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Abstract 27 

Vegetation is widely recognized for its beneficial role in landslide mitigation. However, 28 

shallow landslides frequently occur even in densely vegetated regions, suggesting that 29 

the influence of vegetation on gravity-driven erosion hazards remains incompletely 30 

understood. This study investigates the interactive effects of vegetation and key 31 

environmental factors—including rainfall, lithology, wind speed, and slope gradient—32 

on landslide susceptibility in an area with substantial vegetation cover (≥65.5%). At the 33 

watershed scale, we employed structural equation modeling and geographic detectors 34 

to assess the primary drivers of landslide susceptibility under high vegetation 35 

conditions. At the point scale, we calculated the stability coefficient of a representative 36 

landslide, accounting for both vegetation self-weight and artificial waste sediment. Our 37 

findings reveal that the combination of vegetation, rainfall, and wind speed significantly 38 

increases landslide susceptibility, as evidenced by a 21.3% rise in high and very high 39 

susceptibility zones and a 42.7% reduction in low and very low susceptibility zones. 40 

Interactions among multiple factors exerted a stronger influence than individual factors, 41 

with the most pronounced interaction observed between slope gradient and rainfall 42 

(Geodetector q = 0.81), followed by rainfall and lithology (q = 0.79). Under saturated 43 

conditions, the stabilizing effect of root systems was outweighed by the self-weight of 44 

tree vegetation, leading to a marked decrease in slope stability compared to scenarios 45 

without additional loading. These results offer new insights into the complex role of 46 

vegetation in landslide control and highlight the importance of considering interactive 47 

environmental effects at multiple spatial scales. 48 
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1 Introduction 54 

The prevalence of landslide hazards in regions with high vegetation cover suggests 55 

complex mechanisms in the relationship between vegetation and landslides (He et al., 56 

2017; Xu et al., 2024), which extend beyond a linear association (Lan et al., 2020). 57 

Therefore, more research is needed to understand how slope stability and environmental 58 

factors interact under good vegetation cover conditions (Cui et al., 2024; Deng et al., 59 

2022; Medina et al., 2021). Accurate hazard assessment and mitigation depend on 60 

understanding the interactions between vegetation, slope morphology, and landslide 61 

occurrence (Alvioli et al., 2024; Zhang et al., 2025)  62 

Vegetation cover inhibits soil erosion, regulates soil moisture, and stabilizes slopes 63 

via root networks that anchor the soil (He et al., 2017), and ultimately improves slope 64 

morphology and soil structure to stabilize the slope. Therefore, higher vegetation cover 65 

is generally believed to help prevent landslide hazards (Rey et al., 2019). However, a 66 

recent work reposted that vegetation can reduce gully erosion but promote shallow 67 

landslides (Xu et al., 2024). Thus, vegetation can also increase landslide susceptibility 68 

by adding weight and altering soil properties (Qin et al., 2024). For example, trees 69 

represent a balance between root reinforcement and the destabilizing effect of tree 70 

weight, influenced by slope gradient (Schmaltz & Mergili, 2018). Additionally, wind 71 

forces can destabilize steep slopes (Bordoloi & Ng, 2020). On thin-soil slopes, root 72 

wedging may cause fractures, increasing susceptibility to external disturbances (Liu et 73 

al., 2020). Rainfall, a major trigger of landslides (Dhanai et al., 2022), saturates soil on 74 

slopes, reducing soil cohesion and shear resistance. When the shear strength is 75 
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insufficient to counteract the downslope forces generated by gravitational water 76 

distribution, instability occurs, amplifying the destructive effects (Li et al., 2025). Areas 77 

with high vegetation cover typically have favorable moisture and temperature 78 

conditions. Although vegetation roots play an effective role in stabilizing soil, 79 

vegetation can also alter soil properties by increasing soil moisture content or reducing 80 

soil density, which affects matrix cohesion (Gonzalez-Ollauri & Mickovski, 2016; 81 

Murgia et al., 2022; Vergani et al., 2017). Therefore, in areas with high vegetation cover, 82 

the occurrence of landslide hazards is influenced by multiple spatial factors, such as 83 

soil texture, vegetation, and rainfall. Investigating which factors primarily drive the 84 

initiation (Xu et al., 2024), and how the combined effects of these factors influence the 85 

occurrence and development of landslides, has become a key issue in landslide 86 

forecasting and risk zoning. Consequently, further study of the relationship between 87 

vegetation with environmental factors, and landslide is of significant importance. 88 

Early studies used geoscience factor weights, logistic models, and Geographic 89 

Information Systems (GIS) spatial analysis to assess the environmental factors that are 90 

responsible for landslides (Regmi et al., 2010; Yilmaz, 2009). While these revealed 91 

spatial distribution patterns, they focused on qualitative descriptions and analyses and 92 

rarely addressed spatial correlations or interactions between factors. Few studies have 93 

thoroughly explored the spatial correlation of factors contributing to landslides and 94 

debris flows, resulting in a lack of quantitative representation of spatial correlations in 95 

disaster risk. Research on vegetation types, height, and growth conditions (such as slope 96 

and human disturbances) in relation to landslide risks remains limited. While, 97 
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significant progress has been made on the relationship between rainfall and landslides 98 

(Ortiz-Giraldo et al., 2023), using models based on spatial autocorrelation (for example, 99 

Moran's I and Geary's C indices) and clustering methods (Chen et al., 2024; Liu et al., 100 

2024; Pokharel et al., 2021; Schmaltz & Mergili, 2018; Wang et al., 2020), the 101 

mechanisms of interaction between these factors remain unclear particularly the 102 

modifying influence of vegetation on slope stability coefficients (Lan et al., 2020). 103 

Overall, the dynamic processes through which vegetation and environmental factors 104 

interact to shape landslide occurrences are still not well understood. To clarify how 105 

rainfall, slope, lithology, and soil thickness influence landslides in well-vegetated 106 

areas—and to explore vegetation's “double-edged sword” role in landslide mitigation—107 

this study examines the relationship between environmental factors and landslide 108 

occurrence by integrating watershed-scale analysis with point-scale mechanistic 109 

insights. In summary, focusing on the frequent occurrence of landslides and debris 110 

flows in areas with high vegetation cover, this study selects a vegetation-rich region in 111 

Southwest China as the study area. Through field investigations and remote sensing 112 

image analysis, the study employs the Geodetector method and structural equation 113 

modeling to analyze the influencing factors and mechanisms of landslide susceptibility 114 

under a high-vegetation background at a macroscopic scale. Meanwhile, at the 115 

microscopic level, it examines the role of vegetation as a mediator in coupling with 116 

other factors (wind force, slope gradient, and load) in typical landslide occurrences 117 

within the region. By integrating watershed scale and typical point landslide analyses 118 

for mutual verification and interpretation, this study lays the foundation for elucidating 119 
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the dual role of vegetation in landslide prevention and mitigation. 120 

2 Methods and materials 121 

2.1 Study area  122 

The study area is in Jinkouhe District, Sichuan Province, China (102°50′24″–123 

103°10′24″ E, 29°00′24″–29°00′46″ N). The Dadu River flows in a north-south "S" 124 

shape through the 598 km² region, which is 99% mountainous, with complex geological 125 

structures. Rock types include slate, clastic rocks, dolomite, limestone, and basalt. 126 

Forest coverage is 65.55%, and the terrain slopes from southwest to northeast with 127 

elevations ranging from 530 to 3,321 m, and a vertical drop of 2,700 m (Fig. 1). 128 

Jinkouhe District has a subtropical monsoon climate with a warm and humid 129 

atmosphere, abundant sunshine, and distinct seasons. The annual average temperature 130 

is 15°C, with highs of 38°C and lows of -9°C. Precipitation averages 1252.6 mm 131 

annually, concentrated in the summer, while average annual evaporation is 677.3 mm 132 

with dry winters, spring droughts, frequent summer floods, and prolonged autumn 133 

rainfall.134 
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 135 

Fig. 1. Location map of Jinkouhe District 136 

A major landslide occurred in the study area on June 4, 2023, near the living 137 

quarters of a Phosphate Mine (103°2′25.75″ E and 29°25′0.6″ N). According to the 2021 138 

geological disaster risk assessment report for the Jinkouhe District, the collapse site is 139 

located within a high geological disaster susceptibility and medium-risk zone. The 140 

disaster was preceded by continuous rainfall.  141 
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Earth) 144 

In front of the collapsed area were the mine’s living quarters. To the left, 70 m 145 

away, was the entrance to Tunnel No. 2, and 15 m behind it was a water diversion tunnel 146 

entrance (Fig. 2). During the construction of the diversion tunnel, 400 m³ of waste rock 147 

was deposited, adding approximately 800 tons of load, bringing the slope in the 148 

instability initiation zone to a critically stable state. The disaster was preceded by 149 

continuous rainfall. On May 31, 2023, moderate to heavy rainfall in the Jinkouhe area 150 

caused surface overland flow in a 0.1 km² catchment area at the top of the gully 151 

Vegetation increased water storage, and surface runoff infiltrated the Cambrian lower 152 

formation dolomitic limestone, generating significant groundwater. This groundwater 153 

flowed down along fractures and bedding planes but was obstructed by the sandstone 154 

and shale aquitard raising the groundwater level. Saturation of gravelly clay at the basal 155 

142  

143 Fig. 2. Schematic of Satellite Image Before Landslide Occurrence (basic picture from © Google 
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interface softened the soil, reducing its shear strength and forming a slip surface, 156 

triggering landslide. The shape of the landslide was elongated, resembling a "tongue." 157 

The elevation ranged from 2,303 m at the rear to 2,183 m at the front, a height difference 158 

of 120 m. The slope was 308 m long, and the collapse width ranged from 18 m to 41 m, 159 

averaging 36 m. The maximum height of the rear scarp was 12 m. The collapse created 160 

a residual body and deposition area, covering a total area of 10,186 m². The collapse 161 

direction was 80°, with scouring in the center lateral deposits forming at the front edge 162 

(Fig. 3). 163 

 164 

Fig. 3. Schematic of the UAV image after the landslide 165 

2.2 Data source and preprocessing 166 

The following data are required for landslide susceptibility analysis and spatial 167 

correlation of triggering factors in the study area. 168 
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(1) ASTER GDEM Digital Elevation Model data with a resolution of 30 m were 169 

obtained from a Geospatial Data Cloud (https://www.gscloud.cn/). Slope and aspect 170 

factor data were extracted using surface analysis. 171 

(2) Road and river vector files were obtained from Open Street Map 172 

(https://www.openstreetmap.org/). 173 

(3) Lithology data (Hengl et al., 2017) with a resolution of 250 m were acquired 174 

from NASA's Open Data Center (https://search.earthdata.nasa.gov/). 175 

(4) Fault data were obtained from the National Earthquake Science Data Center 176 

(https://data.earthquake.cn/). 177 

(6) Maximum NDVI raster data for China in 2021 with a resolution of 30 m and 178 

2021 wind speed data with a resolution of 1 km (Xu, 2022a, 2022b) were obtained from 179 

the Resource and Environment Science and Data Center of the Chinese Academy of 180 

Sciences (https://www.resdc.cn/). 181 

(7) Monthly rainfall raster data from 2018 to 2023 with a resolution of 1 km 182 

(Peng, 2024), obtained from the National Tibetan Plateau Data Center 183 

(https://data.tpdc.ac.cn/). To eliminate the random effects of precipitation, the multi-184 

year average annual precipitation was used as the influencing factor. Annual 185 

precipitation was first calculated using map algebra, and then the multiyear average 186 

annual precipitation was derived. 187 

(8) Landslide hazard point data were obtained from the GeoCloud platform 188 

(https://geocloud.cgs.gov.cn/). Additionally, 227 landslide points were identified 189 

through the manual interpretation of remote sensing images. 190 
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All datasets were unified to the WGS_1984_UTM_Zone_47N coordinate system 191 

and the pixel size was standardized to 30 m × 30 m. The processed results are shown in 192 

Fig. S1. 193 

2.3 Landslide susceptibility evaluation framework 194 

2.3.1 landslide susceptibility based on the analytic hierarchy process (AHP)  195 

Landslide susceptibility analysis was conducted by overlaying landslide sites with 196 

elevation, slope, aspect, distances to faults, rivers, roads, lithology, rainfall, Normalized 197 

Difference Vegetation Index (NDVI), and wind speed. All factors passed the 198 

multicollinearity test with variance inflation factor (VIF) values below 10 (Arabameri 199 

et al., 2019; Chen et al., 2018). Range normalization was applied to standardize all 200 

indicators (He et al., 2024). A comprehensive multi-factor evaluation combined weight 201 

calculations and GIS-based methods, including buffer, statistical, and overlay analysis. 202 

Factors were classified and assigned weights, and validated using consistency tests 203 

(Table S1). The overlay analysis produced a landslide susceptibility distribution map of 204 

the study area (Ahmad et al., 2023; Asmare, 2023), with susceptibility categorized into 205 

five levels: very low, low, medium, high, and very high, based on existing standards. 206 

The landslide susceptibility index (SI) is calculated as: 207 

𝑆𝐼 =∑𝑤𝑖𝐼𝐹𝐼 (1) 

where SI is the comprehensive geological hazard susceptibility index for the 208 

evaluation unit; wᵢ represents the weight of the influencing factor; and IFᵢ represents the 209 

value of the influencing factor. 210 

The process involved altering the influencing factors to examine how 211 
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environmental variables (rainfall, vegetation, and wind speed) affect landslide 212 

susceptibility. Common factors included elevation, slope, aspect, lithology, and 213 

distances to faults, rivers, and roads. Vegetation, rainfall, and wind speed were added 214 

successively, resulting in five scenarios. 215 

Class I: Common factors. 216 

Class II: Common factors + vegetation. 217 

Class III: Common factors + rainfall. 218 

Class IV: Common factors + vegetation + rainfall. 219 

Class V: Common factors + vegetation + rainfall + wind speed. 220 

The consistency ratio (CI) values for the five scenarios were 0.07, 0.09, 0.07, 0.08, 221 

and 0.07, respectively, all of which were < 0.1, indicating that they passed the 222 

consistency test (Table S2). Table S3 presents the eigenvectors and weights. The 223 

formulas for calculating the Consistency Index and Consistency Ratio are as follows: 224 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (2) 

 225 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (3) 

Where: RI is the random index (from the lookup table)； 𝜆𝑚𝑎𝑥  is the maximum 226 

eigenvalue, and n is the number of factors. 227 

2.3.2 Rationality validation of susceptibility assessment results 228 

In this study, Receiver Operating Characteristic (ROC) curves and area under the 229 

curve (AUC) values were used for validation. ROC curves provide a representation of 230 

the specificity and sensitivity of an analytical method (Khosravi et al., 2019; Yilmaz, 231 

2009). The AUC measures model accuracy, ranging from 0.5 to 1, with values closer to 232 
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1 indicating higher accuracy (Sezer et al., 2010). 233 

 234 

Fig. 4. ROC curve of geological hazard susceptibility assessment results 235 

Based on the susceptibility distribution map, landslide point data obtained from 236 

the Geological Cloud platform were selected, and an equal number of non-landslide 237 

points were created to plot the ROC curve for landslide susceptibility. AUC values for 238 

the five scenarios were 0.774, 0.786, 0.795, 0.81, and 0.801, respectively, all exceeding 239 

0.5, indicating good accuracy in the landslide susceptibility evaluation (Fig. 4). 240 

2.4 Landslide driving mechanism analysis based on GeoDetector and structural 241 

equation model 242 

The occurrence of landslides is associated with numerous factors. To identify the 243 

dominant ones influencing landslide susceptibility, the GeoDetector method was 244 

applied. This method examines the spatial differentiation of individual variables and 245 
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the interaction effects of two factors on the dependent variable, revealing their 246 

explanatory power regarding landslide susceptibility. Furthermore, a structural equation 247 

model (SEM), with its ability to analyze complex relationships among variables, was 248 

employed to reveal how various factors interact to trigger landslides. (See Fig. 5). 249 

 250 

Fig. 5. Technical Workflow Diagram 251 

(1) GeoDetector 252 

Geo detection identifies spatially stratified variations and patterns of geographic 253 

phenomena, addressing spatial dependence and heterogeneity caused by scale changes 254 

that traditional statistical methods cannot resolve (Ng et al., 2021; Wang et al., 2010). 255 

This study applied factor and differentiation to explore drivers of landslide 256 

susceptibility in high vegetation areas. In single-factor detection, landslide 257 

susceptibility was the dependent variable, and each evaluation factor was used as an 258 

explanatory variable to identify key drivers influencing geological hazard risk (Lu et 259 
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al., 2024; Yang et al., 2024). Interaction detection evaluated whether the combined 260 

effect of two factors increased or reduced explanatory power compared to their 261 

individual effects, revealing interactions between variables. The influence of factors is 262 

quantified by the q-value (0 to 1), with values closer to 1 indicating stronger spatial 263 

differentiation explanatory power. The formula is: 264 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2
 (4) 

where h denotes the number of classifications or partitions for a specific indicator. L 265 

represents the stratification of variable Y or factor X (i.e., classification or partitioning). 266 

N is the total number of units in the study area. Nh is the number of units in the h-th 267 

stratum. σ2 and σh
2 are the variances of landslide susceptibility in the entire study area 268 

and the h-th stratum, respectively. 269 

(2) Structural equation model  270 

The SEM comprises two components: the measurement model, which defines 271 

relationships between observed and latent variables, and the structural model, which 272 

illustrates relationships among latent variables (Fan et al., 2016; Wang & Rhemtulla, 273 

2021). Using GeoDetector results, SEM was used to analyze interactions among key 274 

factors influencing landslide susceptibility. Based on literature and micro-mechanisms 275 

(Chicas et al., 2024; Pourghasemi et al., 2018; Segoni et al., 2024), the following 276 

hypotheses were proposed:  277 

• Slope, lithology, distance to fault, distance to road, distance to river, 278 

rainfall, and vegetation directly affect landslide occurrence 279 

•  Elevation and faults indirectly affect landslides by influencing vegetation 280 
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types and distribution 281 

•  Wind speed and river impact vegetation growth  282 

• Rivers and elevation influence rainfall through the water vapour cycle 283 

•  Vegetation and wind speed indirectly influence landslide susceptibility by 284 

influencing rainfall infiltration and local rainfall variations.  285 

The SEM was constructed using RStudio software, and the path coefficients and 286 

parameters were estimated using the maximum likelihood method. 287 

Measurement model: 288 

𝑋 = Λ𝑥𝜉 + 𝜀1 (5) 

𝑌 = Λ𝑦𝜉 + 𝜀2 (6) 

Structural model: 289 

𝜂 = 𝛣 × 𝜂 + 𝛤 × 𝜉 + 𝜀3 (7) 

where X/Y is the vector of exogenous/endogenous indicators. Λx / Λy is the factor 290 

loading matrix of exogenous indicators for exogenous/endogenous latent variables. ξ 291 

represents the exogenous latent variables. η represents endogenous latent variables. B 292 

represents the relationships among endogenous latent variables, Г indicates the effect 293 

of exogenous latent variables on endogenous latent variables. ε1、ε2、ε3 are the error 294 

terms for exogenous indicators, endogenous indicators. The residual term represents 295 

the unexplained portion of the endogenous latent variables within the equation.  The 296 

final model fit results are summarized in Table S4 (Hu & Bentler, 1999; Stone, 2021). 297 

2.5 Landslide stability calculation considering vegetation weight 298 

Based on the field survey, constructing the drainage tunnel added an additional 299 

400 m³ of waste material, with a weight of approximately 800 tons, along with 500 trees, 300 
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each with an average weight of 60 kg. The collapsed mass was composed of gravel-301 

clay with a high moisture content, exhibiting a plastic state. The slopes natural unit 302 

weight was γ = 19.5 kN/m3, and the saturated unit weight was γw = 20 kN/m3. The 303 

natural shear strength was c = 15.5 kPa, with an internal friction angle of 10.5°, and the 304 

saturated shear strength was c = 15.0 kPa, with the same friction angle. The slope 305 

stability was calculated using the formula for tree-vegetated slopes from Lan et al. 306 

(2022), accounting for the effects of artificial waste material and vegetation weight. The 307 

formula is: 308 

 309 

𝐹𝑠 =
∑(𝑐𝑖𝑙𝑖 + 𝐺𝑖 cos 𝜃𝑖 tan𝜑𝑖 + 𝐹𝑖)

∑(𝐺𝑖 + 𝐺𝑖
′) sin 𝜃𝐼

 (8) 

where: Fi represents the anchoring force of the vegetation's vertical roots; Gi' denotes 310 

the downward gravitational force exerted by the vegetation; Gi refers to the vertical 311 

gravitational force acting on the soil mass; i represents the length of the sliding arc, 𝜑𝑖 312 

is the internal friction angle, and θi is the angle between the i-th sliding block and the 313 

vertical direction. The stress analysis of the slope, incorporating the weight of the 314 

vegetation, is illustrated in Fig. 6. 315 

 316 

 317 
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Fig. 6. Slope Stress Analysis Diagram 318 

3 Results  319 

3.1 Landslide susceptibility mapping and distribution characteristics 320 

Fig. 7 and Table 1 present the landslide susceptibility results considering 321 

environmental factors (rainfall, vegetation, and wind speed) along with common factors 322 

(elevation, slope, aspect, lithology, distance to fault, river, and road). Most of the study 323 

area shows moderate landslide susceptibility, with 84 landslides covering 53.77% of 324 

the total area. Low and very low susceptibility zones contained 30 landslides covering 325 

16% of the area. High and very high susceptibility zones, occupying 30.23% of the 326 

study area, experienced 113 landslides.  327 

Moderate susceptibility zones are widespread across the northern, western, and 328 

southwestern regions. High and very high susceptibility zones, though smaller in 329 

coverage, are primarily located in the central-eastern region. High susceptibility zones 330 

display a "cross-shaped" spatial distribution, while very high susceptibility zones are 331 

scattered within the high susceptibility areas. 332 

Table 1. Distribution of landslide susceptibility zones in Jinkouhe District 333 

Susceptibility Zone 

Number of 

Landslides 

(count) 

Zoning 

Area 

(km²) 

Proportion of 

landslide 

points in the 

total (%) 

Proportion of 

zone  to total 

area (%) 

Landslide 

Point Density 

(points/km²) 

Very low 1  7.33  0.44  1.21  0.14  

Low 29  89.43  12.78  14.79  0.32  

Mid 84  325.06  37.00  53.77  0.26  

High 105  167.26  46.26  27.67  0.63  

Very high 8  15.49  3.52  2.56  0.52  
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 334 

Fig. 7.Landslide susceptibility assessment map 335 

3.2 Relationship between H/L and area of a typical landslide 336 

Landslide parameters for each segment, including height, travel distance, and 337 

landslide area (Table S5), along with overall landslide parameters (Table 2), were 338 

measured. The total landslide height (H) is 120 m, with an average collapse width of 339 

36 m. Travel distances increase sequentially across the three segments, with the 340 

deposition zone having the longest at 110.9 m. The total landslide travel distance (L), 341 

calculated as the sum of all segments, is 283.3 m. 342 

Table 2. Main morphological parameters of landslide 343 

Data types Number  

Total landslide area (m²) 1×104 

Total landslide volume (m³) 3.1×104 

Total landslide length (m) 308 

Landslide starting point elevation (m) 2303 

Landslide endpoint elevation (m) 2183 

Landslide height (m) 120 

Landslide movement distance (m) 283.3 

H/L 0.42 
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As travel distance increases, the landslide area expands rapidly from the initial 344 

instability zone (2147 m²), scraping away surrounding soil, and eventually forming a 345 

deposition area of 5234 m². The final total landslide area was10,000 m². 346 

Using the landslide height (H) and maximum travel distance (L), H/L was 347 

calculated to be 0.42, which was less than 0.60, classifying it as a general or medium-348 

sized landslide. Although its activity intensity and destructive potential may be lower 349 

than those of high-speed, long-runout landslides, its potential hazard level remains 350 

moderate to relatively high (Text S1). 351 

3.3 Evaluation results of slope stability considering artificial waste sediment and 352 

vegetation self-weight 353 

Table 3 shows stability results under four conditions: natural and saturated states 354 

without and with the loading of artificial waste sediment and vegetation self-weight. 355 

Results indicate that the slope remained stable under natural and saturated conditions 356 

without loading, with greater stability in the natural state. Under natural conditions with 357 

waste sediment loading, the slope was stable. However, under saturated conditions, 358 

with both waste and vegetation self-weight loadings, the slope became unstable and 359 

failed. Comparing results revealed that the self-weight of materials in the natural state 360 

was even greater than those in the saturated state. 361 

Table 3. Stability results under different conditions  362 

Geotechnical 

condition 

Without waste material and 

vegetation 

With waste material and 

vegetation 

Natural 

Condition 

Water-saturated 

 

Natural 

Condition 

Water-

saturated 

 

Stability Factor (Fs) 1.21 1.13 1.02 0.89 
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4 Discussion  363 

4.1 Analysis of landslide driving forces and mechanisms 364 

Based on the distribution of landslide occurrences within different thresholds of 365 

the influencing factors (Text S2), landslides in areas with good vegetation conditions 366 

are controlled by multiple factors. Table 4 shows the explanatory power of each factor 367 

for landslide susceptibility, ranked as follows: rainfall > elevation > distance to fault > 368 

distance to river > wind speed > lithology > slope > distance to road > NDVI.  369 

Table 4. Explanatory power of each factor on landslide susceptibility 370 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

q statistic 0.55  0.28  0.06 0.40  0.49  0.28  0.46  0.27  0.63  0.44  

rank 2 7 10 6 3 8 4 9 1 5 

Note: X1–X10 represent elevation, slope, aspect, lithology, distance to fault, distance to road, 371 

distance to river, NDVI, rainfall, and wind speed, respectively. 372 

Further analysis using interaction detection assessed the explanatory power of 373 

interactions between factors for landslide susceptibility (Fig. 8). Among 45 pairs of 374 

interacting factors, 40 exhibited bifactor enhancement, and five pairs showed nonlinear 375 

enhancement, with no independence or weakening observed. Bifactor interactions had 376 

a significantly stronger influence on landslide susceptibility than single factors. The 377 

most impactful interaction was between slope and rainfall (q=0.81), followed by 378 

rainfall and lithology (q=0.79). Rainfall interactions with other factors exceeded 70%, 379 

and fault distance interactions surpassed 60%. Wind speed interactions with elevation, 380 

slope, rainfall, lithology, distance to road, and NDVI exhibited bifactor enhancement 381 

all above 50%. Similarly, NDVI interactions with elevation, rainfall, lithology, distance 382 

to fault, road, and river, and wind speed also showed bifactor enhancement, with 383 

influence levels exceeding 50%. From the results of the factor interactions, the 384 
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synergistic effects of rainfall, fault distance, lithology, NDVI, and wind speed emerged 385 

as the dominant interaction modes driving landslide susceptibility. 386 

 387 

Fig. 8. Explanatory Power of Interactions Between Factors on Landslide Susceptibility. 388 

Note:X1–X10 represent elevation, slope, aspect, lithology, distance to fault, distance to road, 389 

distance to river, NDVI, rainfall, and wind speed, respectively. 390 

To further clarify how various factors interact and contribute to landslide 391 

occurrence, an SEM was constructed (Table S4) using the key factors identified by the 392 

GeoDetector (excluding aspect). The SEM explained 92% of the landslide 393 

susceptibility variance, with all factors showing significant correlations (p < 0.01) (Fig. 394 

9, Table 5). The influence of each showed varying direct and indirect effects. Slope had 395 

the greatest impact, with a total effect coefficient of 0.33, attributed to direct effects 396 

(coefficient: 0.33). Steeper slopes increased the likelihood of landslides. The total effect 397 

coefficient of distance to fault (0.30) was second only to slope, primarily reflected as a 398 

direct effect (0.27), with a minimal indirect effect coefficient of 0.03. This is because 399 

faults occur where the structural stability of the slopes is poor. Fault zones can cause 400 
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localized stress and weaken the structural integrity of slopes. This is particularly true in 401 

the study area, which lies at the intersection of the Longquanshan Fault Zone and the 402 

Ebian-Mabian Seismic Belt located in the central segment of China’s north–south 403 

seismic belt. Proximity to faults increases the susceptibility of rock and soil structures 404 

to fault ruptures, thereby raising landslide susceptibility. Faults also allow water 405 

infiltration, altering soil moisture and groundwater levels, and thereby influencing 406 

landslide-triggering conditions. For instance, increased rainfall may elevate pore water 407 

pressure in the soil and release through fault zone weak points, further heightening 408 

landslide susceptibility. 409 

 410 

Fig. 9. SEM of landslide susceptibility. 411 

Note: Rectangles = observed variables; unidirectional arrows = relationship between two variables. 412 

The variable at the arrowhead is influenced by the variable at the arrow’s base. The numbers near 413 

the yellow single arrows represent the total effect coefficients of factors on landslide susceptibility. 414 

Arrows in other colors indicate the standardized normalized influence coefficients between factors. 415 

Solid arrows = positive = relationships; R² = proportion of variance explained. ***, **, and * denote 416 

significance levels of 0.01, 0.05, and 0.1, respectively. 417 

The total effect coefficient of the distance to the river was 0.29, primarily reflected 418 
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as a direct effect (coefficient: 0.2). The indirect effect (coefficient: 0.09) mainly 419 

influences landslides indirectly through NDVI and rainfall. The total effect coefficient 420 

of rainfall on landslides is 0.27, with a direct effect coefficient of 0.24. This is primarily 421 

because rainfall increases soil moisture content and bulk density while reducing soil 422 

shear strength. As soil moisture continues to accumulate, transient additional water 423 

loads form, further weakening slope stability. Rainfall also generates surface runoff, 424 

eroding slopes, damaging the slope structure, and thus increasing landslide 425 

susceptibility. Its indirect effect (coefficient: 0.03), comes from groundwater recharge 426 

and altered water flow paths modifying slope morphology over time and heightening 427 

landslide risk. 428 

Table 5. Influence of various factors on landslide susceptibility 

Factor Total effect Direct effect Indirect effect 

Elevation 0.18 0 0.18 

Slope 0.33 0.33 0 

Lithology 0.25 0.25 0 

Distance from 

fault 
0.30 0.27 0.03 

Distance from 

road 
0.24 0.24 0 

Distance from 

river 
0.29 0.2 0.09 

NDVI 0.21 0 0.21 

Rainfall 0.27 0.24 0.03 

Wind speed 0.04 0 0.04 

In terms of direct effects, lithology has a total effect coefficient of 0.25 on 429 

landslides, entirely direct. Lithology provides the material basis for landslides as soil 430 

layers formed by different lithologies vary in shear strength and permeability. In the 431 

study area, soft rocks, such as shale and clastic rocks, which became loose and highly 432 

weathered after absorbing water, exhibited strong deformation and a high likelihood of 433 

causing landslides. Roads had a total effect coefficient of 0.24, which was also entirely 434 
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direct. This is because road construction often involves slope excavation and vegetation 435 

destruction, directly altering the stability of the natural terrain. Poorly designed road 436 

drainage can also cause water to accumulate, affecting slope stability over time. 437 

Regarding indirect effects, wind speed has an influence coefficient of only 0.04. 438 

Generally, wind alone cannot directly destabilize a slope, but affects stability through 439 

drag forces. Strong winds can strip soil cover, accelerating moisture evaporation, 440 

leading to surface cracks and reducing structural stability. Higher elevations (effect: 441 

0.18) imply more rainfall and weathering, but are not direct landside triggers. NDVI 442 

had a total effect coefficient of 0.21 indirectly enhancing slope stability. through 443 

vegetation roots which improve soil cohesion and shear strength. However, root 444 

systems can cause deformation, increasing water infiltration and reducing slope stability. 445 

This effect can be particularly pronounced in areas with dense, well-developed root 446 

systems. Tall trees on steep slopes can reduce stability due to weight and wind drag. 447 

Vegetation also indirectly regulates soil moisture through transpiration, reducing pore 448 

water pressure, which affects slope stability.  449 

In summary, vegetation mediates multiple factors, amplifying their combined 450 

effects on landslide susceptibility.  Interactions between vegetation and other factors 451 

are crucial in assessing landslide risks. 452 

4.2 Comparison of landslide susceptibility results under different influence factor 453 

combinations 454 

It has been demonstrated that vegetation, wind, and rainfall have varying direct or 455 

indirect impacts on landslide susceptibility. These impacts are based on the statistical 456 
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relationship between thresholds of influencing factors and the number of landslides, as 457 

well as the contributions of various factors to landslide susceptibility through direct or 458 

indirect effects analyzed using GeoDetector and SEM. The spatial distribution and 459 

statistical data of landslide susceptibility under the influence of various environmental 460 

factors (rainfall, vegetation, and wind) are depicted in Fig. 10 and Table 6: taking into 461 

account public factors alone (Category I), public factors + vegetation (Category II), 462 

public factors + rainfall (Category III), public factors + vegetation + rainfall (Category 463 

IV), and public factors + vegetation + rainfall + wind (Category V).  464 

Table 6. Distribution of landslide susceptibility zones for the five scenarios 465 

 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Area 
Quan

tity 
Area 

Quan

tity 
Area 

Quan

tity 
Area 

Quan

tity 
Area 

Quan

tity 

Very 

low 
15.63 7 13.68 2 7.74 1 8.79 1 7.33 1 

Low 150.19 43 155.30 50 100.09 24 123.91 39 89.43 29 

Mid 284.81 87 291.75 87 313.12 97 303.06 80 325.06 84 

High 128.85 78 133.11 83 150.40 85 152.51 97 167.26 105 

Very 

high 
25.08 12 10.72 5 33.21 20 16.30 10 15.49 8 

Total 604.56 227 604.56 227 604.56 227 604.56 227 604.56 227 

The results indicate that using Category I as the baseline, adding vegetation 466 

independently (Category II) decreases very low and very high susceptibility zones by 467 

14.37 km² and 1.95 km², respectively, with fewer landslides. Other zones saw slight 468 

increases, with the low susceptibility zone increasing by 15.11 km² and seven additional 469 

landslides, suggesting that vegetation inhibits landslides.  470 

When rainfall is added independently (Category III), overall susceptibility 471 

increases significantly. Very low and low susceptibility zones decrease by a total of 472 
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57.99 km², and the medium susceptibility zones increase by 28.31 km² with 10 473 

additional landslides. The high and very high susceptibility zones increase by 29.69 474 

km² with 15 additional landslides. This indicates that vegetation has a positive 475 

inhibitory effect on landslide occurrences in favorable eco-geological conditions (such 476 

as terrain, slope, and altitude). However, in high or very high susceptibility zones with 477 

harsh conditions, rainfall amplifies vegetation’s contribution to landslide susceptibility. 478 

 479 

Fig. 10. Landslide Susceptibility Distribution Map for Five Scenarios 480 

When rainfall and vegetation factors are considered together (Category IV), the 481 

very low and low susceptibility zones decrease by 33.12 km², while the medium 482 

susceptibility zones increase by 18.25 km², with ten fewer landslides. The high 483 

susceptibility zone expands by 23.66 km², with 19 additional landslides. Although the 484 

very high susceptibility zone shrinks in area, disaster point density increases to 0.61 per 485 

km².Adding the wind speed factor (Category V) causes the very low and low 486 
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susceptibility zones to decrease significantly by 69.06 km²—almost double the 487 

reduction observed in Category IV. The medium and high susceptibility zones expand 488 

significantly by 40.25 km² and 38.4 km², respectively. Together, the high and very high 489 

susceptibility zones experienced 23 more landslides.  490 

Four patterns emerge: (1) In areas with low NDVI and rainfall, landslide 491 

susceptibility shifts from very low to low; (2) In areas with high NDVI and slightly 492 

lower rainfall, susceptibility changes from low to medium; (3) In areas with low NDVI 493 

and high rainfall, landslide susceptibility shows little change; (4) In areas with high 494 

NDVI and rainfall, susceptibility shifts from medium to high. 495 

In summary, vegetation's role in landslide occurrence is influenced by external 496 

environmental conditions. This aligns landslide stability models that consider the self-497 

weight of vegetation. It is essential to recognize the double-edged nature of vegetation 498 

in landslide prevention and control. 499 

4.3 Mechanisms of landslides in areas with high vegetation coverage 500 

The mechanisms of landslide occurrence in areas with high vegetation coverage 501 

represent an important yet underexplored topic. Good vegetation coverage can create a 502 

false sense of safety and stability. First, Dense vegetation can obscure surface changes, 503 

making it difficult to detect geological or erosion, leading to an underestimation of risks. 504 

Secondly, while vegetation coverage can slow down rainwater flow and reduce its 505 

impact during initial stages or under conditions of low rainfall over a short period, the 506 

dense root networks increase soil stability, thereby enhancing the soil's resistance to 507 

landslide initiation. However, areas with good vegetation coverage are often regions 508 
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with favorable water and thermal conditions. Vegetation’s absorption of part of the 509 

rainfall also increases soil saturation, further exacerbating the risks of landslides and 510 

debris flows. Under persistent warm and humid conditions, geological and surface 511 

changes in high vegetation areas are often gradual. Signs of disasters may accumulate 512 

over long timescales, making these changes easy to overlook. Moreover, factors such 513 

as seasonal rainfall or snowmelt can increase disaster risks during specific periods, 514 

while other times may seem relatively safe. This seasonal variability adds uncertainty 515 

to disaster occurrences, further enhancing their concealed nature.  516 

Furthermore, terrain complexity is a key factor contributing to the concealed 517 

nature of landslides in areas with high vegetation. These regions often feature rugged 518 

terrain with significant elevation changes, which may hide numerous geological 519 

structural issues. Such structures can lead to landslides under certain conditions, but 520 

their prediction is challenging due to the terrain’s complexity. For instance, localized 521 

soil erosion or slope collapses might occur in these terrains, but the vegetation cover 522 

can make such signs difficult to observe. 523 

Where terrain and rainfall factors combine, vegetation can amplify disaster effects. 524 

For instance, strong winds can destabilize vegetated slopes, increasing the risk of soil 525 

erosion and landslides. Thus, the concealed mechanisms of landslides result from the 526 

combined effects of geological, meteorological, and topographical factors. 527 

Comprehensive analysis of these factors is essential to understand hidden risks. 528 

Strengthening early warning systems and implementing preventive measures are 529 

critical to reducing potential casualties and property losses. 530 
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4.4 Comparison with previous studies and scope for future research 531 

Cui et al. (2024) analyzed the characteristics and causes of a similar landslide in 532 

this area using Massflow V2.8 simulations. They identified rainfall and human 533 

activities as key triggers, but insufficiently addressed interactions between soil, 534 

moisture, and external forces (such as natural wind and human mining activities) under 535 

high vegetation conditions. This limited simulation accuracy.  536 

The current study uses macroscopic susceptibility mapping to elucidate the 537 

interaction mechanisms among landslide susceptibility factors, with vegetation as the 538 

core medium. Microscopic stress analysis of slope stability was used to calculate slope 539 

stability while accounting for vegetation self-weight. The findings provide an important 540 

reference for studying landslide movement characteristics and developing disaster 541 

prevention and mitigation strategies in high vegetation mountainous areas. 542 

Although this study analyzes landslides at the watershed scale and specific points. 543 

further research is needed at regional, national and global scales to understand the 544 

factors influencing both the positive and negative roles of vegetation in landslide 545 

prevention. In particular, the specific causes, damage patterns, and impacts of the 546 

negative effects remain unclear. On the basis of clarifying the interactions between 547 

vegetation and environmental factors (such as rainfall, slope gradient, lithology, and 548 

soil thickness), efforts should be made to construct regional or global zoning maps of 549 

dominant factors for mountain hazards, considering vegetation and its synergistic 550 

factors.  551 

Additionally, while each of the conventional approaches to landslide susceptibility 552 
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assessment—such as the information value method, deterministic coefficient method, 553 

and analytic hierarchy process (AHP)—have advantages, they also have drawbacks, 554 

including high subjectivity, limited explanatory power, and limited applicability. It is 555 

challenging to fulfill the present standards for high-precision and high-efficiency 556 

landslide risk assessments because of these limitations. Machine learning technologies, 557 

have been widely applied in landslide susceptibility assessments. LightGBM and 558 

XGBoost have shown excellent performance in susceptibility assessments, but lack 559 

interpretability, limiting their credibility.  Advances in interpretable machine learning 560 

could integrate agent-based models to simulate spatial interactions of factors. 561 

Combining these with tools such as GeoDetector and SEM would provide data and 562 

form the foundation for developing effective landslide prevention strategies. 563 

5 Conclusion  564 

This study integrates regional landslide susceptibility mapping with stability 565 

analysis of typical landslides, revealing spatial variation patterns and mechanisms of 566 

landslide susceptibility in high vegetation areas. It clarifies the positive and negative 567 

roles of vegetation in landslide prevention and control. While offering insights into the 568 

role of vegetation in ecological disaster reduction, the landslide mapping in this study 569 

relies on traditional methods. Although these methods have little impact on the overall 570 

distribution patterns of landslide susceptibility, they exhibit limited precision to some 571 

extent, particularly in small watersheds, where the evaluation results are coarse. With 572 

the continuous advancement of machine learning techniques, leveraging these methods' 573 

interpretability and strong learning capabilities can further improve the accuracy of 574 
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landslide susceptibility mapping in future studies. This study gives limited 575 

consideration to factors such as earthquakes, forest height, and root distribution. By 576 

incorporating more extensive datasets in future research, the changes in landslide 577 

susceptibility and its driving forces can be better understood. In summary, this study 578 

examines the role of vegetation in landslides from both macro and micro perspectives, 579 

providing theoretical support for further landslide risk assessments. 580 
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