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Abstract. Better constraining the current and future evolution of Earth’s ice sheets using physical process models is essential for
improving our understanding of future sea level rise. Data assimilation is a method that combines models with observations to
improve current estimates of model states and parameters, leveraging the information and uncertainties inherent in both models
and observations. In this study, we present an ensemble Kalman filter-based data assimilation (DA) framework for ice sheet
modeling, aiming to better constrain the model state and key parameters from a single semi-idealized glacier domain. Through
a synthetic twin experiment, we show that the ensemble DA method effectively recovers basal conditions and the model state
after a few assimilation cycles. Assimilating more observations improves the accuracy of these estimates, thereby improving the
model’s projection capabilities. We also utilize Observing System Simulation Experiments (OSSEs) to explore the capabilities
of the ensemble DA framework to assimilate different types of data and to quantify their impact on the model state and
parameter estimation. In our experiments, we assimilate land ice elevation data simulated based on The Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) products. These experiments are crucial for identifying observations with the largest impact on

state and parameter estimates. Our assimilation results are highly sensitive to design choices for observation networks, such as

spatial resolutions and prescribed uncertainties. Notably, the marginal improvements or increases in RMSE observed at coarser

resolutions suggest that, beyond a certain spatial threshold, additional observations do not improve and may even degrade
long-term estimates of model parameters and state. The ensemble DA framework, capable of assimilating multi-temporal

observations, shows promising results for real glacier applications through a continental ice sheet model. Additionally, this
framework provides a flexible infrastructure for performing OSSEs aimed at testing various observational settings for future

missions, as it requires less numerical develepment-model re-development than variational methods.

1 Introduction

The combined contribution of the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS) to global sea level is one of
the most significant sources of uncertainty in projections of sea-level rise for the coming century (Intergovernmental Panel

on Climate Change (IPCC), 2023). In recent years, numerical ice sheet models have significantly advanced through improved
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ice flow physics, enhanced spatial resolution, and their ability to simulate moving boundaries (Nowicki and Seroussi, 2018).
Despite these advancements, projections of mass change for both the AIS and GrIS, and consequently their contributions to
sea-level rise over the coming century, exhibit significant spread, primarily due to uncertainty in key model parameters and
model initialization (Nowicki et al., 2016; Seroussi et al., 2020; Goelzer et al., 2020).

Data assimilation (DA) 1

methods for ice sheet modelin

enerally fall into two categories: snapshot and transient inversions (Choi et al., 2023), which use single-time observations and

time series of observation, respectively. Snapshot inversion, implemented using a form of variational data assimilation methods,
has been widely used in ice sheet models to constrain basal conditions(e-gfriction-coefficient), such as the friction coefficient,
and estimate the present state of the ice sheet using surface observationste-g;-surface-veloeity)(Gillet-Chaule-2620), such as

surface velocity (MacAyeal, 1992; Morlighem et al., 2010). However, these approaches generally rely on a-single-instanee-of
observations-observations at a single time to perform time-independent inversions of model parameters. This method captures

a specific state of the ice sheet at a particular time (Morlighem et al., 2013; Gillet-Chaulet et al., 2012), but it risks-introducing
nonphysteal-artifactsfrom-often introduces nonphysical artifacts into the model’s initial state, potentially propagating artifacts

into transient simulations rather than capturing actual trends of changes in ice dynamics (Seroussi et al., 2011; Goldberg et al.,

2015). Such artifacts in initial conditions could affect model simulations over centuries to millennia due to the slow response
time of ice sheets (Seroussi et al., 2019).

Alternatively, data assimilation techniques that leverage time-varying surface observations have been developed to more
accurately constrain ice flow over longer periods. The development-use of computational techniques such as automatic differ-
entiation in ice sheet models (Goldberg and Heimbach, 2013) has enabled the assimilation of more observations into transient
model simulations, thereby capturing the model evolution during the assimilation periodperiod—the time window during which
observations are assimilated into the model. While this method has been applied in regional modeling studies (Larour et al.,
2014; Goldberg et al., 2015; Choi et al., 2023), scaling time-varying data assimilation approaches for simulations covering
entire ice sheets remains challenging due to the complexities involved in developing a time-dependent adjoint model and the
substantial memory requirements of automatic differentiation (Choi et al., 2023). Furthermore, variational-methods-this method
as well as static inversion do not explicitly compute the uncertainty coming from the model state and parameters (Carrassi et al.,
2018).

Ensemble data assimilation methodsthat-employ-the-Ensemble-, which use an ensemble of model simulations, offer an

alternative to variational approaches by explicitly representing uncertainty in the model state and parameters while assimilatin
time-varying observations. Various forms of ensemble Kalman filter (ErKFEnKFs) have been effective for assimilating diverse

observations into complex, large-scale and non-linear geophysical models (Carrassi et al., 2018). The underlying principle of
the Kalman filter involves the sequential assimilation of data to estimate state variables for numerical models. This is achieved
by iteratively adjusting the model state to better represent the unknown ‘true’ state of the system (Carrassi-et-als2048)-based on
noisy observations (Carrassi et al., 2018). The assimilation based on the EnKF is carried out across an ensemble of model runs,

each representing plausible system states. As new observations are incorporated within the assimilation period, the ensemble
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mean presents an increasingly more accurate estimate of the model state. When the model state is updated at each assimilation
time, the model parameters can also be updated alongside state variables to reflect past and present observations (Iglesias
et al., 2013). Unlike time-independent inversions relying on a snapshot of observations from a single time, this framework

enables the use of a time series of observations to provide an improved estimate of the model state and parameters. fa-While

transient inversions also assimilate time-varying observations, they typically estimate a single model state conditioned on all
observations within the assimilation window. In contrast, the EnKF updates the model state sequentially at discrete observations
time, without the need for estimating a tangent linear and adjoint for the model and measurement operators. In addition, EnKFs,

similar to the classic Kalman filter, provide a direct estimate of uncertainty in model state and parameter estimates, which is

represented heuristically through the sample error covariance.

While-ensemble DA-isless-eommonty-employed-The ice sheet modeling community has traditionally relied on snapshot
inversion methods based on adjoint-based techniques for parameter estimation, using time-invariant mosaics or composite
data (e.g., multi-year averaged surface velocity fields; Morlighem et al. 2010). Compared to these methods, ensemble DA
approaches have been less commonly used in ice sheet modeling fati isi
estimating the, primarily due to historical limitations in observational data, computational cost, and the challenges of representing
uncertainty in ice sheet models. Ensemble approaches rely on time-varying observations with well-characterized uncertainties,
but surface observations for ice sheets have often lacked reliable uncertainty estimates, making them less suitable for ensemble
DA. Additionally, ensemble methods typically require multiple forward model runs, making them more computationally
demanding than snapshot inversion approaches. Another limitation is that poorly understood or unquantified errors in_the
ice flow model itself may limit the reliable estimation of covariances using ensemble statics.

Nonetheless, promising results have been demonstrated in recent studies that apply ensemble DA to estimate both the model

state and basal conditions of ice sheets h

a—(Bonan et al., 2014, 2017, Gillet-Chaulet, 2020) These include initializing marine ice sheet model-thatineclades—the—iece
frent-models that incorporate ice fronts and grounding line migrationfBenan-et-al5-2047-Gillet-Chaulet;2020). However,
these studies (Bonan et al., 2014, 2017; Gillet-Chaulet, 2020) utilized simplified flowline models, limiting the representation

of the horizontal stress field that can impact ice dynamic processes through, for example, buttressing. Such unrepresented

hysics in ice flow models or structural model errors may limit the reliable estimation of covariances. As more complete
time-resolved datasets with robust uncertainty estimates become available, and as ice sheet models grow more sophisticated
while computational costs continue to decrease, ensemble DA methods are increasingly worth exploring for larger-scale, more

realistic ice sheet models.
Data assimilation and associated data denial experiments—ean-experiments—where the impact of specific observations is
evaluated by temporarily removing them from the assimilation process—can be used to test the benefit of current observations,

typically referred to as Observation System Experiments (OSEs), as well as to evaluate the potential benefits of proposed ob-

servations, typically referred to as Observation System Simulation Experiments {OSSEs)-(OSSEs, Arnold Jr and Dey, 1986;



95

100

105

110

115

120

Masutani et al., 2010). The main difference is that OSEs assimilate real observations, while OSSEs assimilate synthetic ob-
servations generated from model output with errors sampled from an-appropriate-a prescribed observation error distribution
representative of real measurement uncertainties. Both approaches aim to provide a systematic assessment of the value of
observations for improving model state and parameter estimation. OSSEs have been successfully applied to atmospheric and
oceanic models for decades, where analysis systems and the required DA frameworks are far more established (Boukabara
et al., 2016; Hoffman and Atlas, 2016). For ice sheet modeling, however, the application of these OSE/OSSE approaches is
stittin-the-early stages of developmenthas, to our knowledge, not been previously explored.

This study explores the feasibility and benefits of using an EnKF to assimilate surface observations into a 2D plan-view
ice model, with the aim of accurately estimating both the model state (ice thickness) and key model parameters related to
basal conditions (basal friction and topography). Using the shelfy-stream approximation (SSA, MacAyeal, 1989) for the stress
balance of the ice sheet, ice thickness serves as the only prognostic variable representing the model state. Basal friction and
topography, which cannot be directly measured, are treated as key model parameters that must instead be estimated through
surface observations. We perform a twin experiment in which we evaluate the estimated model state and parameters by compar-
ing them with true referenee-values and using them as initial conditions to assess the impact of ensemble data assimilation on
model projections (Section 2.3). Our modeling settings are similar to those used in the previous study (Gillet-Chaulet, 2020),
which used a flowline model, with necessary modifications for our model domain geometry and the coupling between a 2D
ice sheet model and the data assimilation system (Section 2.1). We investigate various ensemble DA parameters on a synthetic
ice sheet domain to explore effective ensemble DA strategies relevant to ice sheet modeling (Section 2.2). One of the primary
objectives of this research is to use an idealized model configuration to help inform future efforts in applying an EnKF for real
glacier cases. Within this context, we also configure Observing-System-Stmulation-Experiments(OSSEs)-OSSEs to evaluate
the impact of various configurations of observations on the estimated model state and basal conditions —Seetion—2-(Section
24).

2 Methods

—configuration
(Section 2.1), the ensemble DA framework (Section 2.2), and the experimental designs used in this study (Section 2.3 and
2.4). We first outline the twin experiment setup, which tests the ability of the DA framework to recover the model state
and parameters under idealized conditions. We then describe the OSSEs, which explore the effects of different observational
strategies on model initialization. Our methods are summarized in Figure 1.

3 Methods
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Figure 1. Schematic overview of the ensemble data assimilation workflow using the EAKF within the DART-ISSM framework.

2.1 Model Setup

We use the Ice-sheet and Sea-level System Model (ISSM, Larour et al., 2012) to simulate the model state and forecast its
evolution over time. ISSM is a parallelized finite element ice flow model with anisotropic mesh refinement capabilities, which
allows efficient ensemble simulations of the-ice sheets.

We construct our reference simulation using a bed geometry inspired by Asay-Davis et al. (2016) and Gillet-Chaulet (2020).
The synthetic bed topography features large-scale overdeepening combined with added small-scale roughness. The general

shape of the bed is defined as:

Zb(mvy) = max [BCE(x) + By(y)a Zb,deep] (1)
150 — 3z, 0km < z <350 km
By(x) =14 =900 + 5(z—350), 350km <z <450 km 2)
—400 — 3(x —450), 450km<z <L,
d. d.
By(y) = 1 + S_Q(Q_Ly/Q_wc)/fc + 1 —+ 62(9_Ly/2+wc)/fc (3)

where the parameter values used in these equations are given in Table 1. Following Gillet-Chaulet (2020), we add-aroughness
stgnral-using-a-randemrintroduce small-scale roughness to the bed topography using a midpoint displacement method (Fournier
et al.,, 1982). We-use-This method generates a two-dimensional surface by iteratively subdividing a grid, assigning random
heights to the corners, and displacing midpoints with added random displacement. The magnitude of the displacement is scaled
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Table 1. Parameters for the reference ice sheet domain

Parameter  Value Description
Zb,deep -720m  Maximum-depth-Depth of the bedrock topography
Ly 640 km  Domain length (along ice flow)
L, 80 km Domain width (across ice flow)
de 500 m Depth of the trough compared with the side walls
We 24 km Half-width of the trough
fe 4 km Characteristic width of the side walls of the channel
by a standard deviation that decreases with each iteration as 2°-°7 where H is the roughness factor, set to 0.7 in this study.

We apply this method at 100 m resolution with 10 reeursions-using-recursive subdivisions, starting from an initial standard
deviation of 500 mand-areughnessfactor-of-0-7—. This process produces an asymmetrical bed topography, which may better

reflect realistic subglacial features, although we conduct an idealized twin experiment in this study. The model domain spans 0
to 640 km in the x-direction and 0 to 80 km in the y-direction. This domain is discretized into approximately 27,000 elements

using a triangular mesh with resolutions varying from 500 m near the coast to 10 km inland.
The basal friction coefficient follows a sinusoidal function similar to that used by Gillet-Chaulet (2020), comparable to the
inferred friction coefficient in Thwaites Glacier of Antarctica in terms of both amplitude and spatial variations (Brondex et al.,

2019; Gillet-Chaulet, 2020). In this study, we have adjusted this function for a 2D domain with an additional y-component

Clz,y) = Cu(z) x Cy(y) 4)
Co(@) = 0.02 + 0.0050.01 sin (— (g M)) sin (10 <@ 2”)) 5)
i Lw - - L$ -
Cy(y) =sin (w W)) + 2 (©)
( o

where C,, and C,, are the x and y components of a friction coefficient (C'), respectively.

For the stress balance of an ice sheet, we use the shelfy-stream approximation (SSA, MacAyeal, 1989), which simplifies
the Stokes equations for cases with a small aspect ratio and basal friction. The basal stress, 7, is described by the Weertman

friction law for grounded ice:
1
7 = Clup|™ 1ub @)

where C-is-afrietion-coefficientu,, the ice basal velocity, and m the velocity exponent set to 1/3 in this study.



160

165

170

175

180

185

190

The ice viscosity is defined using Glen’s law (Glen, 1955):

n= %7 ®)
2 "

where B is the ice viscosity parameter, €. the effective strain rate, and n Glen’s law exponent set equal-to 3.

The position of the ice front is fixed at the end of the domain, and the evolution of the grounding line is simulated with a
subelement grounding line parameterization (Seroussi et al., 2014).

We run the model until it reaches a steady state using a uniform surface accumulation rate of 0.3 m/yr, without any basal
melting. After 25,000 years, the ice sheet stabilizes at a steady state, with a grounding line located approximately at x = 470
km along the center line of the glacier, just downstream of the region of overdeepening (Fig. 2). To introduce dynamic changes,

we perturb this equilibrium state by instantaneously reducing the surface mass balance to -0.3 m/yr. We also introduce basal

melting using a simple melt-depth parameterization, as described by Favier et al. (2014), setting the melt rate of 200 m/yr

at a depth of 800 m—The-model-then-runs-, which results in an actual melt rate of approximately 170 m/yr beneath the ice
shelf. Although this melt rate exceeds observed present-day basal melt rates, we choose this value to create a strong dynamical
response over a forecast period, ensuring that the effects of data assimilation could be clearly evaluated. The elevated melt
rate is not intended to represent a realistic present-day scenario, but rather to serve as a diagnostic tool in the context of a

twin experiment described in Section 2.3. To generate the reference simulation for our experiments, we run the model for an
additional 200 years, while keeping these surface and basal forcings constant. For the first 100 years, the grounding line retreats

at a relatively slow pace, but the retreats accelerate after approximately 130 years (Fig. 2?2b). We refer to this simulation as
our-reference-simulationthe “reference simulation”, from which we derive synthetic observations and reproduce the state and
parameters through our ensemble DA framework. The setup of the reference simulation resembles an idealized Antarctic

glacier.

2.2 Data assimilation

We use the Data Assimilation Research Testbed (DART, Anderson et al., 2009) to implement ensemble data assimilation
with ISSM. DART provides various DA algorithms and modules to create a complete end-to-end DA framework. In this

study, we utilize the Ensemble Adjustment Kalman Filter (EAKF, Anderson, 2001) algorithm within DART, which is—a

; belongs to a class of deterministic ensemble square-root filters

contrast to the standard stochastic EnKF—which perturbs observation-space quantities randomly for each ensemble member to
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Figure 2. (a) Initial steady-state ice surface and-basal-elevation. (b) Bed topography of model domain and grounding line positions every 10

ears from 0 to 200 years for the reference simulation (white to red). (c) Initial steady-state velocity with contours of 50 m/yr and 100 m/yr
(yeHow-magenta lines). The white line shows the initial grounding line position. (d) Mesh resolution of the model domain.

account for observational uncertainty—the EAKF avoids additional perturbations and instead analytically adjusts the ensemble
members to match the posterior mean and covariance determined by the original Kalman filter equations (Anderson, 2001).
This approach improves numerical stability and reduces sampling noise over stochastic EnKFs, especially for small ensemble
195 sizes (Whitaker and Hamill. 2002). In this study, we choose the EAKFE due to its reduced sensitivity to ensemble size and
improved robustness in geophysical systems, as demonstrated in previous studies using DART (Zubrow et al., 2008; Anderson et al., 2009)
- Throughout this paper, we use “EnKE” to refer to ensemble Kalman filter methods more generally, and "EAKF” to refer

specifically to the version implemented in this study. We refer readers to Anderson (2001) for the full algorithmic details of the

EAKE.
200 Within DART, ice sheet variables are placed into a state vector, then-uses-and the filter uses the ensemble-estimated error

AAANAAAANANAANSL

covariance e-to compute the Kalman gain

needed to update the model state %HWWMW&H%W

prognostic
variables and model parameters to be estimated. Under the stress balance of SSA, the velocity is a diagnostic variable, and

205 due to the flotation condition, ice thickness is the only prognostic variable (Gillet-Chaulet, 2020). In this study, the state vector
includes ice thickness as-a-prognostie-variableand-(state variable), and basal friction coefficient and bed topography as-moedet
DA process (Fig. 1)._

is augmented to include both
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A common challenge with EnKFs, including the EAKF used in this study, is the issue of undersampling, which arises when

the size of the ensemble is significantly smaller than the independently observed degrees of freedom for the model state.

Sampling errors occur because the ensemble-based covariance is only an approximation of the true covariance, and small
ensembles may not adequately capture variability across the full state space (Carrassi et al., 2018). In our experiments, we use

ensemble sizes of 30, 50, and 100, while the number of observations can range from hundreds to thousands, depending on the
observation configuration. Localization and inflation are common methods to mitigate these-undersampling issues and increase

the stability of the fitter- EAKF (Carrassi et al., 2018; Morzfeld and Hodyss, 2023). Localization adjusts the spatial influence
of observations, thereby preventing the distortion of estimates by distant observations. While previous studies (Gillet-Chaulet,
2020; Cook et al., 2023) have explored the effects of localization on the model state estimation using flowline models, its
application to 2D plan-view models remains unexplored. Similarly, inflation, which addresses sampling errors by artificially
increasing the forecast covariance matrix, has not been thoroughly studied for large-scale ice sheet modeling. To identify the
most effective settings, we conduct sensitivity tests

valuesfor-using a range of both localization radii (2 to 20 km) and inflation factors (1.00 to 1.20) within our ensemble data

assimilation framework.

2.3 Twin experiment

We conduct a twin experiment to evaluate the performance of using an EnKF-EAKEF to assimilate surface observations into a
2D plan-view ice model. Using the ISSM-DART DA framework, we aim to estimate the ice sheet state together with model
parameters. Here, we assume that the friction coefficient and the bed topography are the only two unknown parameters that
need to be estimated, while all other parameters and forcings (e.g., ice rigidity, surface mass balance) are perfectly known
and identical to those used in the reference simulation. We assimilate annual surface observations derived from the reference
simulation over a 30-year span—approximately the satellite observational period for ice sheets—to assess the ability of the
ensemble DA framework to recover the initial model state and basal conditions of the reference ice sheet.

We obtain synthetic surface observations of ice elevation and velocities from the reference simulation and assume that the
surface elevation and velocities are observed at annual resolution (e.g., at the start of each year) at each ISSM mesh node.
To simulate observation error, we add uncorrelated Gaussian noise with a standard deviation of 5 m for the surface elevation
and 10 m/yr for the velocity as a simple uncertainty baseline. These standard deviation values are lower than the ones from
Gillet-Chaulet (2020), but still within a plausible range according to recent studies (Dai and Howat, 2017; Mouginot et al.,
2017). We-explore-the sensitivity to-the-choiee-of-apphied-Dai and Howat (2017) report vertical elevation uncertainties below
5 m in well-constrained regions, and Mouginot et al.
depending on the region. We choose values at the lower end of these ranges to isolate the performance of the DA framework

under favorable conditions. We explore the sensitivity to larger uncertainties in our OSSEs below—(Seetion-3-2)presented in
Section 2.4.

2017) report horizontal velocity uncertainties ranging from 5 - 20 m/yr

To generate initial ensembles, we adopt an approach similar to that described by Gillet-Chaulet (2020). For the friction

1/3,1/3

coefficient, we create a random field, assuming a known mean value of 2,500 Pam™ across the domain and using a
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prescribed covariance model for spatial dependency. We use a Gaussian function for the variogram with a range of 5 km and
a sill of 90,000. These values for the range and sill were selected based on Gillet-Chaulet (2020), with adjustments made for
the domain and friction law used in this study. For bed topography, we use an exponential function for the variogram with a
range of 50 km, a sill of 4,000 m? and a nugget of 200 m?, also based on the same study (Gillet-Chaulet, 2020). Unlike the
friction coefficient, which typically cannot be directly measured and often lacks prior knowledge, the bed topography can be
measured using ice penetrating radar (e.g., Evans and Robin, 1966; Dowdeswell and Evans, 2004; Rodriguez-Morales et al.,
2014). We assume that we have radar measurements of bed topography along tracks perpendicular to ice flow every 30 km. We
Using kriging with an exponential covariance model, we generate a conditional random field of the bed topography ;preseribed
constrained by these observationsand-the-exponential-covartance-medel. Initial ensembles for both parameters are created using
the GSTools Python package (Miiller et al., 2022). Additional initial ice sheet variables, such as initial thickness and velocity,

are calculated through a stress balance solution using the initial ensemble of friction coefficient and bed topography. In our

setup, the basal friction coefficient and bed topography are estimated jointly as part of the augmented state vector. While we
do not prescribe a prior correlation between them, the EAKF uses ensemble-based cross-covariance between these parameters
and background variables to update both fields during the assimilation process.

To date, no studies have determined optimal localization and inflation parameters-factors for large-scale 2D ice sheet models.
Therefore, we conduct sensitivity tests to identify the best values for these parameters across various ensemble sizes. For this

study, a Gaspari-Cohn fifth-order polynomial is used for horizontal direction localization to limit observation updates within

a specific radius (Gaspari and Cohn, 1999). Localization is applied to reduce correlations between model states projected into

observation space and the unobserved state variables, which does not explicitly damp covariances across co-located variables
Anderson, 2007). For inflation, we use the spatially uniform state space inflation (Anderson et al., 2009). We explore various

combinations of inflation and localization radii-values to find the optimal combination. Specifically, we vary the localization
radius from 210 20 km in 2 km increments and adjust the inflation factors from 1,00 to 1.20 in 0.02 intervals, Initial experiments
begin with an ensemble size of 30, based on findings from smaller-scale flowline model studies that demonstrate robust DA
performance with relatively small ensembles. We then extend our experiments to larger ensembles, up-to-using 50 and 100
members, to examine the impact of ensemble size on DA performance in large-scale ice sheet modeling.

To evaluate the effectiveness of the ensemble DA framework in retrieving basal conditions and ice sheet state, we calculate
the root-mean-square error (RMSE) between the analysis mean states and the designated true values for bed topography
(RMSE_B), friction coefficient (RMSE_C), and ice thickness (RMSE_H). After each analysis, RMSE values are computed
at all nodes where basal conditions have been updated through assimilation. This calculation includes only those nodes where
at least one node in the triangular mesh is grounded, as surface observations only respond to changes in the basal condition of

grounded ice.

Based on the model state and parameters estimated from the DA simulation, we conduct deterministic and ensemble forecasts

extending up to t = 200 yr to explore the impact of ensemble DA initialization on model projections. We use the ensemble

mean to initialize the deterministic simulation and the full ensemble to initialize the ensemble forecast simulations, similar to

Gillet-Chaulet (2020). We also utilize the estimated model state and parameters as initial conditions from various points in the

10
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DA simulation different initial conditions, e.g., the analyzed states at t =5 yr, t = 15 yr, and t = 30 yr, for forecast simulations
to investigate the impact of different DA periods on model simulations.

2.4 Observing System Simulation Experiments (OSSEs)

We-conduct-Observing-System-SimulationExperiments (OSSEs—)- We conduct OSSEs within our synthetic model domain to

investigate the potential impact of varying observed quantities and their associated uncertainties. For our OSSEs, we assume
a “perfect” model without any model error, following the perfect model OSSE framework (Zhang et al., 2018). While the
twin experiment described in the previous section is more focused on testing the capabilities of ensembleKalman-filter-data
assimilation—system-the EAKF under ideal conditions, the suite of experiments in this section is designed to explore the
feasibility of performing joint state-parameter estimation for the ice sheet model under realistic observational settings, which
will provide valuable insight and guidance for future, more realistic OSSE efforts. In this study, we primarily explore the
impact of different types of surface elevation observations and their uncertainties. We assimilate the synthetic elevation data in
two different ways: i) along ground tracks, which mimics The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) ATL11
product, ii) at regularly gridded locations, which mimics the ICESat-2 ATL15 product (Smith et al., 2023, 2024). We use the
same velocity data as in the previous twin experiment, assuming that the velocity products provide almost full coverage of
annual velocity both spatially and temporally, and we focus on the impact of surface elevation observations.

For the along-track data, we generate synthetic surface elevation observations along tracks that emulate the Reference
Ground Track (RGT) used by ICESat-2 ATL11 product. The RGT is a virtual line that corresponds to the nadir track of
the designed orbit (Smith et al., 2019). For our synthetic domain, surface elevation is assumed to be observed annually, while
the actual temporal resolution of ATL11 data is 91 days. Synthetic observations are spaced every 60 m along each track, which
is the spatial resolution of ATL11 ice height data (Smith et al., 2023). While the actual ATL11 product exhibits varying cross-
track spacing depending on latitude, we test cross-track spacings from 5 to 15 km, which covers the range of cross-track spacing
of the ICESat-2 RGTs in the polar regions (Fig. 3). To generate synthetic observations, we linearly interpolate model surface
elevation at surrounding mesh nodes to the observation points along our tracks. We also explore the impact of the observational
uncertainties on the DA performance by conducting experiments with different levels of uncertainty in surface elevation. These
experiments aim to determine the permissible level of error for different surface elevation products to ensure reliable DA for
our model domain. We introduce Gaussian noise to surface elevation at each mesh node, using standard deviation ranging from
5 to 20 m with 5 m increments, and propagate standard errors to points along the tracks.

For gridded elevation observations, we create synthetic datasets at 1 km, 10 km and 20 km resolutions, corresponding to the
spatial resolution of ATL15 product. The ATL15 product is a spatially continuous gridded dataset of land ice height-change
(Smith et al., 2024). We first interpolate surface elevation from the reference-modelmesh-mesh used in the reference simulation
onto a grid with 100 m resolution, then average these 100 m grids to create a 1 km grid cell, using equal weights for all 100
m grids. Surface elevation data at 10 km and 20 km resolutions are created similarly from 1 km grid data. In our OSSE:s,

we assume an annual observation frequency of surface elevation for the-consistency across experiments, including the twin
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Figure 3. Elevation observations taken along synthetic ground tracks from a configuration of (a) 5 km cross-track spacing, (b) 10 km cross-

track spacing, and (c) 15 km cross-track spacing, with data points posted every 60 m along the track.

experiments, although the actual temporal resolution of ATL15 data is 91 days. Similar to the track elevation data, Gaussian

noise is introduced with standard deviations from 5 to 20 m at each mesh node, with propagated error onto the gridded data.

3 Results
3.1 Twin experiments and projections

Our twin experiments show the feasibility of the EnKF DA approach for ice flow modeling. The experiments were-are con-

ducted with a range of configurations.

s—Fig. 4 shows the RMSE
values for the bed topography, friction coefficient, and ice thickness after 30 years of DA. As the ensemble size increases,
DA performance remains relatively robust—demonstrated by lower RMSEs—over a wider range of localization radii and in-
flation parameters—We-observed-factors. We observe that the best DA results, indicated by the minimum RMSEs, were-are
achieved with a localization radius of 4 km for the friction coefficient and 6 km for bed topography and ice thickness. When
the localization radius was-is set below those optimal values (4 km for friction coefficient and 6 km for bed topography and
ice thickness), a significant increase in RMSEs eeeurredoccurs, and any increase beyond those optimal values also resulted
results in gradual increases in RMSEs. As-expected;—the-optimal-inflation-parameters-The optimal inflation factors tend to
decrease as the ensemble size increases sresulting-in-vatues-because larger ensembles generally provide better approximations
of the true error covariance, reducing the need for artificially inflating the covariance to compensate for sampling errors
(Anderson et al,, 2009; Carrassi et al., 2018). For our experiments, optimal inflation values range between 1.10 - 1.14 for the

friction coefficient and 1.16 - 1.18 for bed topography and ice thickness, when using the optimal radius for each parameter.

12
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factor and the localization radius for different ensemble sizes. (a-c) friction coefficient, (d-f) bed elevation, and (g-i) ice thickness. The grey

indicates experiments that diverge by t = 30 years. The black box in each panel represents the location of minimum RMSE.

Additionally, with the optimal localization radius, we reted-note an improvement in DA performance with increasing inflation
parammeters-up to a certain threshold, beyond which the performance significantly deereaseddecreases.

To assess the impact of ensemble size, we compare the evolution of RMSEs as a function of assimilation time using the
optimal localization and inflation parameters-factors identified above (Fig. 45). For the friction coefficient, RMSE decreases
rapidly during the first 5-three years and continues to decrease steadily until the end of the assimilation window. The RMSE

values of bed topography and ice thickness show a relatively steady decrease across all tested ensemble sizes—, without an

initial rapid drop. In all experiments shown in Fig. 5, the small increase in RMSE is examined during the early period of

assimilation; however, as the assimilation continues, the RMSE values decrease again until the end of the assimilation period.
The simulations with larger ensemble sizes show an improvement in DA performance compared to an ensemble size of 30, but
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Figure 5. The evolution of mean analysis RMSE for (a) friction coefficientaned-, (b) bed topography, and (c) ice thickness using three different

ensemble sizes. Each plot uses the localization radius and inflation factor that produce the minimum RMSE at t = 30 yr (Fig. 4).

the benefits saturate as the ensemble size increases from 50 to 100. For the remaining experiments in this study, for illustrative
purposes, we proceed with an ensemble size of 50, a localization radius of 4 km, and an inflation parameter-value of 1.12.

The reference friction coefficient and bed topography, along with the ensemble mean fields, before and after assimilation
from-our-optimat-DA-configuration-with the DA configuration selected above, are shown in Fig. 6 and Fig. 7. We also show
the-changes-in-how the difference between true ice thickness and the ensemble mean iee-changes before and after assimilation
in Fig. 8. As more observations are assimilated, the discrepancies from the reference fields decrease compared to the initial
ensemble mean. The areas around the grounding line, where the signal-to-noise ratio of velocity is relatively high, exhibit the
most significant improvements through ensemble DA. In these regions, the spatial variations of both the friction coefficient and

bed topography fields are accurately captured by the ensemble DA process. At the end of the 30-year assimilation period, areas

located far upstream (up to 350 km) from the grounding line continue to show improvements, while-although not as significant

as those observed near the grounding line. The pattern in the estimated ice thickness is very similar to that of bed topography.
The artifacts observed in bed topography and ice thickness are the result of the conditional random fields generated using the
kriging method, which can produce “bull’s eye” patterns commonly observed between observation points. In our model setup,
surface elevation is defined as the sum of ice thickness and bed topography (surface = thickness + bed). Therefore, as surface
observations are assimilated, improvements in bed estimates are reflected in the estimated thickness field.

aharyzed a a YT vyt 2 N

Figure 9 presents the changes in ice volume over time for the reference

simulation, along with the forecast simulations based on the ice sheet state with and without data assimilation over periods

of 5 to 30 years. Forecast simulations were conducted in two ways, one with the ensemble mean model state and parameters

for the single deterministic simulations and the other with the full ensemble members for the ensemble forecast. Without
data assimilation, the deterministic forecast—using the ensemble mean basal eenditions—tends-conditions (e.g., initial mean

14



365

370

375

True fcoeff

£ 35 s

no assimilation

~ 40 4000
3750

w
@
o
S

after 5 years of assimilation

3250 ¢
3000
2750 |

icient

13

o

i

ki
ey
o
N
&
o
o
Friction coe
Pam~3

after 15 years of assimilation 2250
=S i3 = ) RN = 2000

Figure 6. (a) Reference friction coefficient (i.e., truth), (b) the ensemble mean friction coefficient before assimilation, (c)-(e) the ensemble
mean friction coefficient after (c) 5 years, (d) 15 years and (e) 30 years of assimilation. The localization radius is set to 4 km and the inflation

factor is 1.12 with the ensemble size of 50. The red lines show the grounding line positions.

basal conditions)—tends to underestimate ice loss over the 200-year period. This simulation, however, captures the accelerated
volume loss observed in the reference simulation beginning at t = 130 yr, when the grounding line enters the reverse-sloping
bed topography. By the end of the forecast simulation, the discrepancy in volume loss between the reference and deterministic
simulations is 2,700 Gt. Across the ensemble members, the changes in ice volume at t = 200 yr range from 7,300 Gt to 29,600
Gt, with only about 25% of entire-members-the entire ensemble successfully predicting the onset of accelerated volume loss at
t =130 years.

As more observations are assimilated, the ensemble spread is reduced, and the results of the deterministic simulations more
closely align with the reference simulation. After 5 years of assimilation, both the deterministic and ensemble forecast simula-
tions accurately reproduce changes in ice volume up to t = 15 years before beginning to diverge from the reference trajectory,

resulting in 3,800 Gt of difference in volume loss by the end of the forecast period. After-the-Extending the assimilation

period to 15 years
reduces this discrepancy, with the deterministic forecast showing a smaller difference of 350 Gt in volume loss at t = +66-years;
although-theseforecastslose-more-massfrom-t=100to-t=200 yearseompared-to-the-reference-simulation—Extending-the-data
asstmilation—period-up-. When the assimilation period is extended to 30 yearsfurther-deecreases-errors-in-the-ensemble-mean

reducing the final volume loss difference to just 90 Gt. These results demonstrate that assimilating more observations not onl
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Figure 7. Same as Fig. 6 but for bed topography.

improves agreement during the early forecast period but also enhances the accuracy of long-term projections. With 15 years
of assimilation, the ensemble spread —decreases by approximately 86 % compared to the case without assimilation. Extending
the assimilation window to 30 years results in little additional reduction in ensemble spread beyond what is achieved with 15

3.2 Results for Observing System Simulation Experiments (OSSEs)

In the context of our Observing-System-SimulationExperiments (OSSEs)OSSEs, we evaluate the impact of varying cross-

track spacings and grid resolutions of surface elevation data on the performance of DA in estimating the model state and
parameters. Since the simulated surface elevation observations use different cross-track spacings and grid resolutions, we
conduct sensitivity tests with an ensemble size of 50 to optimize both localization and inflation parametersfactors. When
assimilating along-track surface elevations with 5 km and 10 km across track spacing, the best DA results were-are achieved
with a localization radius of 4 km and the inflation parameters-between 1.10 and 1.14 for all variables (Fig. 10), similar to the
DA results with full coverage of elevation data at each model mesh node in the twin experiment. As the across-track spacing
increases to 10 —and 15 km, the overall DA performance declinesdue-te-suboptimal-choicesfor-inflation-and-localization
parameters, indicated by an increase in the mean RMSE by up to 16 % for three estimated variables.

For the gridded elevation data with 1 km resolution, the optimal localization and inflation parameters-factors are 4 km and
1.12, respectively, for all variables. In experiments with gridded elevation data of 10 km and 20 km resolutions, the overall DA

performance declines (i.e., an increase in RMSE) over a range of localization and inflation parameters—factors (Fig. 11). We
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Figure 8. (a) Reference ice thickness (i.e., true) at t = 0 yr, (b) difference between true ice thickness and the ensemble mean ice thickness
before assimilation (true - ensemble mean), (c)-(e) difference between true ice thickness and the corresponding ensemble mean ice thickness
at (c) 5 years, (d) 15 years and (e) 30 years after assimilation. The localization radius is set to 4 km and the inflation factor is 1.12 with the

ensemble size of 50. The green lines show the grounding line positions.

find the minimum RMSE values at the end of the assimilation window with a localization radius of 6 - 8 km and inflation values
of 1.02 - 1.06 for both 10 km and 20 km resolution data(Fig—). While tuning these parameters helps improve performance

the overall accuracy remains lower than that achieved with | km grid data.
With the optimal parameter combinations identified for each elevation data type experiment, we eondueted-conduct ad-

ditional experiments exploring the impact of the prescribed uncertainty (o) of surface elevation data. To evaluate the DA
performance, we summarized the RMSEs at the end of the assimilation window (at year 30) for each experiment in Table 2
and 3. The evolution of RMSEs over the assimilation period using the ground track and grid elevation observations are shown
in FigFigs. 12 and 13, respectively.

When assimilating observations with 5 km across-track spacing and the same observational error as in the twin experiments
(or, =5m and o, = 10 m/yr), the DA performance, as measured by RMSEs, is comparable to that observed in the twin ex-
periment —(Table 2 and Fig. 12) . As the across-track spacing of observed surface elevation increases, DA performance declines
as expected. When assimilating data at 10 km or 15 km across-track spacing, RMSE values remain higher than those with 5
km spacing at t = 30 years, although RMSE values continue to decrease until the end of the assimilation window. A similar
result is observed with gridded elevation observations: high-resolution data (1 km) produces DA performance comparable to
that of the twin experiment —(Table 3 and Fig. 13) . However, as the spatial resolution increases to 10 km and 20 km, the overall
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Figure 9. Changes in ice volume from ensemble forecast simulations with (a) no assimilation, (b) assimilation up to 5 years, (c) assimilation
up to 15 years, and (d) assimilation up to 30 years. The red line shows the reference run-simulation, and the blue line shows the deterministic
forecast simulation with the mean ensemble state. The gray lines show the forecast simulation of each ensemble member, and the dotted

DA performance declines;-with-, For the 10 km grid data, only marginal improvements in parameter-and-state-estimations-the
parameter and model state estimates are observed after 10 - 15 years of assimilation—Fhese restlts-indicates-that-the resohition
begins to degrade after 20 years of assimilation.

With 5 km across-track spacing, DA performance in retrieving bed topography and ice thickness decreases as the uncertainty

in the surface observation-inereaseselevation increases, both during the assimilation period (Fig. 12a,d,g) and at the end of the

assimilation window (Table 2). DA performance for the friction coefficient shows little sensitivity to changes in elevation

uncertainty, with RMSE _C varying by only ~3 %, compared to ~ 10 % variation in RMSE_B and RMSE_H at the end of the

assimilation period.
to-thefrietion-coeffieient-With the 10 km across-track data, DA performance remains-consistentforall-three-estimated-variables

for bed topography and ice thickness becomes more consistent across all uncertainty levels in elevation data, as RMSE-valuaes
continue-to-deerease-throughout-the-assimilation—windew—compared to the S km case (Fig. 12b,e,h). When using the 15 km

across-track data, only surface elevation with an observational error standard deviation of 5 m improves bed and ice thickness

estimation up to t = 30 years, while prescribed errors-standard deviations of 10 — 20 m did-do not yield further improvements

beyond 15 — 20 years of DA—, and some increase in RMSE values is observed (Fig. 12¢.f,i). During the assimilation period
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Figure 10. Analysis ensemble mean RMSEs at t = 30 years as a function of the inflation factor and the localization radius for different
across-track spacing of elevation data for (a-c) friction coefficient, (d-f) bed elevation, and (g-i) ice thickness. The grey shading indicates

experiments that diverge by t = 30 yrs. The black box in each panel represents the minimum RMSE for each configuration.

the performance for bed topography and ice thickness is more similar across all uncertainty levels, compared to using the 5 km

across-track data,

With the 1 km gridded elevation data, increasing uncertainty levels reduce the accuracy of bed and ice thickness estimation,
while the friction coefficient does not show a clear pattern with varying uncertainty in surface elevation (13a,d,g). With coarser
grid data (10 km and 20 km), hewever—the DA performance dees-not-vary-significantlyfor all three variables shows less

variation across different uncertainty levels during the assimilation window, compared to the 1 km grid data (13b,e,h and ¢ f,i
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4 Discussion

In this study, we h e-show that the EAKF can
effectively estimate both model state and parameter estimates for a semi-idealized glacier, especially in fast-flowing regions
—(e.g., velocity larger than 100 m/yr), which corresponds to regions around the grounding line, where the signal-to-noise
ratio of velocity is relatively high. These results are consistent with those from previous studies (Gillet-Chaulet, 2020; Bonan
et al., 2014, 2017), yet our approach employs a 2D model with unstructured meshes, enhancing its applicability to larger-
scale ice sheet modeling simulations. Similar to earlier studies, assimilating new observations over the first few years signif-

icantly improves the accuracy of bed topography, friction coefficient, and ice thickness estimates in fast-flowing regions. A

temporal decline in DA performance is observed during the assimilation period, likely due to a temporary mismatch between
the model forecast and the observations, potentially caused by nonlinearities in the response to assimilated observations. As the
assimilation continues, the filter gradually corrects these discrepancies, which leads to a subsequent reduction in RMSE. These
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Table 2. List of experiments using various across-track surface observations and analysis mean RMSEs t = 30 years.

Experiment Name RMSE_C (Pam™'/3a'/?) RMSE_B (m) RMSE_H (m)
Twin experiment (o, = 5 m and o, = 10 m/yr)  296.01 47.63 46.87
Track_5km_oy,_5_o,_10 306.89 49.06 4777
Track_5km_o,_10_o,,_10 304.96 50.65 48.96
Track_5km_o,_15_o,_10 305.62 51.71 50.14
Track_5km_o,_20_o,_10 313.61 54.02 52.56
Track_10km_o_5_o,_10 338.28 53.69 51.18
Track_10km_o_10_o,_10 335.26 52.84 50.62
Track_10km_o_15_0,_10 350.69 56.86 53.19
Track_10km_o_20_o,_10 341.78 56.45 54.17
Track_15km_o_5_o,_10 410.10 62.79 59.59
Track_15km_o_10_o,_10 429.70 73.43 70.03
Track_15km_oy_15_0,_10 414.05 72.55 65.96
Track_15km_o_20_o,_10 389.90 69.62 65.74

fluctuations are not uncommon in ensemble data assimilation systems, especially in complex, nonlinear models where localized
error growth can temporarily degrade performance (Carrassi et al., 2018). Although the slow-flowing regions—where the rel-

ative error in velocity observation is higher than in fast-flowing regions—show only limited improvements in basal conditions
compared to the fast-flowing region, they still show notable improvements up to 300 km inland from the initial grounding lines
(x = 150 km). These improvements allow more accurate forecasts of ice volume loss for up to 200 years, as the grounding line

retreats by approximately 150 km (to x = 300 km) by the end of the reference simulation.

The-initial-ensemblesfor-the-model parameters—bed-For the initial estimates of the model parameters—bed topography and
friction i ¢ 3 i i i i i

assume reasonably accurate prior knowledge of initial conditions and prescribe covariance models to establish spatial correla-

tion for-both-parameterswithin each parameter. In real glacier applications, however, these assumptions may not hold. For bet-
ter DA results, more accurate measurements and/or prior information for bed conditions are required, such as additional radar
measurements of bed topography and potential relationships between geophysical observations (e.g., seismic or radar-based
measures) and friction (Kyrke-Smith et al., 2017; Haris et al., 2024). Alternatively, multi-model reconstructions of parame-
ters could be leveraged to generate initial ensembles of parameters and determine the ensemble spread (Gillet-Chaulet, 2020).

Our DA results, along with localization and inflation factors, may depend on assumptions en-about how the initial ensemble
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Table 3. List of experiments using various gridded surface observations and analysis mean RMSEs at t = 30 years.

Experiment Name RMSE_C (Pam™'/3a'/?) RMSE_B (m) RMSE_H (m)
Twin experiment (o, = 5 m and o, = 10 m/yr)  296.01 47.63 46.87
Grid_lkm_o},_5_0,_10 291.38 48.65 46.81
Grid_lkm_oy,_10_o,,_10 288.54 48.62 47.43
Grid_lkm_oy,_15_o,,_10 291.29 53.89 53.14
Grid_lkm_oy,_20_o,,_10 290.66 54.88 53.97
Grid_10km_o_5_o,_10 437.48 67.58 63.72
Grid_10km_oy,_10_o,_10 423.84 66.76 63.99
Grid_10km_oy,_15_0,_10 430.58 65.96 62.63
Grid_10km_oy,_20_0,_10 427.20 66.61 63.20
Grid_20km_o_5_o,_10 410-10-432.50 80.07 80.76
Grid_20km_oy,_10_o,_10 429.70-433.64 80.69 79.96
Grid_20km_oy,_15_0,_10 4446543191 77.42 78.97
Grid_20km_oy,_20_0,_10 389:96-433.06 77.84 79.39

is generated. Exploring how gaps in prior information affect DA results could alse-provide valuable insights, particularly in
understanding the robustness of DA results when challenged with realistic data limitations and parameter uncertainties.

The robust performance of EnlkF-the EAKF in constraining the basal conditions and initial ice sheet state for future projection
has been achieved with a-relatively-small-ensemblesize-the ensemble size of 30, the smallest explored in this study, consistent
with previous studies performing data assimilation for flowline models (Bonan et al., 2014; Gillet-Chaulet, 2020). We further
show that increasing the ensemble size allows robust DA performance over a wider range of localization radii and inflation
parameters-factors and produces only marginally improved performance in retrieving basal conditions with shorter assimilation
windows. Therefore, a majority of experiments performed in this study use an ensemble size of only 50 members, which we

find to be a reasonable tradeoff between data assimilation accuracy and computational efficiency. Nenetheless;for-eases-with

Hene A1) A-—n mMete
W >,

Larger ensemble sizes could improve data assimilation performance but may also introduce challenges that must be carefully
managed, particularly in long assimilation periods or highly nonlinear systems, as in this study. In our experiments, it is possible
that the inflation and localization parameters used for the 100-member ensemble were not optimal for later assimilation periods,
leading to slightly degraded performance after year 15. This suggests that filter performance does not necessarily scale linearly
with ensemble size and highlights the importance of adaptive inflation/localization techniques or diagnostics for dynamically
adjusting filter settings.
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Figure 12. The evolution of ensemble mean RMSEs

observationsfor (a-c) friction coefficientand-, (d-f) bed topography, and (g-i) ice thickness under different across-track spacings of surface
elevation observations and varying levels of surface elevation uncertainty.

Inflation-and-localization-techniques-have-been—used-In this study, we use spatially and temporally uniform inflation and
localization techniques to stabilize the filter, similar to previous studies (Bonan et al., 2014; Gillet-Chaulet, 2020). The optimal

inflation factors for this study (1.10 — 1.18) are similar to values (0.98 — 1.14) from earlier studies (Bonan et al., 2014; Gillet-Chaulet, 2020

. For localization radius, the best results were obtained with a radius of 4 — 8 km;-eompared-, Choosing too small of a radius
causes the EAKF to underestimate spatial error correlations and diverge with time. In our experiments, this is evident when the
localization radius falls below the specific threshold of each variable (e.g., 4 km for friction and 6 km for bed topography).
The optimal localization radius found in this study compares to previous flowline model studies that suggested a-widerrange
toptimal localization radii of 4 — 16 km for a grid size of 0.2 km (Gillet-Chaulet, 2020) and 80 — 120 km }-dependingon-the
gridsize (Bonan-etal; 204 Gillet-Chaulet; 2020)for a grid size of 5 km (Bonan et al., 2014). The differences in the optimal
localization radius likely comes from the differences in model configuration, dimensionality, and spatial resolution. Qur study.
uses a 2D unstructured mesh with relatively fine spatial resolution, whereas previous studies using flowline models with coarser
grids may require broader localization to account for longer correlation length scales. The localization radius is determined
through a set of sensitivity experiments and is based on the expected spatial correlation length scale of the parameters, which
may depend on the size of flow features or stress balance regimes. Given our use of a 2D unstructured mesh, adaptive inflation

(El Gharamti, 2018) and localization (Bishop and Hodyss, 2007) can be viable alternatives, as each node has a different number
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Figure 13. Same as Fig 13, but with-using different grid reselutionresolutions for surface elevation observations.

of observations to be assimilated.
1 ol density.

In our twin experiment and projections, we find that assimilating more observations years to estimate basal conditions

improves the accuracy of model projections from-the-estimated-states—with reduced uncertainty through the correspondin

rojection period. Without data assimilation, individual ensemble members show a large spread of future projections due to

nonlinear feedbacks triggered by small deviations from the true basal field. While the deterministic forecast, initialized with
the ensemble mean of the basal fields, captures the overall trend in ice volume change from the reference simulation, reducin

local extremes, it still yields consistent discrepancies throughout the assimilation period. Assimilating surface observations
for up to 15 years results in ensemble and deterministic ice volume loss forecasts that closely match the reference simulation

for up to 100 years, with much reduced ensemble spread and ice volume loss difference limited to approximately X%%-300 Gt
(compared to XX-~2000 Gt with no assimilation). Extending the assimilation window to 30 years allows forecast simulations

to match the reference simulation for up to 200 years. OurNotably, the 200-year reference simulation includes a phase of

accelerated volume loss after 130 years, which may represent a plausible sea level rise scenario for the coming century. Our
results suggest that assimilating observations even before such nonlinear transitions can still reproduce accurate long-term

rojections—provided that the model state and parameters are well constrained. Our projections further show a better match
to the reference simulations compared to those from a previous study (Gillet-Chaulet, 2020), potentially due to our use of

more observations with smaller error variance (o, and 0},). The method used in-thisstudy-that-here, which assimilates time
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series of observations, maintains consistency with transient changes ;-providing-in the model state and provides an optimal

initial condition for changing glaciers. Farther-studies-invelvingreal-glaciers-could-extend-this-method-to-ice-sheet-wide-sea

In this study, we focus on estimating two constant-in-time parameter fields and the model state using annual observations
over assimilation windows of varying lengths (5, 15, and 30 years). This choice is motivated by both the timescales associated
with glacier dynamics and the current capabilities of observing platforms. However, the relative importance of the assimilation
window length (i.e., total time span) versus the number of assimilation cycles (i.e., update frequency) remains an open
question. To explore this, we conduct an additional experiment using semiannual observations under the same setup as the
twin experiment (Fig. Al). The results suggest that semiannual observations lead to a faster reduction in RMSE for both the
model state and parameters. However, the improvement at the end of the 30-year assimilation window, compared to annual
assimilation, remains limited. This limited benefit is likely due to the nature of the parameters and state variables considered in
this study—constant-in-time fields and annual-scale variability—which allow sufficient information to accumulate over time
for a fixed target. Once sufficient assimilation cycles have passed, the parameters become well constrained, and more frequent
updates offer little additional improvement. These findings suggest that, for slowly varying or static variables, increasing
observation frequency can accelerate convergence toward the true state and parameter values, but may not results in additional
improvement beyond a certain number of assimilation cycles. In contrast, if parameters or states change more rapidly or
nonlinearly, a longer assimilation window or more complex update schemes might be needed to achieve similar improvements.
Future work should explore the sensitivity of EnKF performance to both assimilation frequency and window length to identify.
optimal configurations for real glacier systems with time-varying parameters and limited observation periods..

The purpose of our OSSE-experiments-in-thisstudy-is-to-demenstrate-the-capabilities of OSSEs-OSSEs—which use synthetic

observations to evaluate the potential benefits of different observing strategies—is to demonstrate their capabilities within the
ISSM-EnKF framework. Our OSSE experiments show that an EnKF can effectively assimilate various types of surface ele-

vation observations (both grid and track) to evaluate the impact of different observational products. Theresults-highlight-that

n dats slin-determininotheoffe anaceof DA foractimatineteacheatm

find that higher spatial resolution in elevation observations substantially improves DA performance. For example, gridded

data at | km resolution and track-based data with 5 km to—+5-knm)-and-grid-size-(from+km-to-across-track spacing yield

results comparable to those in our twin experiment with full coverage. In principle, higher-resolution data (e.g., 100 m) could

further improve data assimilation performance by providing finer spatial detail on surface features and more precise constraints
on model parameters. However, the benefit of finer resolution may decrease beyond a certain threshold due to increased
observational noise, modeling uncertainties, and the inherent spatial correlation scale of the parameters being estimated. In

contrast, lower-resolution datasets—such as 10-20
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decline in DA performance. In these cases, the filter struggles to resolve finer-scale variations in the ice sheet state, resultin
in larger RMSE values. Additionally, the marginal improvements or increases in RMSE observed at coarser resolutions (10

kmand-20-km)-after 10-15 years suggest that, beyond a certain spatial threshold, additional data points do not substantially
improvelong-term-parameter-and-improve—may even degrade—Ilong-term parameter and the model state estimations (Fig. 12
and 13). These results highlight the importance of balancing observational density and coverage to maximize DA performance

over the historical period.
The OSSE experiments also provide a basic demonstration of the impact of observational error on DA performance, with

particular benefits of lower surface elevation uncertainties on bed topography and ice thickness estimation --while-when using

high-resolution data. These benefits become less pronounced when lower-resolution elevation data are used. In contrast, fric-
tion coefficient retrieval appears-tess-sensitive-shows no clear pattern in response to the prescribed surface elevation uncer-
tainty—With-, regardless of the data resolution. However, when we vary velocity observations errors while keeping elevation
uncertainty constant, we observe that reducing velocity errors improves the estimation of the friction coefficient (Fig. A2),

as well as bed topography and ice thickness estimates. Given our semi-idealized model domain and simplified error propa-
gation methodfer—surface-elevation, we do not derive specific error thresholds for effective ice sheet model parameters and

state estimation. However, we note that a proper specification of observation uncertainty is likely critical for the-EnkF-to

asaccurate DA performance, and the relative

importance of velocity versus elevation uncertainty depends on the specific variable being estimated.
Despite the promising results demonstrated in this study, several limitations exist that must be acknowledged and addressed

in future research. First, our study utilized-utilizes yearly synthetic observations with uniformly homogeneous error variance,
which do not fully capture the complexities and variability present in real observations. In addition, we assumed-assume full
spatial and temporal coverage of velocity data to isolate and focus on the impact of surface elevation observations. While this
simplifies the analysis, it is an idealized scenario; future research should explore more realistic data seenariosconfigurations,
including partial velocity coverage, and assess the trade-offs between observation density, cost, and assimilation performance.
A joint eostand-benefit-analysis of surface and velocity observations would provide a more robust understanding of their relative
contributions to improving model estimates. Future research should also consider more sophisticated methods to account for
observations from diverse sensors, coverage, varying periods, state dependence, and collection frequencies, as well as their
associated error covariance matrices. This includes conducting more comprehensive OSSEs with a broader range of potential
observations.

Additionally, this study focused on only one filter algorithm with a limited range of inflation and localization parametersfactors,
which may not adequately explore the full potential and scalability of the DA method. Future studies should investigate differ-
ent types of filter algorithms and a variety of inflation and localization techniques to better optimize the assimilation process
for ice sheet modeling. Furthermore, incorporating more comprehensive climate processes could enhance the predictive capa-
bilities of our simulations. For example, integrating the firn process into the model could help not only in accurately modeling

the grounding line position (Gillet-Chaulet, 2020) but also in properly determining observation errors in the DA process.
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Although ensemble-based data assimilation offers conceptual and practical advantages, its computational cost is often
considered a limiting factor. In this study, we did not perform a direct computational comparison between ensemble and

variational (transient) DA a

For example, variational DA in ISSM relies on automatic differentiation (AD), which can be memo

ensemble DA increases computational cost primarily by requiring multiple forward simulations. However, ensemble approaches
can be parallelized, as each ensemble member’s forward run can be distributed across separate cores or nodes. and the DA
process here is managed through DART, which supports parallel computing. While formal benchmarking was beyond the
scope of this study, it would be valuable in future work to quantify computational trade-offs across DA methods in ice sheet
modeling.

Our experimental design also assumed perfect knowledge of all model parameters except for basal friction and bed topography.
This choice was made to facilitate learning about the DA system in a controlled setting and to keep the experimental setup more
tractable, while also allowing for direct comparison with Gillet-Chaulet (2020). However, this a;
experiments. In practice, parameters such as ice viscosity and climate forcing are also poorly constrained and may vary in
both space and time. For example, uncertainties in viscosity may interact with basal friction during assimilation, potentially
leading to parameter compensation effects. Future sensitivity studies should explore how mis-specified background parameters
(e.g., biased viscosity fields) affect the estimation of other parameters and whether such compensation leads to biased or
unstable forecasts. Although this study focuses on estimating two constant-in-time parameter fields (friction coefficient and
bed topography), the DART-ISSM framework is well-suited for the joint estimation of multiple spatially or temporally varyin
parameters. Extending the current configuration to include additional unknowns—such as ice viscosity, accumulation rate,
or time-varying boundary conditions—represents a valuable next step toward more realistic data assimilation in ice sheet
modeling.

roach limits the realism of

5 Conclusions

In this study, we introduce an ensemble Kalman filter-based data assimilation (DA) framework to calibrate a 2D plan-view ice
model. Using a synthetic twin experiment, we showed that the ensemble DA method effectively recovers basal conditions (fric-
tion coefficient and bed topography) and ice thickness after several assimilation cycles. Assimitating-more-observations-While a
temporal decline in DA performance is observed during the assimilation period—likely due to model nonlinearity_—assimilating
more observations generally improves the accuracy of the model state as-expeeted—The-model-state-with-assimilation—of
strface-observations—tup—to-and parameters. With 30 yearsreproduced-projected-changes—intee-volime-years of assimilated
surface observations, the deterministic forecast reproduces the total ice volume change of the reference simulation for-tp-to
200-years-with-great-aceuracywithin approximately 1% over a 200-year period. We also conduct Observing System Simu-

lation Experiments (OSSEs) using the same model domain as the twin experiment but with synthetic elevation observations
along ground track and gridded data that emulate the ICESat-2 ATL11 and ATL15 products, respectively. These experiments
presented-present the potential surface elevation product that can be used to accurately estimate bed conditions and the model
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state of the idealized glacier. Different-The results highlight the crucial role of spatial resolution of surface elevation data
in the DA performance. In addition, we find that varying levels of observational uneertainty-could-improve-the-assimilation
restltsuncertainty—not necessarily smaller—can lead to improved assimilation outcomes, which highlights the importance of

a more accurate representation of observation uncertainty in the DA process. The ensemble DA framework, which assimilates
observations from multiple time points, holds significant potential for application to real glaciers to better estimate the current
and future changes in ice sheet state variables. This framework also provides advantages for OSSEs aimed at testing various
observational settings, as it requires less numerical effort than variational methods that assimilate time series of observations,

making it a practical and effective tool in ice sheet modeling.

Code and data availability. The ISSM is open source and the source code of ISSM is available at https://github.com/ISSMteam/ISSM. The
source code of DART is available at https://github.com/NCAR/DART (DART, 2024). The script for the results and figures are available at
https://doi.org/10.5281/zenodo.14722078.

Appendix A

We conduct additional experiments to assess the impact of assimilation frequency and different levels of velocity uncertaint

on the results. We use full spatial coverage of surface velocity and elevation data—as in the twin experiments—to avoid the

influence of spatial data gaps (e.g., in surface elevation).
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Figure Al. The evolution of mean analysis RMSE for (a) friction coefficient, (b) bed topography, and (c) ice thickness, using full spatial

coverage of surface velocity and elevation data (as in the twin experiments), under different assimilation frequencies (blue: annual, red:

semiannual
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Figure A2. The evolution of mean analysis RMSE for (a) friction coefficient, (b) bed topography, and (c) ice thickness, using full spatial

coverage of surface velocity and elevation data (as in the twin experiments), under different levels of uncertainty in surface velocit

observations.
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