivers in the hyperarid zone, particularly over North Africa, Arabian Peninsula and Iranian Plateau

CESM2-CAM-Kok exhibits large spatial variability with a median wind R? fraction of 64%, driven b

dominant hydroclimate influence over West Africa and the Tarim Basin (Fig. 8b). In comparison, CESM2-CAM-Zender

captures the dominant wind influence with a median value of 86%. Heweverreplacing-the Zender-dust-scheme-with-the Kok

fractionin-version22relative-to-verston2-1dust-producing areas in the two models.

In the arid zone (Fig. 10b), the total R2 over-arid-regions;
indieating-is generally smaller due to reduced explanatory power of the selected-predictors—Wind-speed-remains-the-dominant
driver-in-most-models;though-itsinfluenee-predictors. The ESMs also show larger disagreement in the relative importance of
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wind and hydroclimate drivers. The influence of wind speed is reduced and beeemes«mefe%paﬂaﬂy—hefefegeﬂeeus—GESM%-%M-Kek

R2

630 Feur-more variable, but still remains dominant in most ESMs and MERRA?2. The GISS-E2 models produce relatively equal
importance of wind and hydroclimate drivers. In contrast, four models—GFDL-ESM4, INM-CM5.0, MIROC-ES2L and

MIROC6—yield a-dominant hydroclimate influence with the median wind R? fraction falling well below 50%, indicating

a transition from wind- to hydroclimate-dominated regimes. I--CESM2-CAM-Kok also reflects this transition, with a median

value of 46%. In both CESM and E3SM, switching from the Zender to Kok sehemesreduces-the-wind-dominance;possibly

635 beeausephysically-based-scheme results in weaker wind and stronger hydroclimate influences, likely due to the physicall
based soil erodibility treatment in Kek-the Kok scheme which enhances the dust sensitivity to hydroclimate variables;-as

suggested-previously-(Kek-et-al;2014ayvariability, as previously suggested in Kok et al. (2014a).

for the semiarid zone (Fig. 10c) are considered less robust due to significantly smaller dust-emitting areas or model grid cells
640 . 1). In general, the wind influence further declines, while hydroclimate divers become more important. The magnitude and
spatial-pattern-of-this-changeof this shift, however, vary-considerablyvaries widely, leading to large-model-disagreementin-the

relative-importance-of- wind-and-hydroclimate-driverslarger discrepancies. Specifically, the-hydroctimate-dominanceistarther
strengthened-hydroclimate drivers continue to dominate in CESM2-CAM-Kok, GFDL-ESM4, INM-CM5.0, MIROC-ES2L

and MIROC6, and-MIROC-ES2L—Five-medels—E3SM2-Zendersame as in the arid zone. The following ESMs display a
645 WMM%MW CNRM-ESM2.1, CanESM5.1, HadGEM3-GC3.1, and
UKESM1.0—shi - IPSL-CM6A
and GISS-E2 models also show increased hydroclimate influence, though to alesser extent. The remaining ESMs and MERRA2
continue to WWW albeit with redueed-wind R2fraction-and-increased

spatial variability.

650

The above analysis ﬁenﬁﬁe&W GFDL-ESM4 and CESM2-CAM-Kok a&ﬂe%&b}eﬁt&hefﬁmwpem&%gmw

anomalously strong hydroclimate influence in the hyperarid zone. To identify the specific drivers of these anomalies, Fig. 11
655 presents the median fractional contributions of individuat-five hydroclimate variables to the total R%aerossdifferent-climate

zones—Over-hyperarid-regions;—_In the hyperarid zone, most ESMs capture the negligible sensitivity of dust emission to
strong influence from precipitation and specific humidityto-the-simulated-dust-variability—These-influencesfurther strengthen
evefﬁmdﬁméﬁemwﬂekfegeimeﬁfwﬁ,—, while GFDL-ESM4 exhibits streng-influencefrom—sot-meistureinhyperarid
e-anomalously strong sensitivity to soil moisture. The
GISS-E2 models display s&eﬁg—%eﬂmggggg%tddwmm to soil moisture and specific humidity, which ex-
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Figure 11. Median factional contributions of hydroclimate variables to the total WRzlin individaat-Earth system models
and MERRA2 over (a) hyperarid, (b) arid, and (c) semiarid regionsclimate zones. The-hydrockimate-Hydroclimate variables are precipitation
(P), soil moisture (SM), specific humidity (SH), air temperature (T), and leaf area index (LAI).

plains their moderate wind deminanee-in-hyperarid-regions-influence in the hyperarid zone (Fig. 10a). These-anomalously

The overestimation of hydroclimate influence in the hyperarid zone may be explained by a combination of two mechanisms:
1) the hydroclimate variabilit

is overestimated in the model, which induces spurious effects on dust emissions; or (2) the

hydroclimate variability is reasonably captured, but the dust scheme incorporates overly strong sensitivity to hydroclimate
drivers. Shevliakova et al. (2024) reported that the GEDL-ESM4 land model significantly overestimates soil moisture over
dryland regions, with values more than double those from satellite observations in dust source regions like the central Sahara
and Tarim Basin. This bias likely explains the strong apparent sensitivity of dust emission to soil moisture in GFDL-ESM4
The abnormal hydroclimate influence in CESM2-CAM-Kok may be partly explained by dust emission parameterizations
in_the Kok scheme, which introduces enhanced sensitivity to the threshold wind velocity compared to the Zender scheme
(Koketal., 2014a). Because of this heightened dependence on land surface conditions, the Kok scheme does not require

redefined dust source functions and is considered more physically realistic for projecting dust responses to future climate
and land-use changes. Another possible reason is the relatively short simulation period in CESM2-CAM-Kok (2004-2013)

which may not fully capture the long-term variability and predictor influence as in CESM2-CAM-Zender (1980-2014

. In this
regard, the E3SM experiments provide a more robust comparison between the Zender and Kok schemes. As shown in Fig.
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11a, the E3SM models exhibit negligible hydroclimate influence in the hyperarid zone, regardless of the dust scheme used. In
the arid zone, however, E3SM3-Kok shows higher hydroclimate influence than E3SM2-Zender due to increased sensitivity to
ig. 11b). This comparison provides additional evidence that the Kok scheme amplifies the dust emission
sensitivity to hydroclimate conditions.
In the arid zone (Fig. 11b), most ESMs show enhanced influence from soil moisture and specific humidity, consistent with
empirical evidence that both variables strongly affect the soil erodibility and wind erosion risk (e.g., Csavina et al., 2014; RAVI et al,, 2006;
- Interpreting the LAI influence, however, is more complex due to several factors. First, unlike other hydroclimate variables,
685 LAI can be either prescribed from climatology or simulated by the model’s dynamic vegetation component (Table 1). Models
using prescribed LAI are expected to show minimal interannual variability and hence limited influence on dust emissions.
Second, the LAL effect on dust emission is treated differently. For example, CESM assumes a linear relationship between bare

soil fraction and LAI when LAI is below 0.3, while GFDL-ESM4 assumes an exponential decrease in bare soil fraction as a

function of LAL Because LA is often used to derive bare soil fraction in vertical dust flux calculations, these differences can

690 alter the modeled dust sensitivity to vegetation cover. Most ESMs in Fig. 11b exhibit weak to negligible LAI influence, likely
reflecting either prescribed LAIL or the normalization of dust fluxes prior to dominance analysis (see Section 2). One outlier
is GEDL-ESM4 which exhibits the strongest sensitivity to LAL even well above the sensitivity to soil moisture. This can be
explained by the strong coupled between LAI and dust emission in the model, and the fact that no normalization was applied
to GFDL-ESM4 due to missing bare soil fraction output from the CMIP6 archive.

680

695 4 Conclusions

quantify-the-colleetive-and-relative-inflaenee- ESMs in representing the interannual variability of windblown dust emissions and
700 the relative importance of near-surface wind speed and hydrochmate V&H&b%e%éhe—drlvers (pre01p1tat10n soil moisture, specific

-. We treat dust
wwmmodel spec1ﬁc quantlty sh&pedrbyﬂwmfeﬂm}wafmbihfyﬂﬂdjahyﬂeal—pafaiﬂetefﬂa&eﬂs

humidity, air temperature, and LAT)in

sand use

dominance analysis to quantify the variance explained in dust emission fluxes by wind and hydroclimate drivers within each

705 model. The analysis is conducted over three climatologically defined climate zones (hyperarid, arid, and semiarid), and further
examines the effect of dust emission representationsin-ESMs-parameterizations through paired CESM and E3SM experiments
with the Zender et al. (2003) and Kok et al. (2014b) schemes.

710 dominantdustseurce;-The hyperarid zone contributes more than half of global dust emissions in all models except CanESMS5.1
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725

730

735

740

745

v—, which simulate relatively spatiall
even emission patterns with less than 50% from the hyperarid zone, likely due to known medel-errors-and-tmitations{e-g

over-simplifications in dust emission representations. In the hyperarid zone, the ESMs exhibit poor agreement with each other
and with MERRA? in simulating the dust variability, with only 10% of the-pairwise model comparisons yielding statistically

significant, positive correlations. This—refle neonsistent-modelrepresentations—of-near-surface—winds—which—is-a—primary

empirieal-analysisreveals-that-this-behavior-is-eaused-by-a-dual-zones, the ESMs exhibit a dipole pattern with both improved

agreement and increased disagreement. This behavior can be explained by a "double-edged sword" effect of land surface mem-
ory: models with coherent representations of hydroclimate variability terd-te-converge in their dust emissionrespensesvariability,

while those with divergent hydroclimate representations tend-to-diverge in dust variability-As-aresult;medelsexhibitinereased

pattal-vartabthty-and-spreadin-predicto porta 5P aty-w al-mod apty PEOL v ase-othydro

The relative influence of wind and hydroclimate drivers also varies with climate regimes. Most ESMs capture the dominant

control of wind speed and weak sensitivity to hydroclimate conditions in the hyperarid zone, except CESM2-CAM:Kok
and GFDL-ESM4, both of which show great spatial variability and abnormally strong influence from precipitation, specific
humidity, and soil moisture. The overestimated hydroclimate influence in GFDL-ESM4 can be explained by the model’s
overestimation of soil moisture and consequent spurious effects on dust emissions. The enhanced hydroclimate influence in
CESM2-CAM:Kok (relative to CESM2-CAM:Zender) may be explained, at least partly, by the physically based soil erodibility

formulations in the Kok et al. (2014b) scheme, which replaces the use of predefined dust sensitivity—to-underlyingphysieal
i onalenyi .
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770

A similar pattern is found in E3SM, s

dustemission parameterization-and the-host-modelin the arid zone. However, due to concurrent updates in model physics (e.g.,
dust mineralogy, radiative feedbacks, and meteorology), further experiments are needed to isolate the effects of dust emission
parameterizations on dust-climate sensitivities.

In arid and semiarid zones, the influence of wind speed generally weakens while the hydroclimate influence strengthens.
However, the relative importance of wind and hydroclimate drivers becomes increasingly inconsistent between the models, with
an increasing number of ESMs shifting toward comparable or dominant-dominated regimes. In general, MERRA2 produces
stronger wind influence and weaker hydroclimate influence than the ESMs.

In summary, this study highh tal i tes—
and-its-physical-drivers—While-most models-provides new insights into how ESMs represent the temporal variability and
physical drivers of windblown dust emissions. Most ESMs capture the dominant role-of-wind control over permanently dry,
barren surfaces, their poor agreement in dust variability highlights large inconsistencies in the simulated near-surface windsin
arid and semiarid zones underscores the important role of hydroclimate variability and land surface processesplay-inereasingly
importantroles. Improving model representations of soil and vegetation dynamics and dust-climate relationships-interactions
in these regions is essential for reducing uncertainties in predicting-dust-responses—to-climate—variations-and-changefuture
projections of dust emissions under changing climate and land-use conditions.
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