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Abstract. Better constraining the current and future evolution of Earth’s ice sheets using physical process models is essential for

improving our understanding of future sea level rise. Data assimilation is a method that combines models with observations to

improve current estimates of model states and parameters, leveraging the information and uncertainties inherent in both models

and observations. In this study, we present an ensemble Kalman filter-based data assimilation (DA) framework for ice sheet

modeling, aiming to better constrain the model state and key parameters from a single semi-idealized glacier domain. Through5

a synthetic twin experiment, we show that the ensemble DA method effectively recovers basal conditions and the model state

after a few assimilation cycles. Assimilating more observations improves the accuracy of these estimates, thereby improving the

model’s projection capabilities. We also utilize Observing System Simulation Experiments (OSSEs) to explore the capabilities

of the ensemble DA framework to assimilate different types of data and to quantify their impact on the model state and

parameter estimation. In our experiments, we assimilate land ice elevation data simulated based on The Ice, Cloud, and Land10

Elevation Satellite-2 (ICESat-2) products. These experiments are crucial for identifying observations with the largest impact on

state and parameter estimates. Our assimilation results are highly sensitive to design choices for observation networks, such as

spatial resolutions and prescribed uncertainties.
:::::::
Notably,

:::
the

:::::::
marginal

::::::::::::
improvements

::
or

::::::::
increases

::
in

::::::
RMSE

::::::::
observed

::
at

::::::
coarser

:::::::::
resolutions

::::::
suggest

:::::
that,

::::::
beyond

::
a
::::::
certain

::::::
spatial

:::::::::
threshold,

::::::::
additional

:::::::::::
observations

:::
do

:::
not

::::::::
improve

:::
and

::::
may

:::::
even

:::::::
degrade

::::::::
long-term

::::::::
estimates

:::
of

:::::
model

::::::::::
parameters

::::
and

::::
state.

:
The ensemble DA framework, capable of assimilating multi-temporal15

observations, shows promising results for real glacier applications through a continental ice sheet model. Additionally, this

framework provides a flexible infrastructure for performing OSSEs aimed at testing various observational settings for future

missions, as it requires less numerical development
:::::
model

:::::::::::::
re-development

:
than variational methods.

1 Introduction

The combined contribution of the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS) to global sea level is one of20

the most significant sources of uncertainty in projections of sea-level rise for the coming century (Intergovernmental Panel

on Climate Change (IPCC), 2023). In recent years, numerical ice sheet models have significantly advanced through improved
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ice flow physics, enhanced spatial resolution, and their ability to simulate moving boundaries (Nowicki and Seroussi, 2018).

Despite these advancements, projections of mass change for both the AIS and GrIS, and consequently their contributions to

sea-level rise over the coming century, exhibit significant spread, primarily due to uncertainty in key model parameters and25

model initialization (Nowicki et al., 2016; Seroussi et al., 2020; Goelzer et al., 2020).

Data assimilation (DA) is a method of combining information from models with observations to improve the accuracy of the

model state variables and /or specific model parameters. Currently, most ice sheet models use
::::::
methods

:::
for

:::
ice

:::::
sheet

::::::::
modeling

:::::::
generally

::::
fall

:::
into

::::
two

:::::::::
categories:

:::::::
snapshot

:::
and

::::::::
transient

::::::::
inversions

:::::::::::::::
(Choi et al., 2023)

:
,
:::::
which

:::
use

::::::::::
single-time

::::::::::
observations

::::
and

::::
time

:::::
series

::
of

::::::::::
observation,

::::::::::
respectively.

::::::::
Snapshot

::::::::
inversion,

:::::::::::
implemented

:::::
using

:
a
::::
form

::
of

:
variational data assimilation methods

:
,30

:::
has

::::
been

::::::
widely

::::
used

::
in

:::
ice

::::
sheet

::::::
models

:
to constrain basal conditions(e.g., friction coefficient) ,

::::
such

::
as

:::
the

::::::
friction

::::::::::
coefficient,

and estimate the present state of the ice sheet using surface observations(e.g, surface velocity) (Gillet-Chaulet, 2020),
:::::
such

::
as

::::::
surface

:::::::
velocity

::::::::::::::::::::::::::::::::::
(MacAyeal, 1992; Morlighem et al., 2010). However, these approaches generally rely on a single instance of

observations
::::::::::
observations

::
at

:
a
:::::
single

::::
time

:
to perform time-independent inversions of model parameters. This method captures

a specific state of the ice sheet at a particular time (Morlighem et al., 2013; Gillet-Chaulet et al., 2012), but it risks introducing35

nonphysical artifacts from
:::::
often

::::::::
introduces

:::::::::::
nonphysical

::::::
artifacts

::::
into

:
the model’s initial state, potentially propagating artifacts

into transient simulations rather than capturing actual trends of changes in ice dynamics (Seroussi et al., 2011; Goldberg et al.,

2015). Such artifacts in initial conditions could affect model simulations over centuries to millennia due to the slow response

time of ice sheets (Seroussi et al., 2019).

Alternatively, data assimilation techniques that leverage time-varying surface observations have been developed to more40

accurately constrain ice flow over longer periods. The development
:::
use

:
of computational techniques such as automatic differ-

entiation
:
in

:::
ice

:::::
sheet

::::::
models (Goldberg and Heimbach, 2013) has enabled the assimilation of more observations into transient

model simulations, thereby capturing the model evolution during the assimilation period
:::::::::
period—the

::::
time

:::::::
window

:::::
during

::::::
which

::::::::::
observations

:::
are

::::::::::
assimilated

:::
into

:::
the

::::::
model. While this method has been applied in regional modeling studies (Larour et al.,

2014; Goldberg et al., 2015; Choi et al., 2023), scaling time-varying data assimilation approaches for simulations covering45

entire ice sheets remains challenging due to the complexities involved in developing a time-dependent adjoint model and the

substantial memory requirements of automatic differentiation (Choi et al., 2023). Furthermore, variational methods
:::
this

:::::::
method

::
as

::::
well

::
as

::::
static

::::::::
inversion do not explicitly compute the uncertainty coming from the model state and parameters (Carrassi et al.,

2018).

Ensemble data assimilation methodsthat employ the Ensemble
:
,
:::::
which

::::
use

:::
an

::::::::
ensemble

::
of

::::::
model

::::::::::
simulations,

:::::
offer

:::
an50

::::::::
alternative

::
to

:::::::::
variational

::::::::::
approaches

::
by

::::::::
explicitly

::::::::::
representing

::::::::::
uncertainty

::
in

:::
the

:::::
model

::::
state

::::
and

:::::::::
parameters

:::::
while

::::::::::
assimilating

::::::::::
time-varying

:::::::::::
observations.

:::::::
Various

:::::
forms

::
of

::::::::
ensemble Kalman filter (EnKF

:::::
EnKFs) have been effective for assimilating diverse

observations into complex, large-scale and non-linear geophysical models (Carrassi et al., 2018). The underlying principle of

the Kalman filter involves the sequential assimilation of data to estimate state variables for numerical models. This is achieved

by iteratively adjusting the model state to better represent the unknown ‘true’ state of the system (Carrassi et al., 2018) based on55

noisy observations
::::::::::::::::::
(Carrassi et al., 2018). The assimilation based on the EnKF is carried out across an ensemble of model runs,

each representing plausible system states. As new observations are incorporated within the assimilation period, the ensemble
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mean presents an increasingly more accurate estimate of the model state. When the model state is updated at each assimilation

time, the model parameters can also be updated alongside state variables to reflect past and present observations (Iglesias

et al., 2013). Unlike time-independent inversions relying on
:
a snapshot of observations from a single time, this framework60

enables the use of a time series of observations to provide an improved estimate of the model state and parameters. In
:::::
While

:::::::
transient

:::::::::
inversions

:::
also

:::::::::
assimilate

:::::::::::
time-varying

:::::::::::
observations,

::::
they

::::::::
typically

:::::::
estimate

:
a
::::::
single

:::::
model

:::::
state

::::::::::
conditioned

::
on

:::
all

::::::::::
observations

::::::
within

::
the

::::::::::
assimilation

::::::::
window.

::
In

:::::::
contrast,

:::
the

:::::
EnKF

::::::
updates

:::
the

::::::
model

::::
state

::::::::::
sequentially

::
at

::::::
discrete

:::::::::::
observations

::::
time,

:::::::
without

::
the

:::::
need

::
for

:::::::::
estimating

:
a
:::::::
tangent

:::::
linear

:::
and

::::::
adjoint

:::
for

:::
the

:::::
model

:::
and

:::::::::::
measurement

:::::::::
operators.

::
In addition, EnKFs,

similar to the classic Kalman filter, provide a direct estimate of uncertainty in model state and parameter estimates, which is65

represented heuristically through the sample error covariance.

While ensemble DA is less commonly employed
:::
The

:::
ice

::::
sheet

:::::::::
modeling

:::::::::
community

::::
has

::::::::::
traditionally

:::::
relied

:::
on

::::::::
snapshot

:::::::
inversion

::::::::
methods

:::::
based

:::
on

:::::::::::
adjoint-based

::::::::::
techniques

:::
for

:::::::::
parameter

:::::::::
estimation,

:::::
using

::::::::::::
time-invariant

:::::::
mosaics

:::
or

:::::::::
composite

:::
data

:::::
(e.g.,

:::::::::
multi-year

::::::::
averaged

:::::::
surface

:::::::
velocity

::::::
fields;

::::::::::::::::::
Morlighem et al. 2010

:
).
::::::::::

Compared
::
to

:::::
these

::::::::
methods,

::::::::
ensemble

::::
DA

:::::::::
approaches

::::
have

:::::
been

::::
less

:::::::::
commonly

:::::
used in ice sheet modelingcompared to variational methods , promising results for70

estimating the ,
::::::::
primarily

:::
due

::
to

::::::::
historical

:::::::::
limitations

::
in

:::::::::::
observational

::::
data,

::::::::::::
computational

::::
cost,

:::
and

:::
the

:::::::::
challenges

::
of

::::::::::
representing

:::::::::
uncertainty

::
in

:::
ice

::::
sheet

:::::::
models.

::::::::
Ensemble

::::::::::
approaches

::::
rely

::
on

:::::::::::
time-varying

::::::::::
observations

::::
with

::::::::::::::::
well-characterized

:::::::::::
uncertainties,

:::
but

::::::
surface

::::::::::
observations

:::
for

:::
ice

:::::
sheets

::::
have

:::::
often

::::::
lacked

::::::
reliable

:::::::::
uncertainty

:::::::::
estimates,

::::::
making

:::::
them

:::
less

:::::::
suitable

:::
for

::::::::
ensemble

:::
DA.

::::::::::::
Additionally,

::::::::
ensemble

::::::::
methods

:::::::
typically

:::::::
require

:::::::
multiple

::::::::
forward

:::::
model

:::::
runs,

:::::::
making

:::::
them

:::::
more

::::::::::::::
computationally

:::::::::
demanding

::::
than

::::::::
snapshot

::::::::
inversion

::::::::::
approaches.

::::::::
Another

::::::::
limitation

::
is
::::
that

::::::
poorly

::::::::::
understood

::
or

:::::::::::
unquantified

:::::
errors

:::
in

:::
the75

::
ice

::::
flow

::::::
model

::::
itself

::::
may

:::::
limit

:::
the

::::::
reliable

:::::::::
estimation

::
of

::::::::::
covariances

:::::
using

::::::::
ensemble

::::::
statics.

::::::::::
Nonetheless,

:::::::::
promising

::::::
results

::::
have

::::
been

:::::::::::
demonstrated

::
in

::::::
recent

::::::
studies

:::
that

:::::
apply

::::::::
ensemble

:::
DA

::
to

:::::::
estimate

::::
both

:::
the

::::::
model

state and basal conditions of ice sheets have been reported by Bonan et al. (2014) and Gillet-Chaulet (2020). These studies

investigated the performance of EnKFs using idealized twin experiments where observations generated from a model run

are used as synthetic observations to investigate this DA approach. This strategy has been further developed to initialize80

a
::::::::::::::::::::::::::::::::::::::
(Bonan et al., 2014, 2017; Gillet-Chaulet, 2020)

:
.
:::::
These

:::::::
include

::::::::::
initializing marine ice sheet model that includes the ice

front
::::::
models

:::
that

::::::::::
incorporate

::::
ice

:::::
fronts

:
and grounding line migration(Bonan et al., 2017; Gillet-Chaulet, 2020). However,

these studies
:::::::::::::::::::::::::::::::::::::::
(Bonan et al., 2014, 2017; Gillet-Chaulet, 2020) utilized simplified flowline models, limiting the representation

of the horizontal stress field that can impact ice dynamic processes through, for example, buttressing.
::::
Such

::::::::::::
unrepresented

::::::
physics

::
in

:::
ice

:::::
flow

::::::
models

::
or

:::::::::
structural

:::::
model

::::::
errors

::::
may

::::
limit

::::
the

::::::
reliable

:::::::::
estimation

:::
of

::::::::::
covariances.

:::
As

:::::
more

:::::::::
complete,85

:::::::::::
time-resolved

:::::::
datasets

::::
with

::::::
robust

:::::::::
uncertainty

::::::::
estimates

:::::::
become

::::::::
available,

::::
and

::
as

:::
ice

:::::
sheet

::::::
models

:::::
grow

:::::
more

:::::::::::
sophisticated

::::
while

::::::::::::
computational

:::::
costs

:::::::
continue

::
to

::::::::
decrease,

::::::::
ensemble

:::
DA

::::::::
methods

:::
are

::::::::::
increasingly

:::::
worth

::::::::
exploring

:::
for

::::::::::
larger-scale,

:::::
more

::::::
realistic

:::
ice

:::::
sheet

:::::::
models.

Data assimilation and associated data denial experiments can
::::::::::::::::
experiments—where

::::
the

::::::
impact

::
of

:::::::
specific

:::::::::::
observations

::
is

::::::::
evaluated

::
by

::::::::::
temporarily

::::::::
removing

::::
them

:::::
from

:::
the

::::::::::
assimilation

:::::::::::
process—can be used to test the benefit of current observations,90

typically referred to as Observation System Experiments (OSEs), as well as to evaluate the potential benefits of proposed ob-

servations, typically referred to as Observation System Simulation Experiments (OSSEs) (OSSEs, Arnold Jr and Dey, 1986;
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Masutani et al., 2010). The main difference is that OSEs assimilate real observations, while OSSEs assimilate synthetic ob-

servations generated from model output with errors sampled from an appropriate a
:::::::::

prescribed
:

observation error distribution

:::::::::::
representative

:::
of

:::
real

::::::::::::
measurement

:::::::::::
uncertainties. Both approaches aim to provide a systematic assessment of the value of95

observations for improving model state and parameter estimation. OSSEs have been successfully applied to atmospheric and

oceanic models for decades, where analysis systems and the required DA frameworks are far more established (Boukabara

et al., 2016; Hoffman and Atlas, 2016). For ice sheet modeling, however, the application of these OSE/OSSE approaches is

still in the early stages of development
:::
has,

::
to

:::
our

::::::::::
knowledge,

:::
not

::::
been

:::::::::
previously

::::::::
explored.

This study explores the feasibility and benefits of using an EnKF to assimilate surface observations into a 2D plan-view100

ice model, with the aim of accurately estimating both the model state
:::
(ice

:::::::::
thickness)

:
and key model parameters related to

basal conditions (basal friction and topography). Using the shelfy-stream approximation (SSA, MacAyeal, 1989) for the stress

balance of the ice sheet, ice thickness serves as the only prognostic variable representing the model state. Basal friction and

topography, which cannot be directly measured, are treated as key model parameters that must instead be estimated through

surface observations. We perform a twin experiment in which we evaluate the estimated
:::::
model state and parameters by compar-105

ing them with true reference values and using them as initial conditions to assess the impact of ensemble data assimilation on

model projections
:::::::
(Section

:::
2.3). Our modeling settings are similar to those used in the previous study (Gillet-Chaulet, 2020)

:
,

which used a flowline model, with necessary modifications for our model domain geometry and the coupling between a 2D

ice sheet model and the data assimilation system
:::::::
(Section

::::
2.1). We investigate various ensemble DA parameters on a synthetic

ice sheet domain to explore effective ensemble DA strategies relevant to ice sheet modeling
:::::::
(Section

:::
2.2). One of the primary110

objectives of this research is to use an idealized model configuration to help inform future efforts in applying an EnKF for real

glacier cases. Within this context, we also configure Observing System Simulation Experiments (OSSEs )
:::::
OSSEs

:
to evaluate

the impact of various configurations of observations on the estimated model state and basal conditions . Section 2
:::::::
(Section

::::
2.4).

2
:::::::
Methods115

::::
This

::::::
section describes the ice sheet model and data assimilation experimental setup along with the description of the different

OSSEs that were performed. The results are presented in Section 3, followed by a discussion in Section 4.
:::::::::::
configuration

:::::::
(Section

::::
2.1),

:::
the

::::::::
ensemble

::::
DA

:::::::::
framework

::::::::
(Section

::::
2.2),

::::
and

:::
the

:::::::::::
experimental

::::::
designs

:::::
used

::
in

::::
this

:::::
study

:::::::
(Section

:::
2.3

::::
and

::::
2.4).

:::
We

::::
first

::::::
outline

::::
the

::::
twin

::::::::::
experiment

:::::
setup,

::::::
which

::::
tests

:::
the

::::::
ability

:::
of

:::
the

::::
DA

:::::::::
framework

:::
to

::::::
recover

:::
the

::::::
model

:::::
state

:::
and

:::::::::
parameters

:::::
under

::::::::
idealized

::::::::::
conditions.

:::
We

::::
then

:::::::
describe

:::
the

:::::::
OSSEs,

:::::
which

:::::::
explore

:::
the

::::::
effects

::
of

:::::::
different

::::::::::::
observational120

::::::::
strategies

::
on

::::::
model

:::::::::::
initialization.

:::
Our

::::::::
methods

::
are

:::::::::::
summarized

::
in

::::::
Figure

::
1.

3 Methods
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Initialize Ensemble
- Generate ensemble by perturbing initial guesses for:

• Prognostic state: Ice thickness 
• Parameters: Friction coefficient, Bed topography

Forecast step (ISSM)
- Run simulations to the next observation time
- Prepare restart files for DART

EAKF Analysis step (DART)
- Load restart files from ISSM
- Apply inflation and localization
- Update state vector including:

• Prognostic state: Ice thickness 
• Parameters: Friction coefficient, Bed 

topography

Update ensemble
- Use updated state and parameters as 

initial conditions for next forecast step

Observations
- Surface velocity and elevation
- Twin experiments:

• Observed at every mesh node
• Added error of 5 m for elevation 

and 10 m/yr for velocity
- Observing System Simulation 

Experiments (OSSEs):
• Observed along ground tracks and 

gridded
• Added error of 5– 20 m for 

elevation

Figure 1.
::::::::
Schematic

:::::::
overview

::
of

::
the

::::::::
ensemble

:::
data

:::::::::
assimilation

::::::::
workflow

::::
using

:::
the

:::::
EAKF

:::::
within

::
the

:::::::::::
DART–ISSM

::::::::
framework.

In this study , we conduct a twin experiment to evaluate the performance of the ensemble DA framework for model initialization

and projections. In addition, we perform Observing System Simulation Experiments (OSSEs) to explore the potential impact

of assimilating different types of observations and associated uncertainties on the model initializationresults.125

2.1 Model Setup

We use the Ice-sheet and Sea-level System Model (ISSM, Larour et al., 2012) to simulate the model state and forecast its

evolution over time. ISSM is a parallelized finite element ice flow model with anisotropic mesh refinement capabilities, which

allows efficient ensemble simulations of the ice sheets.

We construct our reference simulation using a bed geometry inspired by Asay-Davis et al. (2016) and Gillet-Chaulet (2020).130

The synthetic bed topography features large-scale overdeepening combined with added small-scale roughness. The general

shape of the bed is defined as:

zb(x,y) = max [Bx(x) + By(y), zb,deep] (1)

Bx(x) =


150 − 3x, 0 km ≤ x≤ 350 km

−900 + 5(x− 350), 350 km ≤ x≤ 450 km

−400 − 3(x− 450), 450 km ≤ x≤ Lx

(2)

By(y) =
dc

1 + e−2(y−Ly/2−wc)/fc
+

dc
1 + e2(y−Ly/2+wc)/fc

(3)135

where the parameter values used in these equations are given in Table 1. Following Gillet-Chaulet (2020), we add a roughness

signal using a random
::::::::
introduce

:::::::::
small-scale

:::::::::
roughness

::
to

::
the

::::
bed

:::::::::
topography

:::::
using

::
a midpoint displacement method (Fournier

et al., 1982). We use
:::
This

:::::::
method

::::::::
generates

::
a
::::::::::::::
two-dimensional

::::::
surface

:::
by

:::::::::
iteratively

::::::::::
subdividing

:
a
:::::
grid,

::::::::
assigning

:::::::
random

::::::
heights

::
to

:::
the

::::::
corners,

::::
and

::::::::
displacing

:::::::::
midpoints

::::
with

:::::
added

:::::::
random

:::::::::::
displacement.

::::
The

:::::::::
magnitude

::
of

:::
the

:::::::::::
displacement

:
is
::::::
scaled

5



Table 1. Parameters for the reference ice sheet domain

Parameter Value Description

zb,deep -720 m Maximum depth
::::
Depth of the bedrock topography

Lx 640 km Domain length (along ice flow)

Ly 80 km Domain width (across ice flow)

dc 500 m Depth of the trough compared with the side walls

wc 24 km Half-width of the trough

fc 4 km Characteristic width of the side walls of the channel

::
by

:
a
::::::::

standard
::::::::
deviation

:::
that

:::::::::
decreases

::::
with

::::
each

:::::::
iteration

:::
as

:::::
20.5H ,

::::::
where

::
H

::
is
:::
the

:::::::::
roughness

::::::
factor,

:::
set

::
to

:::
0.7

::
in

:::
this

::::::
study.140

:::
We

:::::
apply this method at 100 m resolution with 10 recursions using

:::::::
recursive

:::::::::::
subdivisions,

:::::::
starting

::::
from

:
an initial standard

deviation of 500 mand a roughness factor of 0.7. .
:::::
This

::::::
process

::::::::
produces

::
an

::::::::::::
asymmetrical

:::
bed

::::::::::
topography,

::::::
which

::::
may

:::::
better

:::::
reflect

:::::::
realistic

::::::::
subglacial

::::::::
features,

:::::::
although

:::
we

:::::::
conduct

::
an

::::::::
idealized

::::
twin

:::::::::
experiment

::
in

::::
this

:::::
study. The model domain spans 0

to 640 km in the x-direction and 0 to 80 km in the y-direction. This domain is discretized into approximately 27,000 elements

using a triangular mesh with resolutions varying from 500 m near the coast to 10 km inland.145

The basal friction coefficient follows a sinusoidal function similar to that used by Gillet-Chaulet (2020), comparable to the

inferred friction coefficient in Thwaites Glacier of Antarctica in terms of both amplitude and spatial variations (Brondex et al.,

2019; Gillet-Chaulet, 2020). In this study, we have adjusted this function for a 2D domain with an additional y-component

::::
(Fig.

:::
6a):

C(x,y) = Cx(x) × Cy(y) (4)150

Cx(x) = 0.02 + 0.0050.01
:::

sin(
1

40

(
5
:

2π(x−Lx)

Lx
)

)
sin(10

(
30
::

2πx

Lx
)

)
(5)

Cy(y) = sin(

(
π
(y−Ly)

Ly
)

)
+ 2 (6)

:::::
where

:::
Cx:::

and
:::
Cy:::

are
:::
the

:
x
::::
and

:
y
:::::::::::
components

::
of

:
a
::::::
friction

:::::::::
coefficient

::::
(C),

:::::::::::
respectively.

For the stress balance of an ice sheet, we use the shelfy-stream approximation (SSA, MacAyeal, 1989), which simplifies

the Stokes equations for cases with a small aspect ratio and basal friction. The basal stress, τb, is described by the Weertman155

friction law for grounded ice:

τb = C|ub|
1
m−1ub (7)

where C is a friction coefficient, ub the ice basal velocity, and m the velocity exponent set to 1/3 in this study.
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The ice viscosity is defined using Glen’s law (Glen, 1955):

µ=
B

2ε̇
1− 1

n
e

, (8)160

where B is the ice viscosity parameter, ε̇e the effective strain rate, and n Glen’s law exponent set equal to 3.

The position of the ice front is fixed at the end of the domain, and the evolution of the grounding line is simulated with a

subelement grounding line parameterization (Seroussi et al., 2014).

We run the model until it reaches a steady state using a uniform surface accumulation rate of 0.3 m/yr, without any basal

melting. After 25,000 years, the ice sheet stabilizes at a steady state, with a grounding line located approximately at x = 470165

km along the center line of the glacier, just downstream of the region of overdeepening (Fig. 2). To introduce dynamic changes,

we perturb this equilibrium state by instantaneously reducing the surface mass balance to -0.3 m/yr. We also introduce basal

melting using a simple melt-depth parameterization, as described by Favier et al. (2014), setting the melt rate of 200 m/yr

at a depth of 800 m. The model then runs
:
,
:::::
which

::::::
results

::
in

:::
an

:::::
actual

::::
melt

::::
rate

::
of

:::::::::::::
approximately

:::
170

:::::
m/yr

:::::::
beneath

:::
the

:::
ice

::::
shelf.

::::::::
Although

::::
this

::::
melt

:::
rate

:::::::
exceeds

::::::::
observed

::::::::::
present-day

::::
basal

::::
melt

:::::
rates,

:::
we

::::::
choose

:::
this

:::::
value

::
to

:::::
create

:
a
::::::
strong

:::::::::
dynamical170

:::::::
response

::::
over

::
a
:::::::
forecast

::::::
period,

::::::::
ensuring

:::
that

:::
the

::::::
effects

:::
of

::::
data

::::::::::
assimilation

:::::
could

:::
be

::::::
clearly

::::::::
evaluated.

::::
The

:::::::
elevated

:::::
melt

:::
rate

::
is

:::
not

::::::::
intended

::
to

::::::::
represent

::
a

:::::::
realistic

::::::::::
present-day

::::::::
scenario,

:::
but

:::::
rather

::
to
:::::

serve
:::
as

:
a
:::::::::
diagnostic

::::
tool

::
in

:::
the

:::::::
context

::
of

::
a

::::
twin

:::::::::
experiment

::::::::
described

::
in
:::::::

Section
::::
2.3.

::
To

::::::::
generate

:::
the

::::::::
reference

:::::::::
simulation

:::
for

:::
our

:::::::::::
experiments,

:::
we

:::
run

:::
the

:::::
model

:
for an

additional 200 years, while keeping these surface and basal forcings constant. For the first 100 years, the grounding line retreats

at a relatively slow pace, but the retreats accelerate after approximately 130 years (Fig. ??
::
2b). We refer to this simulation as175

our reference simulation
::
the

:::::::::
“reference

::::::::::
simulation”, from which we derive synthetic observations and reproduce the state and

parameters through our ensemble DA framework. The setup of the reference simulation resembles an idealized Antarctic

glacier. The DA simulations conducted in Section 2.3 and 2.4 represent part of this 200-year run and utilize the same forcings

as this reference simulation.

Bed topography of model domain and grounding line positions every 10 years from 0 to 200 years for the reference180

simulation (white to red).

2.2 Data assimilation

We use the Data Assimilation Research Testbed (DART, Anderson et al., 2009) to implement ensemble data assimilation

with ISSM. DART provides various DA algorithms and modules to create a complete end-to-end DA framework. In this

study, we utilize the Ensemble Adjustment Kalman Filter (EAKF, Anderson, 2001) algorithm within DART, which is a185

modified version of the Kalman filter (Kalman, 1960) and belongs to a class of deterministic ensemble square-root filters

(Tippett et al., 2003). The EAKF combines observations with an ensemble of model forecasts over a specified observation

window to produce an ensemble of ice sheet analyses. In doing so, the EAKF incorporates a flow-dependent background and

analysis error covariance that can be propagated to the next time of observations through an ensemble of model integration,

which differs from a static background-error covariance typically used for variational data assimilation. DART places
::
In190

::::::
contrast

::
to

:::
the

:::::::
standard

:::::::::
stochastic

::::::::::::
EnKF—which

:::::::
perturbs

:::::::::::::::
observation-space

::::::::
quantities

::::::::
randomly

:::
for

::::
each

::::::::
ensemble

:::::::
member

::
to
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Figure 2. (a) Initial steady-state ice surface and basal elevation. (b)
:::
Bed

::::::::
topography

::
of

:::::
model

::::::
domain

:::
and

::::::::
grounding

:::
line

:::::::
positions

::::
every

:::
10

::::
years

::::
from

:
0
::
to

:::
200

::::
years

:::
for

:::
the

:::::::
reference

::::::::
simulation

:::::
(white

::
to

::::
red).

::
(c)

:
Initial steady-state velocity with contours of 50 m/yr and 100 m/yr

(yellow
::::::
magenta lines). The white line shows the initial grounding line position.

::
(d)

:::::
Mesh

:::::::
resolution

::
of

:::
the

:::::
model

::::::
domain.

::::::
account

:::
for

:::::::::::
observational

::::::::::::::
uncertainty—the

::::::
EAKF

:::::
avoids

:::::::::
additional

:::::::::::
perturbations

:::
and

::::::
instead

::::::::::
analytically

::::::
adjusts

:::
the

::::::::
ensemble

:::::::
members

:::
to

:::::
match

:::
the

::::::::
posterior

:::::
mean

:::
and

::::::::::
covariance

:::::::::
determined

:::
by

:::
the

:::::::
original

:::::::
Kalman

::::
filter

::::::::
equations

:::::::::::::::
(Anderson, 2001)

:
.

::::
This

:::::::
approach

::::::::
improves

:::::::::
numerical

:::::::
stability

:::
and

:::::::
reduces

::::::::
sampling

::::
noise

::::
over

:::::::::
stochastic

::::::
EnKFs,

:::::::::
especially

:::
for

:::::
small

::::::::
ensemble

::::
sizes

::::::::::::::::::::::::
(Whitaker and Hamill, 2002).

:::
In

:::
this

::::::
study,

:::
we

::::::
choose

:::
the

::::::
EAKF

::::
due

::
to

:::
its

:::::::
reduced

:::::::::
sensitivity

::
to

::::::::
ensemble

::::
size

::::
and195

::::::::
improved

::::::::
robustness

::
in

::::::::::
geophysical

:::::::
systems,

:::
as

:::::::::::
demonstrated

::
in

:::::::
previous

::::::
studies

::::
using

::::::
DART

::::::::::::::::::::::::::::::::::::
(Zubrow et al., 2008; Anderson et al., 2009)

:
.
::::::::::
Throughout

:::
this

::::::
paper,

:::
we

:::
use

:::::::
“EnKF”

:::
to

::::
refer

::
to

:::::::::
ensemble

:::::::
Kalman

::::
filter

:::::::
methods

:::::
more

:::::::::
generally,

:::
and

::::::::
“EAKF”

::
to

:::::
refer

:::::::::
specifically

::
to

:::
the

::::::
version

:::::::::::
implemented

::
in

::::
this

:::::
study.

:::
We

::::
refer

::::::
readers

::
to

:::::::::::::::
Anderson (2001)

::
for

:::
the

:::
full

::::::::::
algorithmic

::::::
details

::
of

:::
the

::::::
EAKF.

:::::
Within

:::::::
DART, ice sheet variables

::
are

::::::
placed

:
into a state vector, then uses

:::
and

:::
the

:::::
filter

::::
uses

:::
the ensemble-estimated error200

covariance between the state vector and the state variables projected into observation space to compute the Kalman gain

needed to update the model state . For the current study, the state vector in DART
::::
with

:::::::
available

::::::::::::
observations.

:::
The

::::
state

::::::
vector

is augmented to include both the model state and the parameters that are updated through DA. Here, the augmented
:::::::::
prognostic

:::::::
variables

::::
and

:::::
model

::::::::::
parameters

::
to

:::
be

::::::::
estimated.

::::::
Under

:::
the

:::::
stress

:::::::
balance

::
of

:::::
SSA,

:::
the

:::::::
velocity

::
is
::
a
:::::::::
diagnostic

:::::::
variable,

::::
and

:::
due

::
to

:::
the

:::::::
flotation

:::::::::
condition,

::
ice

::::::::
thickness

::
is

:::
the

::::
only

:::::::::
prognostic

:::::::
variable

::::::::::::::::::
(Gillet-Chaulet, 2020)

:
.
::
In

:::
this

:::::
study,

:::
the

:
state vector205

includes ice thickness as a prognostic variableand
::::
(state

::::::::
variable),

:::
and

:::::
basal

:
friction coefficient and bed topography as model

parametersto be estimated.
::::::
(model

::::::::::
parameters),

::::::::
allowing

::::
joint

:::::::::
estimation

::
of

:::
the

::::::
model

::::
state

:::
and

:::::::::
parameter

:::::
fields

:::::::
through

:::
the

:::
DA

::::::
process

:::::
(Fig.

::
1).

:
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A common challenge with EnKFs
:
,
::::::::
including

:::
the

:::::
EAKF

:::::
used

::
in

:::
this

:::::
study,

:
is the issue of undersampling, which arises when

the size of the ensemble is significantly smaller than the independently observed degrees of freedom for the model state.210

::::::::
Sampling

:::::
errors

:::::
occur

:::::::
because

::::
the

:::::::::::::
ensemble-based

:::::::::
covariance

::
is
:::::

only
::
an

:::::::::::::
approximation

::
of

:::
the

::::
true

::::::::::
covariance,

::::
and

:::::
small

::::::::
ensembles

::::
may

:::
not

:::::::::
adequately

:::::::
capture

:::::::::
variability

:::::
across

:::
the

:::
full

::::
state

:::::
space

::::::::::::::::::
(Carrassi et al., 2018)

:
.
::
In

:::
our

:::::::::::
experiments,

:::
we

:::
use

::::::::
ensemble

::::
sizes

::
of

:::
30,

:::
50,

::::
and

::::
100,

:::::
while

::
the

:::::::
number

::
of

:::::::::::
observations

:::
can

:::::
range

::::
from

::::::::
hundreds

::
to
:::::::::
thousands,

:::::::::
depending

:::
on

:::
the

:::::::::
observation

::::::::::::
configuration. Localization and inflation are common methods to mitigate these

::::::::::::
undersampling

:
issues and increase

the stability of the filter
:::::
EAKF

:
(Carrassi et al., 2018; Morzfeld and Hodyss, 2023). Localization adjusts the spatial influence215

of observations, thereby preventing the distortion of estimates by distant observations. While previous studies (Gillet-Chaulet,

2020; Cook et al., 2023) have explored the effects of localization on
:::
the

:::::
model

:
state estimation using flowline models, its

application to 2D plan-view models remains unexplored. Similarly, inflation, which addresses sampling errors by artificially

increasing the forecast covariance matrix, has not been thoroughly studied for large-scale ice sheet modeling. To identify the

most effective settings, we conduct sensitivity tests for both localization and inflation parameters to determine their optimal220

values for
::::
using

:
a
::::::

range
::
of

::::
both

::::::::::
localization

::::
radii

::
(2

:::
to

::
20

::::
km)

::::
and

:::::::
inflation

::::::
factors

:::::
(1.00

::
to

:::::
1.20)

:::::
within

:
our ensemble data

assimilation framework.

2.3 Twin experiment

We conduct a twin experiment to evaluate the performance of using an EnKF
:::::
EAKF

:
to assimilate surface observations into a

2D plan-view ice model. Using the ISSM-DART DA framework, we aim to estimate the ice sheet state together with model225

parameters. Here, we assume that the friction coefficient and the bed topography are the only two unknown parameters that

need to be estimated, while all other parameters and forcings (e.g., ice rigidity, surface mass balance) are perfectly known

and identical to those used in the reference simulation. We assimilate annual surface observations derived from the reference

simulation over a 30-year span—approximately the satellite observational period for ice sheets—to assess the ability of the

ensemble DA framework to recover the initial
:::::
model

:
state and basal conditions of the reference ice sheet.230

We obtain synthetic surface observations of ice elevation and velocities from the reference simulation and assume that the

surface elevation and velocities are observed at annual resolution (e.g., at the start of each year) at each ISSM mesh node.

To simulate observation error, we add uncorrelated Gaussian noise with a standard deviation of 5 m for the surface elevation

and 10 m/yr for the velocity as a simple uncertainty baseline. These standard deviation values are lower than the ones from

Gillet-Chaulet (2020), but still within a plausible range according to recent studies (Dai and Howat, 2017; Mouginot et al.,235

2017). We explore the sensitivity to the choice of applied
::::::::::::::::::
Dai and Howat (2017)

:::::
report

:::::::
vertical

:::::::
elevation

:::::::::::
uncertainties

::::::
below

:
5
::
m

::
in

::::::::::::::
well-constrained

:::::::
regions,

::::
and

:::::::::::::::::::
Mouginot et al. (2017)

::::
report

:::::::::
horizontal

:::::::
velocity

:::::::::::
uncertainties

:::::::
ranging

::::
from

::
5

:
-
::
20

:::::
m/yr

::::::::
depending

:::
on

:::
the

::::::
region.

:::
We

::::::
choose

::::::
values

::
at

:::
the

:::::
lower

::::
end

::
of

::::
these

::::::
ranges

::
to
::::::
isolate

:::
the

:::::::::::
performance

::
of

:::
the

:::
DA

::::::::::
framework

:::::
under

::::::::
favorable

:::::::::
conditions.

:::
We

:::::::
explore

:::
the

:::::::::
sensitivity

::
to

:::::
larger

:
uncertainties in our OSSEs below (Section 3.2)

::::::::
presented

::
in

::::::
Section

:::
2.4.240

To generate initial ensembles, we adopt an approach similar to that described by Gillet-Chaulet (2020). For the friction

coefficient, we create a random field, assuming a known mean value of 2,500 Pam−1/3a1/3 across the domain and using a
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prescribed covariance model for spatial dependency. We use a Gaussian function for the variogram with a range of 5 km and

a sill of 90,000. These values for the range and sill were selected based on Gillet-Chaulet (2020), with adjustments made for

the domain and friction law used in this study. For bed topography, we use an exponential function for the variogram with a245

range of 50 km, a sill of 4,000 m2 and a nugget of 200 m2, also based on the same study (Gillet-Chaulet, 2020). Unlike the

friction coefficient, which typically cannot be directly measured and often lacks prior knowledge, the bed topography can be

measured using ice penetrating radar (e.g., Evans and Robin, 1966; Dowdeswell and Evans, 2004; Rodriguez-Morales et al.,

2014). We assume that we have radar measurements of bed topography along tracks perpendicular to ice flow every 30 km. We

:::::
Using

::::::
kriging

::::
with

::
an

::::::::::
exponential

:::::::::
covariance

::::::
model,

:::
we generate a conditional random field of the bed topography , prescribed250

:::::::::
constrained

:
by these observationsand the exponential covariance model. Initial ensembles for both parameters are created using

the GSTools Python package (Müller et al., 2022). Additional initial ice sheet variables, such as initial thickness and velocity,

are calculated through a stress balance solution using the initial ensemble of friction coefficient and bed topography.
:
In

::::
our

:::::
setup,

:::
the

::::
basal

:::::::
friction

:::::::::
coefficient

:::
and

::::
bed

::::::::::
topography

:::
are

::::::::
estimated

::::::
jointly

::
as

::::
part

::
of

:::
the

:::::::::
augmented

::::
state

::::::
vector.

::::::
While

:::
we

::
do

:::
not

::::::::
prescribe

:
a
:::::
prior

:::::::::
correlation

:::::::
between

:::::
them,

:::
the

::::::
EAKF

::::
uses

:::::::::::::
ensemble-based

::::::::::::::
cross-covariance

:::::::
between

::::
these

::::::::::
parameters255

:::
and

::::::::::
background

::::::::
variables

:::
to

:::::
update

::::
both

:::::
fields

::::::
during

:::
the

::::::::::
assimilation

:::::::
process.

:

To date, no studies have determined optimal localization and inflation parameters
:::::
factors for large-scale 2D ice sheet models.

Therefore, we conduct sensitivity tests to identify the best values for these parameters across various ensemble sizes. For this

study, a Gaspari-Cohn fifth-order polynomial is used for horizontal direction localization to limit observation updates within

a specific radius (Gaspari and Cohn, 1999).
::::::::::
Localization

::
is
:::::::
applied

::
to

:::::
reduce

::::::::::
correlations

::::::::
between

:::::
model

:::::
states

::::::::
projected

::::
into260

:::::::::
observation

:::::
space

::::
and

:::
the

:::::::::
unobserved

:::::
state

::::::::
variables,

:::::
which

:::::
does

:::
not

::::::::
explicitly

:::::
damp

::::::::::
covariances

:::::
across

:::::::::
co-located

::::::::
variables

::::::::::::::
(Anderson, 2007)

:
. For inflation, we use the spatially uniform state space inflation (Anderson et al., 2009). We explore various

:::::::::::
combinations

::
of

:
inflation and localization radii values to find the optimal combination.

::::::::::
Specifically,

:::
we

::::
vary

:::
the

::::::::::
localization

:::::
radius

::::
from

::
2

::
to

::
20

:::
km

::
in

:
2
:::
km

:::::::::
increments

::::
and

:::::
adjust

:::
the

:::::::
inflation

::::::
factors

::::
from

::::
1.00

::
to

::::
1.20

::
in

::::
0.02

:::::::
intervals.

:
Initial experiments

begin with an ensemble size of 30, based on findings from smaller-scale flowline model studies that demonstrate robust DA265

performance with relatively small ensembles. We then extend our experiments to larger ensembles, up to
::::
using

:::
50

:::
and

:
100

members, to examine the impact of ensemble size on DA performance in large-scale ice sheet modeling.

To evaluate the effectiveness of the ensemble DA framework in retrieving basal conditions and ice sheet state, we calculate

the root-mean-square error (RMSE) between the analysis mean states and the designated true values for bed topography

(RMSE_B), friction coefficient (RMSE_C), and ice thickness (RMSE_H). After each analysis, RMSE values are computed270

at all nodes where basal conditions have been updated through assimilation. This calculation includes only those nodes where

at least one node in the triangular mesh is grounded, as surface observations only respond to changes in the basal condition of

grounded ice.

:::::
Based

::
on

:::
the

::::::
model

::::
state

:::
and

:::::::::
parameters

::::::::
estimated

::::
from

:::
the

:::
DA

::::::::::
simulation,

::
we

:::::::
conduct

:::::::::::
deterministic

:::
and

::::::::
ensemble

::::::::
forecasts

::::::::
extending

:::
up

::
to

:
t
::
=

:::
200

:::
yr

::
to

:::::::
explore

:::
the

::::::
impact

::
of

::::::::
ensemble

::::
DA

::::::::::
initialization

:::
on

::::::
model

::::::::::
projections.

:::
We

:::
use

::::
the

::::::::
ensemble275

::::
mean

::
to
::::::::
initialize

:::
the

:::::::::::
deterministic

:::::::::
simulation

:::
and

:::
the

::::
full

::::::::
ensemble

::
to

:::::::
initialize

:::
the

::::::::
ensemble

:::::::
forecast

:::::::::::
simulations,

::::::
similar

::
to

:::::::::::::::::
Gillet-Chaulet (2020)

:
.
:::
We

::::
also

:::::
utilize

:::
the

::::::::
estimated

::::::
model

::::
state

:::
and

:::::::::
parameters

:::
as

:::::
initial

:::::::::
conditions

::::
from

::::::
various

::::::
points

::
in

:::
the
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:::
DA

:::::::::
simulation

:::::::
different

:::::
initial

::::::::::
conditions,

::::
e.g.,

:::
the

:::::::
analyzed

:::::
states

::
at

:
t
::
=

:
5
:::
yr,

:
t
::
=

::
15

:::
yr,

:::
and

:
t
::
=
:::
30

::
yr,

:::
for

:::::::
forecast

::::::::::
simulations

::
to

:::::::::
investigate

:::
the

:::::
impact

:::
of

:::::::
different

:::
DA

:::::::
periods

::
on

::::::
model

::::::::::
simulations.

2.4 Observing System Simulation Experiments (OSSEs)280

We conduct Observing System Simulation Experiments (OSSEs )
:::
We

:::::::
conduct

::::::
OSSEs within our synthetic model domain to

investigate the potential impact of varying observed quantities and their associated uncertainties. For our OSSEs, we assume

a “perfect” model without any model error, following the perfect model OSSE framework (Zhang et al., 2018). While the

twin experiment described in the previous section is more focused on testing the capabilities of ensemble Kalman filter data

assimilation system
::
the

::::::
EAKF

:
under ideal conditions, the suite of experiments in this section is designed to explore the285

feasibility of performing joint state-parameter estimation for the ice sheet model under realistic observational settings, which

will provide valuable insight and guidance for future, more realistic OSSE efforts. In this study, we primarily explore the

impact of different types of surface elevation observations and their uncertainties. We assimilate the synthetic elevation data in

two different ways: i) along ground tracks, which mimics The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) ATL11

product, ii) at regularly gridded locations, which mimics the ICESat-2 ATL15 product (Smith et al., 2023, 2024). We use the290

same velocity data as in the previous twin experiment, assuming that the velocity products provide almost full coverage of

annual velocity both spatially and temporally, and we focus on the impact of surface elevation observations.

For the along-track data, we generate synthetic surface elevation observations along tracks that emulate the Reference

Ground Track (RGT) used by ICESat-2 ATL11 product. The RGT is a virtual line that corresponds to the nadir track of

the designed orbit (Smith et al., 2019). For our synthetic domain, surface elevation is assumed to be observed annually, while295

the actual temporal resolution of ATL11 data is 91 days. Synthetic observations are spaced every 60 m along each track, which

is the spatial resolution of ATL11 ice height data (Smith et al., 2023). While the actual ATL11 product exhibits varying cross-

track spacing depending on latitude, we test cross-track spacings from 5 to 15 km, which covers the range of cross-track spacing

of the ICESat-2 RGTs in the polar regions (Fig. 3). To generate synthetic observations, we linearly interpolate model surface

elevation at surrounding mesh nodes to the observation points along our tracks. We also explore the impact of the observational300

uncertainties on the DA performance by conducting experiments with different levels of uncertainty in surface elevation. These

experiments aim to determine the permissible level of error for different surface elevation products to ensure reliable DA for

our model domain. We introduce Gaussian noise to surface elevation at each mesh node, using standard deviation ranging from

5 to 20 m with 5 m increments, and propagate standard errors to points along the tracks.

For gridded elevation observations, we create synthetic datasets at 1 km, 10 km and 20 km resolutions, corresponding to the305

spatial resolution of ATL15 product. The ATL15 product is a spatially continuous gridded dataset of land ice height-change

(Smith et al., 2024). We first interpolate surface elevation from the reference model mesh
::::
mesh

::::
used

::
in

:::
the

::::::::
reference

:::::::::
simulation

onto a grid with 100 m resolution, then average these 100 m grids to create
:
a 1 km grid cell, using equal weights for all 100

m grids. Surface elevation data at 10 km and 20 km resolutions are created similarly from 1 km grid data. In our OSSEs,

we assume an annual observation frequency of surface elevation for the consistency across experiments, including the twin310
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Figure 3. Elevation observations taken along synthetic ground tracks from a configuration of (a) 5 km cross-track spacing, (b) 10 km cross-

track spacing, and (c) 15 km cross-track spacing, with data points posted every 60 m along the track.

experiments, although the actual temporal resolution of ATL15 data is 91 days. Similar to the track elevation data, Gaussian

noise is introduced with standard deviations from 5 to 20 m at each mesh node, with propagated error onto the gridded data.

3 Results

3.1 Twin experiments and projections

Our twin experiments show the feasibility of the EnKF DA approach for ice flow modeling. The experiments were
:::
are con-315

ducted with a range of configurations. We explored ensemble sizes of 30, 50 and 100, varying the localization radius from 2

to 20 km in 2 km increments and adjusting the inflation parameters from 1 to 1.2 in 0.02 intervals. Fig. 4 shows the RMSE

values for the bed topography, friction coefficient, and ice thickness after 30 years of DA. As the ensemble size increases,

DA performance remains relatively robust—demonstrated by lower RMSEs—over a wider range of localization radii and in-

flation parameters. We observed
::::::
factors.

:::
We

:::::::
observe

:
that the best DA results, indicated by the minimum RMSEs, were

:::
are320

achieved with a localization radius of 4 km for the friction coefficient and 6 km for bed topography and ice thickness. When

the localization radius was
::
is set below those optimal values (4 km for friction coefficient and 6 km for bed topography and

ice thickness), a significant increase in RMSEs occurred
:::::
occurs, and any increase beyond those optimal values also resulted

:::::
results

:
in gradual increases in RMSEs. As expected, the optimal inflation parameters

:::
The

:::::::
optimal

:::::::
inflation

::::::
factors

:
tend to

decrease as the ensemble size increases , resulting in values
::::::
because

:::::
larger

:::::::::
ensembles

::::::::
generally

:::::::
provide

:::::
better

:::::::::::::
approximations325

::
of

:::
the

::::
true

:::::
error

:::::::::
covariance,

::::::::
reducing

:::
the

:::::
need

:::
for

:::::::::
artificially

::::::::
inflating

:::
the

:::::::::
covariance

:::
to

::::::::::
compensate

:::
for

::::::::
sampling

::::::
errors

:::::::::::::::::::::::::::::::::::
(Anderson et al., 2009; Carrassi et al., 2018)

:
.
:::
For

::::
our

::::::::::
experiments,

:::::::
optimal

:::::::
inflation

::::::
values

:::::
range

:
between 1.10 - 1.14 for the

friction coefficient and 1.16 - 1.18 for bed topography and ice thickness,
:
when using the optimal radius for each parameter.
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Figure 4. The root-mean-square error (RMSE) between the analysis mean and the reference at t = 30 years as a function of the inflation

factor and the localization radius for different ensemble sizes. (a-c) friction coefficient, (d-f) bed elevation, and (g-i) ice thickness. The grey

indicates experiments that diverge by t = 30 years. The black box in each panel represents the location of minimum RMSE.

Additionally, with the optimal localization radius, we noted
:::
note

:
an improvement in DA performance with increasing inflation

parameters up to a certain threshold, beyond which the performance significantly decreased
::::::::
decreases.330

To assess the impact of ensemble size, we compare the evolution of RMSEs as a function of assimilation time using the

optimal localization and inflation parameters
:::::
factors

:
identified above (Fig. 4

:
5). For the friction coefficient, RMSE decreases

rapidly during the first 5
::::
three

:
years and continues to decrease steadily until the end of the assimilation window. The RMSE

values of bed topography and ice thickness show a relatively steady decrease across all tested ensemble sizes. ,
:::::::

without
:::
an

:::::
initial

::::
rapid

:::::
drop.

:::
In

::
all

:::::::::::
experiments

::::::
shown

::
in

::::
Fig.

::
5,

:::
the

:::::
small

::::::::
increase

::
in

::::::
RMSE

::
is
:::::::::
examined

::::::
during

:::
the

:::::
early

:::::
period

:::
of335

::::::::::
assimilation;

::::::::
however,

::
as

:::
the

::::::::::
assimilation

:::::::::
continues,

:::
the

::::::
RMSE

:::::
values

::::::::
decrease

:::::
again

::::
until

:::
the

:::
end

::
of

:::
the

:::::::::::
assimilation

::::::
period.

The simulations with larger ensemble sizes show an improvement in DA performance compared to an ensemble size of 30, but

13
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Figure 5. The evolution of mean analysis RMSE for (a) friction coefficientand
:
, (b) bed topography,

:::
and

::
(c)

:::
ice

:::::::
thickness using three different

ensemble sizes. Each plot uses the localization radius and inflation factor that produce the minimum RMSE at t = 30 yr (Fig. 4).

the benefits saturate as the ensemble size increases from 50 to 100. For the remaining experiments in this study,
:::
for

:::::::::
illustrative

::::::::
purposes, we proceed with an ensemble size of 50, a localization radius of 4 km,

:
and an inflation parameter

:::::
value of 1.12.

The reference friction coefficient and bed topography, along with the ensemble mean fields, before and after assimilation340

from our optimal DA configuration
::::
with

:::
the

:::
DA

:::::::::::
configuration

:::::::
selected

::::::
above, are shown in Fig. 6 and Fig. 7. We also show

the changes in
:::
how

:::
the

:
difference between true ice thickness and the ensemble mean ice

::::::
changes

:
before and after assimilation

in Fig. 8. As more observations are assimilated, the discrepancies from the reference fields decrease compared to the initial

ensemble mean. The areas around the grounding line, where the signal-to-noise ratio of velocity is relatively high, exhibit the

most significant improvements through ensemble DA. In these regions, the spatial variations of both the friction coefficient and345

bed topography fields are accurately captured by the ensemble DA process. At the end of the 30-year assimilation period, areas

located far upstream (up to 350 km) from the grounding line continue to show improvements, while
:::::::
although not as significant

as those observed near the grounding line.
:::
The

:::::::
pattern

::
in

:::
the

::::::::
estimated

:::
ice

::::::::
thickness

:
is
::::
very

:::::::
similar

::
to

:::
that

::
of

::::
bed

::::::::::
topography.

:::
The

:::::::
artifacts

::::::::
observed

::
in

:::
bed

::::::::::
topography

:::
and

:::
ice

::::::::
thickness

:::
are

:::
the

:::::
result

::
of
:::

the
::::::::::

conditional
:::::::
random

:::::
fields

::::::::
generated

:::::
using

:::
the

::::::
kriging

:::::::
method,

:::::
which

:::
can

:::::::
produce

::::::
“bull’s

::::
eye”

:::::::
patterns

:::::::::
commonly

::::::::
observed

:::::::
between

::::::::::
observation

::::::
points.

::
In

:::
our

::::::
model

:::::
setup,350

::::::
surface

::::::::
elevation

:
is
:::::::
defined

::
as

:::
the

::::
sum

::
of

:::
ice

::::::::
thickness

:::
and

::::
bed

:::::::::
topography

:::::::
(surface

::
=
::::::::
thickness

::
+

::::
bed).

:::::::::
Therefore,

::
as

:::::::
surface

::::::::::
observations

:::
are

::::::::::
assimilated,

::::::::::::
improvements

::
in

:::
bed

::::::::
estimates

:::
are

::::::::
reflected

::
in

:::
the

::::::::
estimated

::::::::
thickness

::::
field.

:

Based on the state and parameters estimated from the DA simulation, we conducted deterministic and ensemble forecasts

extending up to t = 200 yr to explore the impact of ensemble DA initialization on model projections. We used the ensemble mean

for the deterministic simulation and the full ensemble for the ensemble forecast simulations, similar to Gillet-Chaulet (2020)355

. We also utilized the estimated state and parameters as initial conditions from various points in the DA simulation different

initial conditions, e. g., the analyzed states at t = 5 yr, t = 15 yr, and t = 30 yr, for forecast simulations to investigate the

impact of different DA periods on model simulations. Figure 9 presents the changes in ice volume over time for the reference

simulation, along with the forecast simulations based on the ice sheet state with and without data assimilation over periods

of 5 to 30 years.
:::::::
Forecast

:::::::::
simulations

:::::
were

:::::::::
conducted

::
in

:::
two

:::::
ways,

::::
one

::::
with

:::
the

::::::::
ensemble

:::::
mean

::::::
model

::::
state

:::
and

::::::::::
parameters360

::
for

::::
the

:::::
single

:::::::::::
deterministic

::::::::::
simulations

::::
and

:::
the

:::::
other

::::
with

:::
the

::::
full

::::::::
ensemble

::::::::
members

:::
for

::::
the

::::::::
ensemble

:::::::
forecast.

:
Without

data assimilation, the deterministic forecast—using the ensemble mean basal conditions—tends
::::::::
conditions

:::::
(e.g.,

:::::
initial

:::::
mean
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Figure 6. (a) Reference friction coefficient (i.e., truth), (b) the ensemble mean friction coefficient before assimilation, (c)-(e) the ensemble

mean friction coefficient after (c) 5 years, (d) 15 years and (e) 30 years of assimilation. The localization radius is set to 4 km and the inflation

factor is 1.12 with the ensemble size of 50. The red lines show the grounding line positions.

::::
basal

::::::::::::::::
conditions)—tends to underestimate ice loss over the 200-year period. This simulation, however, captures the accelerated

volume loss observed in the reference simulation beginning at t = 130 yr, when the grounding line enters the reverse-sloping

bed topography. By the end of the forecast simulation, the discrepancy in volume loss between the reference and deterministic365

simulations is 2,700 Gt. Across the ensemble members, the changes in ice volume at t = 200 yr range from 7,300 Gt to 29,600

Gt, with only about 25% of entire members
:::
the

:::::
entire

::::::::
ensemble successfully predicting the onset of accelerated volume loss at

t = 130 years.

As more observations are assimilated, the ensemble spread is reduced, and the results of the deterministic simulations more

closely align with the reference simulation. After 5 years of assimilation, both the deterministic and ensemble forecast simula-370

tions accurately reproduce changes in ice volume up to t = 15 years before beginning to diverge from the reference trajectory,

resulting in 3,800 Gt of difference in volume loss by the end of the forecast period. After the
::::::::
Extending

:::
the

:::::::::::
assimilation

:::::
period

::
to

:
15 years of assimilation, the deterministic forecasts closely match the reference volume loss up to approximately

::::::
reduces

:::
this

:::::::::::
discrepancy,

::::
with

:::
the

:::::::::::
deterministic

::::::
forecast

::::::::
showing

:
a
::::::
smaller

:::::::::
difference

::
of

:::
350

:::
Gt

::
in

::::::
volume

::::
loss

::
at t = 100 years,

although these forecasts lose more mass from t = 100 to t = 200 yearscompared to the reference simulation. Extending the data375

assimilation period up .
::::::
When

:::
the

::::::::::
assimilation

::::::
period

::
is

::::::::
extended to 30 yearsfurther decreases errors in the ensemble mean

over the 200-year period , while consistently decreasing ,
:::
the

:::::::::
agreement

::::
with

:::
the

::::::::
reference

:::::::::
simulation

::::::::
improves

::::
even

:::::::
further,

:::::::
reducing

:::
the

::::
final

::::::
volume

::::
loss

:::::::::
difference

::
to

:::
just

:::
90

:::
Gt.

:::::
These

::::::
results

::::::::::
demonstrate

:::
that

::::::::::
assimilating

:::::
more

:::::::::::
observations

:::
not

::::
only
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Figure 7. Same as Fig. 6 but for bed topography.

:::::::
improves

:::::::::
agreement

::::::
during

:::
the

:::::
early

:::::::
forecast

:::::
period

::::
but

:::
also

::::::::
enhances

:::
the

::::::::
accuracy

::
of

:::::::::
long-term

::::::::::
projections.

::::
With

:::
15

:::::
years

::
of

::::::::::
assimilation,

:
the ensemble spread .

:::::::
decreases

:::
by

::::::::::::
approximately

::
86

::
%

:::::::::
compared

::
to

:::
the

::::
case

::::::
without

:::::::::::
assimilation.

:::::::::
Extending380

::
the

:::::::::::
assimilation

:::::::
window

::
to

::
30

:::::
years

::::::
results

::
in

::::
little

:::::::::
additional

::::::::
reduction

::
in

::::::::
ensemble

::::::
spread

::::::
beyond

:::::
what

:
is
::::::::

achieved
::::
with

:::
15

::::
years

::
of

:::::::::::
assimilation.

:

3.2
::::::
Results

:::
for

:::::::::
Observing

:::::::
System

::::::::::
Simulation

:::::::::::
Experiments

:
(OSSEs

:
)

In the context of our Observing System Simulation Experiments (OSSEs)
:::::
OSSEs, we evaluate the impact of varying cross-

track spacings and grid resolutions of surface elevation data on the performance of DA in estimating the model state and385

parameters. Since the simulated surface elevation observations use different cross-track spacings and grid resolutions, we

conduct sensitivity tests with an ensemble size of 50 to optimize both localization and inflation parameters
::::::
factors. When

assimilating along-track surface elevations with 5 km and 10 km across track spacing, the best DA results were
::
are

:
achieved

with a localization radius of 4 km and the inflation parameters between 1.10 and 1.14 for all variables (Fig. 10), similar to the

DA results with full coverage of elevation data at each model mesh node in the twin experiment. As the across-track spacing390

increases to 10 -
::
and

:
15 km, the overall DA performance declinesdue to suboptimal choices for inflation and localization

parameters, indicated by an increase in the mean RMSE by up to 16 % for three estimated variables.

For the gridded elevation data with 1 km resolution, the optimal localization and inflation parameters
::::::
factors are 4 km and

1.12, respectively, for all variables. In experiments with gridded elevation data of 10 km and 20 km resolutions, the overall DA

performance declines (i.e., an increase in RMSE) over a range
::
of localization and inflation parameters.

:::::
factors

:::::
(Fig.

::::
11). We395
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Figure 8. (a) Reference ice thickness (i.e., true) at t = 0 yr, (b) difference between true ice thickness and the ensemble mean ice thickness

before assimilation (true - ensemble mean), (c)-(e) difference between true ice thickness and the corresponding ensemble mean ice thickness

at (c) 5 years, (d) 15 years and (e) 30 years after assimilation. The localization radius is set to 4 km and the inflation factor is 1.12 with the

ensemble size of 50. The green lines show the grounding line positions.

find the minimum RMSE values at the end of the assimilation window with a localization radius of 6 - 8 km and inflation values

of 1.02 - 1.06 for both 10 km and 20 km resolution data(Fig. 11).
:::::
While

::::::
tuning

::::
these

::::::::::
parameters

::::
helps

::::::::
improve

:::::::::::
performance,

::
the

::::::
overall

::::::::
accuracy

:::::::
remains

:::::
lower

::::
than

:::
that

::::::::
achieved

::::
with

:
1
:::
km

::::
grid

::::
data.

:

With the optimal parameter combinations identified for each elevation data type experiment, we conducted
::::::
conduct

:
ad-

ditional experiments exploring the impact of the prescribed uncertainty (σh) of surface elevation data. To evaluate the DA400

performance, we summarized the RMSEs at the end of the assimilation window (at year 30) for each experiment in Table 2

and 3. The evolution of RMSEs over the assimilation period using the ground track and grid elevation observations are shown

in Fig
:::
Figs. 12 and 13, respectively.

When assimilating observations with 5 km across-track spacing and the same observational error as in the twin experiments

(σh = 5m and σv = 10m/yr), the DA performance, as measured by RMSEs, is comparable to that observed in the twin ex-405

periment .
::::::
(Table

:
2
:::
and

::::
Fig.

:::
12)

:
. As the across-track spacing of observed surface elevation increases, DA performance declines

as expected. When assimilating data at 10 km or 15 km across-track spacing, RMSE values remain higher than those with 5

km spacing at t = 30 years, although RMSE values continue to decrease until the end of the assimilation window. A similar

result is observed with gridded elevation observations: high-resolution data (1 km) produces DA performance comparable to

that of the twin experiment .
:::::
(Table

:
3
::::
and

:::
Fig.

:::
13)

:
.
:
However, as the spatial resolution increases to 10 km and 20 km, the overall410
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Figure 9. Changes in ice volume from ensemble forecast simulations with (a) no assimilation, (b) assimilation up to 5 years, (c) assimilation

up to 15 years, and (d) assimilation up to 30 years. The red line shows the reference run
::::::::
simulation,

:
and the blue line shows the

::::::::::
deterministic

forecast simulation with the mean ensemble state. The gray lines show the forecast simulation of each ensemble member
:
,
:::
and

:::
the

:::::
dotted

:::
lines

:::::::
indicate

::
the

:::::
mean

:
of
::::::::

ensemble
::::::::
simulations.

DA performance declines, with .
:::
For

:::
the

:::
10

:::
km

::::
grid

::::
data,

:
only marginal improvements in parameter and state estimations

:::
the

::::::::
parameter

:::
and

::::::
model

::::
state

::::::::
estimates

:::
are

::::::::
observed after 10 - 15 years of assimilation. These results indicates that the resolution

of the elevation datacan have a significant impact on ice sheet DA performance ,
:::::
while

:::
for

:::
the

::
20

:::
km

::::
grid

::::
data,

:::
DA

:::::::::::
performance

:::::
begins

::
to

:::::::
degrade

::::
after

:::
20

::::
years

:::
of

::::::::::
assimilation.

With 5 km across-track spacing, DA performance
:
in

::::::::
retrieving

::::
bed

:::::::::
topography

::::
and

::
ice

::::::::
thickness

:
decreases as the uncertainty415

in the surface observation increases
::::::::
elevation

::::::::
increases,

::::
both

::::::
during

:::
the

::::::::::
assimilation

::::::
period

::::
(Fig.

:::::::
12a,d,g)

:::
and

::
at
:::
the

::::
end

::
of

:::
the

::::::::::
assimilation

:::::::
window

::::::
(Table

:::
2).

:::
DA

:::::::::::
performance

:::
for

:::
the

:::::::
friction

:::::::::
coefficient

::::::
shows

::::
little

:::::::::
sensitivity

::
to

:::::::
changes

:::
in

::::::::
elevation

:::::::::
uncertainty,

::::
with

:::::::::
RMSE_C

::::::
varying

:::
by

::::
only

:::
∼3

:::
%,

::::::::
compared

::
to

::
∼

:::
10

::
%

:::::::
variation

::
in

:::::::::
RMSE_B

:::
and

::::::::
RMSE_H

::
at
:::
the

::::
end

::
of

:::
the

::::::::::
assimilation

:::::
period. This decrease in performance is more pronounced in retrieving bed topography and ice thickness compared

to the friction coefficient. With the 10 km across-track data, DA performance remains consistent for all three estimated variables420

::
for

::::
bed

:::::::::
topography

::::
and

:::
ice

::::::::
thickness

:::::::
becomes

:::::
more

::::::::
consistent

:
across all uncertainty levels in elevation data, as RMSE values

continue to decrease throughout the assimilation window.
::::::::
compared

::
to
:::

the
::

5
:::
km

::::
case

:::::
(Fig.

:::::::
12b,e,h).

:
When using the 15 km

across-track data, only surface elevation with an observational error
:::::::
standard

:::::::
deviation

:
of 5 m improves bed and ice thickness

estimation up to t = 30 years, while prescribed errors
:::::::
standard

:::::::::
deviations of 10 – 20 m did

::
do

:
not yield further improvements

beyond 15 – 20 years of DA.
:
,
:::
and

:::::
some

:::::::
increase

::
in

::::::
RMSE

::::::
values

::
is

::::::::
observed

::::
(Fig.

:::::::
12c,f,i).

::::::
During

:::
the

:::::::::::
assimilation

::::::
period,425
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Figure 10. Analysis ensemble mean RMSEs at t = 30 years as a function of the inflation factor and the localization radius for different

across-track spacing of elevation data for (a-c) friction coefficient, (d-f) bed elevation, and (g-i) ice thickness. The grey shading indicates

experiments that diverge by t = 30 yrs. The black box in each panel represents the minimum RMSE for each configuration.

::
the

:::::::::::
performance

:::
for

:::
bed

::::::::::
topography

:::
and

:::
ice

::::::::
thickness

::
is

::::
more

::::::
similar

::::::
across

::
all

::::::::::
uncertainty

:::::
levels,

:::::::::
compared

::
to

::::
using

:::
the

::
5

:::
km

::::::::::
across-track

::::
data.

With the 1 km gridded elevation data, increasing uncertainty levels reduce the accuracy of bed and ice thickness estimation
:
,

::::
while

:::
the

:::::::
friction

:::::::::
coefficient

::::
does

:::
not

::::
show

::
a

::::
clear

::::::
pattern

::::
with

:::::::
varying

:::::::::
uncertainty

::
in

::::::
surface

::::::::
elevation

::::::::
(13a,d,g). With coarser

grid data (10 km and 20 km), however, the DA performance does not vary significantly
::
for

:::
all

::::
three

::::::::
variables

::::::
shows

::::
less430

:::::::
variation

:
across different uncertainty levels

:::::
during

:::
the

::::::::::
assimilation

::::::::
window,

::::::::
compared

::
to

:::
the

:
1
:::
km

::::
grid

::::
data

:::::::
(13b,e,h

:::
and

:::::
c,f,i)

.
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Figure 11. Same as Fig. 10 but for different grid resolution of elevation data.

4 Discussion

In this study, we have shown that the EnKF can effectively improve the accuracy of model state
::::
show

::::
that

:::
the

::::::
EAKF

::::
can

::::::::
effectively

::::::::
estimate

::::
both

::::::
model

::::
state

:::
and

:::::::::
parameter

:
estimates for a semi-idealized glacier, especially in fast-flowing regions435

.
::::
(e.g.,

:::::::
velocity

::::::
larger

::::
than

::::
100

::::::
m/yr),

:::::
which

:::::::::::
corresponds

::
to

:::::::
regions

::::::
around

:::
the

:::::::::
grounding

::::
line,

::::::
where

:::
the

:::::::::::::
signal-to-noise

::::
ratio

::
of

:::::::
velocity

::
is

::::::::
relatively

::::
high.

:
These results are consistent with those from previous studies (Gillet-Chaulet, 2020; Bonan

et al., 2014, 2017), yet our approach employs a 2D model with unstructured meshes, enhancing its applicability to larger-

scale ice sheet modeling simulations. Similar to earlier studies, assimilating new observations over the first few years signif-

icantly improves the accuracy of bed topography, friction coefficient,
:

and ice thickness estimates in fast-flowing regions.
::
A440

:::::::
temporal

::::::
decline

:::
in

:::
DA

:::::::::::
performance

:
is
::::::::
observed

::::::
during

:::
the

::::::::::
assimilation

::::::
period,

:::::
likely

::::
due

::
to

:
a
:::::::::
temporary

:::::::::
mismatch

:::::::
between

::
the

::::::
model

:::::::
forecast

:::
and

:::
the

:::::::::::
observations,

:::::::::
potentially

::::::
caused

::
by

:::::::::::
nonlinearities

::
in
:::
the

::::::::
response

::
to

:::::::::
assimilated

:::::::::::
observations.

:::
As

:::
the

::::::::::
assimilation

::::::::
continues,

:::
the

::::
filter

::::::::
gradually

:::::::
corrects

:::::
these

:::::::::::
discrepancies,

::::::
which

::::
leads

::
to
::
a
:::::::::
subsequent

::::::::
reduction

::
in

::::::
RMSE.

::::::
These

20



Table 2. List of experiments using various across-track surface observations and analysis mean RMSEs t = 30 years.

Experiment Name RMSE_C (Pam−1/3a1/3) RMSE_B (m) RMSE_H (m)

Twin experiment (σh = 5 m and σv = 10 m/yr) 296.01 47.63 46.87

Track_5km_σh_5_σv_10 306.89 49.06 47.77

Track_5km_σh_10_σv_10 304.96 50.65 48.96

Track_5km_σh_15_σv_10 305.62 51.71 50.14

Track_5km_σh_20_σv_10 313.61 54.02 52.56

Track_10km_σh_5_σv_10 338.28 53.69 51.18

Track_10km_σh_10_σv_10 335.26 52.84 50.62

Track_10km_σh_15_σv_10 350.69 56.86 53.19

Track_10km_σh_20_σv_10 341.78 56.45 54.17

Track_15km_σh_5_σv_10 410.10 62.79 59.59

Track_15km_σh_10_σv_10 429.70 73.43 70.03

Track_15km_σh_15_σv_10 414.05 72.55 65.96

Track_15km_σh_20_σv_10 389.90 69.62 65.74

:::::::::
fluctuations

:::
are

:::
not

::::::::::
uncommon

::
in

:::::::
ensemble

::::
data

::::::::::
assimilation

::::::::
systems,

::::::::
especially

::
in

::::::::
complex,

::::::::
nonlinear

::::::
models

:::::
where

::::::::
localized

::::
error

::::::
growth

:::
can

::::::::::
temporarily

:::::::
degrade

:::::::::::
performance

::::::::::::::::::
(Carrassi et al., 2018).

:
Although the slow-flowing regions—where the rel-445

ative error in velocity observation is higher than in fast-flowing regions—show only limited improvements in basal conditions

compared to the fast-flowing region, they still show notable improvements up to 300 km inland from the initial grounding lines

(x = 150 km). These improvements allow
:::::
more accurate forecasts of ice volume loss for up to 200 years, as the grounding line

retreats by approximately 150 km (to x = 300 km) by the end of the reference simulation.

The initial ensembles for the model parameters–bed
:::
For

:::
the

:::::
initial

::::::::
estimates

::
of

:::
the

::::::
model

::::::::::::::
parameters—bed topography and450

friction coefficient–cannot be generated by the commonly used methods for atmospheric or ocean modeling, which typically

rely on perturbations of initial conditions with boundary conditions from meteorological forcing. Instead, we
:::::::::::::
coefficient—we

assume reasonably accurate prior knowledge of initial conditions and prescribe covariance models to establish spatial correla-

tion for both parameters
:::::
within

:::::
each

::::::::
parameter. In real glacier applications, however, these assumptions may not hold. For bet-

ter DA results, more accurate measurements and/or prior information for bed conditions are required, such as additional radar455

measurements of bed topography and potential relationships between geophysical observations (e.g., seismic or radar-based

measures) and friction (Kyrke-Smith et al., 2017; Haris et al., 2024). Alternatively, multi-model reconstructions of parame-

ters could be leveraged to generate initial ensembles
::
of

:::::::::
parameters

:
and determine the

:::::::
ensemble

:
spread (Gillet-Chaulet, 2020).

Our DA results, along with localization and inflation factors,
:::
may

:
depend on assumptions on

::::
about

::::
how

:
the initial ensemble
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Table 3. List of experiments using various gridded surface observations and analysis mean RMSEs at t = 30 years.

Experiment Name RMSE_C (Pam−1/3a1/3) RMSE_B (m) RMSE_H (m)

Twin experiment (σh = 5 m and σv = 10 m/yr) 296.01 47.63 46.87

Grid_1km_σh_5_σv_10 291.38 48.65 46.81

Grid_1km_σh_10_σv_10 288.54 48.62 47.43

Grid_1km_σh_15_σv_10 291.29 53.89 53.14

Grid_1km_σh_20_σv_10 290.66 54.88 53.97

Grid_10km_σh_5_σv_10 437.48 67.58 63.72

Grid_10km_σh_10_σv_10 423.84 66.76 63.99

Grid_10km_σh_15_σv_10 430.58 65.96 62.63

Grid_10km_σh_20_σv_10 427.20 66.61 63.20

Grid_20km_σh_5_σv_10 410.10
:::::
432.50 80.07 80.76

Grid_20km_σh_10_σv_10 429.70
:::::
433.64 80.69 79.96

Grid_20km_σh_15_σv_10 414.05
:::::
431.91 77.42 78.97

Grid_20km_σh_20_σv_10 389.90
:::::
433.06 77.84 79.39

:
is
:::::::::
generated. Exploring how gaps in prior information affect DA results could also provide valuable insights, particularly in460

understanding the robustness of DA results when challenged with realistic data limitations and parameter uncertainties.

The robust performance of EnKF
::
the

::::::
EAKF in constraining the basal conditions and initial ice sheet state for future projection

has been achieved with a relatively small ensemble size ,
:::
the

::::::::
ensemble

:::
size

:::
of

::
30,

:::
the

:::::::
smallest

::::::::
explored

::
in

:::
this

:::::
study,

:
consistent

with previous studies performing data assimilation for flowline models
:::::::::::::::::::::::::::::::::
(Bonan et al., 2014; Gillet-Chaulet, 2020). We further

show that increasing the ensemble size allows robust DA performance over a wider range of localization radii and inflation465

parameters
::::::
factors and produces only marginally improved performance in retrieving basal conditions with shorter assimilation

windows. Therefore, a majority of experiments performed in this study use an ensemble size of only 50 members, which we

find to be a reasonable tradeoff between data assimilation accuracy and computational efficiency. Nonetheless, for cases with

unknown DA parameters, particularly in smaller domains, a larger ensemble size could prove advantageous. Further studies

are needed to identify the optimal approach for implementing an EnKF for real observations470

:::::
Larger

::::::::
ensemble

:::::
sizes

::::
could

:::::::
improve

::::
data

::::::::::
assimilation

:::::::::::
performance

:::
but

::::
may

:::
also

::::::::
introduce

:::::::::
challenges

::::
that

::::
must

::
be

::::::::
carefully

::::::::
managed,

:::::::::
particularly

::
in

::::
long

::::::::::
assimilation

:::::::
periods

::
or

:::::
highly

::::::::
nonlinear

:::::::
systems,

::
as

::
in
::::
this

:::::
study.

::
In

:::
our

:::::::::::
experiments,

:
it
::
is

:::::::
possible

:::
that

:::
the

:::::::
inflation

:::
and

::::::::::
localization

:::::::::
parameters

::::
used

:::
for

:::
the

::::::::::
100-member

::::::::
ensemble

:::::
were

:::
not

::::::
optimal

:::
for

::::
later

::::::::::
assimilation

:::::::
periods,

::::::
leading

::
to

::::::
slightly

::::::::
degraded

:::::::::::
performance

::::
after

::::
year

:::
15.

::::
This

:::::::
suggests

:::
that

:::::
filter

::::::::::
performance

::::
does

:::
not

::::::::::
necessarily

::::
scale

:::::::
linearly

::::
with

::::::::
ensemble

:::
size

::::
and

::::::::
highlights

:::
the

::::::::::
importance

::
of

:::::::
adaptive

:::::::::::::::::
inflation/localization

::::::::::
techniques

::
or

:::::::::
diagnostics

:::
for

:::::::::::
dynamically475

:::::::
adjusting

:::::
filter

::::::
settings.
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Figure 12. The evolution of ensemble mean RMSEs using different across-track spacing surface elevation with various uncertainties on

observations for (a-c) friction coefficientand ,
:
(d-f) bed topography,

:::
and

::::
(g-i)

:::
ice

:::::::
thickness

::::
under

:::::::
different

:::::::::
across-track

:::::::
spacings

::
of

::::::
surface

:::::::
elevation

:::::::::
observations

:::
and

::::::
varying

:::::
levels

:
of
::::::

surface
:::::::
elevation

:::::::::
uncertainty.

Inflation and localization techniques have been used
::
In

::::
this

:::::
study,

:::
we

:::
use

::::::::
spatially

:::
and

::::::::::
temporally

:::::::
uniform

:::::::
inflation

::::
and

:::::::::
localization

:::::::::
techniques

:
to stabilize the filter, similar to previous studies (Bonan et al., 2014; Gillet-Chaulet, 2020). The optimal

inflation factors for this study (1.10 – 1.18) are similar to values
::::
(0.98

::
–

::::
1.14)

:
from earlier studies

::::::::::::::::::::::::::::::::::
(Bonan et al., 2014; Gillet-Chaulet, 2020)

. For localization radius, the best results were obtained with a radius of 4 – 8 km, compared .
:::::::::
Choosing

:::
too

:::::
small

::
of

:
a
::::::
radius480

:::::
causes

:::
the

::::::
EAKF

::
to

:::::::::::
underestimate

::::::
spatial

:::::
error

:::::::::
correlations

::::
and

::::::
diverge

::::
with

:::::
time.

::
In

:::
our

:::::::::::
experiments,

:::
this

::
is

::::::
evident

:::::
when

:::
the

:::::::::
localization

::::::
radius

::::
falls

:::::
below

:::
the

:::::::
specific

:::::::
threshold

:::
of

::::
each

:::::::
variable

::::
(e.g.,

::
4

:::
km

:::
for

::::::
friction

:::
and

::
6
:::
km

:::
for

:::
bed

:::::::::::
topography).

:::
The

:::::::
optimal

:::::::::
localization

::::::
radius

:::::
found

::
in

:::
this

:::::
study

::::::::
compares

:
to previous flowline model studies that suggested a wider range

(
::::::
optimal

::::::::::
localization

::::
radii

::
of

:
4 –

::
16

:::
km

:::
for

:
a
::::
grid

::::
size

::
of

:::
0.2

:::
km

:::::::::::::::::::
(Gillet-Chaulet, 2020)

:::
and

:::
80

:
–
:
120 km ) depending on the

grid size (Bonan et al., 2014; Gillet-Chaulet, 2020)
::
for

::
a

:::
grid

::::
size

::
of

::
5
:::
km

::::::::::::::::
(Bonan et al., 2014)

:
.
::::
The

:::::::::
differences

::
in

:::
the

:::::::
optimal485

:::::::::
localization

::::::
radius

:::::
likely

:::::
comes

:::::
from

:::
the

:::::::::
differences

::
in

::::::
model

:::::::::::
configuration,

:::::::::::::
dimensionality,

::::
and

:::::
spatial

:::::::::
resolution.

::::
Our

:::::
study

:::
uses

::
a
:::
2D

::::::::::
unstructured

:::::
mesh

::::
with

::::::::
relatively

:::
fine

::::::
spatial

::::::::
resolution,

:::::::
whereas

::::::::
previous

::::::
studies

::::
using

:::::::
flowline

:::::::
models

::::
with

::::::
coarser

::::
grids

::::
may

::::::
require

:::::::
broader

::::::::::
localization

::
to

:::::::
account

:::
for

::::::
longer

:::::::::
correlation

::::::
length

::::::
scales.

::::
The

::::::::::
localization

:::::
radius

::
is

::::::::::
determined

::::::
through

::
a

::
set

:::
of

::::::::
sensitivity

:::::::::::
experiments

:::
and

::
is

:::::
based

:::
on

:::
the

:::::::
expected

::::::
spatial

:::::::::
correlation

::::::
length

::::
scale

::
of
:::

the
::::::::::

parameters,
::::::
which

:::
may

:::::::
depend

::
on

:::
the

::::
size

::
of

::::
flow

:::::::
features

::
or

:::::
stress

::::::
balance

:::::::
regimes. Given our use of a 2D unstructured mesh, adaptive inflation490

(El Gharamti, 2018) and localization (Bishop and Hodyss, 2007) can be viable alternatives, as each node has a different number
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Figure 13. Same as Fig 13
:
, but with

:::
using

:
different grid resolution

::::::::
resolutions

:
for surface elevation observations.

of observations to be assimilated. Future research should explore these methods with real observations varying in resolution

and spatial density.

In our twin experiment and projections, we find that assimilating more observations
::::
years

:
to estimate basal conditions

improves the accuracy of model projections from the estimated states.
::::
with

:::::::
reduced

::::::::::
uncertainty

::::::
through

::::
the

::::::::::::
corresponding495

::::::::
projection

::::::
period.

:::::::
Without

::::
data

:::::::::::
assimilation,

:::::::::
individual

::::::::
ensemble

::::::::
members

:::::
show

:
a
:::::
large

::::::
spread

::
of

::::::
future

:::::::::
projections

::::
due

::
to

::::::::
nonlinear

::::::::
feedbacks

::::::::
triggered

:::
by

:::::
small

::::::::
deviations

:::::
from

:::
the

::::
true

::::
basal

:::::
field.

:::::
While

:::
the

::::::::::::
deterministic

:::::::
forecast,

:::::::::
initialized

::::
with

::
the

::::::::
ensemble

:::::
mean

::
of
:::
the

:::::
basal

:::::
fields,

::::::::
captures

::
the

::::::
overall

:::::
trend

::
in

:::
ice

::::::
volume

:::::::
change

::::
from

:::
the

::::::::
reference

:::::::::
simulation,

::::::::
reducing

::::
local

::::::::
extremes,

::
it
::::
still

:::::
yields

:::::::::
consistent

:::::::::::
discrepancies

::::::::::
throughout

:::
the

::::::::::
assimilation

:::::::
period. Assimilating surface observations

for up to 15 years results in ensemble and deterministic ice volume loss forecasts that closely match the reference simulation500

for up to 100 years, with much reduced ensemble spread and ice volume loss difference limited to approximately XX
:::
300

:
Gt

(compared to XX
:::::
∼2000

:
Gt with no assimilation). Extending the assimilation window to 30 years allows forecast simulations

to match the reference simulation for up to 200 years. Our
:::::::
Notably,

:::
the

::::::::
200-year

::::::::
reference

:::::::::
simulation

::::::::
includes

:
a
:::::
phase

:::
of

:::::::::
accelerated

:::::::
volume

:::
loss

:::::
after

:::
130

:::::
years,

::::::
which

::::
may

::::::::
represent

:
a
::::::::
plausible

:::
sea

:::::
level

:::
rise

:::::::
scenario

:::
for

:::
the

:::::::
coming

:::::::
century.

::::
Our

:::::
results

:::::::
suggest

::::
that

::::::::::
assimilating

:::::::::::
observations

::::
even

::::::
before

::::
such

:::::::::
nonlinear

:::::::::
transitions

:::
can

::::
still

:::::::::
reproduce

:::::::
accurate

:::::::::
long-term505

::::::::::::::::::
projections—provided

::::
that

:::
the

:::::
model

::::
state

::::
and

:::::::::
parameters

:::
are

::::
well

:::::::::::
constrained.

:::
Our

:
projections further show a better match

to the reference simulations compared to those from a previous study (Gillet-Chaulet, 2020), potentially due to our use of

more observations with smaller error variance (σv and σh). The method used in this study that
::::
here,

:::::
which

:
assimilates time
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series of observations,
:
maintains consistency with transient changes , providing

:
in

:::
the

::::::
model

::::
state

::::
and

:::::::
provides

:
an optimal

initial condition for changing glaciers. Further studies involving real glaciers could extend this method to ice-sheet-wide-scale510

models, improving their capability to accurately estimate the current state and future changes in ice sheets.

::
In

:::
this

:::::
study,

:::
we

:::::
focus

:::
on

:::::::::
estimating

:::
two

::::::::::::::
constant-in-time

:::::::::
parameter

:::::
fields

:::
and

:::
the

::::::
model

::::
state

:::::
using

::::::
annual

:::::::::::
observations

:::
over

:::::::::::
assimilation

:::::::
windows

::
of
:::::::
varying

::::::
lengths

:::
(5,

:::
15,

:::
and

:::
30

::::::
years).

::::
This

:::::
choice

::
is
:::::::::
motivated

::
by

::::
both

:::
the

:::::::::
timescales

:::::::::
associated

::::
with

:::::
glacier

:::::::::
dynamics

:::
and

:::
the

::::::
current

::::::::::
capabilities

::
of

::::::::
observing

:::::::::
platforms.

::::::::
However,

:::
the

::::::
relative

::::::::::
importance

::
of

:::
the

::::::::::
assimilation

::::::
window

::::::
length

:::::
(i.e.,

::::
total

:::::
time

:::::
span)

::::::
versus

:::
the

:::::::
number

:::
of

::::::::::
assimilation

::::::
cycles

::::
(i.e.,

:::::::
update

:::::::::
frequency)

:::::::
remains

:::
an

:::::
open515

:::::::
question.

:::
To

:::::::
explore

::::
this,

:::
we

:::::::
conduct

::
an

:::::::::
additional

::::::::::
experiment

:::::
using

:::::::::
semiannual

:::::::::::
observations

:::::
under

::::
the

::::
same

:::::
setup

:::
as

:::
the

::::
twin

:::::::::
experiment

:::::
(Fig.

::::
A1).

:::
The

::::::
results

:::::::
suggest

:::
that

::::::::::
semiannual

:::::::::::
observations

::::
lead

::
to

:
a
:::::
faster

::::::::
reduction

:::
in

::::::
RMSE

:::
for

::::
both

:::
the

:::::
model

::::
state

::::
and

::::::::::
parameters.

::::::::
However,

:::
the

:::::::::::
improvement

::
at
::::

the
:::
end

::
of

::::
the

::::::
30-year

:::::::::::
assimilation

:::::::
window,

:::::::::
compared

::
to

::::::
annual

::::::::::
assimilation,

:::::::
remains

:::::::
limited.

::::
This

::::::
limited

::::::
benefit

:
is
:::::
likely

::::
due

::
to

:::
the

:::::
nature

::
of

:::
the

:::::::::
parameters

::::
and

::::
state

::::::::
variables

:::::::::
considered

::
in

:::
this

::::::::::::::::::::
study—constant-in-time

:::::
fields

:::
and

:::::::::::
annual-scale

::::::::::::::::
variability—which

:::::
allow

::::::::
sufficient

::::::::::
information

::
to

:::::::::
accumulate

:::::
over

::::
time520

::
for

::
a
::::
fixed

::::::
target.

::::
Once

::::::::
sufficient

::::::::::
assimilation

::::::
cycles

::::
have

::::::
passed,

:::
the

::::::::::
parameters

::::::
become

::::
well

:::::::::::
constrained,

:::
and

:::::
more

:::::::
frequent

::::::
updates

:::::
offer

::::
little

:::::::::
additional

::::::::::::
improvement.

:::::
These

::::::::
findings

::::::
suggest

:::::
that,

:::
for

::::::
slowly

:::::::
varying

::
or

:::::
static

:::::::::
variables,

:::::::::
increasing

:::::::::
observation

:::::::::
frequency

:::
can

::::::::
accelerate

:::::::::::
convergence

::::::
toward

:::
the

:::
true

:::::
state

:::
and

::::::::
parameter

::::::
values,

::::
but

:::
may

:::
not

::::::
results

::
in

:::::::::
additional

:::::::::::
improvement

::::::
beyond

::
a
::::::
certain

:::::::
number

::
of
:::::::::::

assimilation
::::::
cycles.

:::
In

:::::::
contrast,

::
if
::::::::::

parameters
::
or

:::::
states

:::::::
change

:::::
more

::::::
rapidly

:::
or

:::::::::
nonlinearly,

::
a
:::::
longer

::::::::::
assimilation

:::::::
window

::
or

:::::
more

:::::::
complex

::::::
update

:::::::
schemes

:::::
might

:::
be

::::::
needed

::
to

::::::
achieve

::::::
similar

:::::::::::::
improvements.525

:::::
Future

:::::
work

::::::
should

::::::
explore

:::
the

:::::::::
sensitivity

::
of

:::::
EnKF

:::::::::::
performance

::
to

::::
both

::::::::::
assimilation

::::::::
frequency

::::
and

:::::::
window

:::::
length

::
to

:::::::
identify

::::::
optimal

::::::::::::
configurations

:::
for

:::
real

::::::
glacier

:::::::
systems

::::
with

:::::::::::
time-varying

:::::::::
parameters

::::
and

::::::
limited

::::::::::
observation

::::::
periods.

:

The purpose of our OSSE experiments in this study is to demonstrate the capabilities of OSSEs
:::::::::::::
OSSEs—which

:::
use

::::::::
synthetic

::::::::::
observations

::
to

:::::::
evaluate

:::
the

::::::::
potential

:::::::
benefits

::
of

:::::::
different

::::::::
observing

::::::::::::
strategies—is

::
to

::::::::::
demonstrate

::::
their

::::::::::
capabilities

:
within the

ISSM–EnKF framework. Our OSSE experiments show that an EnKF can effectively assimilate various types of surface ele-530

vation observations (both grid and track) to evaluate the impact of different observational products. The results highlight that

the spatial resolution of surface elevation data is crucial in determining the effectiveness of DA for estimating ice sheet model

parameters and state (Table 2 and 3). The observed decline in DA performancewith increased across-track spacing (from
:::
We

:::
find

::::
that

::::::
higher

::::::
spatial

::::::::
resolution

:::
in

::::::::
elevation

:::::::::::
observations

::::::::::
substantially

::::::::
improves

::::
DA

:::::::::::
performance.

::::
For

::::::::
example,

:::::::
gridded

:::
data

::
at
::

1
:::
km

:::::::::
resolution

::::
and

::::::::::
track-based

::::
data

::::
with

:
5 km to 15 km) and grid size (from 1 km to

:::::::::
across-track

:::::::
spacing

:::::
yield535

:::::
results

::::::::::
comparable

::
to

:::::
those

::
in

:::
our

::::
twin

::::::::::
experiment

::::
with

:::
full

::::::::
coverage.

:::
In

::::::::
principle,

::::::::::::::
higher-resolution

::::
data

::::
(e.g.,

::::
100

:::
m)

:::::
could

:::::
further

:::::::
improve

::::
data

::::::::::
assimilation

:::::::::::
performance

::
by

:::::::::
providing

::::
finer

:::::
spatial

:::::
detail

:::
on

::::::
surface

:::::::
features

:::
and

:::::
more

::::::
precise

:::::::::
constraints

::
on

::::::
model

::::::::::
parameters.

::::::::
However,

::::
the

::::::
benefit

::
of

:::::
finer

:::::::::
resolution

::::
may

:::::::
decrease

:::::::
beyond

::
a
::::::
certain

::::::::
threshold

::::
due

::
to
:::::::::

increased

:::::::::::
observational

:::::
noise,

::::::::
modeling

::::::::::::
uncertainties,

:::
and

:::
the

::::::::
inherent

::::::
spatial

:::::::::
correlation

:::::
scale

::
of

:::
the

:::::::::
parameters

::::::
being

::::::::
estimated.

:::
In

:::::::
contrast,

:::::::::::::
lower-resolution

:::::::::::::
datasets—such

::
as

::::
10–20 km) alludes to the benefits of high-resolution elevation data for initializing540

ice sheets. While the EnKF still performs reasonably well with larger spacings and coarser grids, the reduced spatial resolution

limits its ability to fully capture the glacier state, emphasizing the need for a balance between observational density and

coverage to maximize DA performanceover the historical period
:::
km

:::::::
gridded

:::
data

:::
or

::
15

:::
km

:::::
track

::::::::::::
spacing—lead

::
to

:
a
:::::::::
noticeable
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::::::
decline

::
in

:::
DA

:::::::::::
performance.

:::
In

::::
these

::::::
cases,

:::
the

::::
filter

::::::::
struggles

::
to

::::::
resolve

:::::::::
finer-scale

:::::::::
variations

::
in

:::
the

:::
ice

::::
sheet

:::::
state,

::::::::
resulting

::
in

:::::
larger

::::::
RMSE

::::::
values. Additionally, the marginal improvements

:
or

::::::::
increases

:::
in

::::::
RMSE observed at coarser resolutions (10545

km and 20 km) after 10–15 years suggest that, beyond a certain spatial threshold, additional data points do not substantially

improve long-term parameter and
::::::::::::
improve—may

::::
even

:::::::::::::::::
degrade—long-term

:::::::::
parameter

:::
and

:::
the

:::::
model

:
state estimations (Fig. 12

and 13).
:::::
These

:::::
results

::::::::
highlight

:::
the

::::::::::
importance

::
of

::::::::
balancing

:::::::::::
observational

::::::
density

::::
and

:::::::
coverage

::
to
:::::::::
maximize

:::
DA

:::::::::::
performance

:::
over

:::
the

::::::::
historical

::::::
period.

:

The OSSE experiments also provide a basic demonstration of the impact of observational error on DA performance, with550

particular benefits of lower
::::::
surface

::::::::
elevation uncertainties on bed topography and ice thickness estimation , while

::::
when

:::::
using

::::::::::::
high-resolution

:::::
data.

:::::
These

:::::::
benefits

:::::::
become

:::
less

::::::::::
pronounced

:::::
when

::::::::::::::
lower-resolution

:::::::
elevation

::::
data

:::
are

:::::
used.

::
In

::::::::
contrast, fric-

tion coefficient retrieval appears less sensitive
:::::
shows

:::
no

::::
clear

::::::
pattern

:::
in

:::::::
response

:
to the prescribed surface elevation uncer-

tainty. With
:
,
::::::::
regardless

:::
of

:::
the

::::
data

:::::::::
resolution.

::::::::
However,

:::::
when

:::
we

::::
vary

:::::::
velocity

:::::::::::
observations

:::::
errors

:::::
while

:::::::
keeping

::::::::
elevation

:::::::::
uncertainty

::::::::
constant,

:::
we

:::::::
observe

:::
that

::::::::
reducing

:::::::
velocity

::::::
errors

::::::::
improves

:::
the

:::::::::
estimation

::
of

:::
the

:::::::
friction

:::::::::
coefficient

::::
(Fig.

:::::
A2),555

::
as

::::
well

::
as

::::
bed

:::::::::
topography

::::
and

:::
ice

::::::::
thickness

:::::::::
estimates.

:::::
Given

:
our semi-idealized model domain and simplified error propa-

gation methodfor surface elevation, we do not derive specific error thresholds for effective ice sheet model parameters and

state estimation. However, we note that a proper specification of observation uncertainty is likely critical for the EnKF to

produce accurate state and parameter estimates. Future OSSE experiments will target real glaciers with different observational

specifications, which can contribute to the planning of future observational missions
:::::::
accurate

:::
DA

:::::::::::
performance,

:::
and

:::
the

:::::::
relative560

:::::::::
importance

::
of

:::::::
velocity

::::::
versus

:::::::
elevation

::::::::::
uncertainty

:::::::
depends

::
on

:::
the

:::::::
specific

:::::::
variable

:::::
being

::::::::
estimated.

Despite the promising results demonstrated in this study, several limitations exist that must be acknowledged and addressed

in future research. First, our study utilized
:::::
utilizes

:
yearly synthetic observations with uniformly homogeneous error variance,

which do not fully capture the complexities and variability present in real observations. In addition, we assumed
::::::
assume

:
full

spatial and temporal coverage of velocity data to isolate and focus on the impact of surface elevation observations. While this565

simplifies the analysis, it is an idealized scenario; future research should explore more realistic data scenarios
:::::::::::
configurations,

including partial velocity coverage, and assess the trade-offs between observation density, cost, and assimilation performance.

A joint cost and benefit analysis of surface and velocity observations would provide a more robust understanding of their relative

contributions to improving model estimates. Future research should also consider more sophisticated methods to account for

observations from diverse sensors, coverage, varying periods, state dependence, and collection frequencies, as well as their570

associated error covariance matrices. This includes conducting more comprehensive OSSEs with a broader range of potential

observations.

Additionally, this study focused on only one filter algorithm with a limited range of inflation and localization parameters
::::::
factors,

which may not adequately explore the full potential and scalability of the DA method. Future studies should investigate differ-

ent types of filter algorithms and a variety of inflation and localization techniques to better optimize the assimilation process575

for ice sheet modeling. Furthermore, incorporating more comprehensive climate processes could enhance the predictive capa-

bilities of our simulations. For example, integrating the firn process into the model could help not only in accurately modeling

the grounding line position (Gillet-Chaulet, 2020) but also in properly determining observation errors in the DA process.
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::::::::
Although

:::::::::::::
ensemble-based

::::
data

:::::::::::
assimilation

:::::
offers

::::::::::
conceptual

::::
and

:::::::
practical

::::::::::
advantages,

:::
its

:::::::::::::
computational

::::
cost

::
is

:::::
often

:::::::::
considered

:
a
:::::::

limiting
::::::

factor.
:::

In
:::
this

::::::
study,

:::
we

:::
did

::::
not

:::::::
perform

::
a

:::::
direct

::::::::::::
computational

::::::::::
comparison

::::::::
between

::::::::
ensemble

::::
and580

:::::::::
variational

::::::::
(transient)

:::
DA

::::::::::
approaches.

:::::
Such

:
a
::::::::::
comparison

::
is

::::::::::
challenging

:::
due

::
to

::::
their

::::::::::::
fundamentally

:::::::
different

:::::::::::::::
implementations.

:::
For

::::::::
example,

:::::::::
variational

::::
DA

::
in

:::::
ISSM

::::::
relies

::
on

:::::::::
automatic

::::::::::::
differentiation

::::::
(AD),

:::::
which

::::
can

:::
be

:::::::::::::::
memory-intensive,

::::::::
whereas

::::::::
ensemble

:::
DA

:::::::
increases

::::::::::::
computational

::::
cost

::::::::
primarily

::
by

::::::::
requiring

:::::::
multiple

:::::::
forward

::::::::::
simulations.

::::::::
However,

::::::::
ensemble

:::::::::
approaches

:::
can

::
be

:::::::::::
parallelized,

::
as

::::
each

:::::::::
ensemble

::::::::
member’s

:::::::
forward

::::
run

:::
can

:::
be

:::::::::
distributed

:::::
across

::::::::
separate

::::
cores

:::
or

::::::
nodes,

:::
and

:::
the

::::
DA

::::::
process

::::
here

::
is
::::::::

managed
:::::::
through

:::::::
DART,

:::::
which

::::::::
supports

::::::
parallel

::::::::::
computing.

::::::
While

::::::
formal

::::::::::::
benchmarking

::::
was

:::::::
beyond

:::
the585

:::::
scope

::
of

:::
this

::::::
study,

:
it
::::::
would

::
be

::::::::
valuable

::
in

:::::
future

:::::
work

::
to

:::::::
quantify

::::::::::::
computational

:::::::::
trade-offs

:::::
across

::::
DA

:::::::
methods

::
in

:::
ice

:::::
sheet

::::::::
modeling.

:

:::
Our

:::::::::::
experimental

::::::
design

:::
also

:::::::
assumed

::::::
perfect

:::::::::
knowledge

::
of

:::
all

:::::
model

:::::::::
parameters

::::::
except

:::
for

::::
basal

::::::
friction

::::
and

:::
bed

::::::::::
topography.

::::
This

:::::
choice

::::
was

::::
made

::
to
::::::::
facilitate

:::::::
learning

:::::
about

:::
the

:::
DA

::::::
system

::
in

:
a
:::::::::
controlled

:::::
setting

::::
and

::
to

::::
keep

:::
the

:::::::::::
experimental

::::
setup

:::::
more

:::::::
tractable,

:::::
while

::::
also

::::::::
allowing

:::
for

:::::
direct

::::::::::
comparison

::::
with

::::::::::::::::::
Gillet-Chaulet (2020).

::::::::
However,

::::
this

::::::::
approach

:::::
limits

:::
the

::::::
realism

:::
of590

::::::::::
experiments.

:::
In

:::::::
practice,

::::::::::
parameters

::::
such

::
as

:::
ice

::::::::
viscosity

::::
and

::::::
climate

:::::::
forcing

:::
are

::::
also

::::::
poorly

::::::::::
constrained

:::
and

::::
may

::::
vary

:::
in

::::
both

:::::
space

:::
and

:::::
time.

:::
For

::::::::
example,

:::::::::::
uncertainties

::
in

::::::::
viscosity

::::
may

::::::
interact

:::::
with

::::
basal

:::::::
friction

::::::
during

:::::::::::
assimilation,

:::::::::
potentially

::::::
leading

::
to

::::::::
parameter

::::::::::::
compensation

::::::
effects.

::::::
Future

::::::::
sensitivity

::::::
studies

::::::
should

:::::::
explore

:::
how

::::::::::::
mis-specified

:::::::::
background

::::::::::
parameters

::::
(e.g.,

::::::
biased

::::::::
viscosity

::::::
fields)

:::::
affect

:::
the

:::::::::
estimation

:::
of

::::
other

::::::::::
parameters

::::
and

:::::::
whether

::::
such

::::::::::::
compensation

:::::
leads

::
to
::::::

biased
:::

or

:::::::
unstable

::::::::
forecasts.

::::::::
Although

::::
this

:::::
study

::::::
focuses

:::
on

:::::::::
estimating

::::
two

:::::::::::::
constant-in-time

:::::::::
parameter

:::::
fields

:::::::
(friction

:::::::::
coefficient

::::
and595

:::
bed

:::::::::::
topography),

::
the

::::::::::::
DART–ISSM

:::::::::
framework

::
is

:::::::::
well-suited

:::
for

:::
the

::::
joint

:::::::::
estimation

::
of

:::::::
multiple

:::::::
spatially

::
or

:::::::::
temporally

:::::::
varying

:::::::::
parameters.

:::::::::
Extending

:::
the

:::::::
current

:::::::::::
configuration

::
to
:::::::

include
:::::::::
additional

::::::::::::::
unknowns—such

:::
as

:::
ice

::::::::
viscosity,

::::::::::::
accumulation

::::
rate,

::
or

:::::::::::
time-varying

::::::::
boundary

:::::::::::::::::::
conditions—represents

::
a
:::::::
valuable

:::::
next

::::
step

::::::
toward

:::::
more

:::::::
realistic

::::
data

::::::::::
assimilation

:::
in

:::
ice

:::::
sheet

::::::::
modeling.

:

5 Conclusions600

In this study, we introduce an ensemble Kalman filter-based data assimilation (DA) framework to calibrate a 2D plan-view ice

model. Using a synthetic twin experiment, we showed that the ensemble DA method effectively recovers basal conditions (fric-

tion coefficient and bed topography) and ice thickness after several assimilation cycles. Assimilating more observations
::::
While

::
a

:::::::
temporal

::::::
decline

::
in

:::
DA

:::::::::::
performance

::
is

:::::::
observed

::::::
during

:::
the

::::::::::
assimilation

::::::::::::
period—likely

:::
due

::
to

:::::
model

::::::::::::::::::::::
nonlinearity—assimilating

::::
more

:::::::::::
observations

::::::::
generally

:
improves the accuracy of the model state as expected. The model state with assimilation of605

surface observations up to
:::
and

::::::::::
parameters.

::::
With

:
30 years reproduced projected changes in ice volume

:::::
years

::
of

::::::::::
assimilated

::::::
surface

:::::::::::
observations,

:::
the

:::::::::::
deterministic

:::::::
forecast

:::::::::
reproduces

:::
the

:::::
total

:::
ice

::::::
volume

::::::
change

:
of the reference simulation for up to

200 years with great accuracy
:::::
within

::::::::::::
approximately

:::
1%

:::::
over

:
a
::::::::
200-year

::::::
period. We also conduct Observing System Simu-

lation Experiments (OSSEs) using the same model domain as the twin experiment but with synthetic elevation observations

along ground track and gridded data that emulate the ICESat-2 ATL11 and ATL15 products, respectively. These experiments610

presented
::::::
present the potential surface elevation product that can be used to accurately estimate bed conditions and the model
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state of the idealized glacier. Different
:::
The

::::::
results

::::::::
highlight

:::
the

::::::
crucial

::::
role

::
of

::::::
spatial

:::::::::
resolution

::
of

:::::::
surface

::::::::
elevation

::::
data

::
in

:::
the

:::
DA

:::::::::::
performance.

:::
In

:::::::
addition,

:::
we

::::
find

::::
that

::::::
varying

:
levels of observational uncertainty could improve the assimilation

results
::::::::::::::
uncertainty—not

:::::::::
necessarily

:::::::::::
smaller—can

::::
lead

::
to

::::::::
improved

:::::::::::
assimilation

::::::::
outcomes, which highlights the importance of

a more accurate representation of observation uncertainty in the DA process. The ensemble DA framework, which assimilates615

observations from multiple time points, holds significant potential for application to real glaciers to better estimate the current

and future changes in ice sheet state variables. This framework also provides advantages for OSSEs aimed at testing various

observational settings, as it requires less numerical effort than variational methods that assimilate time series of observations,

making it a practical and effective tool in ice sheet modeling.

Code and data availability. The ISSM is open source and the source code of ISSM is available at https://github.com/ISSMteam/ISSM. The620

source code of DART is available at https://github.com/NCAR/DART (DART, 2024). The script for the results and figures are available at

https://doi.org/10.5281/zenodo.14722078.

Appendix A

:::
We

:::::::
conduct

::::::::
additional

::::::::::
experiments

:::
to

:::::
assess

:::
the

::::::
impact

::
of

::::::::::
assimilation

:::::::::
frequency

:::
and

::::::::
different

:::::
levels

::
of

:::::::
velocity

::::::::::
uncertainty

::
on

:::
the

::::::
results.

::::
We

:::
use

:::
full

::::::
spatial

::::::::
coverage

::
of

::::::
surface

:::::::
velocity

::::
and

::::::::
elevation

:::::::
data—as

:::
in

:::
the

::::
twin

::::::::::::::
experiments—to

:::::
avoid

:::
the625

:::::::
influence

::
of
::::::
spatial

::::
data

::::
gaps

:::::
(e.g.,

::
in

::::::
surface

:::::::::
elevation).
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Figure A1.
:::
The

:::::::
evolution

::
of

::::
mean

:::::::
analysis

:::::
RMSE

:::
for

::
(a)

::::::
friction

:::::::::
coefficient,

:::
(b)

:::
bed

:::::::::
topography,

:::
and

:::
(c)

::
ice

::::::::
thickness,

::::
using

:::
full

::::::
spatial

::::::
coverage

:::
of

:::::
surface

:::::::
velocity

:::
and

:::::::
elevation

::::
data

:::
(as

::
in

::
the

::::
twin

:::::::::::
experiments),

::::
under

:::::::
different

::::::::::
assimilation

:::::::::
frequencies

::::
(blue:

::::::
annual,

::::
red:

:::::::::
semiannual)
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Figure A2.
:::
The

:::::::
evolution

::
of

::::
mean

:::::::
analysis

:::::
RMSE

:::
for

::
(a)

::::::
friction

:::::::::
coefficient,

:::
(b)

:::
bed

:::::::::
topography,

:::
and

:::
(c)

::
ice

::::::::
thickness,

::::
using

:::
full

::::::
spatial

::::::
coverage

:::
of

::::::
surface

::::::
velocity

::::
and

:::::::
elevation

::::
data

:::
(as

::
in

:::
the

::::
twin

::::::::::
experiments),

:::::
under

:::::::
different

:::::
levels

::
of

:::::::::
uncertainty

::
in
::::::

surface
:::::::

velocity

::::::::::
observations.
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