Response letter

Dear Editors and Reviewers:
Re: egusphere-2025-3004

We sincerely thank you and reviewers for providing us with such a valuable revision
opportunity. Thus, we can further improve and present our studies. The comments
from you and the reviewers were highly insightful and enabled us to greatly improve
the quality of our manuscript. We have carefully reviewed the feedback and made
corrections that we hope will be met with approval. Revised portions are marked on
the revised manuscript. Please note that these resulting revisions did not change the

paper’s findings.

In the response letter to editor and reviewers, we firstly summarized the major
changes in a cover letter to editors, and we then itemized response to editors and
reviewers, in which the blue font indicates the response to each comment and

the black font presents the revision from the revised manuscript.

We hope that the revisions in the revised manuscript and the responses to the
comments will suffice to allow our manuscript to be suitable for publication in Natural

Hazards and Earth System Sciences.

Sincerely regards,
Songtang He (hest@imde.ac.cn)

Institute of Mountain Hazards and Environment, Chinese Academy of Science



Response to Reviewer #2

[Comment 1] General structure and integration between scales

A central weakness of the paper lies in the lack of clarity regarding how the local-scale
analyses are integrated with the regional-scale susceptibility assessment. As
currently presented, the local-scale analyses appear disconnected and scientifically
irrelevant, adding little to the main argument. If the authors cannot clearly demonstrate
the conceptual and methodological linkage between the two scales, | would

recommend removing the local-scale component entirely.

Response:

Thank you very much for this valuable comment. We agree that the connection
between the major landslide case and the large-scale susceptibility analysis was not
clearly presented in the original manuscript. The purpose of introducing this landslide
is to use it as a representative case study that links the regional-scale susceptibility
assessment with the site-scale mechanisms of slope failure, providing a field-based
context for subsequent susceptibility analysis and mechanistic interpretation. The
landslide was triggered by the combined effects of prolonged rainfall, anthropogenic
loading from waste deposits, and the additional weight of dense vegetation. This
event highlights the amplifying effect of the interaction between vegetation and rainfall,
indicating that local environmental disturbances can significantly increase landslide
risk. In other words, vegetation may enhance slope stability under certain conditions
but can also aggravate slope failure due to its additional weight and water-retention
capacity. Therefore, this case not only provides empirical validation for the regional
analysis results but also reveals the amplification of large-scale controlling factors
under local conditions, further supporting the “double-edged sword” role of vegetation

identified through the GeoDetector and SEM analyses.

We have revised the manuscript accordingly. Specifically, we have clarified the
conceptual linkage between scales at the end of the Introduction, strengthened the

role of the case study in the Study Area description, and explicitly integrated the local-



scale findings into the Discussion to demonstrate their relevance to the regional

susceptibility assessment.

# 1 Introduction (Revised manuscript line 100)

“To address these research gaps, this study investigates the dual-edged role of
vegetation in landslide susceptibility by integrating watershed-scale statistical
analysis with site-specific geomechanical modeling. We selected the Jinkouhe District

in Southwest China—a region with high vegetation cover (=65.5%) and frequent
landslide activity—as our study area. The research aims to (1) Quantify the individual

and interactive effects of key environmental factors (rainfall, vegetation, wind speed,
slope, lithology, etc.) on landslide susceptibility at the watershed scale using
Geodetector and Structural Equation Modeling (SEM). (2) Analyze the mechanical
role of vegetation weight and its coupling with rainfall and anthropogenic loading in
triggering a typical shallow landslide through slope stability calculations. (3) Integrate
findings from both scales to elucidate how vegetation mediates landslide processes
under different environmental conditions, thereby providing a multi-scale perspective

on its “double-edged sword " function. By bridging macroscopic susceptibility

patterns with microscopic failure mechanisms, this study offers novel insights into the

complex vegetation—landslide interplay. The results are expected to enhance the

accuracy of landslide risk assessments and inform sustainable slope management
strategies in densely vegetated mountainous regions.”
# 2.1 Study area (Revised manuscript line 142)

“This study takes the JinKouhe area as the research focus. A major landslide

occurred in the study area on June 4, 2023, near the living quarters of a Phosphate
Mine (103°2'25.75" E, 29°25'0.6" N), which serves as a representative case providing

field evidence for the subsequent discussion of slope-failure mechanisms.”

# 4.3 Mechanisms of landslides in areas with high vegetation coverage (Revised

manuscript line 544)

“At the watershed scale, the GeoDetector results indicate that NDVI alone

exhibits limited independent explanatory power (q = 0.27, Table 4). However, its



interaction with rainfall significantly enhances landslide susceptibility (e.g., NDVI x

rainfall q = 0.67, Fig. 8), suggesting that vegetation can amplify the destabilizing
effects of precipitation under certain conditions. While vegetation intercepts rainfall
and promotes evapotranspiration, it can also alter soil moisture distribution via
stemflow, root-induced preferential flow, and reduced surface runoff. Under prolonged
rainfall, these processes may lead to localized saturation, thereby exacerbating
landslide and debris flow risks in vegetated slopes. This aligns with the SEM results,
which attribute a total indirect effect of 0.21 to NDVI, mediated largely through soil
moisture dynamics and interactions with rainfall and slope (Fig. 9, Table 5). The
susceptibility scenario analysis further illustrates this duality: adding vegetation alone
(Class 1) slightly reduced the extent of very high susceptibility zones, yet when
combined with rainfall (Class 1V) and wind (Class V), it led to a notable expansion of
high-susceptibility areas and an increase in landslide counts (Table 6, Fig. 10). This

suggests that vegetation 's protective capacity may be offset or reversed under
prolonged rainfall, especially on steeper slopes.

At the site-specific scale, the stability calculations provide direct mechanical
insight into how vegetation can transition from a stabilizing to a destabilizing factor.
Under natural (unsaturated) conditions, the slope remained stable even with the
added weight of vegetation and waste material (Fs = 1.02). However, under saturated

conditions, the same additional loads—patrticularly the self-weight of trees—reduced

the stability coefficient to 0.89, triggering failure (Table 3). This demonstrates that the
mechanical reinforcement from roots can be outweighed by the gravitational load of
vegetation when soil strength is reduced by saturation, a shift that is quantitatively

captured by our modeling.

These findings help explain why landslides may occur unexpectedly in densely
vegetated areas. Vegetation can create a false sense of stability by masking early
signs of movement (e.g., surface cracking, minor slumping) and by being traditionally
associated with slope protection. Moreover, the same root networks that enhance
soil cohesion also facilitate preferential infiltration, potentially accelerating soil

saturation during heavy rainfall—a process reflected in the strong interaction between

NDVI and rainfall in our spatial analysis. In terrain with high lateral variability in slope,

lithology, or soil depth, vegetation may thus contribute to highly localized and



concealed instability, as exemplified by the 2023 Jinkouhe landslide.”

[Comment 2] Methodological adequacy — Use of AHP: The use of the Analytic
Hierarchy Process (AHP) as the core method for landslide susceptibility mapping
raises serious concerns. AHP is highly subjective and largely outdated, having been
replaced in the literature by more objective and data-driven approaches (e.g.,
statistical models, machine learning algorithms, ensemble frameworks). The authors
do not provide any convincing justification for this methodological choice. In its current

form, this decision undermines the robustness and reproducibility of the results.

Response:

Thank you for your insightful comment. We fully understand your concern
regarding the use of the Analytic Hierarchy Process (AHP). To clarify, AHP is the
primary method used in the manuscript for deriving factor weights and producing the
susceptibility map. AHP was selected for its transparent and systematic weighting
mechanism that facilitates the explicit incorporation of expert judgment, making it well
suited for regions characterized by limited or uneven landslide inventory data. We do
not claim that AHP is superior to data-driven techniques; rather, in this work AHP
serves as the main, interpretable mapping approach appropriate for the study

objectives and available data.

Moreover, AHP has continued to be widely applied in recent years for landslide
susceptibility mapping due to its interpretability and ease of factor weighting (e.g.,
Alamrew et al., 2024; Asmare, 2023; Gebrehiwot et al., 2025; Liu et al., 2024,
Mustapha et al., 2025). To further address your concern, we conducted a

supplementary validation experiment using four interpretable machine learning

models—XGBoost, LightGBM, GBDT, and CatBoost—to evaluate the robustness and

reproducibility of our AHP-based results. The workflow was as follows: (1) all
conditioning factors were extracted and divided into two categories (landslide and
non-landslide samples); (2) data were standardized and randomly split into training

(70%) and testing (30%) subsets; (3) the Optuna heuristic optimization framework



was employed to tune model hyperparameters, replacing the traditional grid search

approach; and (4) model performance was compared using ROC curves (Figure R1).

The testing AUC values were 0.816 (CatBoost), 0.784 (GBDT), 0.773 (LightGBM),

and 0.766 (XGBoost).
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Fig. R1. ROC curves comparing the four machine learning models

Furthermore, we applied SHAP analysis to the CatBoost model to interpret

feature contributions and found that the main controlling factors identified, such as

Elevation, Slope, Distance to fault and Mean annual rainfall, were largely consistent

with those derived from the GeoDetector analysis. The slight discrepancies are

reasonable since SHAP evaluates the influence of each variable within the model’s

decision process, while GeoDetector emphasizes spatial heterogeneity.
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Overall, the AHP model exhibited comparable predictive performance and similar
dominant factors to the machine learning models, confirming the robustness and
reproducibility of our results. More importantly, the negative samples in this
supplementary experiment were generated using the same buffer-based method as
in the AHP validation. This ensures the comparability of the results. Although the AUC
values of the machine learning models are moderate, their performance could be
further enhanced by incorporating more refined sampling strategies, such as factor-
based spatial optimization or model-driven negative sample optimization frameworks.

These improvements will be considered in our future work to enhance the precision

and generalizability of machine learning-based susceptibility models.
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[Comment 3] Landslide inventory and model validation: The description of the
landslide inventory is inconsistent and insufficient. The manuscript states that the
inventory was downloaded from an online repository and then integrated with 227
manually identified landslides; yet later it is mentioned that the total number of

landslides is 227. This discrepancy must be clarified. The authors should:

(i) provide a detailed and transparent description of the inventory, including sources,
validation, and completeness; and
(ii) clearly explain the selection criteria for non-landslide points, as this strongly affects
the ROC/AUC results.
Without this information, the reported validation accuracy appears potentially
overestimated and unreliable.
Response:

We sincerely thank you for the valuable comments regarding the landslide
inventory and model validation. The manuscript has been revised to provide a clearer
and more detailed description, and we hope these clarifications address your

concerns.

1. In this study, the landslide inventory was compiled from two sources: the first
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source was the landslide inventory of the Jinkouhe area provided by the GeoCloud
platform, and the second source consisted of landslides identified through visual
interpretation of high-resolution satellite imagery (Sentinel-2) and manual verification.
The datasets were integrated, and duplicate or uncertain cases were removed,
resulting in a total of 227 landslides, representing the complete landslide distribution
within the study area. To address the unclear description in the original manuscript,
this has been revised in # Revised manuscript line 196. To visually demonstrate the
reliability of some landslide points in the study area, Figure R4 shows a subset of
landslides identified through visual interpretation, and part of these landslides have

been added to Figure 1 in the revised manuscript. And the descriptions are below.

# 2.2 Data source and preprocessing (Revised manuscript line 197)

“(8) Landslide hazard point data were obtained from the GeoCloud platform

(hitps://geocloud.cgs.gov.cn/) and through manual interpretation of Sentinel-2 imagery

acquired in August 2024. After integrating the sources and removing duplicates and uncertain
cases, the final inventory consisted of 227 validated landslides, representing the complete
distribution within the study area. Some representative landslides identified through visual

interpretation are shown in Figure 1d—h.”



https://geocloud.cgs.gov.cn/

Fig. R4 Visually interpreted subset of landslides

2. To assess the reliability of the dataset and the robustness of the model, a 500
m buffer was generated around the known landslide points, and areas close to water
bodies were excluded. Within the remaining regions, non-landslide points (negative
samples) were randomly selected while maintaining a balanced ratio between positive
and negative samples. Following the repeated random sampling approach commonly
used in machine learning studies, 30% of the entire dataset was repeatedly and
randomly selected as the testing subset for AUC validation. Multiple repeated
validations were performed, and the resulting AUC values showed minimal variation
(<0.05), indicating consistent and reliable model performance. These clarifications

have been added in the revised manuscript, line 252.

# 2.3.2 Rationality validation of susceptibility assessment results (Revised manuscript
line 252)

“‘Based on the susceptibility distribution map and known landslide points, non-
landslide points were randomly sampled from areas excluding water bodies and 500
m landslide buffer zones to maintain a balanced ratio between positive and negative
samples. Following the repeated random sampling approach commonly used in
machine learning studies, 30% of the entire dataset was repeatedly and randomly
selected as the testing subset for ROC/AUC evaluation to assess model robustness.
The mean AUC values obtained from the five scenarios were 0.774, 0.786, 0.795,
0.810, and 0.801, respectively—all exceeding 0.5. The variation in AUC across
repetitions was minimal (<0.05), indicating consistent and reliable landslide
susceptibility evaluation (Fig. 4).”

[Comment 4] Reference to established best practices. The authors should explicitly
compare their approach with the guidelines proposed by Reichenbach et al. (2018),
who outlined key criteria for producing reliable landslide susceptibility maps. Currently,
the manuscript neither demonstrates adherence to these well-established standards

nor engages with them critically.



Response:

Thank you for your valuable comment. We carefully reviewed the work of
Reichenbach et al. (2018) and compared their guidelines with our modeling approach.
First, regarding the selection of conditioning factors, section 3.4.1 in Reichenbach’s
manuscript (Reichenbach et al. 2018) noted that for each susceptibility model, two to
twenty-two thematic variables were typically used, with an average of nine. In our
study, we selected ten factors—elevation, slope, aspect, distances to faults, rivers,
and roads, lithology, rainfall, NDVI, and wind speed—which are sufficient to construct
a robust model. Except for wind speed, all factors are commonly used in landslide
susceptibility research. Second, in terms of mapping units, we adopted grid cells (30
x 30 m), which correspond to one of the three basic evaluation units recommended
by Reichenbach et al. (2018). Finally, for model validation, we used the Receiver
Operating Characteristic (ROC) curve, which is also mentioned as common practice
in their work. Taken together, we believe that our methodology follows the best-
practice guidelines proposed by Reichenbach et al. (2018). Accordingly, we have
revised the manuscript to include the following statement at the beginning of Section

2.3.1.

2.3.1landslide susceptibility based on the analytic hierarchy process ( Revised
manuscript line 207)

“Following the best-practice guidelines for landslide susceptibility mapping
proposed by Reichenbach et al. (2018).”
References
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60-91. https://doi.org/10.1016/j.earscirev.2018.03.001

[Comment 5] Analysis of variables and use of geodetector: The attempt to explore
how different variables (and their combinations) influence susceptibility is potentially

interesting. However, the application of the GeoDetector method appears


https://doi.org/10.1016/j.earscirev.2018.03.001

methodologically flawed: the authors use the susceptibility map (derived from AHP)
as the dependent variable, rather than the landslide inventory itself. Since
susceptibility is already a model — and a highly subjective one — this approach
introduces a strong bias, making any subsequent inferences about controlling factors
or vegetation effects questionable. Such analyses should be based on observed

landslide occurrences, not on the output of another model.

Response: Thank you for your valuable comment. We fully understand your concern
regarding the GeoDetector method and the choice of dependent variable. In most
GeoDetector studies, the spatial distribution of landslide occurrences (i.e., the 01
variable representing landslide and non-landslide areas) is commonly used as the
dependent variable to identify the major conditioning factors strongly associated with
landslide occurrence. However, this approach is more suitable for the preliminary
stage of factor screening (Liu et al., 2024; Sun et al., 2021; Yang et al., 2019; Zhou
et al.,, 2023), as it can reveal which environmental variables show strong spatial
consistency with landslide occurrences, but cannot effectively reflect how multiple

factors interact or jointly influence the degree of landslide susceptibility.

The fundamental reason is that the 0—1 variable only represents two discrete
states—"occurrence” or “non-occurrence’—and lacks information about continuous
variation. It can only capture the spatial consistency between individual factors and
landslide occurrence. In other words, when the dependent variable is binary (0-1),
GeoDetector can answer the question “Which factors are correlated with landslide
occurrence?” but not “How do these factors jointly shape the spatial distribution and
intensity of landslide susceptibility?”. Therefore, such analyses reveal the spatial
pattern of landslide occurrence rather than the underlying mechanism that controls

the spatial heterogeneity of landslide susceptibility.

In this study, we used the landslide susceptibility map derived from the AHP
model as the dependent variable, which serves a different purpose from the
conventional approach. The susceptibility index is a continuous variable that

represents the relative probability of landslide occurrence rather than a simple binary



state of “occurred” or “not occurred.” Applying GeoDetector to this continuous
susceptibility map allows us to quantitatively evaluate the explanatory power of each
factor on spatial variations in susceptibility and further explore how factor interactions
jointly influence the susceptibility pattern. This analysis helps clarify which
environmental factors and combinations dominate the spatial variation of landslide

susceptibility in the study area.

Therefore, this process is not a simple repetition of the AHP model results but
rather a mechanism-oriented interpretation and validation from the perspective of
spatial heterogeneity. In other words, using the landslide susceptibility map as the
dependent variable in GeoDetector is not a methodological error but a deliberate
design aimed at shifting the focus from the occurrence of landslide events to
understanding the spatial mechanisms that shape landslide susceptibility, thereby

giving the AHP results a clearer physical interpretation (Chen et al., 2023). And We

fully understand your concern that “the susceptibility map itself is a model output,

which may introduce bias.” To verify the rationality and reliability of applying the

GeoDetector method based on the susceptibility map, we conducted additional

experiments and comparative analyses from two complementary perspectives.

(1) GeoDetector comparison based on binary landslide classification
We re-applied GeoDetector using actual landslide and non-landslide samples (0—

1 classification) as the dependent variable with the same set of conditioning factors.

The results showed that the major explanatory factors—such as slope, distance to

fault, and mean annual rainfall—were largely consistent with those identified by the

AHP-GeoDetector analysis (Figure R5), with only minor differences in secondary
factors. This demonstrates that the relative importance of conditioning factors remains
stable even when the dependent variable differs, confirming the robustness and

interpretability of the AHP-GeoDetector results.
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Fig. R5 GeoDetector factor importance using binary (0—1) landslide classification.
(2) Independent validation using a machine learning model

We also performed SHAP-based interpretability analysis using the CatBoost
model from our previous supplementary experiments and compared its results with
the AHP-GeoDetector analysis (Comment 2, Figure R2&3). The findings showed a
high degree of agreement: key controlling factors such as elevation, slope, distance
to fault, and mean annual rainfall were consistently identified as dominant contributors.
This cross-method consistency indicates that the identification of landslide-driving
factors is reproducible and stable across different modeling frameworks,

demonstrating that the AHP results were not artifacts of model subjectivity.

In summary, our comparative analyses empirically validate the methodological
soundness of applying GeoDetector to the susceptibility map. Although the AHP is an
expert-based weighting model, its outputs show strong consistency and spatial
explanatory power when verified by multiple independent approaches. Therefore, the
GeoDetector analysis in this study did not introduce significant bias, but rather
enhanced the understanding of the spatial mechanisms underlying landslide

susceptibility formation.
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[Comment 6] Structure and clarity of the manuscript: The manuscript is redundant
and lacks structural clarity. | recommend:(i) removing repetitive sentences;(ii)
improving logical flow and conciseness throughout the text. In particular, several
statements about the “ambiguous role” of vegetation are speculative and not

sufficiently substantiated by quantitative evidence.

Response:
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(1) we have carefully revised the manuscript to remove repetitive sentences and
improve logical flow and conciseness. Statements related to the role of vegetation
have been consolidated, and the end of the Introduction, the Study Area description,
and the Discussion section have been reorganized to better integrate the multi-scale
analyses.

(2) We thank you for highlighting the need for stronger quantitative support in

Section 4.3 regarding the “ambiguous role” of vegetation. We agree that some

statements in this subsection appeared speculative, and we have revised Section 4.3
to better integrate our empirical findings and quantitative results. Detailed
explanations and corresponding manuscript revisions are provided in our response to

Comment 9 (Response 26).

[Comment 7] Vegetation: The paper focuses on vegetation but does not include an
accurate description of the types of vegetation present in the study area. This is a

major issue in my opinion.

Response:

Thank you for your valuable comment. As you rightly pointed out, to provide a
more accurate description of the vegetation types in the study area, we obtained the
vegetation distribution based on the 1:1,000,000 China Vegetation Type Spatial
Distribution vector data, as shown in the figure R6. The vegetation in the study area
is mainly classified into shrubland, meadow, broadleaf forest, coniferous forest, and
cultivated plants. Among them, the shrubland mainly consists of Myrica and
Rhododendron; broadleaf forests mainly include Arundinaria-dominated forests,
Quercus engleriana forests, and Castanopsis forests; and coniferous forests are
primarily composed of Abies forests, Pinus yunnanensis forests, and subalpine

Quercus forests. This information has been added to Section 2.1 “Study Area”.

# 2.1 Study Area (Revised manuscript line 134)

“Vegetation is classified into shrubland, meadow, broadleaf forest, coniferous

forest, and cultivated plants. Shrubland is dominated by Myrica and Rhododendron,



broadleaf forests include Arundinaria-dominated forests, Quercus engleriana forests,
and Castanopsis forests, and coniferous forests consist mainly of Abies forests, Pinus

yunnanensis forests, and subalpine Quercus forests.”
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Fig. R6 Vegetation type distribution map
[Comment 8] Specific (but not minor) comments

1. 129: “landslide frequently occur” — How frequently? More than in other soil-cover

conditions? | suggest replacing frequently with may.

Response:
Thank you for the suggestion. To improve the academic rigor and structural

clarity of the Introduction, we substantially revised this section. During the revision,

the original sentence containing the expression “frequently occur” was removed and

no longer appears in the revised Introduction.

2.159: What is meant by “good vegetation”?

Response:

Thank you for your comment. The original text is “...under good vegetation cover
conditions...”, which refers to areas with dense or well-developed vegetation cover.
According to the suggestion on the introduction revision, | have completely rewritten

the introduction section, removing the repetition, some ambiguous words, and logical



errors. Please check the introduction section in the manuscript, lines 55-116, pages

4-6.
3. 160: change to: “mitigation also depends on...”

Response:
Thank you for your suggestion. We appreciate your attention to phrasing. To
improve the academic rigor and structural clarity of the Introduction, we substantially

revised this section. During the revision, the original sentence containing the

expression “mitigation also depends on” was removed and no longer appears in the

revised Introduction.

4.173: What do you mean by “susceptibility to external disturbances”? | believe

susceptibility refers specifically to landslides in this paper.

Response:

Thank you for your comment. In this context, “susceptibility to external
disturbances” refers to the slope’s sensitivity to external triggering factors such as
rainfall, seismic activity, or human disturbance. This phrasing was used to emphasize
that root wedging can increase the likelihood of slope instability when exposed to such
external factors. In this study, landslide susceptibility is specifically quantified using

the Landslide Susceptibility Index (LSI)

5. 175: You probably mean apparent cohesion, since cohesion itself is not reduced by

rainfall.

Response:

Thank you for this insightful comment. After further verification and consultation
with domain experts, we confirm that soil cohesion is a standard technical term widely
used in geotechnical literature to represent the cohesive component of soil shear
strength in slope stability analyses. In this context, the original expression is

scientifically appropriate and has therefore been retained in the revised manuscript.



6. 176: “downslope forces generated by gravitational water distribution” — please

clarify.

Response:

Thank you for your comment. Here, “downslope forces generated by gravitational
water distribution” refers to the component of the slope weight acting along the slope
surface, which contributes to driving forces for slope failure. As rainfall infiltrates the
soil, the overall weight of the slope increases due to added water content, leading to
a larger downslope force component and thus an increased potential for slope

instability.

7.189: What are the “geoscience factor weights”? In any case, multiple techniques for
landslide susceptibility exist, and the references at the end of the sentence are

insufficient.

Response:

Thank you for your comment. The term “geoscience factor weights” refers to
methods that assign weights to geological and environmental factors (e.g., slope,
lithology, land use) to quantify their relative contribution to landslide occurrence. Such
weighting approaches are commonly based on expert judgment or methods like
Analytic Hierarchy Process (AHP). We acknowledge that multiple techniques exist for
landslide susceptibility assessment, including statistical models, machine learning
methods, and multi-criteria evaluation. To address your concern, we have expanded
the references to include representative studies covering various approaches. The

revised sentence now reads:
# Introduction (Revised manuscript, line 82)

“Substantial efforts have been made to assess landslide susceptibility using
various methodologies, including geoscience factor weighting, statistical models,
machine learning, and Geographic Information Systems (GIS)-based spatial analysis
(Abay et al., 2019; Gebrehiwot et al., 2025; Guo et al., 2023; Pham et al., 2018; Sun
et al., 2024; Wang et al., 2024).”
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https://doi.org/10.1016/j.heliyon.2023.e21542
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8. 193: “few studies” — please cite them.

Response:
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Thank you for your comment. Due to substantial revisions of the Introduction to
improve clarity and structure, the original sentence has been modified. It now reads:
“Many studies provide qualitative descriptions of factor influences but lack quantitative
analysis of spatial correlations and interactive effects among multiple driving factors
(Shu et al., 2025; Triplett et al., 2025).” Corresponding references have been added

to support this statement.
References

Shu, H., Qi, S, Liu, X., Shao, X., Wang, X., Sun, D., ... & He, J. (2025). Relationship
between continuous or discontinuous of controlling factors and landslide
susceptibility in the high-cold mountainous areas, China. Ecological

Indicators, 172, 113313. https://doi.org/10.1016/j.ecolind.2025.113313

Triplett, L.D., Hammer, M.N., DelLong, S.B. et al. Factors influencing landslide
occurrence in low-relief formerly glaciated landscapes: landslide inventory and
susceptibility analysis in Minnesota, USA. Nat Hazards 121, 11799-11827
(2025). https://doi.org/10.1007/s11069-025-07262-8

9. 1110: “frequent” again — misleading: it suggests landslides mostly occur in
vegetated areas.
Response: Thank you for your comment. The original sentence containing “frequent”

has been replaced with another expression in the revised Introduction. In addition, all

other similar instances in the manuscript have been revised to use “may occur” to

accurately reflect the possibility of landslides in areas with high vegetation cover
10. 113: GeoDetector and structural equation modeling require references.

Response: Thank you for your comment. To improve the clarity, scientific rigor,
structure, and overall quality of the Introduction, we have substantially revised this
section. In the revised Introduction, the original sentence has been removed, but

references supporting the application of GeoDetector and structural equation


https://doi.org/10.1016/j.ecolind.2025.113313
https://doi.org/10.1007/s11069-025-07262-8

modeling (SEM) have been added to the Research Methods section to ensure the

rigor of the methodology. (e.g.,Lu et al., 2024; Fan et al., 2016; Wang et al., 2010).”

References

Lu, F., Zhang, G., Wang, T,, Ye, Y., Zhen, J., & Tu, W. (2024). Analyzing spatial non-
stationarity effects of driving factors on landslides: a multiscale geographically
weighted regression approach based on slope units. Bulletin of Engineering
Geology and the Environment, 83(10), 394. http://doi.org/10.1007/s10064-024-
03879-4

Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R,, Park, H., & Shao, C. (2016).
Applications of structural equation modeling (SEM) in ecological studies: an
updated review. Ecological Processes, 5(1), 19. http://doi.org/10.1186/s13717-
016-0063-3

Wang, J. F.,, Li, X. H., Christakos, G., Liao, Y. L., Zhang, T., Gu, X., & Zheng, X. Y.
(2010). Geographical Detectors-Based Health Risk Assessment and its
Application in the Neural Tube Defects Study of the Heshun Region, China.
International Journal of Geographical Information Science, 24(1), 107-127.

http://doi.org/10.1080/13658810802443457

11. M127: Forest is 65%. Which type of forest? And what about the remaining 35%?

Response:

Thank you for your comment. The 65.55% forest coverage refers to the overall
forested area in the study region. The remaining area consists of non-forested land,
including cropland, grassland, and other land uses. We made minor modifications to
line 138 of the original manuscript.

# 2.1 Study area (Revised manuscript line 133)

“Forest covers 65.556% of the area, while the remaining land consists of non-

forested terrain. Vegetation is classified into shrubland, meadow, broadleaf forest,

coniferous forest, and cultivated plants. Shrubland is dominated by Myrica and

Rhododendron, broadleaf forests include Arundinaria-dominated forests, Quercus


http://doi.org/10.1007/s10064-024-03879-4
http://doi.org/10.1007/s10064-024-03879-4
http://doi.org/10.1080/13658810802443457

engleriana forests, and Castanopsis forests, and coniferous forests consist mainly of

Abies forests, Pinus yunnanensis forests, and subalpine Quercus forests.”

12. 1127: “terrain slopes from southwest to northeast” — what do you mean? This

sounds strange.

Response:

Thank you for pointing this out. The original phrase “terrain slopes from
southwest to northeast” was intended to indicate the overall elevation trend in the
study area, with lower elevations in the southwest and higher elevations in the
northeast. To avoid potential misunderstanding, we have removed this phrase. The
elevation range and vertical drop are retained, providing clear information about

topography: elevations range from 530 to 3,321 m, with a vertical drop of 2,700 m.

13. 1137: It is unclear why you introduce this major landslide and how it connects to

the large-scale analysis. This point is crucial.

Response:

Thank you very much for your insightful comment. We agree that the connection
between the described major landslide and the large-scale susceptibility analysis
needs to be clarified. The inclusion of this landslide aims to serve as a representative
case study that bridges our regional-scale susceptibility assessment with the
mechanistic understanding at the site scale. Specifically, this event occurred within
an area classified as a moderate-susceptibility zone in our AHP-based regional
evaluation. Although it was not located in a high-susceptibility area, the landslide was
triggered by the combined effects of prolonged rainfall, anthropogenic loading from
waste deposition, and the additional weight of dense vegetation. These local
conditions significantly increased slope instability, leading to failure even in a zone
that was only moderately susceptible at the regional scale. This observation highlights
the amplifying influence of vegetation and rainfall interactions, which supports the
“‘double-edged sword” role of vegetation revealed by our watershed-scale

GeoDetector and SEM analyses. By presenting this case, we aim to demonstrate how



local environmental disturbances can alter slope stability beyond regional
susceptibility levels, thus linking large-scale statistical results to field-scale
mechanisms. Manuscript content modifications regarding the major landslide and its

relation to the large-scale analysis have been provided in Comment 1.

14.1174: SoilGrids (Hengl et al., 2017) describes soils, not lithology. How did you

derive lithology from those data?

Response:

Thank you for pointing this out. The citation was incorrect in the previous version.
The lithology data used in this study were actually derived from the Global Lithological
Map (GLiM), which provides global-scale information on rock types and lithological

properties. The correct reference is as follows:

" Hartmann, J., & Moosdorf, N. (2012). The new global lithological map database
GLiM: A representation of rock properties at the Earth surface. Geochemistry,

Geophysics, Geosystems, 13(12), Q12004. https.//doi.org/10.1029/2012GC004370”

15. 1178: Why “maximum”? Please clarify.

Response:

Thank you for your comment. The maximum NDVI raster was used to represent
the densest or most developed vegetation in each pixel. In our study area, which
generally exhibits high vegetation coverage, the maximum NDVI effectively captures
the characteristic high vegetation conditions, while reducing the influence of
temporary vegetation loss or seasonal variations. This provides a consistent and
representative indicator of vegetation cover for landslide susceptibility modeling. It is
worth noting that the maximum NDVI usually occurs in summer, when vegetation
reaches its peak biomass and self-weight. This condition corresponds to the period
when vegetation exerts the greatest mechanical influence on slopes, providing a solid
basis for investigating its role in enhancing or reducing slope stability in well-vegetated

areas.


https://doi.org/10.1029/2012GC004370

16. 1189: “Landslide hazard point data were obtained from the GeoCloud platform...”
— this sentence is poor. The GeoCloud data are never mentioned again. No
description is provided for the method or imagery used to prepare the inventory. Were
these recent landslides? Is it a geomorphological inventory? What imagery and what
dates were used? Without this, the inventory’s quality cannot be assessed — a major

issue.

Response:

Thank you for your valuable comment. In this study, the landslide inventory was
compiled from two sources. The first source was the officially released landslide
inventory of the Jinkouhe area provided by the GeoCloud platform, which mainly
includes historical landslides with detailed attribute information such as geographic
coordinates, township location, landslide scale, hazard level, occurrence time, and
associated losses. The second source consisted of landslides identified through
visual interpretation of high-resolution Sentinel-2 imagery acquired in August 2024
and subsequent manual verification. The datasets from both sources were integrated,
and duplicate or uncertain cases were removed, resulting in a total of 227 landslides,
representing the complete landslide distribution within the study area. We have
revised the manuscript to provide a clearer and more detailed description of the
landslide inventory and its preparation process. To address the unclear description in
the original manuscript, this has been revised in # Revised manuscript line 196.

Specific revisions related to this issue are detailed in our response to Comment 3.

17.1196: “Landslide susceptibility analysis was conducted by overlaying landslide

sites with...” — You only overlaid the landslide points?

Response:

Thank you for your comment. We believe this issue may stem from a
misunderstanding of the methodological description. The phrase “overlaying landslide
sites with conditioning factors” does not simply refer to a basic overlay of landslide

point data, but rather to a multi-factor spatial analysis conducted within the framework



of the Analytic Hierarchy Process (AHP). Specifically, each conditioning factor
(elevation, slope, aspect, distance to faults, rivers, and roads, lithology, rainfall, NDVI,
and wind speed) was classified, and buffer and statistical analyses were performed
to determine the number of landslides occurring within each category. These results
served as one of the important bases for determining the weights of the factors.
Subsequently, all factor layers were weighted and overlaid according to the AHP-
derived weights, and consistency tests were performed to ensure reliability. Finally, a
landslide susceptibility distribution map was generated. The detailed procedure has
been described in the main text, and the classification criteria and statistical results
for each factor are provided in Appendix Text S1. To avoid ambiguity, we have revised

the corresponding description in the revised manuscript at line 206.

# 2.3.1 landslide susceptibility based on the analytic hierarchy process (Revised
manuscript line 207)

“Following the best-practice gquidelines for landslide susceptibility mapping
proposed by Reichenbach et al. (2018), landslide susceptibility analysis was
conducted using a multi-factor spatial evaluation approach within the framework of
the AHP. The analysis considered the following conditioning factors: elevation, slope,
aspect, distances to faults, rivers, and roads, lithology, rainfall, NDVI, and wind speed.
All factors passed the multicollinearity test with variance inflation factor (VIF) values
below 10 (Arabameri et al., 2019; Chen et al., 2018). Range normalization was
applied to standardize all indicators (He et al., 2024). Each factor was then classified,
and to quantify its influence, buffer and statistical analyses were performed to
calculate the number of landslides occurring within different classified zones, serving
as one of the key bases for determining the factor weights (Table S1). The factors
were subsequently weighted through AHP and validated using consistency tests.
Finally, the overlay analysis produced a landslide susceptibility distribution map of the
study area (Ahmad et al., 2023; Asmare, 2023), with susceptibility categorized into

five levels: very low, low, medium, high, and very high, based on existing standards.”
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18. 1238: “An equal number of non-landslide points were created” — how?

Response: Thank you for your insightful comment. To assess the reliability of the

dataset and the robustness of the model, a 500 m buffer was generated around the


https://doi.org/10.1016/j.sciaf.2022.e01470
https://doi.org/10.1016/j.scitotenv.2018.04.055
https://doi.org/10.1016/j.ecolind.2023.111335
https://doi.org/10.1016/j.earscirev.2018.03.001

known landslide points, and areas close to water bodies were excluded. Within the
remaining regions, non-landslide points (negative samples) were randomly selected

while maintaining a balanced ratio between positive and negative samples.

# 2.3.2 Rationality validation of susceptibility assessment result (Revised manuscript
line 252)

“‘Based on the susceptibility distribution map and known landslide points, non-
landslide points were randomly sampled from areas excluding water bodies and 500
m landslide buffer zones to maintain a balanced ratio between positive and negative
samples. Following the repeated random sampling approach commonly used in
machine learning studies, 30% of the entire dataset was repeatedly and randomly

selected as the testing subset for ROC/AUC evaluation to assess model robustness.”

19.1253: The GeoDetector method should be applied with a large number of

landslides; are 227 sufficient?

Response:

Thank you for raising this important question. According to previous studies, the
Geodetector method requires an adequate sample size to ensure the reliability of
variance decomposition. However, GeoDetector does not rely on a large number of
samples; instead, it emphasizes the spatial consistency between the dependent
variable and explanatory factors (Wang et al., 2010). Based on the recommendations
of Wang and Xu (2017) and subsequent research (Zhou et al., 2021), a sample size
ranging from 100 to 500 points is generally sufficient to ensure stable g-statistic
estimation. In this study, a total of 227 landslide samples were used, which falls within
the recommended range and meets the statistical assumptions of the Geodetector.
In addition, the grid-based sampling design ensured a sufficient number of spatial
strata for factor detection, thereby enhancing the robustness of the analysis.
Therefore, we consider that the sample size is adequate for applying the GeoDetector

approach in this study.
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20. 1258: Why did you use landslide susceptibility as the dependent variable? It is

already a model. Why not use the landslide inventory?

Response:

Thank you for your insightful comment. In conventional GeoDetector applications,
the landslide inventory is usually used as the dependent variable to identify the main
conditioning factors influencing landslide occurrence. However, treating landslide and
non-landslide samples as a binary (0—1) dependent variable is more suitable for factor
screening and cannot effectively explain how conditioning factors interact to influence
landslide susceptibility (Liu et al., 2024; Sun et al., 2021; Yang et al., 2019; Zhou et
al., 2023;). Consequently, most previous studies using this approach have focused
on identifying dominant factors rather than revealing the underlying mechanisms. In
contrast, the present study employed the GeoDetector for a different purpose—to
quantify the explanatory power of each conditioning factor on the modeled landslide
susceptibility derived from the AHP framework and, more importantly, to reveal how
factor interactions contribute to susceptibility patterns. This design enhances the

interpretability and physical consistency of the susceptibility model (Chen et al., 2023).
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21.1259: what’s “geological hazard risk” — a scientific paper should use terms

accurately.

Response:

Thank you for your comment. We agree that the term should be more precise.

The term “geological hazard risk” in this part has been revised to “landslide hazard

risk” to ensure terminology accuracy.
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22.1324: “84 landslides covering 53.77% of the total area” — you said landslides are

points: how can they cover an area? In pixels?

Response:

Thank you for your comment. We acknowledge the potential confusion. The
percentages reported (e.g., 53.77% of the total area) refer to the proportion of the
study area classified as moderate landslide susceptibility, not the area physically
covered by the landslide points themselves. The numbers of landslides indicate how
many inventory points fall within each susceptibility class, while the percentages
describe the corresponding area of each class. We have revised the text to clarify this
distinction.

# 3.1 Landslide susceptibility mapping and distribution characteristics (Revised

manuscript line 364)

“Most of the study area shows moderate landslide susceptibility, occupying 53.77%

of the total area and containing 84 landslide points.”

23.1336: This section pops up quite suddenly and without any clear justification, in

my opinion.

Response:

Thank you for this comment. We agree that the purpose of this section was not
sufficiently clarified in the original manuscript. The H/L ratio is introduced to provide a
quantitative characterization of landslide mobility and runout behavior, which helps
place the representative landslide case in the context of landslide magnitude and
potential hazard. In the revised manuscript, we have added a brief justification at the
beginning of Section 3.2 to clarify its relevance and to explain how this analysis
supports the interpretation of landslide dynamics discussed later in the paper.

# 3.2 Relationship between H/L and area of a typical landslide (Revised manuscript

line 378)



“To quantitatively characterize the mobility and runout behavior of the
representative landslide, the relationship between landslide height (H), travel distance

(L), and affected area was analyzed.”

24.1400: “faults occur where the structural stability of the slopes is poor” — this is

scientifically incorrect; the causal direction is reversed.

Response:
Thank you for your careful review. We agree with your comment. The original
sentence reversing the causal relationship has been deleted. The revised text now

reads:
# Revised manuscript line 442

“This is because faults zones can cause localized stress and weaken the
structural integrity of slopes, especially in the study area, which lies at the intersection
of the Longquanshan Fault Zone and the Ebian-Mabian Seismic Belt located in the

central segment of China’s north—south seismic belt.”

25.1462: “public factors” — what do you mean by this?

Response: Thank you for pointing out this inconsistency. This was an oversight on
our part. The term “public factors” on line 462 was used in error. Our intended term,
as defined in the Methods section (Line 231), is “common factors”, which refers to
[elevation, slope, aspect, lithology, and distances to faults, rivers, and roads.] the
factors that are shared across different factor combinations in our analysis. We have
corrected “public factors” to “common factors” on line 504 in the revised manuscript

to maintain terminological consistency throughout the paper.

26. 1500: The statements throughout this section are not supported by data analysis,

in my opinion.

Response:

We thank you for highlighting the need for stronger quantitative support in Section



4.3 regarding the “ambiguous role” of vegetation. We agree that some statements in
this subsection were more speculative and have now revised this section 4.3 better

integrate our empirical findings and quantitative results. Specifically, we have:

1.Explicitly linked the discussion to our quantitative results from GeoDetector and
SEM (e.g., NDVI's interaction effects, total effect coefficients), as well as slope

stability calculations under saturated vs. natural conditions.

2.Replaced speculative statements with evidence-based interpretations, using
data from our susceptibility scenarios (Categories |-V) and stability factor (Fs) values

to explain how vegetation’s role shifts with rainfall and slope conditions.

3.Clarified that the “ambiguity” is not merely hypothetical, but is demonstrated
through: The bifactor enhancement between NDVI and rainfall (Fig. 8), showing that
vegetation can amplify rainfall’s impact in certain contexts; The decrease in slope
stability (Fs) from 1.13 to 0.89 under saturated conditions when vegetation weight is
considered (Table 3), providing direct mechanical evidence of its potential
destabilizing effect; The shifts in susceptibility zoning when vegetation is added to the

model (Table 6), illustrating its spatially varying influence.

We believe these revisions strengthen the subsection by grounding the
discussion in our own analytical results, thereby providing a more substantiated
explanation of vegetation’s dual role.

# 4.3 Mechanisms of landslides in areas with high vegetation coverage
(Revised manuscript line 543)

“The mechanisms underlying landslide initiation in densely vegetated areas are

complex and context-dependent, as evidenced by the contrasting effects of
vegetation revealed in our multi-scale analysis. Our findings demonstrate that
vegetation does not act uniformly as a stabilizer; rather, its role is modulated by

hydrological conditions, slope gradient, and external loading.

At the watershed scale, the GeoDetector results indicate that NDVI alone exhibits
limited independent explanatory power (q = 0.27, Table 4). However, its interaction

with rainfall significantly enhances landslide susceptibility (e.g., NDVI x rainfall q =



0.67, Fig. 8), suggesting that vegetation can amplify the destabilizing effects of
precipitation under certain conditions. While vegetation intercepts rainfall and
promotes evapotranspiration, it can also alter soil moisture distribution via stemflow,
root-induced preferential flow, and reduced surface runoff. Under prolonged rainfall,
these processes may lead to localized saturation, thereby exacerbating landslide and
debris flow risks in vegetated slopes. This aligns with the SEM results, which attribute
a total indirect effect of 0.21 to NDVI, mediated largely through soil moisture dynamics
and interactions with rainfall and slope (Fig. 9, Table 5). The susceptibility scenario
analysis further illustrates this duality: adding vegetation alone (Class 1l) slightly
reduced the extent of very high susceptibility zones, yet when combined with rainfall
(Class V) and wind (Class V), it led to a notable expansion of high-susceptibility areas
and an increase in landslide counts (Table 6, Fig. 10). This suggests that vegetation’s
protective capacity may be offset or reversed under prolonged rainfall, especially on

steeper slopes.

At the site-specific scale, the stability calculations provide direct mechanical
insight into how vegetation can transition from a stabilizing to a destabilizing factor.
Under natural (unsaturated) conditions, the slope remained stable even with the
added weight of vegetation and waste material (Fs = 1.02). However, under saturated
conditions, the same additional loads—patrticularly the self-weight of trees—reduced
the stability coefficient to 0.89, triggering failure (Table 3). This demonstrates that the
mechanical reinforcement from roots can be outweighed by the gravitational load of
vegetation when soil strength is reduced by saturation, a shift that is quantitatively

captured by our modeling.

These findings help explain why landslides may occur unexpectedly in densely
vegetated areas. Vegetation can create a false sense of stability by masking early
signs of movement (e.g., surface cracking, minor slumping) and by being traditionally
associated with slope protection. Moreover, the same root networks that enhance soil
cohesion also facilitate preferential infiltration, potentially accelerating soil saturation
during heavy rainfall—a process reflected in the strong interaction between NDVI and
rainfall in our spatial analysis. In terrain with high lateral variability in slope, lithology,
or soil depth, vegetation may thus contribute to highly localized and concealed

instability, as exemplified by the 2023 Jinkouhe landslide.

In summary, our integrated analysis provides quantitative evidence that



vegetation’s role is not merely “ambiguous” in a speculative sense, but is quantifiably
dual: it stabilizes slopes through root reinforcement under moderate conditions, yet
can promote instability through added weight, enhanced infiltration, and synergistic
interactions with rainfall when critical thresholds are exceeded. This duality
underscores the importance of considering vegetation not as a static stabilizing factor,
but as a dynamic component of the hillslope system in landslide susceptibility

assessments.”

We sincerely appreciate your constructive feedback. We hope the revisions and
responses provided will ensure our manuscript meets the standards for publication in

Natural Hazards and Earth System Sciences.



