Author response to reviewer comments
Anonymous Reviewer #1

The authors quantify methane emissions from 12 US oil and gas basins using methane column
observations from 32 MethaneAlIR flights in 2023. These 12 basins accounted for 70% of total onshore
oil and gas production in the contiguous United States in 2023. The authors estimate both total and sector-
specific (oil + gas) emissions for each basin. They use a novel two-step regional flux inversion approach
that first quantifies large point sources and then diffuse area emissions via Bayesian inverse analysis with
the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Emission contributions from non-oil
and gas sources are estimated using sectoral emission estimates from a collection of previous top-down
and bottom-up studies. The authors compare their regional estimates of methane emissions and loss rates
with 16 previous studies and find generally good agreement.

We thank the reviewer for their helpful comments and suggestions. We have addressed the reviewer
comments and incorporated them in the revised manuscript and hope the following responses address
their concerns. Our point by point responses to all comments are below in blue, with the page numbers
corresponding to the revised manuscript with tracked changes included.

The manuscript is well-written and a good fit for ACP. I recommend that it be accepted for publication
with revisions to address the following comments and questions:

I think a more detailed description of the flux inversion methodology is needed, ideally in the main text. It
is a novel approach and the most critical part of the analysis. Can more information be provided? For
example, it would be helpful to know more about the modeling of the “boundary inflow”, the numerical
solution to the inverse problem, the approach to calculating column sensitivities with STILT (presumably
based on MethaneAlIR retrieval averaging kernels), and how/why GFS and HRRR meteorology are
combined to drive STILT.

Response-We have substantially expanded Section S1 in the Supplement to describe the inversion
framework in detail. We added methodological details and equations for the forward model, the
background, the boundary inflow, and the solution to the inverse problem.

We clarified that independent Jacobians were computed using 1) GFS meteorology, and 2) HRRR
meteorology where possible. These were used to diagnose potential issues with excessive transport error
(diverging cases were excluded by QA/QC), and in the estimation of uncertainty. The following text is
now included in Section S1:

Section S1, p. 2-4: “With discrete sources (Sgiscrete) fixed, the inverse model fits a gridded field of dispersed area
source emission rates (Sgispersea) 10 account for the balance of the methane enhancement. A gridded field of
emission rates in the domain of interest, (Syeportea = Saiscrete + Saispersea)> and “pseudo-emission” rates in the
upwind boundary inflow region (Siyfiow) are fitted to observed column-averaged dry-air mole fractions of methane
(XCHy), z, linked by a Jacobian (H) plus a field of background concentrations (b) (Equation S1).



z = H(Sdiscrete + Sdispersed + Sinflow) +b (Eq SI)

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain
physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of
the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (s =
Saiscrete T Saispersed + Sinfiow) that reproduces the MethaneAIR enhancements:

Js = lHs — z — b||* + 22|IL(s)||? (Eq. §2)
st. >0, wi(H) =M,

where:

L — first-order spatial difference operator enforcing smoothness
A — Tikhonov regularization strength

M — total methane mass enhancement in the domain (kg CH.)

w — air-mass weights converting ppb to methane mass

XCH, observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for
overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that
passed all QA/QC flags were included in the analysis.

The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et
al.,, 2018; Lin et al., 2003), which simulates the sensitivity of XCH observations to sources on the ground by
propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a
10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the
previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with
STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT
driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided
by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was
run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x
the planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every
layer are integrated with weights representing the fraction of the total atmospheric column of dry air represented,
with the mean averaging kernel for MethaneAIR.

The background concentration field represents the synoptic-scale, topographically varying component of the
XCHyobservations. We fit a field of background XCH 4 concentrations given by the MethaneAIR L2 prior (Chan
Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a
variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically
with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP
Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services
(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the
observations.

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full
10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent
any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background
variation or inflow of sources just outside the domain of interest.



Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which
approximates the effective representative area of the DI. This places trust in the well-tested point-source specific
algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete
mass of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent
between methodologies and inevitably undercounts the contribution of the point sources when they fall below
detectable concentrations. The inclusion of fixed discrete sources in the inverse model makes this a constrained
regularized optimization rather than Bayesian inference, and so we report only the optimal solution and do not
assign probabilistic confidence intervals. It is important to note that this is non-Bayesian to prevent over-
interpretation of a “posterior” estimate, which would be invalid due to data re-use.

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint.
Subsequent proposals are constrained to be non-negative and satisfy the mass constraint.”

What happens to the flux inversion if the modeled wind direction for a point source is wrong? In principle
a flux dipole could arise, but it is mentioned in the SI that the non-negativity constraint in the inversion
helps prevent that. How well does that work, and do any other biases manifest?

Response-When the modeled wind direction is wrong, plumes downwind of point sources are poorly
modeled and a “plume shadow” or “dipole” effect is induced (a dipole is technically the result if non-
negativity is not enforced). In cases where the modeled plume does not overlap the observed plume, the
Jacobian is excluded by QA/QC. If both GFS and HRRR Jacobians are excluded by QA/QC, then the
flight is excluded by QA/QC. There will always be some transport error, which is exacerbated where
there are steep gradients in methane enhancements, most notably where there are distinct plumes. This is
not only because of error in the mean wind direction, but also because of variations in XCH4 that cannot
be resolved by the meteorological model (i.e., large eddies).

The inverse model uses a hard mass constraint Tikhonov regularization (more information about this has
been added to the Supplement Section S1 — see above response for added text). This hard mass constraint
ensures that the total excess methane in the observed atmosphere is modelled, and the spatial allocation of
the inverse model distributes area emissions spatially throughout the region. The impact of wind error in
the vicinity of large point sources is then to re-distribute other emissions sources around the plume, with
minimal effect on the total, as the residence time of air is mostly unchanged by this perturbation.

How are point sources detected prior to the diffuse flux inversion? Is the process automated, semi-
automated, or manual?

Response- Point sources are detected using an automated threshold-based method, with manual QA/QC
prior to their inclusion in our analysis. The process is described in detail in Chulakadabba et al. 2023 and
Warren et al. 2025 and validated in controlled release experiments (El Abbadi et al. 2024; Chulakadabba
et al. 2023). We have expanded Section S1 in the Supplement as follows:

Section S1, p.2: “For each MethaneAIR flight, discrete point source emissions (with methane emission rates > ~200
kg/hr), are detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our
analysis and subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren

et al., 2025). The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across



the scene, using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method
(Chulakadabba et al., 2023) to calculate the flux through each square. In the gridded flux product, hotspots were
identified with a thresholding method as potential plume origins. At each flux hotspot, we found XCH, clumps with a
given number of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major
axis of the XCH,; mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume
origin (Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et
al., 2023; El Abbadi et al., 2024), and is explained in greater detail in Warren et al., 2025.”

305-310: There is some redundant content in this passage.

Response- This passage importantly describes both the total methane emissions estimated by
MethaneAlIR as well as the oil and gas only methane emissions estimated by MethaneAIR, and how these
two different estimates compare to the EPA totals. While the discrepancy between the overall total and oil
and gas total is similar, we believe including both estimates and comparisons is valuable, as it shows that
the oil and gas sector is likely the main contributor to underreported emissions in the GHGI.

314: 0.17 kg CH4/GJ from MethaneAlR is very similar to 0.18 kg CH4/GJ from IEA. Is it expected to be
much lower? Perhaps this passage can be clarified.

Response- We modified the text to add clarity to the comparison between the MethaneAIR and IEA
intensity estimates, as there are other important differences between the two in addition to the use of gross
vs. marketed gas production that should be mentioned. Considering these other factors, we do not expect
the IEA value to necessarily be lower than our MethaneAIR estimate, so we modified the text as follows:

L312-315: “The estimated energy-normalized methane intensity of 0.17 kg CH4/GJ is comparable to the upstream
methane intensity of 0.18 kg CH4/GJ for the entire US reported by the IEA for 2024 (IEA, 2025), however it should
be noted that their estimate is calculated using marketed oil and gas production, whereas our estimate uses gross
production and includes methane emissions from the entire oil and gas sector (i.e., not just upstream).”

319: I believe Figure 6 is mislabeled here—the passage seems to refer to Figure 5.

Response- We double checked the caption for Figure 6 and confirmed that there is no labelling error, it
describes the comparison of MethaneAIR derived loss rates to other measurement-based loss rates from
previous literature. Note that there are some similarities in the features for Figures 5 and 6 (e.g., the grey
shaded area and dashed lines), hence the similar descriptions in the captions.

Figures 5 and 6:

In which cases are the MethaneAIR and previous estimates for the same domain? Is the Zhang et al. result
for the Permian spatially resampled to the flight domain? Those authors reported a loss rate of 3.7%,
much higher than the <2% shown in Figure 6, so I assume so. It would be helpful to mark on the plots
whether or not the previous results reflect spatial resampling.

Response- We added an asterisk to the x-axis labels and expanded the caption text to note which previous
estimates correspond to the exact domain, and which ones correspond to similar/overlapping areas.
Regarding the Zhang et al., 2020 reported loss rate, the difference is related to the domains - their



reported loss rate reflects their entire study domain (i.e., the whole Permian basin) whereas the loss rate
we show in the figure was computed based on Zhang et al.’s reported emissions and production volumes
within the MethaneAIR flight domain which is a subset of the Permian basin.

Why are the x labels in the figures not identical? There are fewer bars in some subplots of Figure 6 than
Figure 5.

Response- There are a different number of bars in the figures because some studies only reported total
methane emissions and did not report methane loss rates or the necessary information (e.g., gas
production volumes at the time of measurement) for us to compute it for our analysis. In these cases, they
are included in Figure 5 but not included in Figure 6.

Why do the inter-study differences in methane emissions not more closely match the differences in
methane loss rate? Two examples of this: the Peischl bars in the Barnett subplots show much higher
emissions than MethaneAIR but very similar loss rate, and the MethaneAIR bars in the Permian subplots
show better agreement with previous studies for emissions than loss rate.

Response- Absolute emissions can have more variability due to changes in activity/production levels over
time, whereas methane loss rates are often more stable over time as they normalize emissions by
production. This is likely contributing to the observed difference in the Peischl et al., 2018 study in the
Barnett, as those measurements were collected in 2015 when oil and gas production was much higher
than when the MethaneAIR flights took place in 2023. For the Permian, the time of measurement for
many of the studies is similar, likely contributing to the better agreement in total emissions. We also
argue that the loss rates show similarly good agreement for the Permian (<1% difference across all
studies).
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Anonymous Reviewer #2

The authors present results from many MethaneAIR flights performed in the United States, primarily to
quantify oil&gas emissions across major basins. Overall this represents a tremendous body of work to
execute the flights, process data, and analyze for fluxes and the authors should be commended for this
effort. The manuscript succinctly summarizes the results and shows general consistency in emission rates
derived from previous observation studies (mass-balance, and satellite remote sensing). The authors
employ what appears to be a novel way to calculate methane fluxes from remote sensing observations, but
the details are extremely light.

Response- We thank the reviewer for their helpful comments and edits, and hope the following responses
address their concerns. Our point by point responses to all comments are below in blue, with the page
numbers corresponding to the attached revised manuscript with tracked changes included.

Before I can accept for publication, considerable more detail needs to be included and justified. My
comments are as follows:

1. Table 1. Is Basin Area the total area of the basin or total area flown? If total area, can you express in
the same table how much of that area you flew with MethaneAIR?

Response- The basin area in Table 1 is indeed the total area, not the total area flown. We have removed
this column in Table 1 as it is not used in our analysis. In Table 3 in the main text, we added the area (in
km?) covered by the MethaneAIR flights in each oil and gas basin. We also report the fraction of the
basin’s total production covered during the MethaneAIR flights, which is a more informative metric than
the percent of the basin’s area flown, since some basins have significant geographic coverage but
production is concentrated in smaller regions which is where we would expect the majority of methane
emissions to originate from.

Section S1. STILT.

2. How do you simulate columns with STILT? How many layers? Interpolate between layers? Use an
averaging kernel? What is the averaging kernel?

Response- We have expanded the Supplement (Section S1) to add details about the column integration of
the STILT model. In short, we ran STILT with 300 particles at the center of every meteorological model
layer for each of the GFS and HRRR model up to 3x the planetary boundary layer height with integration
using the fraction of total atmosphere column dry air and the mean MethaneAIR averaging kernel (see
Chan Miller at al., 2024) as the weighting function. Section S1 now includes the following details:

Section S1, p.3: “The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Fasoli et al., 2018; Lin et al., 2003), which simulates the sensitivity of XCHy observations to sources on the
ground by propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01°
grid over a 10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or
include the previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice,
1) with STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with



STILT driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was
provided by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php).
STILT was run as a column receptor, with a receptor placed at every layer of the meteorological input from the
surface to 3x the planetary boundary layer height (above which we assume the footprint is always 0). STILT
footprints for every layer are integrated with weights representing the fraction of the total atmospheric column of
dry air represented, with the mean averaging kernel for MethaneAIR.”

Section S1. The calculation of the background is unclear.

Response- We have substantially expanded the Supplement (Section S1) to add details about the
background concentration calculation. In short, the background model is a field of methane
concentrations taken from the MethaneAIR L2 product (see Chan Miller et al., 2024), fitted from below
to the observations, with an allowance for the instrument precision.

Section S1, p.3: “The background concentration field represents the synoptic-scale, topographically varying
component of the XCH, observations. We fit a field of background XCH4 concentrations given by the MethaneAIR
L2 prior (Chan Miller et al., 2024) from below, such that the reflected distribution of concentrations below
background have a variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that
varies realistically with topography in accordance with the vertical distribution of methane in the atmosphere from
GEOS-FP Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web
Services (Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of

s

the observations.’

3. Can you restate in terms of an equation, figure, or additional clarifying language? - "The background
concentrations are given by a model..." - what model? STILT?

Response- We have expanded the Supplement (Section S1) to add details about the background
concentration calculation. See above response for revised text added to Section S1.

4. "The boundary inflow is modeled using the Jacobian and emission rates outside the domain of observed
concentrations." Where do you get these emissions? An inventory? Proper background quantification is
so vital to robust inversions, this section needs to be much clearer.

Response- The boundary inflow is computed as pseudo-emissions outside the domain of interest but
inside the total domain of the inversion. These are “pseudo-emissions” that represent actual emissions just
outside the domain or mesoscale variability in the inflowing methane concentration. This section has been
made clearer:

Section S1, p.3: “Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions
inside the full 10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since
they represent any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale

background variation or inflow of sources just outside the domain of interest.”

Section S1. Point Sources.



5. Is the divergence integral method to calculate point sources applied at the 0.01 binning or at the native
resolution? If you are binning, then you are certainly subtracting out more than point sources, as you are
aggregating all true emission sources within that ~1km domain.

Response- We are indeed binning. The divergence integral integrates emissions from an effective area of
approximately 1 km? for MethaneAIR. The divergence integral integrates all emissions in this area, and
so fixing the emissions in this gridcell is the appropriate choice to best represent the computed discrete
sources.

6. If you are not binning, how do you assess that model transport error correctly subtracts the influence of
point sources? Do you have a quality control approach that ensures this? If the transport is wrong, then
you risk not subtracting the point source component in your concentration field, which I can imagine will
throw the inversion haywire and produce flux artifacts.

Response- See above response regarding binning. If the transport is substantially wrong such that the total
emissions in a flight are substantially affected, the flight fails quantity control and is excluded from the
analysis.

7. How do you determine an origin of the point source via the divergence integral method? It seems quite
critical that you get the origin correct if you are forward simulating a concentration field with STILT.

Response- The plume detection method first calculates the flux divergence for 600 m x 600 m squares
tiled across the scene, using HRRR wind fields and the divergence integral method to calculate the flux
through each square. The upwind end of each plume shows a higher flux divergence than the downwind
end; hotspots in the gridded flux product were identified with a thresholding method as potential plume
origins. At each flux hotspot, we found XCH4 clumps with a given number of contiguous pixels above a
threshold value to create a mask of the plume. We calculated the major axis of the XCH4 mask and took
the upwind end of the major axis (using the HRRR wind direction) to be the plume origin. All plumes
found using this method were reviewed manually by examining plume morphology, ground
infrastructure, and correlation with albedo, and false positives were discarded.

We have modified the text in the Supplement (Section S1) to include more detail on the method, as
follows:

Section S1, p.2: “For each MethaneAIR flight, discrete point source emissions (with methane emission rates > ~200
kg/hr), are detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our
analysis and subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren
etal., 2025). The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across
the scene, using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method
(Chulakadabba et al., 2023) to calculate the flux through each square. In the gridded flux product, hotspots were
identified with a thresholding method as potential plume origins. At each flux hotspot, we found XCHy clumps with a
given number of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major
axis of the XCH4 mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume
origin (Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et
al., 2023, El Abbadi et al., 2024), and is explained in greater detail in Chulakadabba et al., 2023 and Warren et al.,
2025.”



8. It's not obvious to the reader that subtracting a forward model simulated concentration field produces a
preferred result, especially assuming some level of spatial aggregation (e.g., were you to run these
inversions at 10-20km, scales that others perform satellite inversions, would this still be required?).

Response- Rather than subtracting a forward model simulated concentration field we fix the emissions in
the gridcell where the discrete source was detected. This is the most accurate interpretation of the quantity
measured by the divergence integral algorithm.

Section S1. Inverse Problem

9. What is the formulation of the inversion problem? An SI is a good place to put these equations to
paper. The way it currently reads, the mass-balance constraint would just be the inverse of the Jacobian -
i.e., s = (H"-1)y and the non-negativity constraint would be some sort of gradient descent (or something
else?) algorithm that stops at zero. Not obvious from what's written. Are there other parameters that keep
the solution from an overfit? They say there is no need for a prior, so not Bayesian I guess?

Response- We have substantially increased the amount of detail (revised text below) about the inverse
model in the Supplement (Section S1).

Section S1, p. 2-4: “With discrete sources (Sgiscrete) fixed, the inverse model fits a gridded field of dispersed area
source emission rates (Sgispersea) 10 account for the balance of the methane enhancement. A gridded field of
emission rates in the domain of interest, (Syeportea = Saiscrete + Saispersea)> and “pseudo-emission” rates in the
upwind boundary inflow region (Siyfiow) are fitted to observed column-averaged dry-air mole fractions of methane
(XCHy), z, linked by a Jacobian (H) plus a field of background concentrations (b) (Equation S1).

z = H(Sdiscrete + Sdispersed + Sinflow) + b (Eq- S])

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain
physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of
the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (s =
Saiscrete t Saispersed + Sinfiow) that reproduces the MethaneAIR enhancements:

Js = |Hg — z = b|* + Z|IL(s)II? (Eq. S2)
st. >0, wi'(H) =M,

where:

L — first-order spatial difference operator enforcing smoothness
A — Tikhonov regularization strength

M — total methane mass enhancement in the domain (kg CHy)

w — air-mass weights converting ppb to methane mass

XCH, observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for
overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that
passed all QA/QC flags were included in the analysis.



The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et
al.,, 2018; Lin et al., 2003), which simulates the sensitivity of XCH observations to sources on the ground by
propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a
10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the
previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with
STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT
driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided
by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was
run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x
the planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every
layer are integrated with weights representing the fraction of the total atmospheric column of dry air represented,
with the mean averaging kernel for MethaneAIR.

The background concentration field represents the synoptic-scale, topographically varying component of the
XCHyobservations. We fit a field of background XCH4 concentrations given by the MethaneAIR L2 prior (Chan
Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a
variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically
with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP
Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services
(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the
observations.

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full
10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent
any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background
variation or inflow of sources just outside the domain of interest.

Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which
approximates the effective representative area of the DI. This places trust in the well-tested point-source specific
algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete
mass of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent
between methodologies and inevitably undercounts the contribution of the point sources when they fall below
detectable concentrations. The inclusion of fixed discrete sources in the inverse model makes this a constrained
regularized optimization rather than Bayesian inference, and so we report only the optimal solution and do not
assign probabilistic confidence intervals. It is important to note that this is non-Bayesian to prevent over-
interpretation of a “posterior” estimate, which would be invalid due to data re-use.

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint.
Subsequent proposals are constrained to be non-negative and satisfy the mass constraint.”

10. The authors do not provide any sort of metric of goodness of fit (e.g., H * s_hat plotted against y) or
information content from the retrieval. It's fairly common practice to show how well your model around
the optimal emission state compares to observations. It's also common to show information content
metrics (e.g., degrees of freedom for signal, model-resolution matrices, etc) for inversions, but given
there's not an explicit inverse formulation in paper, it's hard to know if that would be feasible.



Response- We have added significant details about the inversion methodology in the Supplement Section
S1. As included in our further details in Section S1 and in our responses, this analysis is based on a
constrained regularized optimization rather than Bayesian inference. We have also added a plot (Figure
S5) showing the observed vs modeled XCH4 enhancement for MethaneAIR flights.

11. Table S5. Please provide citations for literature based estimates, perhaps as an additional column in
the table or a footnote.

We added the citations for the literature-based estimates in Table S5.
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