
Author response to reviewer comments  

 

Anonymous Reviewer #1  

 

The authors quantify methane emissions from 12 US oil and gas basins using methane column 

observations from 32 MethaneAIR flights in 2023. These 12 basins accounted for 70% of total onshore 

oil and gas production in the contiguous United States in 2023. The authors estimate both total and sector-

specific (oil + gas) emissions for each basin. They use a novel two-step regional flux inversion approach 

that first quantifies large point sources and then diffuse area emissions via Bayesian inverse analysis with 

the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Emission contributions from non-oil 

and gas sources are estimated using sectoral emission estimates from a collection of previous top-down 

and bottom-up studies. The authors compare their regional estimates of methane emissions and loss rates 

with 16 previous studies and find generally good agreement. 

 

We thank the reviewer for their helpful comments and suggestions. We have addressed the reviewer 

comments and incorporated them in the revised manuscript and hope the following responses address 

their concerns. Our point by point responses to all comments are below in blue, with the page numbers 

corresponding to the revised manuscript with tracked changes included. 

 

The manuscript is well-written and a good fit for ACP. I recommend that it be accepted for publication 

with revisions to address the following comments and questions: 

 

I think a more detailed description of the flux inversion methodology is needed, ideally in the main text. It 

is a novel approach and the most critical part of the analysis. Can more information be provided? For 

example, it would be helpful to know more about the modeling of the “boundary inflow”, the numerical 

solution to the inverse problem, the approach to calculating column sensitivities with STILT (presumably 

based on MethaneAIR retrieval averaging kernels), and how/why GFS and HRRR meteorology are 

combined to drive STILT. 

 

Response-We have substantially expanded Section S1 in the Supplement to describe the inversion 

framework in detail. We added methodological details and equations for the forward model, the 

background, the boundary inflow, and the solution to the inverse problem. 

 

We clarified that independent Jacobians were computed using 1) GFS meteorology, and 2) HRRR 

meteorology where possible. These were used to diagnose potential issues with excessive transport error 

(diverging cases were excluded by QA/QC), and in the estimation of uncertainty. The following text is 

now included in Section S1: 

 

Section S1, p. 2-4: “With discrete sources (𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) fixed, the inverse model fits a gridded field of dispersed area 

source emission rates (𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑) to account for the balance of the methane enhancement. A gridded field of 

emission rates in the domain of interest, (𝑠𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑), and “pseudo-emission” rates in the 

upwind boundary inflow region (𝑠𝑖𝑛𝑓𝑙𝑜𝑤) are fitted to observed column-averaged dry-air mole fractions of methane 

(XCH4), 𝑧, linked by a Jacobian (𝐻) plus a field of background concentrations (𝑏) (Equation S1). 

 



𝑧  =  𝐻(𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤)  +  𝑏                    (Eq. S1) 

 

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain 

physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of 

the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (𝑠 =

𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤) that reproduces the MethaneAIR enhancements: 

 

𝐽𝑠 = ‖𝐻𝑠 − 𝑧 − 𝑏‖2 + 𝜆2‖𝐿(𝑠)‖2                 (Eq. S2) 

st.  s ≥ 0, 𝑤𝑇(𝐻𝑠) = 𝑀,  

 

where: 

L – first-order spatial difference operator enforcing smoothness 

λ – Tikhonov regularization strength 

M – total methane mass enhancement in the domain (kg CH₄) 

w – air-mass weights converting ppb to methane mass 

 

XCH4 observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for 

overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that 

passed all QA/QC flags were included in the analysis. 

 

The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et 

al., 2018; Lin et al., 2003), which simulates the sensitivity of XCH4 observations to sources on the ground by 

propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a 

10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the 

previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with 

STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT 

driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided 

by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was 

run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x 

the planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every 

layer are integrated with weights representing the fraction of the total atmospheric column of dry air represented, 

with the mean averaging kernel for MethaneAIR. 

 

The background concentration field represents the synoptic-scale, topographically varying component of the 

XCH4 observations. We fit a field of background XCH4 concentrations given by the MethaneAIR L2 prior (Chan 

Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a 

variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically 

with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP 

Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services 

(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the 

observations. 

 

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full 

10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent 

any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background 

variation or inflow of sources just outside the domain of interest. 

 



Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which 

approximates the effective representative area of the DI. This places trust in the well-tested point-source specific 

algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete 

mass of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent 

between methodologies and inevitably undercounts the contribution of the point sources when they fall below 

detectable concentrations. The inclusion of fixed discrete sources in the inverse model makes this a constrained 

regularized optimization rather than Bayesian inference, and so we report only the optimal solution and do not 

assign probabilistic confidence intervals. It is important to note that this is non-Bayesian to prevent over-

interpretation of a “posterior” estimate, which would be invalid due to data re-use. 

 

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint. 

Subsequent proposals are constrained to be non-negative and satisfy the mass constraint.” 

 

What happens to the flux inversion if the modeled wind direction for a point source is wrong? In principle 

a flux dipole could arise, but it is mentioned in the SI that the non-negativity constraint in the inversion 

helps prevent that. How well does that work, and do any other biases manifest? 

 

Response-When the modeled wind direction is wrong, plumes downwind of point sources are poorly 

modeled and a “plume shadow” or “dipole” effect is induced (a dipole is technically the result if non-

negativity is not enforced). In cases where the modeled plume does not overlap the observed plume, the 

Jacobian is excluded by QA/QC. If both GFS and HRRR Jacobians are excluded by QA/QC, then the 

flight is excluded by QA/QC. There will always be some transport error, which is exacerbated where 

there are steep gradients in methane enhancements, most notably where there are distinct plumes. This is 

not only because of error in the mean wind direction, but also because of variations in XCH4 that cannot 

be resolved by the meteorological model (i.e., large eddies). 

 

The inverse model uses a hard mass constraint Tikhonov regularization (more information about this has 

been added to the Supplement Section S1 – see above response for added text). This hard mass constraint 

ensures that the total excess methane in the observed atmosphere is modelled, and the spatial allocation of 

the inverse model distributes area emissions spatially throughout the region. The impact of wind error in 

the vicinity of large point sources is then to re-distribute other emissions sources around the plume, with 

minimal effect on the total, as the residence time of air is mostly unchanged by this perturbation.  

 

How are point sources detected prior to the diffuse flux inversion? Is the process automated, semi-

automated, or manual? 

 

Response- Point sources are detected using an automated threshold-based method, with manual QA/QC 

prior to their inclusion in our analysis. The process is described in detail in Chulakadabba et al. 2023 and 

Warren et al. 2025 and validated in controlled release experiments (El Abbadi et al. 2024; Chulakadabba 

et al. 2023). We have expanded Section S1 in the Supplement as follows:  

 

Section S1, p.2: “For each MethaneAIR flight, discrete point source emissions (with methane emission rates > ~200 

kg/hr), are detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our 

analysis and subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren 

et al., 2025). The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across 



the scene, using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method 

(Chulakadabba et al., 2023) to calculate the flux through each square. In the gridded flux product, hotspots were 

identified with a thresholding method as potential plume origins. At each flux hotspot, we found XCH4 clumps with a 

given number of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major 

axis of the XCH4 mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume 

origin (Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et 

al., 2023; El Abbadi et al., 2024), and is explained in greater detail in Warren et al., 2025.” 

 

305-310: There is some redundant content in this passage. 

 

Response- This passage importantly describes both the total methane emissions estimated by 

MethaneAIR as well as the oil and gas only methane emissions estimated by MethaneAIR, and how these 

two different estimates compare to the EPA totals. While the discrepancy between the overall total and oil 

and gas total is similar, we believe including both estimates and comparisons is valuable, as it shows that 

the oil and gas sector is likely the main contributor to underreported emissions in the GHGI. 

 

314: 0.17 kg CH4/GJ from MethaneAIR is very similar to 0.18 kg CH4/GJ from IEA. Is it expected to be 

much lower? Perhaps this passage can be clarified. 

 

Response- We modified the text to add clarity to the comparison between the MethaneAIR and IEA 

intensity estimates, as there are other important differences between the two in addition to the use of gross 

vs. marketed gas production that should be mentioned. Considering these other factors, we do not expect 

the IEA value to necessarily be lower than our MethaneAIR estimate, so we modified the text as follows: 

 

L312-315: “The estimated energy-normalized methane intensity of 0.17 kg CH4/GJ is comparable to the upstream 

methane intensity of 0.18 kg CH4/GJ for the entire US reported by the IEA for 2024 (IEA, 2025), however it should 

be noted that their estimate is calculated using marketed oil and gas production, whereas our estimate uses gross 

production and includes methane emissions from the entire oil and gas sector (i.e., not just upstream).” 

 

319: I believe Figure 6 is mislabeled here––the passage seems to refer to Figure 5. 

 

Response- We double checked the caption for Figure 6 and confirmed that there is no labelling error, it 

describes the comparison of MethaneAIR derived loss rates to other measurement-based loss rates from 

previous literature. Note that there are some similarities in the features for Figures 5 and 6 (e.g., the grey 

shaded area and dashed lines), hence the similar descriptions in the captions.  

 

Figures 5 and 6: 

In which cases are the MethaneAIR and previous estimates for the same domain? Is the Zhang et al. result 

for the Permian spatially resampled to the flight domain? Those authors reported a loss rate of 3.7%, 

much higher than the <2% shown in Figure 6, so I assume so. It would be helpful to mark on the plots 

whether or not the previous results reflect spatial resampling. 

 

Response- We added an asterisk to the x-axis labels and expanded the caption text to note which previous 

estimates correspond to the exact domain, and which ones correspond to similar/overlapping areas. 

Regarding the Zhang et al., 2020 reported loss rate, the difference is related to the domains - their 



reported loss rate reflects their entire study domain (i.e., the whole Permian basin) whereas the loss rate 

we show in the figure was computed based on Zhang et al.’s reported emissions and production volumes 

within the MethaneAIR flight domain which is a subset of the Permian basin. 

 

Why are the x labels in the figures not identical? There are fewer bars in some subplots of Figure 6 than 

Figure 5. 

 

Response- There are a different number of bars in the figures because some studies only reported total 

methane emissions and did not report methane loss rates or the necessary information (e.g., gas 

production volumes at the time of measurement) for us to compute it for our analysis. In these cases, they 

are included in Figure 5 but not included in Figure 6. 

 

Why do the inter-study differences in methane emissions not more closely match the differences in 

methane loss rate? Two examples of this: the Peischl bars in the Barnett subplots show much higher 

emissions than MethaneAIR but very similar loss rate, and the MethaneAIR bars in the Permian subplots 

show better agreement with previous studies for emissions than loss rate. 

 

Response- Absolute emissions can have more variability due to changes in activity/production levels over 

time, whereas methane loss rates are often more stable over time as they normalize emissions by 

production. This is likely contributing to the observed difference in the Peischl et al., 2018 study in the 

Barnett, as those measurements were collected in 2015 when oil and gas production was much higher 

than when the MethaneAIR flights took place in 2023. For the Permian, the time of measurement for 

many of the studies is similar, likely contributing to the better agreement in total emissions. We also 

argue that the loss rates show similarly good agreement for the Permian (<1% difference across all 

studies).  
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Anonymous Reviewer #2 

 

The authors present results from many MethaneAIR flights performed in the United States, primarily to 

quantify oil&gas emissions across major basins. Overall this represents a tremendous body of work to 

execute the flights, process data, and analyze for fluxes and the authors should be commended for this 

effort. The manuscript succinctly summarizes the results and shows general consistency in emission rates 

derived from previous observation studies (mass-balance, and satellite remote sensing). The authors 

employ what appears to be a novel way to calculate methane fluxes from remote sensing observations, but 

the details are extremely light.  

 

Response- We thank the reviewer for their helpful comments and edits, and hope the following responses 

address their concerns. Our point by point responses to all comments are below in blue, with the page 

numbers corresponding to the attached revised manuscript with tracked changes included. 

 

Before I can accept for publication, considerable more detail needs to be included and justified. My 

comments are as follows: 

 

1. Table 1. Is Basin Area the total area of the basin or total area flown? If total area, can you express in 

the same table how much of that area you flew with MethaneAIR?  

 

Response- The basin area in Table 1 is indeed the total area, not the total area flown. We have removed 

this column in Table 1 as it is not used in our analysis. In Table 3 in the main text, we added the area (in 

km2) covered by the MethaneAIR flights in each oil and gas basin. We also report the fraction of the 

basin’s total production covered during the MethaneAIR flights, which is a more informative metric than 

the percent of the basin’s area flown, since some basins have significant geographic coverage but 

production is concentrated in smaller regions which is where we would expect the majority of methane 

emissions to originate from. 

 

Section S1. STILT.  

 

2. How do you simulate columns with STILT? How many layers? Interpolate between layers? Use an 

averaging kernel? What is the averaging kernel? 

 

Response- We have expanded the Supplement (Section S1) to add details about the column integration of 

the STILT model. In short, we ran STILT with 300 particles at the center of every meteorological model 

layer for each of the GFS and HRRR model up to 3x the planetary boundary layer height with integration 

using the fraction of total atmosphere column dry air and the mean MethaneAIR averaging kernel (see 

Chan Miller at al., 2024) as the weighting function. Section S1 now includes the following details: 

 

Section S1, p.3: “The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) 

model (Fasoli et al., 2018; Lin et al., 2003), which simulates the sensitivity of XCH4 observations to sources on the 

ground by propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° 

grid over a 10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or 

include the previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 

1) with STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with 



STILT driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was 

provided by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). 

STILT was run as a column receptor, with a receptor placed at every layer of the meteorological input from the 

surface to 3x the planetary boundary layer height (above which we assume the footprint is always 0). STILT 

footprints for every layer are integrated with weights representing the fraction of the total atmospheric column of 

dry air represented, with the mean averaging kernel for MethaneAIR.” 

 

Section S1. The calculation of the background is unclear.  

 

Response- We have substantially expanded the Supplement (Section S1) to add details about the 

background concentration calculation. In short, the background model is a field of methane 

concentrations taken from the MethaneAIR L2 product (see Chan Miller et al., 2024), fitted from below 

to the observations, with an allowance for the instrument precision. 

 

Section S1, p.3: “The background concentration field represents the synoptic-scale, topographically varying 

component of the XCH4 observations. We fit a field of background XCH4 concentrations given by the MethaneAIR 

L2 prior (Chan Miller et al., 2024) from below, such that the reflected distribution of concentrations below 

background have a variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that 

varies realistically with topography in accordance with the vertical distribution of methane in the atmosphere from 

GEOS-FP Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web 

Services (Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of 

the observations.” 

 

3. Can you restate in terms of an equation, figure, or additional clarifying language? - "The background 

concentrations are given by a model..." - what model? STILT?  

 

Response- We have expanded the Supplement (Section S1) to add details about the background 

concentration calculation. See above response for revised text added to Section S1. 

 

4. "The boundary inflow is modeled using the Jacobian and emission rates outside the domain of observed 

concentrations." Where do you get these emissions? An inventory? Proper background quantification is 

so vital to robust inversions, this section needs to be much clearer. 

 

Response- The boundary inflow is computed as pseudo-emissions outside the domain of interest but 

inside the total domain of the inversion. These are “pseudo-emissions” that represent actual emissions just 

outside the domain or mesoscale variability in the inflowing methane concentration. This section has been 

made clearer: 

 

Section S1, p.3: “Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions 

inside the full 10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since 

they represent any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale 

background variation or inflow of sources just outside the domain of interest.” 

 

Section S1. Point Sources. 

 



5. Is the divergence integral method to calculate point sources applied at the 0.01 binning or at the native 

resolution? If you are binning, then you are certainly subtracting out more than point sources, as you are 

aggregating all true emission sources within that ~1km domain.  

 

Response- We are indeed binning. The divergence integral integrates emissions from an effective area of 

approximately 1 km2 for MethaneAIR. The divergence integral integrates all emissions in this area, and 

so fixing the emissions in this gridcell is the appropriate choice to best represent the computed discrete 

sources. 

 

6. If you are not binning, how do you assess that model transport error correctly subtracts the influence of 

point sources? Do you have a quality control approach that ensures this? If the transport is wrong, then 

you risk not subtracting the point source component in your concentration field, which I can imagine will 

throw the inversion haywire and produce flux artifacts. 

 

Response- See above response regarding binning. If the transport is substantially wrong such that the total 

emissions in a flight are substantially affected, the flight fails quantity control and is excluded from the 

analysis. 

 

7. How do you determine an origin of the point source via the divergence integral method? It seems quite 

critical that you get the origin correct if you are forward simulating a concentration field with STILT.  

Response- The plume detection method first calculates the flux divergence for 600 m x 600 m squares 

tiled across the scene, using HRRR wind fields and the divergence integral method to calculate the flux 

through each square. The upwind end of each plume shows a higher flux divergence than the downwind 

end; hotspots in the gridded flux product were identified with a thresholding method as potential plume 

origins. At each flux hotspot, we found XCH4 clumps with a given number of contiguous pixels above a 

threshold value to create a mask of the plume. We calculated the major axis of the XCH4 mask and took 

the upwind end of the major axis (using the HRRR wind direction) to be the plume origin. All plumes 

found using this method were reviewed manually by examining plume morphology, ground 

infrastructure, and correlation with albedo, and false positives were discarded. 

We have modified the text in the Supplement (Section S1) to include more detail on the method, as 

follows: 

Section S1, p.2: “For each MethaneAIR flight, discrete point source emissions (with methane emission rates > ~200 

kg/hr), are detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our 

analysis and subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren 

et al., 2025). The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across 

the scene, using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method 

(Chulakadabba et al., 2023) to calculate the flux through each square. In the gridded flux product, hotspots were 

identified with a thresholding method as potential plume origins. At each flux hotspot, we found XCH4 clumps with a 

given number of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major 

axis of the XCH4 mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume 

origin (Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et 

al., 2023; El Abbadi et al., 2024), and is explained in greater detail in Chulakadabba et al., 2023 and Warren et al., 

2025.” 



 

8. It's not obvious to the reader that subtracting a forward model simulated concentration field produces a 

preferred result, especially assuming some level of spatial aggregation (e.g., were you to run these 

inversions at 10-20km, scales that others perform satellite inversions, would this still be required?).  

 

Response- Rather than subtracting a forward model simulated concentration field we fix the emissions in 

the gridcell where the discrete source was detected. This is the most accurate interpretation of the quantity 

measured by the divergence integral algorithm. 

 

Section S1. Inverse Problem 

 

9. What is the formulation of the inversion problem? An SI is a good place to put these equations to 

paper. The way it currently reads, the mass-balance constraint would just be the inverse of the Jacobian - 

i.e., s = (H^-1)y and the non-negativity constraint would be some sort of gradient descent (or something 

else?) algorithm that stops at zero. Not obvious from what's written. Are there other parameters that keep 

the solution from an overfit? They say there is no need for a prior, so not Bayesian I guess?  

 

Response- We have substantially increased the amount of detail (revised text below) about the inverse 

model in the Supplement (Section S1). 

 

Section S1, p. 2-4: “With discrete sources (𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) fixed, the inverse model fits a gridded field of dispersed area 

source emission rates (𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑) to account for the balance of the methane enhancement. A gridded field of 

emission rates in the domain of interest, (𝑠𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑), and “pseudo-emission” rates in the 

upwind boundary inflow region (𝑠𝑖𝑛𝑓𝑙𝑜𝑤) are fitted to observed column-averaged dry-air mole fractions of methane 

(XCH4), 𝑧, linked by a Jacobian (𝐻) plus a field of background concentrations (𝑏) (Equation S1). 

 

𝑧  =  𝐻(𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤)  +  𝑏                    (Eq. S1) 

 

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain 

physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of 

the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (𝑠 =

𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤) that reproduces the MethaneAIR enhancements: 

 

𝐽𝑠 = ‖𝐻𝑠 − 𝑧 − 𝑏‖2 + 𝜆2‖𝐿(𝑠)‖2                 (Eq. S2) 

st.  s ≥ 0, 𝑤𝑇(𝐻𝑠) = 𝑀,  

 

where: 

L – first-order spatial difference operator enforcing smoothness 

λ – Tikhonov regularization strength 

M – total methane mass enhancement in the domain (kg CH₄) 

w – air-mass weights converting ppb to methane mass 

 

XCH4 observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for 

overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that 

passed all QA/QC flags were included in the analysis. 

 



The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et 

al., 2018; Lin et al., 2003), which simulates the sensitivity of XCH4 observations to sources on the ground by 

propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a 

10° x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the 

previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with 

STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT 

driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided 

by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was 

run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x 

the planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every 

layer are integrated with weights representing the fraction of the total atmospheric column of dry air represented, 

with the mean averaging kernel for MethaneAIR. 

 

The background concentration field represents the synoptic-scale, topographically varying component of the 

XCH4 observations. We fit a field of background XCH4 concentrations given by the MethaneAIR L2 prior (Chan 

Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a 

variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically 

with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP 

Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services 

(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the 

observations. 

 

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full 

10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent 

any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background 

variation or inflow of sources just outside the domain of interest. 

 

Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which 

approximates the effective representative area of the DI. This places trust in the well-tested point-source specific 

algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete 

mass of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent 

between methodologies and inevitably undercounts the contribution of the point sources when they fall below 

detectable concentrations. The inclusion of fixed discrete sources in the inverse model makes this a constrained 

regularized optimization rather than Bayesian inference, and so we report only the optimal solution and do not 

assign probabilistic confidence intervals. It is important to note that this is non-Bayesian to prevent over-

interpretation of a “posterior” estimate, which would be invalid due to data re-use. 

 

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint. 

Subsequent proposals are constrained to be non-negative and satisfy the mass constraint.” 

 

10. The authors do not provide any sort of metric of goodness of fit (e.g., H * s_hat plotted against y) or 

information content from the retrieval. It's fairly common practice to show how well your model around 

the optimal emission state compares to observations. It's also common to show information content 

metrics (e.g., degrees of freedom for signal, model-resolution matrices, etc) for inversions, but given 

there's not an explicit inverse formulation in paper, it's hard to know if that would be feasible.  

 



Response- We have added significant details about the inversion methodology in the Supplement Section 

S1. As included in our further details in Section S1 and in our responses, this analysis is based on a 

constrained regularized optimization rather than Bayesian inference. We have also added a plot (Figure 

S5) showing the observed vs modeled XCH4 enhancement for MethaneAIR flights. 

 

11. Table S5. Please provide citations for literature based estimates, perhaps as an additional column in 

the table or a footnote. 

 

We added the citations for the literature-based estimates in Table S5. 
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