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Estimation of the state and parameters in ice sheet model
using an ensemble Kalman filter and Observing System
Simulation Experiments
— Authors’ response (RC1) —

Youngmin CHOI et al.

August 8, 2025

General comments

The manuscript by Choi et al. presents a data assimilation framework to improve the projection
capabilities of ice sheet models. Specifically, the performance of an Ensemble Adjustment Kalman
Filter in constraining the model state (ice thickness) and basal conditions (basal friction coefficient
and bed topography) of a 2D plan-view ice model is assessed. Their results indicate that assimi-
lating more observations generally increases the accuracy of model projections, with projections
for up to 200 years in close agreement with the reference simulation. The performance of the data
assimilation method is sensitive to the observational error as well as the cross-track spacing and
grid resolution of surface elevation data.

[ believe the science behind this study is sound and aligns with the focus of The Cryosphere (TC).
However, the presentation of the methodology lacks clarity, at times adding avoidable confusion
(e.g., the introduction of both acronyms EnKF and EAKF). This overall issue is addressed in more
detail in the specific comments below, but I strongly suggest the addition of a flowchart outlining
the methodology (ice sheet model and data assimilation) and experimental design (twin experiment
and OSSEs).

We thank the reviewer for reviewing the manuscript and constructive comments. We address spe-
cific comments below as clearly as possible. We appreciate the suggestion to include a flowchart
outlining the methodology and added it into the revised manuscript (Figure 1).

Furthermore, parts of the experimental design are currently placed within the results section and
key aspects of the results are not addressed (e.g., why is the RMSE C for Grid_20 km_o},_20_0,,_10
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smaller than for the same grid resolution with smaller uncertainties as well as all 10 km grid reso-
lution experiments?). Considering the performance of the data assimilation method is sensitive to
the uncertainty in surface elevation observations, I believe also determining the effect of various
uncertainties in the velocity data would add further value to the manuscript (perhaps as supple-
mentary material). Finally, potential reasons/explanations for model results are often missing, e.g.,
why is the range of optimal localization radius (4 - 8§ km) a lot smaller than suggested by previous
studies (4 - 120 km)? I recommend the authors also take my specific comments listed below into
account.

We agree with the reviewer that the some of the results lack sufficient explanation. In the revised
manuscript, we added more explanation for our results by addressing specific comments listed
below. Also we added additional experiments varying uncertainties in the velocity data in the
appendix.

Specific comments

L25: This sentence is very similar to the second sentence in the introduction. Instead, consider
opening with a sentence about the different DA methods (variational vs. methods leveraging time-
varying observations). Then proceed to discuss advantages/disadvantages of each.

We revised this sentence. Now it starts with “Data assimilation (DA) methods for ice sheet mod-
eling generally fall into two categories: snapshot and transient inversions, which use single-time
observations and time series of observation, respectively.” and continues to explain two methods.
L28: Double brackets.

Fixed.

L33: Consider starting a new paragraph before Alternatively.

We revised it to start a new paragraph here.

L37 — assimilation period: Readers unfamiliar with DA might not know what exactly you refer to
here. It becomes a lot clearer later on, but it would be nice to have a brief definition here (similar

for other DA-specific terms, e.g., data denial experiments in L61).

We added brief definitions of several DA terms for clarity, including the assimilation period and
data denial experiments.

LA40: Move further up to the rest of the discussion on variational methods.
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We revised this sentence to include the both static and transient methods.

LA42: Consider introducing the term ensemble DA in general before describing the specific EnKF
(e.g., ensemble DA vs. variational methods).

We added an introductory sentence for the ensemble DA in general.
L54: Why are ensemble DA methods less commonly used in ice sheet modelling?

We added the following new paragraph to the revised manuscript in response to this point:

“The ice sheet modeling community has traditionally relied on snapshot inversion methods based
on adjoint-based techniques for parameter estimation, using time-invariant mosaics or composite
data (e.g., multi-year averaged surface velocity fields; Morlighem et al., 2010). Compared to these
methods, ensemble DA approaches have been less commonly used in ice sheet modeling, primar-
ily due to historical limitations in observational data, computational cost, and the challenges of
representing uncertainty in ice sheet models. Ensemble approaches rely on time-varying obser-
vations with well-characterized uncertainties, but surface observations for ice sheets have often
lacked reliable uncertainty estimates, making them less suitable for ensemble DA. Additionally,
ensemble methods typically require multiple forward model runs, making them more computation-
ally demanding than snapshot inversion approaches. Another limitation is that poorly understood
or unquantified errors in the ice flow model itself may limit the reliable estimation of covariances
using ensemble statics.”

L63 — (OSSEs)(OSSEs, ...).
Fixed.

L65 — appropriate observation error distribution: How do you determine if the distribution is
appropriate or not?

We revised this to “a prescribed observation error distribution representative of real measurement
uncertainties”.

L71: Although it is addressed in more detail in the next sentence, I believe adding (ice thickness)
Jjust after model state would add clarity.

Added.

L75 — estimated state and parameters: For consistency, I recommend using estimated model state
and parameters throughout the manuscript.
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Now, we use consistent terminology (model state) throughout the manuscript.

L75 — true reference values: At this point in the manuscript, it is not clear what the true reference
values are and how you obtain them.

We revised it to “true values”.

L83-84: Remove this sentence and add the reference to the description of the specific sections in
the text above.

We removed this sentence and added reference to the description of the specific sections in the text.
L86-88: Repetition of the text just before the Methods section.

We revised this paragraph as follows:

“This section describes the ice sheet model configuration (Section 2.1), the ensemble DA frame-
work (Section 2.2), and the experimental designs used in this study (Section 2.3 and 2.4). We first
outline the twin experiment setup, which tests the ability of the DA framework to recover the model
state and parameters under idealized conditions. We then describe the OSSEs, which explore the
effects of different observational strategies on model initialization. Our methods are summarized
in Figure 1.”

L101: I am not familiar with this specific method, but a standard deviation of 500 m seems quite
large considering the bed varies only between zb,deep = -720 m and ~500 m (really difficult to see
in Fig. la)

The midpoint displacement method generates a 2D surface by iteratively subdividing a grid, assign-
ing random heights to corner points, and interpolating midpoints with added random displacement.
The magnitude of the displacement is scaled by a standard deviation that decreases with each iter-
ation as 29°H  where H is the roughness factor, set to 0.7 in this study. While the initial standard
deviation of 500 m may seem large relative to the vertical range of the bed topography, it is used
as a starting point in the midpoint displacement algorithm and is progressively reduced at each
iteration based on the roughness factor. This results in a realistic, spatially correlated roughness
pattern with limited high-amplitude variations. Additionally, the current value of 2 geep = 720m
represents the base shape of the bed before roughness is added and the final bed elevation reaches
depths of approximately -1,500 m. We added these details to the text and revised the Fig. la as
suggested below.
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Fig. 1: I believe using two separate 2D plots instead of the 3D plot would make the identification
of certain details and interpretation of the plot a lot easier. As you are already showing the bed
topography in Fig. 2, I recommend combining Fig. 1 and 2 into a single plot with panels a: ice
surface elevation, b: bed topography, and c: ice velocity. Note that the rainbow colour scheme is
not in line with the journal guidelines. You can check all of your plots with the colour blindness
simulator (https://www.color-blindness.com/coblis-color-blindness-simulator/). The fonts in panel
b are too small and I recommend using a different colour for your contour lines.

We revised this figure as suggested.

Fig. 2: Why are you using such an asymmetrical (about y=40 km) bed topography compared to
the commonly used symmetrical approach in idealized studies? The y label in Fig. 2 indicates the
domain ranges from 20 to 100 km, whereas in Fig. 1 it is 0 to 80 km. You also might want to remove
the white margins at the top and bottom. How can the bed elevation be -1500 m when Eq. 1 limits
the bed to zy, geep = -720 m?

Applying the midpoint displacement method results in an asymmetrical bed topography, which
may better reflect realistic subglacial features, although we use an idealized twin experiment in this
study. We included this explanation and revised the figure as suggested.

L103: Consider adding an additional panel (d) showing the triangular mesh to the new Fig. 1.
Are you using adaptive mesh refinement, e.g., following the grounding line?

We used an adaptive mesh based on ice velocity and included a new figure (Fig. 1(d)) in the revised
manuscript.

L104: I suggest adding another panel (e) for the basal friction coefficient to Fig. I or at least refer
to Fig. 6a here.

We added a reference to Fig. 6a to avoid repetition.

Eq. 5: In case you are working in LaTeX, I recommend using left( and right) to get brackets of
the correct size.

Fixed the bracket.
Eq. 6: Same as for Eq. 5

Fixed.



142 L114: Is Cin Eq. 7 different from the one described in Eq. 4? If not, then remove C is a friction
143 coefficient.

144 (' is the friction coefficient, and C'_x and C_y are the x and y components of C, respectively. We
145 added this to the text.

146 LI117: Remove equal.
147 Removed.

148 LI124: Do you consider a melt rate of 200 m/yr realistic given that maximum present-day melt
149 rates are around 100 m/yr?

150 We set the melt rate to 200 m/yr at a depth of 800 m, which results in an actual melt rate of
151 approximately 170 m/yr beneath the ice shelf. We agree that this melt rate exceeds the maximum
152 observed present-day basal melt rates. However, in this study, we chose this value to create a strong
153 dynamic response in the model over a 200-year forecast period, ensuring that the effects of data
154 assimilation could be clearly evaluated. The elevated melt rate is not meant to represent a realistic
155 present-day climate, but rather to serve as a diagnostic tool in the context of a twin experiment. We
156 clarified this in the revised manuscript.

157 L125-127: This belongs into results.

158 This describes the process of creating the reference run for the twin experiment rather than present-
159 ing model results. We revised the text to clarify it.

160 L129: Sec. 2.3 and 2.4 are referenced before 2.2.
161 We deleted this sentence.

162 LI134: modified version of the Ensemble Kalman Filter? As I mentioned above, using EnKF and
16s  EAKF is confusing, especially since EAKF is introduced but only used within this paragraph.

164 We revised this paragraph to clarify the use of data assimilation terminology throughout the manuscript.

165 L136-143: This is where I think a flowchart would really help the reader to follow the details of
166 your method. Ideally, the flowchart should outline the details of the EAKF and how it relates to
167 your specific study. For example: How do ensemble members differ? What exactly is your model
168 forecasting? How is the observation window specified? Which ice sheet variables are considered
169 in the state vector? What are the state variables?
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We added a flowchart (Figure 1) and a reference to that in this paragraph.

L142: How would adding extra variables, like surface velocity, to the state vector affect your
results?

Surface velocity is a diagnostic variable; it is not part of the state vector. We added this in the
revised manuscript as follows:

“The state vector is augmented to include both prognostic variables and model parameters to be
estimated. Under the stress balance of SSA, the velocity is a diagnostic variable, and due to the
flotation condition, ice thickness is the only prognostic variable (Gillet-Chaulet, 2020). In this
study, the state vector includes variables ice thickness (state variable), and basal friction coeffi-
cient and bed topography (model parameters), allowing joint estimation of the model state and
parameter fields through the DA process (Fig. 1).”

L143-144: EnKFs or EAKFs? Does this challenge arise in your study? What is the ensemble size?
What are the independently observed degrees of freedom in your case?

Here, we explain the general case for the ensemble Kalman filter. We revised this paragraph to
improve clarity and better distinguish the general description from our specific implementation.

L146: stability of the EnKF?

We changed it.

L150: Add more detail about what exactly you mean by sampling errors.

We added “Sampling errors occurs because the ensemble based covariance is only an approxima-
tion of the true covariance, and small ensembles may not adequately capture variability across the
full state space” to clarify.

L151: What localization and inflation parameters are you examining?

We added a range of both localization radii (2 to 20 km) and inflation factors (1.00 to 1.20).

Sec. 2.3: You either need to embed this information into the previous section or clearly outline at
the beginning of the methods section that you are first describing the EnKF in general and then how

this general structure relates to your specific setup (with references to sections). Again, a flowchart
linking the general structure to your experiments would be helpful.
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We outlined the description of the methods at the beginning of the Methods section with a flowchart.
L154: EnKF or EAKF? If EnKF, then why bother introducing EAKF?

EnKF is the general term, and EAKEF is the specific approach we use in this study. We clarified this
in the revised manuscript.

L164: Why did you decide to use lower standard deviations? What is the plausible range?

We selected lower standard deviation values (5 m for surface elevation and 10 m/yr for velocity)
to provide a simple and conservative baseline for the twin experiment. While these values are
lower than those used in Gillet-Chaulet (2020), they are still within the plausible observational
uncertainty ranges reported in recent literature. For example, Dai and Howat (2017) report vertical
elevation uncertainties below 5 m in well-constrained regions, and Mouginot et al. (2017) report
horizontal velocity uncertainties ranging from 5-20 m/yr depending on the region. We chose values
at the lower end of these ranges to isolate the performance of the DA framework under favorable
conditions, and we explore sensitivity to larger uncertainties in the OSSEs presented in Section 3.2.
We clarified this in the revised manuscript.

L178-179: Are you assuming that the friction coefficient and bed topography are uncorrelated?

While we do not prescribe a prior correlation between them, the EAKF uses the ensemble-based
cross-covariance to update both fields during the assimilation process. We included this explanation
in the revised manuscript.

L184: What radii did you explore?

The radii explored in the experiment ranged from 2 km to 20 km. We added this information to the
text.

L186: Ensemble size of 30 to 100, but what steps exactly?
We tested ensemble sizes of 30, 50, and 100, and specified this information in the revised text.

Fig. 3: The font size is too small. This is generally the case for a lot of plots and I will refrain from
mentioning it again afterwards. Otherwise, I think this is a great figure supporting the description
of your OSSEs.
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We increased the font size for figures.

L2211 — reference model mesh: Do you mean the mesh used in the reference simulation?
Yes, we clarified this in the text.

L230-231: This information needs to come earlier.

We moved this information to the Method section.

L234: Can you provide any insight as to why these values lead to the minimum RMSEs?

The localization radius is determined through a set of sensitivity experiments and is based on
the expected spatial correlation length scale of the parameters, which may depend on the size of
flow features or stress balance regimes. We added some discussion on this point in the revised
Discussion section.

L238: Why is that expected?

Larger ensembles generally provide better approximations of the true error covariance, reducing
the need for artificially inflating the covariance to compensate for sampling errors. We clarified
this explanation in the revised manuscript.

L240: You are using inflation parameters in the text but inflation factor in Fig.4.
We revised it to “inflation factor” for consistency.

L.243-245: For ensemble size 100, the RMSE for friction coefficient does NOT continue to decrease

steadily (increase at t=7a). The other two ensemble sizes also show a small increase just after 5
vears. Similar peaks are also visible for the bed topography and ice thickness. What is causing this
increase in RMSE?

We examined the small increase in RMSE in early assimilation years and found that it is likely
due to a temporary mismatch between the model forecast and the observations during this period,
potentially caused by transient model dynamics or nonlinearities in the response to assimilated
observations. As the assimilation continues, the filter gradually corrects these discrepancies, which
leads to a subsequent reduction in RMSE. These fluctuations are not uncommon in ensemble data
assimilation systems, especially in complex, nonlinear models where localized error growth can
temporarily degrade performance. We added this behavior in the revised manuscript (Discussion).
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L245: A larger ensemble size (100 vs. 50) actually leads to a larger RMSE after t=15 a for all
panels in Fig. 5. Why do you think this is the case? And what does it mean for the design of future
experiments?

While larger ensemble sizes generally improve the accuracy of error covariance estimates, they can
also increase the sensitivity of the filter to model errors or sampling noise if not properly tuned.
In our experiments, it is possible that the inflation and localization parameters used for the 100-
member ensemble were not optimal for later assimilation periods, leading to slightly degraded
performance after year 15. This suggests that filter performance does not necessarily scale linearly
with ensemble size. It also emphasizes the importance of adaptive inflation/localization techniques
or diagnostics for dynamically adjusting filter settings. We added this in the Discussion section of
the revised manuscript as a new paragraph:

“Larger ensemble sizes could improve data assimilation performance but may also introduce chal-
lenges that must be carefully managed, particularly in long assimilation periods or highly nonlin-
ear systems, as in this study. In our experiments, it is possible that the inflation and localization
parameters used for the 100-member ensemble were not optimal for later assimilation periods,
leading to slightly degraded performance after year 15. This suggests that filter performance does
not necessarily scale linearly with ensemble size and highlights the importance of adaptive infla-
tion/localization techniques or diagnostics for dynamically adjusting filter settings.”

L248: Why did you choose a localization radius of 4 km when bed topography and ice thickness
showed a minimum RMSE for 6 km with a significant increase for smaller radii?

The minimum RMSE for friction occurs at a localization radius of 4 km and this radius produces
decent results for bed topography and ice thickness as well. We chose 4 km for illustrative purposes
and added this in the text.

L250: Somewhere you should state explicitly that a localization radius of 4 km and an inflation
parameter of 1.12 are your optimal DA configuration.

The optimal inflation factor and localization radius depend on the parameter being estimated. We
chose 4 km and 1.12 for illustrative purposes and clarified this in the text.

L254-256: You describe the results for the friction coefficient and bed topography, but what about
the ice thickness?

The pattern in the ice thickness results is very similar to that of bed topography. In our model setup,
surface elevation is defined as the sum of ice thickness and bed topography (surface = thickness
+ bed). Therefore, as surface observations are assimilated, improvements in bed estimates are
reflected in the estimated thickness field. We clarified this relationship in the revised manuscript.
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L257-262: This is a description of your experimental design and should be in the methods section.

We moved this to the Methods section.

L264: Just to make sure I understood it correctly. The deterministic forecast uses the mean
(across all ensemble members) basal friction coefficient and mean bed topography but is a single
simulation (compared to running a simulation for all ensemble members and then calculating the
ensemble mean).

Yes. we clarified this in the text.

L268-269: 1 think it is quite interesting that the deterministic forecast, which is based on the
ensemble mean basal conditions, follows the reference simulation relatively closely while most of
the individual ensemble member simulations show a much smaller ice volume change. I suspect
this is due to non-linearities in the system, but it might be worth having a closer look at this.

We agree with the reviewer’s point. While each ensemble member represents a physically plausible
realization of the basal parameters, small deviations from the true field can lead to large differences
in modeled ice volume due to non-linear feedbacks. However, the deterministic forecast, initialized
with the ensemble mean of the basal fields, appears to capture the overall structure of the true
conditions more effectively, reducing local extremes and yielding results that are more closer to the
reference simulation. We added this discussion to the revised manuscript (Discussion).

L271-273: So assimilating more observations leads initially to a better agreement but increases
the difference in ice volume change at the end of the forecast period. This should be addressed in
more detail in the discussion.

Assimilating more observations leads to better agreement throughout the forecast period, including
at its end. We included specific values for ice volume loss to support this comparison in the revised
manuscript.

L273-274: Discussing the increase in the rate of mass loss after 100 a and its implication for
sea level rise projections over the next century (compared to 200 yr projections) could be a nice
additional takeaway.

We added this to the Discussion section as follows:

“Notably, the 200-year reference simulation includes a phase of accelerated volume loss after
130 years, which may represent a plausible sea level rise scenario for the coming century. Our

11
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results suggest that assimilating observations even before such nonlinear transitions can still re-
produce accurate long-term projections—provided that the model state and parameters are well
constrained.”

Fig. 4: Why are some experiments diverging? Why does the diverging area shift to smaller
inflation factors as the ensemble size increases? What is the reason for the sharp increase in RMSE
for localization radii smaller than the minimum RMSE? Use friction coefficient, bed elevation, and
ice thickness as labels next to the colour bar.

When the localization radius is too small, it overly restricts the influence of observations on the
state update. This can lead to underestimation of error covariances across space and result in filter
divergence. In our experiments, this is evident when the localization radius falls below the specific
threshold of each variable (e.g., 4 km for friction and 6 km for bed topography). We included this
explanation in the revised manuscript (Discussion). We also revised the figure as suggested.

Fig. 5: I suggest using RMSE_C, RMSE_B, and RMSE_H as y-labels or adding friction coefficient,
bed elevation, and ice thickness as titles. The description of panel c is missing. The colour coding is
somewhat confusing because you are using the same colours as in Fig. 4 but they do not represent
the same thing (ensemble size vs. friction coefficient/bed elevation/ice thickness).

We revised the figure as suggested.

Fig. 6: Why did you choose a more or less symmetrical (about y=40 km) friction coefficient but a
very asymmetrical bed topography? The units are missing in the colour bar label. You might want
to increase the spacing between panels to make it clearer which text corresponds to which panel.

We revised the figure as suggested.

Fig. 7: What causes the sharp grounding line extent towards higher x values at y=10 km in the no
assimilation panel? Units are missing. Increase spacing between panels.

We revised the figure as suggested.

Fig. 8: Why did you not show the difference in Fig. 6 and 7? What causes the checkerboard
pattern?

We chose to show the difference in ice thickness in Fig. 8 because changes in thickness are difficult
to detect visually from the similar figure as Fig. 6 and 7. The artifacts observed in the ice thickness
are the result of the conditional random fields generated using the Kriging method, which can

12



342

343

344
345

346

347

348

349

350

351

352
353
354
355

356

357

358

359
360

361

363

364
365

produce “bull’s eye” patterns commonly observed between observation points. We clarified this in
the revised manuscript.

Fig. 9: I suggest adding a legend for the different lines. Change reference run to reference sim-
ulation. Change forecast simulation to deterministic forecast simulation (all of them are forecast
simulations).

We revised the figure as suggested.

Sec. 3.2: Do not use abbreviations as section titles.

We changed the title.

L285: Change 10 to 15 km to 15 km. Or did you also test, e.g., 13 km across-track spacing?
We revised this as suggested.

L286: I am not sure what you mean by the performance declines due to suboptimal choices for
inflation and localization parameters. You are examining the effects of these parameters here, so
shouldn’t you be able to determine the optimal choices? Do you mean the optimal choices are
outside your tested parameter ranges? If so, you need to show results supporting this claim.

We removed the phrase “suboptimal choices for parameters”.
L287: Start a new paragraph before " For the gridded”.
We revised it as suggested.

L288: Add the reference to Fig. 11 to the end of this sentence (currently at the end of the para-
graph).

We revised it as suggested.
L289: range of localization.
Done.

L292: we conducted: Use present tense throughout the manuscript (e.g., same issue in L403
presented).
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We revised the manuscript to consistently use the present tense.

Fig. 10: In panels (f) and (i), why is the RMSE of localization radius 6 km and inflation factor
1.04 much larger than the surrounding values?

The RMSE values are calculated over the entire domain, and localized errors can increase the
overall RMSE. We included additional discussion on the localization and inflation factors in the
revised manuscript.

L297-299: Add reference to Table 2.

We added the reference to Table 2.

L301: RMSE values continue to decrease until the end: Add reference to Fig. 12. Panels c, f, and
i show an increase in RMSE at the end.

We added the reference to Fig. 12 and an increase in RMSE. This paragraph is about when the
elevation error is 5 m/yr which does not an increase in RMSE at the end.

L301-303: Add reference to Table 3.
We added the reference to Table 3.

L304: marginal improvements ... after 10-15 years: Add reference to Fig. 13. Again, RMSE
actually increases in panels f and i. What do you think causes this increase?

We added the reference to Fig. 13 and described the increase in RMSE for the 20 km grid data. We
also added some discussions on this point in the revised manuscript.

L304-305: This is discussion.

We remove this sentence here since there is already a similar discussion point in the Discussion
section.

L307: Add reference to Table 2. For RMSE_C, the smallest uncertainty leads to the second-largest
RMSE of all tested uncertainties. So DA performance does not necessarily decrease as uncertainty
increases!

14
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We agree with the reviewer that this paragraph is not well presented. We revised it to clearly
reference Table 2 and Fig. 12 and distinguish between the RMSE values for friction coefficient
(RMSE_C) and bed topography (RMSE_B) and ice thickness (RMSE_H).

L308-309: Add reference to corresponding panel in Fig. 12. For the 10 km across-track data,
the maximum difference in RMSE_C is 15.43. For the 5 km data, it is only 8.65. Although the
maximum difference is much smaller in the 5 km case, you argue that it shows a decrease in per-
formance as uncertainty increases while the larger 10 km difference indicates a consistent per-
formance across different uncertainty levels. I believe your statement is primarily based on the
RMSE_B and RMSE_H results, but these details need to be spelled out!

We added reference to corresponding panel in Fig. 12. In addition, we clarified the distinguish
between the RMSE values for friction coefficient (RMSE_C) and bed topography (RMSE_B) and
ice thickness (RMSE_H) in the revised manuscript.

L309-311: Adding to my previous comment, if you compare Track_15km_o,_10_0,,_10 to Track_15km_oy,_15_0,_10,

and Track_15km_op,_20_0,,_10, the DA performance increases as uncertainty increases for RMSE_C,
RMSE _B, and RMSE_H. This needs to be stated clearly and discussed in detail!

We revised this paragraph to clarify.

L311: Add a reference to the corresponding panel in Fig. 12. They actually show an increase in
RMSE after 15 to 20 years.

We revised this paragraph to add this point.
L311: Add new paragraph before “With the 1 km gridded”.
As suggested, we separated the discussion of the 1 km gridded results into a new paragraph.

L312: Add a reference to Table 3. What about the friction coefficient? For the friction coeffi-
cient and Track_15km, the highest uncertainty level has the smallest RMSE and, therefore, the best
performance. So DA performance does not necessarily decrease as uncertainty increases!

Although the highest uncertainty level has the smallest RMSE, the lowest uncertainty level still has
smaller RMSE than the 10 m/yr and 15 m/yr uncertainty results. In addition to the RMSE pattern
during the assimilation window (Fig. 13a), we argue that the friction coefficient does not show
the clear pattern with varying uncertainty in surface elevation. We added this point in the revised
manuscript.

15



4

9
420
421
422
423
424
425

426

427
428

429

430
431

432

433
434
435

436

437
438

439

440
441
442

443

444
445
446

447

448

449

450

451

L313: DA performance does not vary significantly across different uncertainty levels: I don’t
think I agree with this statement. Again, just looking at RMSE_C, the maximum difference across
uncertainty levels at 1 km resolution is 2.84, while it is 10.28 at 10 km and 30.8 at 20 km. So if
anything, the performance varies more significantly with coarser grid resolution. Additionally, the
RMSE _C for the coarsest grid resolution (20 km) and highest uncertainty level is smaller than all
other RMSE_C values at 20 km AND 10 km resolution! As the RMSE_C with the highest uncertainty
and the coarsest across-track resolution is also smaller than all other values at this resolution, it
seems unlikely that this is just a coincidence. So this really needs to be addressed.

We apologize for the errors in the RMSE_C values for the 20 km grid data (caused by copy-and-
paste mistakes in the latex document). We corrected these values in Table 3 and revised this para-
graph accordingly.

Fig. 12: Use RMSE_C, RMSE_B, and RMSE_H in y-labels. Panel labels in the second and third
rows are the same. Actually, even the subplots themselves look the same. The panel labels seem to
be just a copy/paste issue in your Python code, not sure about the actual data.

We fixed the panel labels. The pattens for RMSE_B and RMSE_H over assimilation time is very
similar to each other since surface elevation is defined as the sum of ice thickness and bed topog-
raphy (surface = thickness + bed). The figures in the second and third lows look very similar but
not the same figures (note that values in y axis).

Fig. 13: Same issues as for Fig. 12. What causes the increase in panel f after 20 years? Why is
there such a rapid increase in RMSE in, e.g., panel d between 5 and 10 years? Why does this rapid
increase get muted for coarser resolutions? A similar pattern occurs in Fig. 12.

As mentioned above for other figures (e.g., Fig. 5), itis likely due to a temporary mismatch between
the model forecast and the observations during this period, potentially caused by transient model
dynamics or nonlinearities in the response to assimilated observations. Localized error growth can
temporarily degrade performance. We included discussion on this point in the revised manuscript.

L316: fast flowing regions: You haven’t mentioned fast-flowing regions before. Are you referring
to areas around the grounding line, where the signal-to-noise ratio of velocity is relatively high?
I’d argue that large differences also occur for y=70-80 km and x=450-640 km, which seems to be
a relatively slow-flowing region.

We specified fast flowing regions as where velocity is larger than 100 m/yr, which corresponds to
the around the grounding line in the revised manuscript.

L319: fast flowing regions: Again, what about the region between y=70-80 km and x=450-640
km?
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We specified fast flowing regions above.

L322: “more” accurate.

Done.

L333: assumptions on the initial ensemble: Be more specific.
We revised this to “how the initial ensemble is generated”.
L337: relatively small ensemble size: Be precise.

We specified the ensemble size.

L337-338: previous studies: References are missing.

We added the references.

L342: a larger ensemble size could provide advantageous: Or not. Fig. 5e shows a larger RMSE

for 100 members than 50 members by t=30 years.

We agree that increasing ensemble size does not always guarantee improved DA performance.
We revised the discussion to acknowledge that larger ensemble sizes can improve performance in
general but may also introduce challenges that must be carefully managed, particularly in long
assimilation periods or highly nonlinear systems.

L343: What exactly should these studies investigate to identify the optimal approach?

We removed this sentence, as paragraphs discussing future studies are now included only at the end
of the discussion section, as suggested by the reviewer.

L345: similar to values from earlier studies: References are missing. What are these values?
We added the references with values from those studies.

L347: 4-120 km is a lot wider range than your 4-8 km. What causes these differences?
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The differences in the optimal localization radius likely comes from the differences in model con-
figuration, dimensionality, and spatial resolution. Our study uses a 2D unstructured mesh with
relatively fine spatial resolution, whereas previous studies using flowline models (1D) with coarser
grids may require broader localization to account for longer correlation length scales. We added
this point in the revised manuscript.

L351: ... assimilating more observations, i.e. more assimilation years, to estimate ...
We revised it as suggested.

L352: improves accuracy of model projections: In general, yes, but the difference in ice volume
change at t=200 years is larger in Fig. 9 panel b than panel a (between red and blue line).

We added “reduced uncertainty” to specify the accuracy. As the reviewer mentioned, in general
and during the projection period, the determinist ice volume loss forecast in Fig. 9b shows better
agreement with the reference simulation than in Fig. 9a.

L354: XX : Add numbers.

Added.

L358: in this study that: Replace with here.

We revised this as suggested.

L358: observations maintains: Replace with observations while maintaining
We revised this sentence.

L361: I suggest restating what OSSE means for readers quickly skimming through the manuscript.

We added a brief definitions of OSSEs.
L361: Remove “in this study”.
Removed.

L361: the capabilities of OSSEs: Replace with their capabilities.
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Done.

L365: (Table 2 and 3): If you include references here then you should also include them in previous
paragraphs of the discussion.

We removed these references.

L365-366: As indicated previously, this is not the case for RMSE_C in Table 3.

Again, we apologize errors in RMSE _C in Table 3. We revised this paragraph to clarify our points.
L369-371: As mentioned above, additional data points can actually have a negative effect.

We revised this sentence.

L373-374: I disagree. The friction coefficient has the largest differences in RMSE across un-
certainty levels (for all resolutions in Table 2 and similar for Table 3), so it is actually the most
sensitive.

We intended to compare DA performance in estimating bed topography (and ice thickness) versus
the friction coefficient. We revised it to ‘‘friction coefficient retrieval shows no clear pattern in
response to the prescribed surface elevation uncertainty”.

L377: will or should?
We revised it to “should”.
L379-380: Consolidate all future study suggestions into one paragraph.

We removed some mentions of future work, and now they are included in the final paragraphs of
the discussion section.

L398-399: Your future studies should address sentences are spread out across the entire discus-
sion. I recommend bundling all of them into one single paragraph at the end of the discussion.

We removed some mentions of future work, and now they are included in the final paragraphs of
the discussion section.
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L398-399: Again, this is not always the case.

Except for the temporary decreases in DA performance observed during the assimilation period,
this statement generally holds true. We clarified this point in the revised manuscript.

LA400: What does great accuracy mean? Be precise.
We agree with the reviewer and replaced “great accuracy” with a quantitative assessment.
LA404: Different levels of observational uncertainty: Do you mean smaller levels of uncertainty?

It is not necessarily smaller uncertainty levels; it also depends on the resolution or the track spacing
of the data. We clarified this in the revised manuscript.

LA410: Will you also upload the data files?

Yes, we uploaded the data files to run the scripts.
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Estimation of the state and parameters in ice sheet model
using an ensemble Kalman filter and Observing System
Simulation Experiments
— Authors’ response (RC2) —

Youngmin CHOI et al.

August 6, 2025

This is a review of “Estimation of the state and parameters in ice sheet model using an ensem-
ble Kalman filter and Observing System Simulation Experiments” by Choi et al., submitted for
publication to The Cryosphere. This manuscript describes the use of an ensemble-based data as-
similation system, the Ensemble Kalman Filter (EnKF), to assimilate data into a 2D large-scale ice
sheet models, for the purpose of better estimating parameter values and state variables during the
historical period. It follows on other studies that have explored similar methods for 1D ice sheet
models, and makes the crucial step of applying such methods to a model widely used for projec-
tions. This study also adds a novel “Observing System Simulation Experiment” in which different
potential observing system configurations (resolution, track spacing, observational accuracy) are
tested to determine their ability to improve accuracy in estimated parameters and state.

Overall, I think this is a pretty straightforward study using well-known tools in a new way with ice
sheet models, advancing the state of the art in our field. My main suggestions are to further explore
certain DA and modeling choices that are unexamined in the current version of the manuscript. 1
have detailed these suggestions and more minor ones below.

We thank the reviewer for reviewing the manuscript and constructive comments. We revised the
manuscript to include additional justification for key data assimilation and modeling choices, clar-
ify methodological decisions, and expand the discussion on the implications and limitations of our
approach. We address each specific comment in detail below and aim to improve the clarity.

1. The manuscript briefly describes what the EnKF is, and then indicates that the EAKF version
is chosen for this study. There are multiple different flavors of the EnKF available in DART, so it
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is unclear why EAKF is chosen and whether the results would be any different if another filter was
chosen. My suggestion is to describe in some more detail what is done in an EnKF and how the
EAKEF is different from the standard EnKF. Additionally, either some justification for why the EAKF
was chosen and some level of justification for why that is the preferred approach when others are
available.

Thank you for the suggestion; this was also raised by another reviewer. We added more details
about the EnKF and EAKF, and the description about the distinctions between the two approaches
in the Data assimilation section as follows:

“In contrast to the standard stochastic EnKF—which perturbs observation-space quantities ran-
domly for each ensemble member to account for observational uncertainty—the EAKF avoids addi-
tional perturbations and instead analytically adjusts the ensemble members to match the posterior
mean and covariance determined by the original Kalman filter equations (Anderson, 2001). This
approach improves numerical stability and reduces sampling noise over stochastic EnKFs, espe-
cially for small ensemble sizes (Whitaker and Hamill, 2002). In this study, we choose the EAKF
due to its reduced sensitivity to ensemble size and improved robustness in geophysical systems, as
demonstrated in previous studies using DART (Zubrow et al., 2008; Anderson et al., 2009).”

2. One thing that is unclear from your study design is the relative importance of assimilation win-
dow (e.g. 5 vs 15 vs 30 years) as compared to number of assimilation cycles. You don’t change the
[frequency of observations, which may be sensible given than annual observations are reasonable
for current observing platforms. However, it is then hard to understand as a reader whether there
is something fundamental about having 20-30 years of observations related to the time scales of
ice sheet response to adjustments, or whether it is having 20-30 assimilation cycles to improve. If
the observations were more frequent (e.g. an IceSAT2-like 90 days) would it takes less time for the
EnKF to improve to the level that you show here?

This is a great point. In this study, we aimed to estimate two constant-in-time parameter fields
and the model state on an annual basis. Given the timescales associated with the model state and
parameters, as well as the capabilities of current observational platforms, we chose to use annual
observations for simplicity.

We agree that the distinction between the length of the assimilation window and the number of
assimilation cycles needs further investigation. To address this, we conducted an additional exper-
iment using semiannual observations to explore the relative impact of the number of assimilation
cycles versus the time period over which they are applied. We included the results and a discussion
in the revised manuscript as follows:

“In this study, we focus on estimating two constant-in-time parameter fields and the model state
using annual observations over assimilation windows of varying lengths (5, 15, and 30 years). This
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choice is motivated by both the timescales associated with glacier dynamics and the current capa-
bilities of observing platforms. However, the relative importance of the assimilation window length
(i.e., total time span) versus the number of assimilation cycles (i.e., update frequency) remains an
open question. To explore this, we conduct an additional experiment using semiannual observa-
tions under the same setup as the twin experiment (Fig. Al). The results suggest that semiannual
observations lead to a faster reduction in RMSE for both the model state and parameters. However,
the improvement at the end of the 30-year assimilation window, compared to annual assimilation,
remains limited. This limited benefit is likely due to the nature of the parameters and state vari-
ables considered in this study—constant-in-time fields and annual-scale variability—which allow
sufficient information to accumulate over time for a fixed target. Once sufficient assimilation cycles
have passed, the parameters become well constrained, and more frequent updates offer little addi-
tional improvement. These findings suggest that, for slowly varying or static variables, increasing
observation frequency can accelerate convergence toward the true state and parameter values, but
may not yield additional improvement beyond a certain number of assimilation cycles. In contrast,
if parameters or states change more rapidly or nonlinearly, a longer assimilation window or more
complex update schemes might be needed to achieve similar improvements. Future work should
explore the sensitivity of EnKF performance to both assimilation frequency and window length to
identify optimal configurations for real glacier systems with time-varying parameters and limited
observation periods.”

3. A big difference between your perfect model design and a real scenario where DA might
be applied is that only two constant-in-time parameter fields are unknown. In reality, (e.g.) ice
viscosity and climate forcing are also likely to be poorly known (though at least climate forcing is
directly observable), and climate forcing (and basal friction) may vary in time. Two possibilities
that would be helpful to run some experiments to assess are:

(a) if you are mistaken about the values of other parameters, but still only estimate basal friction
and topography, will the estimate of basal friction compensate for these other errors (particularly
for ice viscosity which trades off quite directly with basal friction in a depth-integrated model) -
there is some evidence of such compensation already happening in your estimates, see below

(b) could this DART-ISSM configuration be used to estimate multiple parameters at once (I don’t
see a reason why not, but the performance may not be the same as what is found for the single
parameter estimation experiments explored currently).

[ get that the design of these experiments are meant to mimic and compare directly to Gillet-Chaulet
2020, but it would be useful to also push beyond their design to get closer to a realistic case where
DA might be used.

Thank you for this insightful comment. We agree that in real-world applications, other parameters
such as ice viscosity and climate forcing are also poorly constrained and may vary in space and
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time. In this study, we intentionally limited the number of unknowns to two constant-in-time pa-
rameter fields (basal friction and bed topography) to enable direct comparison with Gillet-Chaulet
et al. (2020) and to isolate the behavior of the EnKF framework in a controlled setting.

Regarding (a), we recognize that compensation effects between parameters (e.g., between basal
friction and ice viscosity) may arise if other sources of uncertainty are not properly accounted for.
We added a discussion of this limitation and clarified that our experimental design assumes perfect
knowledge of other parameters such as ice viscosity, which is not realistic.

Regarding (b), while we agree that the DART-ISSM framework is capable of estimating multiple
parameters simultaneously, we chose to start with a reduced set of unknowns to rigorously test the
baseline performance of the ensemble Kalman filter. We believe this simplified setup is appropriate
for the scope of the current study, which aims to provide a foundational assessment of ensemble
DA performance in an ice sheet modeling context. Extending the framework to include more
unknown parameters—such as ice viscosity or time-varying climate forcing—will likely introduce
new complexities. These directions are indeed important and are part of our ongoing and future
work, but they are beyond the scope of this initial system evaluation. We have clarified this in the
revised manuscript as follows and note that this study provides a foundational step toward that goal
by demonstrating the feasibility and utility of ensemble DA with a simplified setup.

“Our experimental design also assumed perfect knowledge of all model parameters except for
basal friction and bed topography. This choice was made to facilitate learning about the DA system
in a controlled setting and to keep the experimental setup more tractable, while also allowing
for direct comparison with Gillet-Chaulet (2020). However, this approach limits the realism of
experiments. In practice, parameters such as ice viscosity and climate forcing are also poorly
constrained and may vary in both space and time. For example, uncertainties in viscosity may
interact with basal friction during assimilation, potentially leading to parameter compensation
effects. Future sensitivity studies should explore how mis-specified background parameters (e.g.,
biased viscosity fields) affect the estimation of other parameters and whether such compensation
leads to biased or unstable forecasts. Although this study focused on estimating two constant-in-
time parameter fields (friction coefficient and bed topography), the DART-ISSM framework is well-
suited for the joint estimation of multiple spatially or temporally varying parameters. Extending
the current configuration to include additional unknowns — such as ice viscosity, accumulation rate,
or time-varying boundary conditions — represents a valuable next step toward more realistic data
assimilation in ice sheet modeling.”

4. At more than one point it is suggested that using variational methods is more computationally
intensive that ensemble-based DA. However, there is no real direct proof of this as you don’t per-
form a direct comparison and to my knowledge this has not been done in the published literature.
Given that ISSM has a variational DA option already implemented, it could be valuable to com-
pare EnKF with ISSM to EnKF with ISSM in terms of core-hours for a simple standardized run.
Short of that, it would be useful to have a sense for the DART overhead? If it is negligible then
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I would expect ensemble-based DA to have n times the computational expense of a conventional
ISSM run where n is the number of ensemble members. Additionally, giving a sense for how this
ensemble-based approach has (or can be) parallelized would be useful. In theory, ensemble DA is
highly amenable to parallelization, but this depends on how covariance matrices are constructed
and how shared memory parallelism is handled. More details on all the computational aspects of
this new method would be very useful to include.

Thank you for the great suggestion. We agree that a computational comparison between the two
data assimilation methods would be valuable. However, due to the fundamental differences in the
core computational processes of variational and ensemble based approaches, a direct comparison
of their computational costs is challenging and is beyond the scope of this study.

Variational approaches using automatic differentiation (AD) tend to have higher memory demand,
while ensemble DA methods primarily increase computational cost through the need to run mul-
tiple forward simulations. Additionally, the two approaches are implemented using different tools
within ISSM — variational DA is built using the AD tool, while ensemble DA is integrated via
DART - which further complicates direct comparison. We have included this limitation in the re-
vised manuscript as follows and mentioned the need for future work to systematically assess the
computational trade-offs between these two methods.

“Although ensemble-based data assimilation offers conceptual and practical advantages, its com-
putational cost is often considered a limiting factor. In this study, we did not perform a direct
computational comparison between ensemble and variational (transient) DA approaches. Such
a comparison is challenging due to their fundamentally different implementations. For example,
variational DA in ISSM relies on automatic differentiation (AD), which can be memory-intensive,
whereas ensemble DA increases computational cost primarily by requiring multiple forward simu-
lations. However, ensemble approaches can be parallelized, as each ensemble member’s forward
run can be distributed across separate cores or nodes, and the DA process here is managed through
DART, which supports parallel computing. While formal benchmarking was beyond the scope of
this study, it would be valuable in future work to quantify computational trade-offs across DA
methods in ice sheet modeling.”

L16: less numerical model re-development
Done.

L26: use a form of variational

Done.

L28: realy on observational at a single time to
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Done.
L30: it often introduces nonphysical artifacts into the

Done.

L35: The use of computational techniques such as automatic differentiation in ice sheet models

Done.

L69: to my knowledge this is the first ice sheet modeling paper to apply OSSE, so I think you can

be more direct about this sentence

We revised this sentence as suggested.

L86: an ensemble...for ice sheet model initialization
We revised this paragraph.

L88: on model initialization

We revised this paragraph.

L92: simulation of ice sheets

Done.

L100: explain what the random midpoint displacement method is
We added the details on this method.

L138: model simulations

We revised this paragraph.

L143: I am confused here because you don’t include velocity in the state vector, but later you say

it is part of what is assimilated?
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Velocity is an observation being assimilated, not the part of the state vector. We clarified this in the
text.

L184: does localization as implemented preserve covariance between different variables at the

same location in space or does it simply localize along the diagonal of the covariance matrix?
For example, there should be strong correlation between the ice thickness estimate and the bed
topography estimate, and so you would be losing a significant amount of your ability to assimilate
if covariances between these two variables at the same location in space where zeroed out by
localization.

Localization is applied to joint observation-state-space covariance in DART, which means that co-
variance across model variables at the observation location will not be damped by the localization.
We added the following to the revised manuscript:

“Localization is applied to reduce correlations between model states projected into observation
space and the unobserved state variables, which does not explicitly damp covariances across co-
located variables.”

L205: what would happen if you had no velocity observations? How much of the performance is
due to velocity observations vs thickness?

We acknowledge that this trade-off between observation types is important for real-world applica-
tions. As similar points are raised by another reviewer, we conducted additional experiments with

varying uncertainties in the velocity data and included the new results in the revised manuscript.
We also added a discussion on the relative importance of velocity versus elevation uncertainty.

L243: 1 think this should refer to Fig. 5
Yes. We revised it to Fig. 5.
L259: mean to initialization the deterministics...full ensemble to initialization the ensemble

We revised it as suggested and moved this paragraph to the Method section as suggested by another
reviewer.

Fig 4. In the caption you mention that highly localized experiments diverge. It would be helpful to
speak to why these experiments diverge in the main text.

We added this point to the Discussion section to clarify that when the localization radius is too
small, it overly restricts the influence of observations on the state update. This can lead to underes-
timation of error covariances and result in filter divergence. In our experiments, this is evident when
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the localization radius falls below the specific threshold of each variable (e.g., 4 km for friction and
6 km for bed topography).

Fig. 7: There are artifacts in the bed topography and ice thickness estimates that correspond to the
basal friction estimate. Can you speak to this? Is it related to how the localization is performed?

The artifacts in the bed topography and ice thickness are the result of the conditional random fields
generated using the Kriging method, which can produce “bull’s eye” patterns commonly observed
between observation points. We added this to the Results section.

L276: can you quantify this change in spread? by eye it doesn’t seem to change much between 20
and 30 years of assimilation

We added specific values for each spread in the revised manuscript.
Figure 9: can you add a legend and plot the ensemble mean as well?
We added a legend and included the ensemble mean in the plot.

L290: It would help to discuss what this sentence means in practice. Is prediction accuracy
degraded for this case? Or can you achieve similar results with different localization and inflation
parameters?

Although minimum RMSE values were identified for the coarser-resolution cases (10 km and 20
km), the overall prediction accuracy is still lower than that of higher-resolution cases (e.g., 1 km).
We added this in the revised manuscript.

L325: initial estimates for the model parameters?

We revised this sentence including the suggestion.

L328: correlation between both parameters

We meant the “establish spatial correlation within each parameter”. We revised the text.
L332: what do you mean by “initial ensembles”

We meant “initial ensemble of parameters”. We revised the text for clarity.



243

244

245

246

247

248

249
250
251
252

253

254

255

L354: need to fill in values for XX

Fixed.

L358: transient changes in model state but not in parameters
We revised it as suggested.

L366: can you speak to the limitations on this? would having 100m resolution data be even better
or proportionally so?

In principle, higher-resolution data (e.g., 100 m) could further improve data assimilation perfor-
mance by providing finer spatial detail on surface features and more precise constraints on model
parameters. However, the benefit of finer resolution may decrease beyond a certain threshold due
to increased observational noise, modeling uncertainties, and the inherent spatial correlation scale
of the parameters being estimated. We added this in the revised manuscript.

L370: this is a very important point that is worth highlighting in the abstract

We included this finding in the abstract.



