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General comments7

The manuscript by Choi et al. presents a data assimilation framework to improve the projection8

capabilities of ice sheet models. Specifically, the performance of an Ensemble Adjustment Kalman9

Filter in constraining the model state (ice thickness) and basal conditions (basal friction coefficient10

and bed topography) of a 2D plan-view ice model is assessed. Their results indicate that assimi-11

lating more observations generally increases the accuracy of model projections, with projections12

for up to 200 years in close agreement with the reference simulation. The performance of the data13

assimilation method is sensitive to the observational error as well as the cross-track spacing and14

grid resolution of surface elevation data.15

I believe the science behind this study is sound and aligns with the focus of The Cryosphere (TC).16

However, the presentation of the methodology lacks clarity, at times adding avoidable confusion17

(e.g., the introduction of both acronyms EnKF and EAKF). This overall issue is addressed in more18

detail in the specific comments below, but I strongly suggest the addition of a flowchart outlining19

the methodology (ice sheet model and data assimilation) and experimental design (twin experiment20

and OSSEs).21

We thank the reviewer for reviewing the manuscript and constructive comments. We address spe-22

cific comments below as clearly as possible. We appreciate the suggestion to include a flowchart23

outlining the methodology and added it into the revised manuscript (Figure 1).24

Furthermore, parts of the experimental design are currently placed within the results section and25

key aspects of the results are not addressed (e.g., why is the RMSE C for Grid 20 km σh 20 σv 1026
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smaller than for the same grid resolution with smaller uncertainties as well as all 10 km grid reso-27

lution experiments?). Considering the performance of the data assimilation method is sensitive to28

the uncertainty in surface elevation observations, I believe also determining the effect of various29

uncertainties in the velocity data would add further value to the manuscript (perhaps as supple-30

mentary material). Finally, potential reasons/explanations for model results are often missing, e.g.,31

why is the range of optimal localization radius (4 - 8 km) a lot smaller than suggested by previous32

studies (4 - 120 km)? I recommend the authors also take my specific comments listed below into33

account.34

We agree with the reviewer that the some of the results lack sufficient explanation. In the revised35

manuscript, we added more explanation for our results by addressing specific comments listed36

below. Also we added additional experiments varying uncertainties in the velocity data in the37

appendix.38

Specific comments39

L25: This sentence is very similar to the second sentence in the introduction. Instead, consider40

opening with a sentence about the different DA methods (variational vs. methods leveraging time-41

varying observations). Then proceed to discuss advantages/disadvantages of each.42

We revised this sentence. Now it starts with “Data assimilation (DA) methods for ice sheet mod-43

eling generally fall into two categories: snapshot and transient inversions, which use single-time44

observations and time series of observation, respectively.” and continues to explain two methods.45

L28: Double brackets.46

Fixed.47

L33: Consider starting a new paragraph before Alternatively.48

We revised it to start a new paragraph here.49

L37 – assimilation period: Readers unfamiliar with DA might not know what exactly you refer to50

here. It becomes a lot clearer later on, but it would be nice to have a brief definition here (similar51

for other DA-specific terms, e.g., data denial experiments in L61).52

We added brief definitions of several DA terms for clarity, including the assimilation period and53

data denial experiments.54

L40: Move further up to the rest of the discussion on variational methods.55
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We revised this sentence to include the both static and transient methods.56

L42: Consider introducing the term ensemble DA in general before describing the specific EnKF57

(e.g., ensemble DA vs. variational methods).58

We added an introductory sentence for the ensemble DA in general.59

L54: Why are ensemble DA methods less commonly used in ice sheet modelling?60

We added the following new paragraph to the revised manuscript in response to this point:61

“The ice sheet modeling community has traditionally relied on snapshot inversion methods based62

on adjoint-based techniques for parameter estimation, using time-invariant mosaics or composite63

data (e.g., multi-year averaged surface velocity fields; Morlighem et al., 2010). Compared to these64

methods, ensemble DA approaches have been less commonly used in ice sheet modeling, primar-65

ily due to historical limitations in observational data, computational cost, and the challenges of66

representing uncertainty in ice sheet models. Ensemble approaches rely on time-varying obser-67

vations with well-characterized uncertainties, but surface observations for ice sheets have often68

lacked reliable uncertainty estimates, making them less suitable for ensemble DA. Additionally,69

ensemble methods typically require multiple forward model runs, making them more computation-70

ally demanding than snapshot inversion approaches. Another limitation is that poorly understood71

or unquantified errors in the ice flow model itself may limit the reliable estimation of covariances72

using ensemble statics.”73

L63 – (OSSEs)(OSSEs, ...).74

Fixed.75

L65 – appropriate observation error distribution: How do you determine if the distribution is76

appropriate or not?77

We revised this to “a prescribed observation error distribution representative of real measurement78

uncertainties”.79

L71: Although it is addressed in more detail in the next sentence, I believe adding (ice thickness)80

just after model state would add clarity.81

Added.82

L75 – estimated state and parameters: For consistency, I recommend using estimated model state83

and parameters throughout the manuscript.84

3



Now, we use consistent terminology (model state) throughout the manuscript.85

L75 – true reference values: At this point in the manuscript, it is not clear what the true reference86

values are and how you obtain them.87

We revised it to “true values”.88

L83-84: Remove this sentence and add the reference to the description of the specific sections in89

the text above.90

We removed this sentence and added reference to the description of the specific sections in the text.91

L86-88: Repetition of the text just before the Methods section.92

We revised this paragraph as follows:93

“This section describes the ice sheet model configuration (Section 2.1), the ensemble DA frame-94

work (Section 2.2), and the experimental designs used in this study (Section 2.3 and 2.4). We first95

outline the twin experiment setup, which tests the ability of the DA framework to recover the model96

state and parameters under idealized conditions. We then describe the OSSEs, which explore the97

effects of different observational strategies on model initialization. Our methods are summarized98

in Figure 1.”99

L101: I am not familiar with this specific method, but a standard deviation of 500 m seems quite100

large considering the bed varies only between zb,deep = -720 m and ∼500 m (really difficult to see101

in Fig. 1a)102

The midpoint displacement method generates a 2D surface by iteratively subdividing a grid, assign-103

ing random heights to corner points, and interpolating midpoints with added random displacement.104

The magnitude of the displacement is scaled by a standard deviation that decreases with each iter-105

ation as 20.5H , where H is the roughness factor, set to 0.7 in this study. While the initial standard106

deviation of 500 m may seem large relative to the vertical range of the bed topography, it is used107

as a starting point in the midpoint displacement algorithm and is progressively reduced at each108

iteration based on the roughness factor. This results in a realistic, spatially correlated roughness109

pattern with limited high-amplitude variations. Additionally, the current value of zb,deep = 720m110

represents the base shape of the bed before roughness is added and the final bed elevation reaches111

depths of approximately -1,500 m. We added these details to the text and revised the Fig. 1a as112

suggested below.113
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Fig. 1: I believe using two separate 2D plots instead of the 3D plot would make the identification114

of certain details and interpretation of the plot a lot easier. As you are already showing the bed115

topography in Fig. 2, I recommend combining Fig. 1 and 2 into a single plot with panels a: ice116

surface elevation, b: bed topography, and c: ice velocity. Note that the rainbow colour scheme is117

not in line with the journal guidelines. You can check all of your plots with the colour blindness118

simulator (https://www.color-blindness.com/coblis-color-blindness-simulator/). The fonts in panel119

b are too small and I recommend using a different colour for your contour lines.120

We revised this figure as suggested.121

Fig. 2: Why are you using such an asymmetrical (about y=40 km) bed topography compared to122

the commonly used symmetrical approach in idealized studies? The y label in Fig. 2 indicates the123

domain ranges from 20 to 100 km, whereas in Fig. 1 it is 0 to 80 km. You also might want to remove124

the white margins at the top and bottom. How can the bed elevation be -1500 m when Eq. 1 limits125

the bed to zb,deep = -720 m?126

Applying the midpoint displacement method results in an asymmetrical bed topography, which127

may better reflect realistic subglacial features, although we use an idealized twin experiment in this128

study. We included this explanation and revised the figure as suggested.129

L103: Consider adding an additional panel (d) showing the triangular mesh to the new Fig. 1.130

Are you using adaptive mesh refinement, e.g., following the grounding line?131

We used an adaptive mesh based on ice velocity and included a new figure (Fig. 1(d)) in the revised132

manuscript.133

L104: I suggest adding another panel (e) for the basal friction coefficient to Fig. 1 or at least refer134

to Fig. 6a here.135

We added a reference to Fig. 6a to avoid repetition.136

Eq. 5: In case you are working in LaTeX, I recommend using left( and right) to get brackets of137

the correct size.138

Fixed the bracket.139

Eq. 6: Same as for Eq. 5140

Fixed.141
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L114: Is C in Eq. 7 different from the one described in Eq. 4? If not, then remove C is a friction142

coefficient.143

C is the friction coefficient, and C x and C y are the x and y components of C, respectively. We144

added this to the text.145

L117: Remove equal.146

Removed.147

L124: Do you consider a melt rate of 200 m/yr realistic given that maximum present-day melt148

rates are around 100 m/yr?149

We set the melt rate to 200 m/yr at a depth of 800 m, which results in an actual melt rate of150

approximately 170 m/yr beneath the ice shelf. We agree that this melt rate exceeds the maximum151

observed present-day basal melt rates. However, in this study, we chose this value to create a strong152

dynamic response in the model over a 200-year forecast period, ensuring that the effects of data153

assimilation could be clearly evaluated. The elevated melt rate is not meant to represent a realistic154

present-day climate, but rather to serve as a diagnostic tool in the context of a twin experiment. We155

clarified this in the revised manuscript.156

L125-127: This belongs into results.157

This describes the process of creating the reference run for the twin experiment rather than present-158

ing model results. We revised the text to clarify it.159

L129: Sec. 2.3 and 2.4 are referenced before 2.2.160

We deleted this sentence.161

L134: modified version of the Ensemble Kalman Filter? As I mentioned above, using EnKF and162

EAKF is confusing, especially since EAKF is introduced but only used within this paragraph.163

We revised this paragraph to clarify the use of data assimilation terminology throughout the manuscript.164

L136-143: This is where I think a flowchart would really help the reader to follow the details of165

your method. Ideally, the flowchart should outline the details of the EAKF and how it relates to166

your specific study. For example: How do ensemble members differ? What exactly is your model167

forecasting? How is the observation window specified? Which ice sheet variables are considered168

in the state vector? What are the state variables?169
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We added a flowchart (Figure 1) and a reference to that in this paragraph.170

L142: How would adding extra variables, like surface velocity, to the state vector affect your171

results?172

Surface velocity is a diagnostic variable; it is not part of the state vector. We added this in the173

revised manuscript as follows:174

“The state vector is augmented to include both prognostic variables and model parameters to be175

estimated. Under the stress balance of SSA, the velocity is a diagnostic variable, and due to the176

flotation condition, ice thickness is the only prognostic variable (Gillet-Chaulet, 2020). In this177

study, the state vector includes variables ice thickness (state variable), and basal friction coeffi-178

cient and bed topography (model parameters), allowing joint estimation of the model state and179

parameter fields through the DA process (Fig. 1).”180

L143-144: EnKFs or EAKFs? Does this challenge arise in your study? What is the ensemble size?181

What are the independently observed degrees of freedom in your case?182

Here, we explain the general case for the ensemble Kalman filter. We revised this paragraph to183

improve clarity and better distinguish the general description from our specific implementation.184

L146: stability of the EnKF?185

We changed it.186

L150: Add more detail about what exactly you mean by sampling errors.187

We added “Sampling errors occurs because the ensemble based covariance is only an approxima-188

tion of the true covariance, and small ensembles may not adequately capture variability across the189

full state space” to clarify.190

L151: What localization and inflation parameters are you examining?191

We added a range of both localization radii (2 to 20 km) and inflation factors (1.00 to 1.20).192

Sec. 2.3: You either need to embed this information into the previous section or clearly outline at193

the beginning of the methods section that you are first describing the EnKF in general and then how194

this general structure relates to your specific setup (with references to sections). Again, a flowchart195

linking the general structure to your experiments would be helpful.196
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We outlined the description of the methods at the beginning of the Methods section with a flowchart.197

L154: EnKF or EAKF? If EnKF, then why bother introducing EAKF?198

EnKF is the general term, and EAKF is the specific approach we use in this study. We clarified this199

in the revised manuscript.200

L164: Why did you decide to use lower standard deviations? What is the plausible range?201

We selected lower standard deviation values (5 m for surface elevation and 10 m/yr for velocity)202

to provide a simple and conservative baseline for the twin experiment. While these values are203

lower than those used in Gillet-Chaulet (2020), they are still within the plausible observational204

uncertainty ranges reported in recent literature. For example, Dai and Howat (2017) report vertical205

elevation uncertainties below 5 m in well-constrained regions, and Mouginot et al. (2017) report206

horizontal velocity uncertainties ranging from 5–20 m/yr depending on the region. We chose values207

at the lower end of these ranges to isolate the performance of the DA framework under favorable208

conditions, and we explore sensitivity to larger uncertainties in the OSSEs presented in Section 3.2.209

We clarified this in the revised manuscript.210

L178-179: Are you assuming that the friction coefficient and bed topography are uncorrelated?211

While we do not prescribe a prior correlation between them, the EAKF uses the ensemble-based212

cross-covariance to update both fields during the assimilation process. We included this explanation213

in the revised manuscript.214

L184: What radii did you explore?215

The radii explored in the experiment ranged from 2 km to 20 km. We added this information to the216

text.217

L186: Ensemble size of 30 to 100, but what steps exactly?218

We tested ensemble sizes of 30, 50, and 100, and specified this information in the revised text.219

Fig. 3: The font size is too small. This is generally the case for a lot of plots and I will refrain from220

mentioning it again afterwards. Otherwise, I think this is a great figure supporting the description221

of your OSSEs.222
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We increased the font size for figures.223

L221 – reference model mesh: Do you mean the mesh used in the reference simulation?224

Yes, we clarified this in the text.225

L230-231: This information needs to come earlier.226

We moved this information to the Method section.227

L234: Can you provide any insight as to why these values lead to the minimum RMSEs?228

The localization radius is determined through a set of sensitivity experiments and is based on229

the expected spatial correlation length scale of the parameters, which may depend on the size of230

flow features or stress balance regimes. We added some discussion on this point in the revised231

Discussion section.232

L238: Why is that expected?233

Larger ensembles generally provide better approximations of the true error covariance, reducing234

the need for artificially inflating the covariance to compensate for sampling errors. We clarified235

this explanation in the revised manuscript.236

L240: You are using inflation parameters in the text but inflation factor in Fig.4.237

We revised it to “inflation factor” for consistency.238

L243-245: For ensemble size 100, the RMSE for friction coefficient does NOT continue to decrease239

steadily (increase at t=7a). The other two ensemble sizes also show a small increase just after 5240

years. Similar peaks are also visible for the bed topography and ice thickness. What is causing this241

increase in RMSE?242

We examined the small increase in RMSE in early assimilation years and found that it is likely243

due to a temporary mismatch between the model forecast and the observations during this period,244

potentially caused by transient model dynamics or nonlinearities in the response to assimilated245

observations. As the assimilation continues, the filter gradually corrects these discrepancies, which246

leads to a subsequent reduction in RMSE. These fluctuations are not uncommon in ensemble data247

assimilation systems, especially in complex, nonlinear models where localized error growth can248

temporarily degrade performance. We added this behavior in the revised manuscript (Discussion).249
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L245: A larger ensemble size (100 vs. 50) actually leads to a larger RMSE after t=15 a for all250

panels in Fig. 5. Why do you think this is the case? And what does it mean for the design of future251

experiments?252

While larger ensemble sizes generally improve the accuracy of error covariance estimates, they can253

also increase the sensitivity of the filter to model errors or sampling noise if not properly tuned.254

In our experiments, it is possible that the inflation and localization parameters used for the 100-255

member ensemble were not optimal for later assimilation periods, leading to slightly degraded256

performance after year 15. This suggests that filter performance does not necessarily scale linearly257

with ensemble size. It also emphasizes the importance of adaptive inflation/localization techniques258

or diagnostics for dynamically adjusting filter settings. We added this in the Discussion section of259

the revised manuscript as a new paragraph:260

“Larger ensemble sizes could improve data assimilation performance but may also introduce chal-261

lenges that must be carefully managed, particularly in long assimilation periods or highly nonlin-262

ear systems, as in this study. In our experiments, it is possible that the inflation and localization263

parameters used for the 100-member ensemble were not optimal for later assimilation periods,264

leading to slightly degraded performance after year 15. This suggests that filter performance does265

not necessarily scale linearly with ensemble size and highlights the importance of adaptive infla-266

tion/localization techniques or diagnostics for dynamically adjusting filter settings.”267

L248: Why did you choose a localization radius of 4 km when bed topography and ice thickness268

showed a minimum RMSE for 6 km with a significant increase for smaller radii?269

The minimum RMSE for friction occurs at a localization radius of 4 km and this radius produces270

decent results for bed topography and ice thickness as well. We chose 4 km for illustrative purposes271

and added this in the text.272

L250: Somewhere you should state explicitly that a localization radius of 4 km and an inflation273

parameter of 1.12 are your optimal DA configuration.274

The optimal inflation factor and localization radius depend on the parameter being estimated. We275

chose 4 km and 1.12 for illustrative purposes and clarified this in the text.276

L254-256: You describe the results for the friction coefficient and bed topography, but what about277

the ice thickness?278

The pattern in the ice thickness results is very similar to that of bed topography. In our model setup,279

surface elevation is defined as the sum of ice thickness and bed topography (surface = thickness280

+ bed). Therefore, as surface observations are assimilated, improvements in bed estimates are281

reflected in the estimated thickness field. We clarified this relationship in the revised manuscript.282
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L257-262: This is a description of your experimental design and should be in the methods section.283

284

We moved this to the Methods section.285

L264: Just to make sure I understood it correctly. The deterministic forecast uses the mean286

(across all ensemble members) basal friction coefficient and mean bed topography but is a single287

simulation (compared to running a simulation for all ensemble members and then calculating the288

ensemble mean).289

Yes. we clarified this in the text.290

L268-269: I think it is quite interesting that the deterministic forecast, which is based on the291

ensemble mean basal conditions, follows the reference simulation relatively closely while most of292

the individual ensemble member simulations show a much smaller ice volume change. I suspect293

this is due to non-linearities in the system, but it might be worth having a closer look at this.294

We agree with the reviewer’s point. While each ensemble member represents a physically plausible295

realization of the basal parameters, small deviations from the true field can lead to large differences296

in modeled ice volume due to non-linear feedbacks. However, the deterministic forecast, initialized297

with the ensemble mean of the basal fields, appears to capture the overall structure of the true298

conditions more effectively, reducing local extremes and yielding results that are more closer to the299

reference simulation. We added this discussion to the revised manuscript (Discussion).300

L271-273: So assimilating more observations leads initially to a better agreement but increases301

the difference in ice volume change at the end of the forecast period. This should be addressed in302

more detail in the discussion.303

Assimilating more observations leads to better agreement throughout the forecast period, including304

at its end. We included specific values for ice volume loss to support this comparison in the revised305

manuscript.306

L273-274: Discussing the increase in the rate of mass loss after 100 a and its implication for307

sea level rise projections over the next century (compared to 200 yr projections) could be a nice308

additional takeaway.309

We added this to the Discussion section as follows:310

“Notably, the 200-year reference simulation includes a phase of accelerated volume loss after311

130 years, which may represent a plausible sea level rise scenario for the coming century. Our312
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results suggest that assimilating observations even before such nonlinear transitions can still re-313

produce accurate long-term projections—provided that the model state and parameters are well314

constrained.”315

Fig. 4: Why are some experiments diverging? Why does the diverging area shift to smaller316

inflation factors as the ensemble size increases? What is the reason for the sharp increase in RMSE317

for localization radii smaller than the minimum RMSE? Use friction coefficient, bed elevation, and318

ice thickness as labels next to the colour bar.319

When the localization radius is too small, it overly restricts the influence of observations on the320

state update. This can lead to underestimation of error covariances across space and result in filter321

divergence. In our experiments, this is evident when the localization radius falls below the specific322

threshold of each variable (e.g., 4 km for friction and 6 km for bed topography). We included this323

explanation in the revised manuscript (Discussion). We also revised the figure as suggested.324

Fig. 5: I suggest using RMSE C, RMSE B, and RMSE H as y-labels or adding friction coefficient,325

bed elevation, and ice thickness as titles. The description of panel c is missing. The colour coding is326

somewhat confusing because you are using the same colours as in Fig. 4 but they do not represent327

the same thing (ensemble size vs. friction coefficient/bed elevation/ice thickness).328

We revised the figure as suggested.329

Fig. 6: Why did you choose a more or less symmetrical (about y=40 km) friction coefficient but a330

very asymmetrical bed topography? The units are missing in the colour bar label. You might want331

to increase the spacing between panels to make it clearer which text corresponds to which panel.332

We revised the figure as suggested.333

Fig. 7: What causes the sharp grounding line extent towards higher x values at y=10 km in the no334

assimilation panel? Units are missing. Increase spacing between panels.335

We revised the figure as suggested.336

Fig. 8: Why did you not show the difference in Fig. 6 and 7? What causes the checkerboard337

pattern?338

We chose to show the difference in ice thickness in Fig. 8 because changes in thickness are difficult339

to detect visually from the similar figure as Fig. 6 and 7. The artifacts observed in the ice thickness340

are the result of the conditional random fields generated using the Kriging method, which can341
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produce “bull’s eye” patterns commonly observed between observation points. We clarified this in342

the revised manuscript.343

Fig. 9: I suggest adding a legend for the different lines. Change reference run to reference sim-344

ulation. Change forecast simulation to deterministic forecast simulation (all of them are forecast345

simulations).346

We revised the figure as suggested.347

Sec. 3.2: Do not use abbreviations as section titles.348

We changed the title.349

L285: Change 10 to 15 km to 15 km. Or did you also test, e.g., 13 km across-track spacing?350

We revised this as suggested.351

L286: I am not sure what you mean by the performance declines due to suboptimal choices for352

inflation and localization parameters. You are examining the effects of these parameters here, so353

shouldn’t you be able to determine the optimal choices? Do you mean the optimal choices are354

outside your tested parameter ranges? If so, you need to show results supporting this claim.355

We removed the phrase “suboptimal choices for parameters”.356

L287: Start a new paragraph before ”For the gridded”.357

We revised it as suggested.358

L288: Add the reference to Fig. 11 to the end of this sentence (currently at the end of the para-359

graph).360

We revised it as suggested.361

L289: range of localization.362

Done.363

L292: we conducted: Use present tense throughout the manuscript (e.g., same issue in L403364

presented).365
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We revised the manuscript to consistently use the present tense.366

Fig. 10: In panels (f) and (i), why is the RMSE of localization radius 6 km and inflation factor367

1.04 much larger than the surrounding values?368

The RMSE values are calculated over the entire domain, and localized errors can increase the369

overall RMSE. We included additional discussion on the localization and inflation factors in the370

revised manuscript.371

L297-299: Add reference to Table 2.372

We added the reference to Table 2.373

L301: RMSE values continue to decrease until the end: Add reference to Fig. 12. Panels c, f, and374

i show an increase in RMSE at the end.375

We added the reference to Fig. 12 and an increase in RMSE. This paragraph is about when the376

elevation error is 5 m/yr which does not an increase in RMSE at the end.377

L301-303: Add reference to Table 3.378

We added the reference to Table 3.379

L304: marginal improvements ... after 10–15 years: Add reference to Fig. 13. Again, RMSE380

actually increases in panels f and i. What do you think causes this increase?381

We added the reference to Fig. 13 and described the increase in RMSE for the 20 km grid data. We382

also added some discussions on this point in the revised manuscript.383

L304-305: This is discussion.384

We remove this sentence here since there is already a similar discussion point in the Discussion385

section.386

L307: Add reference to Table 2. For RMSE C, the smallest uncertainty leads to the second-largest387

RMSE of all tested uncertainties. So DA performance does not necessarily decrease as uncertainty388

increases!389
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We agree with the reviewer that this paragraph is not well presented. We revised it to clearly390

reference Table 2 and Fig. 12 and distinguish between the RMSE values for friction coefficient391

(RMSE C) and bed topography (RMSE B) and ice thickness (RMSE H).392

L308-309: Add reference to corresponding panel in Fig. 12. For the 10 km across-track data,393

the maximum difference in RMSE C is 15.43. For the 5 km data, it is only 8.65. Although the394

maximum difference is much smaller in the 5 km case, you argue that it shows a decrease in per-395

formance as uncertainty increases while the larger 10 km difference indicates a consistent per-396

formance across different uncertainty levels. I believe your statement is primarily based on the397

RMSE B and RMSE H results, but these details need to be spelled out!398

We added reference to corresponding panel in Fig. 12. In addition, we clarified the distinguish399

between the RMSE values for friction coefficient (RMSE C) and bed topography (RMSE B) and400

ice thickness (RMSE H) in the revised manuscript.401

L309-311: Adding to my previous comment, if you compare Track 15km σh 10 σv 10 to Track 15km σh 15 σv 10,402

and Track 15km σh 20 σv 10, the DA performance increases as uncertainty increases for RMSE C,403

RMSE B, and RMSE H. This needs to be stated clearly and discussed in detail!404

We revised this paragraph to clarify.405

L311: Add a reference to the corresponding panel in Fig. 12. They actually show an increase in406

RMSE after 15 to 20 years.407

We revised this paragraph to add this point.408

L311: Add new paragraph before “With the 1 km gridded”.409

As suggested, we separated the discussion of the 1 km gridded results into a new paragraph.410

L312: Add a reference to Table 3. What about the friction coefficient? For the friction coeffi-411

cient and Track 15km, the highest uncertainty level has the smallest RMSE and, therefore, the best412

performance. So DA performance does not necessarily decrease as uncertainty increases!413

Although the highest uncertainty level has the smallest RMSE, the lowest uncertainty level still has414

smaller RMSE than the 10 m/yr and 15 m/yr uncertainty results. In addition to the RMSE pattern415

during the assimilation window (Fig. 13a), we argue that the friction coefficient does not show416

the clear pattern with varying uncertainty in surface elevation. We added this point in the revised417

manuscript.418
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L313: DA performance does not vary significantly across different uncertainty levels: I don’t419

think I agree with this statement. Again, just looking at RMSE C, the maximum difference across420

uncertainty levels at 1 km resolution is 2.84, while it is 10.28 at 10 km and 30.8 at 20 km. So if421

anything, the performance varies more significantly with coarser grid resolution. Additionally, the422

RMSE C for the coarsest grid resolution (20 km) and highest uncertainty level is smaller than all423

other RMSE C values at 20 km AND 10 km resolution! As the RMSE C with the highest uncertainty424

and the coarsest across-track resolution is also smaller than all other values at this resolution, it425

seems unlikely that this is just a coincidence. So this really needs to be addressed.426

We apologize for the errors in the RMSE C values for the 20 km grid data (caused by copy-and-427

paste mistakes in the latex document). We corrected these values in Table 3 and revised this para-428

graph accordingly.429

Fig. 12: Use RMSE C, RMSE B, and RMSE H in y-labels. Panel labels in the second and third430

rows are the same. Actually, even the subplots themselves look the same. The panel labels seem to431

be just a copy/paste issue in your Python code, not sure about the actual data.432

We fixed the panel labels. The pattens for RMSE B and RMSE H over assimilation time is very433

similar to each other since surface elevation is defined as the sum of ice thickness and bed topog-434

raphy (surface = thickness + bed). The figures in the second and third lows look very similar but435

not the same figures (note that values in y axis).436

Fig. 13: Same issues as for Fig. 12. What causes the increase in panel f after 20 years? Why is437

there such a rapid increase in RMSE in, e.g., panel d between 5 and 10 years? Why does this rapid438

increase get muted for coarser resolutions? A similar pattern occurs in Fig. 12.439

As mentioned above for other figures (e.g., Fig. 5), it is likely due to a temporary mismatch between440

the model forecast and the observations during this period, potentially caused by transient model441

dynamics or nonlinearities in the response to assimilated observations. Localized error growth can442

temporarily degrade performance. We included discussion on this point in the revised manuscript.443

L316: fast flowing regions: You haven’t mentioned fast-flowing regions before. Are you referring444

to areas around the grounding line, where the signal-to-noise ratio of velocity is relatively high?445

I’d argue that large differences also occur for y=70-80 km and x=450-640 km, which seems to be446

a relatively slow-flowing region.447

We specified fast flowing regions as where velocity is larger than 100 m/yr, which corresponds to448

the around the grounding line in the revised manuscript.449

L319: fast flowing regions: Again, what about the region between y=70-80 km and x=450-640450

km?451
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We specified fast flowing regions above.452

L322: “more” accurate.453

Done.454

L333: assumptions on the initial ensemble: Be more specific.455

We revised this to “how the initial ensemble is generated”.456

L337: relatively small ensemble size: Be precise.457

We specified the ensemble size.458

L337-338: previous studies: References are missing.459

We added the references.460

L342: a larger ensemble size could provide advantageous: Or not. Fig. 5e shows a larger RMSE461

for 100 members than 50 members by t=30 years.462

We agree that increasing ensemble size does not always guarantee improved DA performance.463

We revised the discussion to acknowledge that larger ensemble sizes can improve performance in464

general but may also introduce challenges that must be carefully managed, particularly in long465

assimilation periods or highly nonlinear systems.466

L343: What exactly should these studies investigate to identify the optimal approach?467

We removed this sentence, as paragraphs discussing future studies are now included only at the end468

of the discussion section, as suggested by the reviewer.469

L345: similar to values from earlier studies: References are missing. What are these values?470

We added the references with values from those studies.471

L347: 4-120 km is a lot wider range than your 4-8 km. What causes these differences?472

17



The differences in the optimal localization radius likely comes from the differences in model con-473

figuration, dimensionality, and spatial resolution. Our study uses a 2D unstructured mesh with474

relatively fine spatial resolution, whereas previous studies using flowline models (1D) with coarser475

grids may require broader localization to account for longer correlation length scales. We added476

this point in the revised manuscript.477

L351: ... assimilating more observations, i.e. more assimilation years, to estimate ...478

We revised it as suggested.479

L352: improves accuracy of model projections: In general, yes, but the difference in ice volume480

change at t=200 years is larger in Fig. 9 panel b than panel a (between red and blue line).481

We added “reduced uncertainty” to specify the accuracy. As the reviewer mentioned, in general482

and during the projection period, the determinist ice volume loss forecast in Fig. 9b shows better483

agreement with the reference simulation than in Fig. 9a.484

L354: XX : Add numbers.485

Added.486

L358: in this study that: Replace with here.487

We revised this as suggested.488

L358: observations maintains: Replace with observations while maintaining489

We revised this sentence.490

L361: I suggest restating what OSSE means for readers quickly skimming through the manuscript.491

492

We added a brief definitions of OSSEs.493

L361: Remove “in this study”.494

Removed.495

L361: the capabilities of OSSEs: Replace with their capabilities.496
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Done.497

L365: (Table 2 and 3): If you include references here then you should also include them in previous498

paragraphs of the discussion.499

We removed these references.500

L365-366: As indicated previously, this is not the case for RMSE C in Table 3.501

Again, we apologize errors in RMSE C in Table 3. We revised this paragraph to clarify our points.502

L369-371: As mentioned above, additional data points can actually have a negative effect.503

We revised this sentence.504

L373-374: I disagree. The friction coefficient has the largest differences in RMSE across un-505

certainty levels (for all resolutions in Table 2 and similar for Table 3), so it is actually the most506

sensitive.507

We intended to compare DA performance in estimating bed topography (and ice thickness) versus508

the friction coefficient. We revised it to ‘‘friction coefficient retrieval shows no clear pattern in509

response to the prescribed surface elevation uncertainty”.510

L377: will or should?511

We revised it to “should”.512

L379-380: Consolidate all future study suggestions into one paragraph.513

We removed some mentions of future work, and now they are included in the final paragraphs of514

the discussion section.515

L398-399: Your future studies should address sentences are spread out across the entire discus-516

sion. I recommend bundling all of them into one single paragraph at the end of the discussion.517

518

We removed some mentions of future work, and now they are included in the final paragraphs of519

the discussion section.520
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L398-399: Again, this is not always the case.521

Except for the temporary decreases in DA performance observed during the assimilation period,522

this statement generally holds true. We clarified this point in the revised manuscript.523

L400: What does great accuracy mean? Be precise.524

We agree with the reviewer and replaced “great accuracy” with a quantitative assessment.525

L404: Different levels of observational uncertainty: Do you mean smaller levels of uncertainty?526

It is not necessarily smaller uncertainty levels; it also depends on the resolution or the track spacing527

of the data. We clarified this in the revised manuscript.528

L410: Will you also upload the data files?529

Yes, we uploaded the data files to run the scripts.530
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Estimation of the state and parameters in ice sheet model1

using an ensemble Kalman filter and Observing System2

Simulation Experiments3

– Authors’ response (RC2) –4

Youngmin CHOI et al.5

August 6, 20256

This is a review of “Estimation of the state and parameters in ice sheet model using an ensem-7

ble Kalman filter and Observing System Simulation Experiments” by Choi et al., submitted for8

publication to The Cryosphere. This manuscript describes the use of an ensemble-based data as-9

similation system, the Ensemble Kalman Filter (EnKF), to assimilate data into a 2D large-scale ice10

sheet models, for the purpose of better estimating parameter values and state variables during the11

historical period. It follows on other studies that have explored similar methods for 1D ice sheet12

models, and makes the crucial step of applying such methods to a model widely used for projec-13

tions. This study also adds a novel “Observing System Simulation Experiment” in which different14

potential observing system configurations (resolution, track spacing, observational accuracy) are15

tested to determine their ability to improve accuracy in estimated parameters and state.16

Overall, I think this is a pretty straightforward study using well-known tools in a new way with ice17

sheet models, advancing the state of the art in our field. My main suggestions are to further explore18

certain DA and modeling choices that are unexamined in the current version of the manuscript. I19

have detailed these suggestions and more minor ones below.20

We thank the reviewer for reviewing the manuscript and constructive comments. We revised the21

manuscript to include additional justification for key data assimilation and modeling choices, clar-22

ify methodological decisions, and expand the discussion on the implications and limitations of our23

approach. We address each specific comment in detail below and aim to improve the clarity.24

1. The manuscript briefly describes what the EnKF is, and then indicates that the EAKF version25

is chosen for this study. There are multiple different flavors of the EnKF available in DART, so it26

1



is unclear why EAKF is chosen and whether the results would be any different if another filter was27

chosen. My suggestion is to describe in some more detail what is done in an EnKF and how the28

EAKF is different from the standard EnKF. Additionally, either some justification for why the EAKF29

was chosen and some level of justification for why that is the preferred approach when others are30

available.31

Thank you for the suggestion; this was also raised by another reviewer. We added more details32

about the EnKF and EAKF, and the description about the distinctions between the two approaches33

in the Data assimilation section as follows:34

“In contrast to the standard stochastic EnKF—which perturbs observation-space quantities ran-35

domly for each ensemble member to account for observational uncertainty—the EAKF avoids addi-36

tional perturbations and instead analytically adjusts the ensemble members to match the posterior37

mean and covariance determined by the original Kalman filter equations (Anderson, 2001). This38

approach improves numerical stability and reduces sampling noise over stochastic EnKFs, espe-39

cially for small ensemble sizes (Whitaker and Hamill, 2002). In this study, we choose the EAKF40

due to its reduced sensitivity to ensemble size and improved robustness in geophysical systems, as41

demonstrated in previous studies using DART (Zubrow et al., 2008; Anderson et al., 2009).”42

2. One thing that is unclear from your study design is the relative importance of assimilation win-43

dow (e.g. 5 vs 15 vs 30 years) as compared to number of assimilation cycles. You don’t change the44

frequency of observations, which may be sensible given than annual observations are reasonable45

for current observing platforms. However, it is then hard to understand as a reader whether there46

is something fundamental about having 20-30 years of observations related to the time scales of47

ice sheet response to adjustments, or whether it is having 20-30 assimilation cycles to improve. If48

the observations were more frequent (e.g. an IceSAT2-like 90 days) would it takes less time for the49

EnKF to improve to the level that you show here?50

This is a great point. In this study, we aimed to estimate two constant-in-time parameter fields51

and the model state on an annual basis. Given the timescales associated with the model state and52

parameters, as well as the capabilities of current observational platforms, we chose to use annual53

observations for simplicity.54

We agree that the distinction between the length of the assimilation window and the number of55

assimilation cycles needs further investigation. To address this, we conducted an additional exper-56

iment using semiannual observations to explore the relative impact of the number of assimilation57

cycles versus the time period over which they are applied. We included the results and a discussion58

in the revised manuscript as follows:59

“In this study, we focus on estimating two constant-in-time parameter fields and the model state60

using annual observations over assimilation windows of varying lengths (5, 15, and 30 years). This61
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choice is motivated by both the timescales associated with glacier dynamics and the current capa-62

bilities of observing platforms. However, the relative importance of the assimilation window length63

(i.e., total time span) versus the number of assimilation cycles (i.e., update frequency) remains an64

open question. To explore this, we conduct an additional experiment using semiannual observa-65

tions under the same setup as the twin experiment (Fig. A1). The results suggest that semiannual66

observations lead to a faster reduction in RMSE for both the model state and parameters. However,67

the improvement at the end of the 30-year assimilation window, compared to annual assimilation,68

remains limited. This limited benefit is likely due to the nature of the parameters and state vari-69

ables considered in this study—constant-in-time fields and annual-scale variability—which allow70

sufficient information to accumulate over time for a fixed target. Once sufficient assimilation cycles71

have passed, the parameters become well constrained, and more frequent updates offer little addi-72

tional improvement. These findings suggest that, for slowly varying or static variables, increasing73

observation frequency can accelerate convergence toward the true state and parameter values, but74

may not yield additional improvement beyond a certain number of assimilation cycles. In contrast,75

if parameters or states change more rapidly or nonlinearly, a longer assimilation window or more76

complex update schemes might be needed to achieve similar improvements. Future work should77

explore the sensitivity of EnKF performance to both assimilation frequency and window length to78

identify optimal configurations for real glacier systems with time-varying parameters and limited79

observation periods.”80

3. A big difference between your perfect model design and a real scenario where DA might81

be applied is that only two constant-in-time parameter fields are unknown. In reality, (e.g.) ice82

viscosity and climate forcing are also likely to be poorly known (though at least climate forcing is83

directly observable), and climate forcing (and basal friction) may vary in time. Two possibilities84

that would be helpful to run some experiments to assess are:85

(a) if you are mistaken about the values of other parameters, but still only estimate basal friction86

and topography, will the estimate of basal friction compensate for these other errors (particularly87

for ice viscosity which trades off quite directly with basal friction in a depth-integrated model) -88

there is some evidence of such compensation already happening in your estimates, see below89

(b) could this DART-ISSM configuration be used to estimate multiple parameters at once (I don’t90

see a reason why not, but the performance may not be the same as what is found for the single91

parameter estimation experiments explored currently).92

I get that the design of these experiments are meant to mimic and compare directly to Gillet-Chaulet93

2020, but it would be useful to also push beyond their design to get closer to a realistic case where94

DA might be used.95

Thank you for this insightful comment. We agree that in real-world applications, other parameters96

such as ice viscosity and climate forcing are also poorly constrained and may vary in space and97
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time. In this study, we intentionally limited the number of unknowns to two constant-in-time pa-98

rameter fields (basal friction and bed topography) to enable direct comparison with Gillet-Chaulet99

et al. (2020) and to isolate the behavior of the EnKF framework in a controlled setting.100

Regarding (a), we recognize that compensation effects between parameters (e.g., between basal101

friction and ice viscosity) may arise if other sources of uncertainty are not properly accounted for.102

We added a discussion of this limitation and clarified that our experimental design assumes perfect103

knowledge of other parameters such as ice viscosity, which is not realistic.104

Regarding (b), while we agree that the DART–ISSM framework is capable of estimating multiple105

parameters simultaneously, we chose to start with a reduced set of unknowns to rigorously test the106

baseline performance of the ensemble Kalman filter. We believe this simplified setup is appropriate107

for the scope of the current study, which aims to provide a foundational assessment of ensemble108

DA performance in an ice sheet modeling context. Extending the framework to include more109

unknown parameters—such as ice viscosity or time-varying climate forcing—will likely introduce110

new complexities. These directions are indeed important and are part of our ongoing and future111

work, but they are beyond the scope of this initial system evaluation. We have clarified this in the112

revised manuscript as follows and note that this study provides a foundational step toward that goal113

by demonstrating the feasibility and utility of ensemble DA with a simplified setup.114

“Our experimental design also assumed perfect knowledge of all model parameters except for115

basal friction and bed topography. This choice was made to facilitate learning about the DA system116

in a controlled setting and to keep the experimental setup more tractable, while also allowing117

for direct comparison with Gillet-Chaulet (2020). However, this approach limits the realism of118

experiments. In practice, parameters such as ice viscosity and climate forcing are also poorly119

constrained and may vary in both space and time. For example, uncertainties in viscosity may120

interact with basal friction during assimilation, potentially leading to parameter compensation121

effects. Future sensitivity studies should explore how mis-specified background parameters (e.g.,122

biased viscosity fields) affect the estimation of other parameters and whether such compensation123

leads to biased or unstable forecasts. Although this study focused on estimating two constant-in-124

time parameter fields (friction coefficient and bed topography), the DART–ISSM framework is well-125

suited for the joint estimation of multiple spatially or temporally varying parameters. Extending126

the current configuration to include additional unknowns – such as ice viscosity, accumulation rate,127

or time-varying boundary conditions – represents a valuable next step toward more realistic data128

assimilation in ice sheet modeling.”129

4. At more than one point it is suggested that using variational methods is more computationally130

intensive that ensemble-based DA. However, there is no real direct proof of this as you don’t per-131

form a direct comparison and to my knowledge this has not been done in the published literature.132

Given that ISSM has a variational DA option already implemented, it could be valuable to com-133

pare EnKF with ISSM to EnKF with ISSM in terms of core-hours for a simple standardized run.134

Short of that, it would be useful to have a sense for the DART overhead? If it is negligible then135
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I would expect ensemble-based DA to have n times the computational expense of a conventional136

ISSM run where n is the number of ensemble members. Additionally, giving a sense for how this137

ensemble-based approach has (or can be) parallelized would be useful. In theory, ensemble DA is138

highly amenable to parallelization, but this depends on how covariance matrices are constructed139

and how shared memory parallelism is handled. More details on all the computational aspects of140

this new method would be very useful to include.141

Thank you for the great suggestion. We agree that a computational comparison between the two142

data assimilation methods would be valuable. However, due to the fundamental differences in the143

core computational processes of variational and ensemble based approaches, a direct comparison144

of their computational costs is challenging and is beyond the scope of this study.145

Variational approaches using automatic differentiation (AD) tend to have higher memory demand,146

while ensemble DA methods primarily increase computational cost through the need to run mul-147

tiple forward simulations. Additionally, the two approaches are implemented using different tools148

within ISSM – variational DA is built using the AD tool, while ensemble DA is integrated via149

DART – which further complicates direct comparison. We have included this limitation in the re-150

vised manuscript as follows and mentioned the need for future work to systematically assess the151

computational trade-offs between these two methods.152

“Although ensemble-based data assimilation offers conceptual and practical advantages, its com-153

putational cost is often considered a limiting factor. In this study, we did not perform a direct154

computational comparison between ensemble and variational (transient) DA approaches. Such155

a comparison is challenging due to their fundamentally different implementations. For example,156

variational DA in ISSM relies on automatic differentiation (AD), which can be memory-intensive,157

whereas ensemble DA increases computational cost primarily by requiring multiple forward simu-158

lations. However, ensemble approaches can be parallelized, as each ensemble member’s forward159

run can be distributed across separate cores or nodes, and the DA process here is managed through160

DART, which supports parallel computing. While formal benchmarking was beyond the scope of161

this study, it would be valuable in future work to quantify computational trade-offs across DA162

methods in ice sheet modeling.”163

L16: less numerical model re-development164

Done.165

L26: use a form of variational166

Done.167

L28: realy on observational at a single time to168
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Done.169

L30: it often introduces nonphysical artifacts into the170

Done.171

L35: The use of computational techniques such as automatic differentiation in ice sheet models172

Done.173

L69: to my knowledge this is the first ice sheet modeling paper to apply OSSE, so I think you can174

be more direct about this sentence175

We revised this sentence as suggested.176

L86: an ensemble...for ice sheet model initialization177

We revised this paragraph.178

L88: on model initialization179

We revised this paragraph.180

L92: simulation of ice sheets181

Done.182

L100: explain what the random midpoint displacement method is183

We added the details on this method.184

L138: model simulations185

We revised this paragraph.186

L143: I am confused here because you don’t include velocity in the state vector, but later you say187

it is part of what is assimilated?188
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Velocity is an observation being assimilated, not the part of the state vector. We clarified this in the189

text.190

L184: does localization as implemented preserve covariance between different variables at the191

same location in space or does it simply localize along the diagonal of the covariance matrix?192

For example, there should be strong correlation between the ice thickness estimate and the bed193

topography estimate, and so you would be losing a significant amount of your ability to assimilate194

if covariances between these two variables at the same location in space where zeroed out by195

localization.196

Localization is applied to joint observation-state-space covariance in DART, which means that co-197

variance across model variables at the observation location will not be damped by the localization.198

We added the following to the revised manuscript:199

“Localization is applied to reduce correlations between model states projected into observation200

space and the unobserved state variables, which does not explicitly damp covariances across co-201

located variables.”202

L205: what would happen if you had no velocity observations? How much of the performance is203

due to velocity observations vs thickness?204

We acknowledge that this trade-off between observation types is important for real-world applica-205

tions. As similar points are raised by another reviewer, we conducted additional experiments with206

varying uncertainties in the velocity data and included the new results in the revised manuscript.207

We also added a discussion on the relative importance of velocity versus elevation uncertainty.208

L243: I think this should refer to Fig. 5209

Yes. We revised it to Fig. 5.210

L259: mean to initialization the deterministics...full ensemble to initialization the ensemble211

We revised it as suggested and moved this paragraph to the Method section as suggested by another212

reviewer.213

Fig 4. In the caption you mention that highly localized experiments diverge. It would be helpful to214

speak to why these experiments diverge in the main text.215

We added this point to the Discussion section to clarify that when the localization radius is too216

small, it overly restricts the influence of observations on the state update. This can lead to underes-217

timation of error covariances and result in filter divergence. In our experiments, this is evident when218
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the localization radius falls below the specific threshold of each variable (e.g., 4 km for friction and219

6 km for bed topography).220

Fig. 7: There are artifacts in the bed topography and ice thickness estimates that correspond to the221

basal friction estimate. Can you speak to this? Is it related to how the localization is performed?222

The artifacts in the bed topography and ice thickness are the result of the conditional random fields223

generated using the Kriging method, which can produce “bull’s eye” patterns commonly observed224

between observation points. We added this to the Results section.225

L276: can you quantify this change in spread? by eye it doesn’t seem to change much between 20226

and 30 years of assimilation227

We added specific values for each spread in the revised manuscript.228

Figure 9: can you add a legend and plot the ensemble mean as well?229

We added a legend and included the ensemble mean in the plot.230

L290: It would help to discuss what this sentence means in practice. Is prediction accuracy231

degraded for this case? Or can you achieve similar results with different localization and inflation232

parameters?233

Although minimum RMSE values were identified for the coarser-resolution cases (10 km and 20234

km), the overall prediction accuracy is still lower than that of higher-resolution cases (e.g., 1 km).235

We added this in the revised manuscript.236

L325: initial estimates for the model parameters?237

We revised this sentence including the suggestion.238

L328: correlation between both parameters239

We meant the “establish spatial correlation within each parameter”. We revised the text.240

L332: what do you mean by “initial ensembles”241

We meant “initial ensemble of parameters”. We revised the text for clarity.242
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L354: need to fill in values for XX243

Fixed.244

L358: transient changes in model state but not in parameters245

We revised it as suggested.246

L366: can you speak to the limitations on this? would having 100m resolution data be even better247

or proportionally so?248

In principle, higher-resolution data (e.g., 100 m) could further improve data assimilation perfor-249

mance by providing finer spatial detail on surface features and more precise constraints on model250

parameters. However, the benefit of finer resolution may decrease beyond a certain threshold due251

to increased observational noise, modeling uncertainties, and the inherent spatial correlation scale252

of the parameters being estimated. We added this in the revised manuscript.253

L370: this is a very important point that is worth highlighting in the abstract254

We included this finding in the abstract.255
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