Response letter

Dear Editors and Reviewers:
Re: egusphere-2025-3004

We sincerely thank you and reviewers for providing us with such a valuable revision
opportunity. Thus, we can further improve and present our studies. The comments
from you and the reviewers were highly insightful and enabled us to greatly improve
the quality of our manuscript. We have carefully reviewed the feedback and made
corrections that we hope will be met with approval. Revised portions are marked on
the revised manuscript. Please note that these resulting revisions did not change the

paper’s findings.

In the response letter to editor and reviewers, we firstly summarized the major
changes in a cover letter to editors, and we then itemized response to editors and
reviewers, in which the blue font indicates the response to each comment and

the black font presents the revision from the revised manuscript.

We hope that the revisions in the revised manuscript and the responses to the
comments will suffice to allow our manuscript to be suitable for publication in Natural

Hazards and Earth System Sciences.

Sincerely regards,
Songtang He (hest@imde.ac.cn)

Institute of Mountain Hazards and Environment, Chinese Academy of Science



Response to Reviewer #1

[Comment 1] The following studies cited are older than 10-15 years: Regmi et al.,
2010; Yilmaz, 2009, Fell et al., 2008; Hurlimann et al., 2008; Sezer et al., 2010; Hu &
Bentler, 1999; Goren et al., 2010; Manzella et al., 2008. It is preferable to cite recent
articles in a manuscript, and only in exceptional circumstances should references
going back more than 10-15 years be cited. It is preferable to cite recent articles
because older references may be irrelevant given more recent advancements in the
field of study. Exceptions to this rule should be reserved for seminal works directly
relevant to the topic of research. Citing recent articles also helps journal editors see

that there is a potential audience for your topic of research.

Response:

Thank you for your valuable suggestion. To ensure that the cited literature reflects
the most recent advances in landslide susceptibility research, we have carefully
reviewed and updated the references. Older citations have been removed and

replaced with more recent and relevant studies to strengthen the scientific foundation

of the manuscript(Delete the redundant literature: “Fell et al., 2008; Hurlimann et al.,

2008; Hu & Bentler, 1999; Goren et al., 2010; Manzella et al., 2008.”). The revisions
have been made in the Introduction (line 82) and Methods Section 2.3.2 of the revised

manuscript, as shown below.

# Introduction (Revised manuscript line 82)

“Substantial efforts have been made to assess landslide susceptibility using various
methodologies, including geoscience factor weighting, statistical models, machine
learning, and Geographic Information Systems (GIS)-based spatial analysis (Abay et
al., 2019; Gebrehiwot et al., 2025; Guo et al., 2023; Pham et al., 2018; Sun et al.,
2024; Wang et al., 2024).”

# 2.3.2 Rationality validation of susceptibility assessment results (Revised manuscript

line 246)



“In this study, Receiver Operating Characteristic (ROC) curves and area under the
curve (AUC) values were used for validation. ROC curves provide a representation of
the specificity and sensitivity of an analytical method (Khosravi et al., 2019;
Gebrehiwot, et al., 2025). The AUC measures model accuracy, ranging from 0.5 to 1,
with values closer to 1 indicating higher accuracy (Wendim et al., 2025).”
References:
Abay, A., Barbieri, G., & Woldearegay, K. (2019). GIS-based Landslide Susceptibility
Evaluation Using Analytical Hierarchy Process (AHP) Approach: The Case of
Tarmaber District, Ethiopia. Momona Ethiopian Journal of Science, 11(1), 14-36.

https://doi.org/10.4314/mejs.v11i1

Gebrehiwot, A., Berhane, G., Kide, Y. et al. Landslide susceptibility mapping in
Lesalso (Laelay Maichew), Northern Ethiopia: a GIS approach using frequency
ratio and analytical hierarchy process methods. Model. Earth Syst. Environ. 11,

421 (2025). https://doi.org/10.1007/s40808-025-02578-7

Wendim, S., Mebrahtu, G. & Woldearegay, K. GIS-based landslide susceptibility
mapping using Analytical Hierarchy Process method along Gedo-Dilb asphalt
road section, Northern Ethiopia. Bull Eng Geol Environ 84, 440 (2025).
https://doi.org/10.1007/s10064-025-04455-0

[Comment 3] There is some repetition in the introduction, which can be frustrating for

your readers; The last paragraph is so long, please split into two part.

Response:
Thank you for this helpful comment. We agree that the original Introduction
contained some repetitive descriptions, which may reduce readability, and that the

final paragraph was overly long.

In response, we carefully revised the Introduction to eliminate redundant
statements and improve conciseness, particularly in the discussion of vegetation-
related effects on landslide processes. Overlapping explanations were streamlined or

merged to avoid repetition while preserving the necessary scientific context.


https://doi.org/10.4314/mejs.v11i1
https://doi.org/10.1007/s40808-025-02578-7
https://doi.org/10.1007/s10064-025-04455-0

In addition, the original final paragraph has been reorganized and split into two
shorter paragraphs. One now focuses on summarizing the research background and
motivation, while the other clearly presents the study objectives and overall
contribution. This restructuring improves readability and allows the logical progression

of the Introduction to be more clearly conveyed.

We believe these revisions have enhanced the clarity, conciseness, and overall
structure of the Introduction. We thank the reviewer for this constructive suggestion,

which has helped improve the quality of the manuscript.

# Introduction (Revised manuscript)

“Landslides represent a significant geological hazard in mountainous regions

worldwide, causing substantial loss of life, infrastructure damage, and economic
disruption (Alvioli et al., 2024; Zhang et al., 2025). In areas with dense vegetation
cover, the relationship between vegetation and slope stability is particularly complex
and non-linear (Deng et al., 2022, Medina et al., 2021). While vegetation is
traditionally regarded as a stabilizing agent through root reinforcement, soil moisture
reqgulation, and erosion control (He et al., 2017; Lan et al., 2020; Rey et al., 2019),
shallow landslides frequently occur even in densely vegetated landscapes (Xu et al.,

2024). This paradox underscores the dual —and often contradictory —role of

vegetation in landslide processes, acting as both a mitigating and a predisposing

factor depending on environmental context and trigger conditions.

The stabilizing function of vegetation is well-documented. Root systems enhance
soil cohesion and shear strength, while canopy and litter layers reduce rainfall impact
and surface runoff (Gonzalez-Ollauri & Mickovski, 2016; Murgia et al., 2022; Vergani
et al., 2017). However, under certain conditions, vegetation can exacerbate slope
instability. The added weight of trees, especially on steep slopes, increases
gravitational driving forces (Schmaltz & Mergili, 2018). Vegetation can also alter soil
hydrological properties, increasing infiltration and soil moisture content, which in turn
reduces effective stress and shear resistance during rainfall events (Qin et al., 2022).
Furthermore, wind forces acting on tall vegetation can transmit dynamic loads to the
slope, while root wedging in thin soils may promote fracture development (Bordoloi &
Ng, 2020; Liu et al., 2020). Rainfall remains the primary trigger of landslides in



vegetated areas, as it saturates the soil, elevates pore water pressure, and reduces
slope stability (Dhanai et al., 2022; Li et al., 2025). Therefore, landslide initiation in
vegetated terrain is not governed by vegetation alone but results from the intricate
interplay among vegetation characteristics, rainfall intensity, slope gradient, lithology,

and other environmental factors.

Substantial efforts have been made to assess landslide susceptibility using
various methodologies, including geoscience factor weighting, statistical models,
machine learning, and Geographic Information Systems (GIS)-based spatial analysis
(Abay et al., 2019; Gebrehiwot et al., 2025; Guo et al., 2023; Pham et al., 2018; Sun
et al., 2024; Wang et al., 2024). These approaches have improved our understanding
of the spatial distribution of landslides and the relative importance of conditioning
factors. However, several critical gaps remain. First, many studies provide qualitative
descriptions of factor influences but lack quantitative analysis of spatial correlations
and interactive effects among multiple driving factors (Shu et al., 2025; Triplett et al.,
2025). Second, while rainfall-landslide relationships have been extensively studied
using spatial autocorrelation and clustering techniques (Chen et al., 2024, Liu et al.,
2024, Ortiz-Giraldo et al., 2023; Pokharel et al., 2021, Wang et al., 2020), the
moderating role of vegetation in these relationships is poorly quantified. Specifically,
how vegetation mediates the effects of rainfall, lithology, slope, and wind on slope
stability coefficients remains unclear (Lan et al., 2020). Third, most susceptibility
models operate at a single spatial scale, either regional/watershed or site-specific,
with limited integration across scales. This hampers a holistic understanding of how

macro-scale predisposing factors translate into micro-scale failure mechanisms.

To address these research gaps, this study investigates the dual-edged role of
vegetation in landslide susceptibility by integrating watershed-scale statistical
analysis with site-specific geomechanical modeling. We selected the Jinkouhe District

in Southwest China—a region with high vegetation cover (=65.5%) and frequent
landslide activity—as our study area. The research aims to (1) Quantify the individual

and interactive effects of key environmental factors (rainfall, vegetation, wind speed,
slope, lithology, etc.) on landslide susceptibility at the watershed scale using
Geodetector and Structural Equation Modeling (SEM). (2) Analyze the mechanical
role of vegetation weight and its coupling with rainfall and anthropogenic loading in

triggering a typical shallow landslide through slope stability calculations. (3) Integrate



findings from both scales to elucidate how vegetation mediates landslide processes
under different environmental conditions, thereby providing a multi-scale perspective

on its “double-edged sword " function. By bridging macroscopic susceptibility

patterns with microscopic failure mechanisms, this study offers novel insights into the

complex vegetation—landslide interplay. The results are expected to enhance the

accuracy of landslide risk assessments and inform sustainable slope management

strategies in densely vegetated mountainous regions.”

References:

Abay, A., Barbieri, G., & Woldearegay, K. (2019). GIS-based Landslide Susceptibility
Evaluation Using Analytical Hierarchy Process (AHP) Approach: The Case of
Tarmaber District, Ethiopia. Momona Ethiopian Journal of Science, 11(1), 14-36.
https://doi.org/10.4314/mejs.v11i1.

Alvioli, M., Loche, M., Jacobs, L., Grohmann, C. H., Abraham, M. T., Gupta, K.,
Satyam, N., Scaringi, G., Bornaetxea, T., Rossi, M., Marchesini, |., Lombardo, L.,
Moreno, M., Steger, S., Camera, C. A. S., Bajni, G., Samodra, G., Wahyudi, E. E.,
Susyanto, N., Sinci¢, M., Gazibara, S. B., Sirbu, F., Torizin, J., SchuBler, N., Mirus,
B. B., Woodard, J. B., Aguilera, H., & Rivera-Rivera, J. (2024). A benchmark
dataset and workflow for landslide susceptibility zonation. Earth-Science Reviews,
258, 104927. https://doi.org/10.1016/j.earscirev.2024.104927

Bordoloi, S., & Ng, C. W. W. (2020). The effects of vegetation traits and their stability
functions in bio-engineered slopes: A perspective review. Engineering Geology,
275, 105742. https://doi.org/10.1016/j.engge0.2020.105742

Chen, C., Liu, Y., Li, Y., & Guo, F. (2024). Mapping landslide susceptibility with the
consideration of spatial heterogeneity and factor optimization. Natural Hazards
http://doi.org/10.1007/s11069-024-06955-w

Deng, J., Ma, C., & Zhang, Y. (2022). Shallow landslide characteristics and its
response to vegetation by example of July 2013, extreme rainstorm, Central
Loess Plateau, China. Bulletin of Engineering Geology and the Environment,
81(3), 100. http://doi.org/10.1007/s10064-022-02606-1

Dhanai, P., Singh, V.P. & Soni, P. Rainfall Triggered Slope Instability Analysis with
Changing Climate. Indian Geotech J 52, 477-492 (2022).
https://doi.org/10.1007/s40098-021-00581-0

Gebrehiwot, A., Berhane, G., Kide, Y. et al. Landslide susceptibility mapping in
Lesalso (Laelay Maichew), Northern Ethiopia: a GIS approach using frequency
ratio and analytical hierarchy process methods. Model. Earth Syst. Environ. 11,
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Gonzalez-Ollauri, A., & Mickovski, S. B. (2016). Using the root spread information of
pioneer plants to quantify their mitigation potential against shallow landslides and

erosion in temperate humid climates. Ecological Engineering, 95, 302-315.
https://doi.org/10.1016/j.ecolenq.2016.06.028

Guo, Z., Guo, F., Zhang, Y., He, J., Li, G., Yang, Y., & Zhang, X. (2023). A python
system for regional landslide susceptibility assessment by integrating machine
learning models and its application. Heliyon, 9(11)
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He, S., Wang, D., Fang, Y., & Lan, H. (2017). Guidelines for integrating ecological and
biological engineering technologies for control of severe erosion in mountainous

areas — A case study of the Xiaojiang River Basin, China. International Soil and
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Lan, H., Wang, D., He, S., Fang, Y., Chen, W., Zhao, P., & Qi, Y. (2020). Experimental
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https://doi.org/10.1016/j.geomorph.2017.12.008
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[Comment 4] Line 67, “reposted” should be “reported”.

Response: Thank you for pointing out this inappropriate expression. It has been

corrected in the revised manuscript.

[Comment 5] Figures 1,2 and 4 were referenced in the text after the appearance of

the figure. Please amend;

Response: Thank you for pointing out the issue regarding the citation order of Figures
1, 2, and 4. We have adjusted the paragraph structure and the placement of the

figures accordingly in the revised manuscript.

[Comment 6] Clarify why the specific study area (Jinkouhe District) was chosen—

how do its characteristics contribute to the relevance of this research?
Response:

Thank you for your valuable comment regarding the selection of the study area.
The Jinkouhe area was chosen based on the following scientific considerations:
1. High vegetation coverage and complex landslide mechanisms

The Jinkouhe area has a high vegetation coverage (265.5%) yet frequently
experiences shallow landslides, indicating that the effects of vegetation on landslides

are complex and not unidirectionally stabilizing (He et al., 2017; Xu et al., 2024).

Previous studies have shown that while vegetation can reduce soil erosion and


https://doi.org/10.1016/j.jag.2024.103947

enhance slope stability, it may also increase landslide susceptibility due to tree weight
or changes in soil properties (Lan et al., 2020; Qin et al., 2024). Therefore, this area
provides an ideal setting to investigate the interactive effects of vegetation with rainfall,
slope gradient, lithology, and wind forces on landslide susceptibility, thereby revealing

the “double-edged sword” role of vegetation.
2. Feasibility of multi-scale analysis

The region’s complex topography, diverse geology, and variable hydrological and
climatic conditions make it highly suitable for coupled watershed- and point-scale
analyses. By applying structural equation modeling (SEM), the Geodetector method,
and slope stability coefficient calculations, the influences of individual factors and their
interactions on landslide occurrence can be quantified, providing insights into the

concealed mechanisms of landslides in highly vegetated areas.
3. Scientific significance

Selecting the Jinkouhe area not only facilitates the investigation of complex
landslide mechanisms in regions with dense vegetation but also provides theoretical
reference and practical experience for landslide risk assessment and disaster
prevention in similar ecological settings. This contributes significantly to
understanding the dual role of vegetation in landslide control and the interactive

effects of multiple environmental factors.
In addition, to highlight the scientific rationale for this selection, we have
supplemented the Study Area section with the following statement.

# 2.1 Study Area (Revised manuscript line 120)

‘It provides a representative setting for investigating the dual role of vegetation in
landslide occurrence and the coupled influences of multiple environmental factors in

highly vegetated mountainous terrains.”
References:

He, S., Wang, D., Fang, Y., & Lan, H. (2017). Guidelines for integrating ecological and

biological engineering technologies for control of severe erosion in mountainous



areas — A case study of the Xiaojiang River Basin, China. International Soil and
Water Conservation Research, 5(4), 335-344.
https://doi.org/10.1016/j.iswcr.2017.05.001

Lan, H., Wang, D., He, S., Fang, Y., Chen, W., Zhao, P., & Qi, Y. (2020). Experimental
study on the effects of tree planting on slope stability. Landslides, 17(4), 1021-
1035. http://doi.org/10.1007/s10346-020-01348-z

Qin, M., Cui, P, Jiang, Y. et al. Occurrence of shallow landslides triggered by
increased hydraulic conductivity due to tree roots. Landslides 19, 2593-2604

(2022). https://doi.org/10.1007/s10346-022-01921-8

Xu, Y., Luo, L., Guo, W., Jin, Z., Tian, P., & Wang, W. (2024). Revegetation Changes
Main Erosion Type on the Gully—Slope on the Chinese Loess Plateau Under
Extreme Rainfall: Reducing Gully Erosion and Promoting Shallow Landslides.
Water Resources Research, 60(3), €2023WR036307.
https://doi.org/10.1029/2023WR036307

[Comment 7] Provide more detailed descriptions of the modeling processes,

especially SEM, including assumptions made during factor selection.

Response:

Thank you for your insightful comment. We have expanded the description of the
Structural Equation Model (SEM) to provide a clearer explanation of the modeling
process, including the assumptions underlying factor selection and the relationships
among key variables.

# 2.4 (2) Structural equation model (Revised manuscript line 303)

“The SEM comprises two components: the measurement model, which defines
relationships between observed and latent variables, and the structural model, which
illustrates relationships among latent variables (Fan et al., 2016; Wang & Rhemtulla,
2021). Based on the GeoDetector results and previous research findings (Chicas et
al., 2024; Pourghasemi et al., 2018; Segoni et al., 2024), key factors representing
topographic, hydrological, and environmental characteristics were selected to capture
the main drivers of landslide susceptibility. The selection of these factors was guided


http://doi.org/10.1007/s10346-020-01348-z
https://doi.org/10.1007/s10346-022-01921-8

by the assumption that each variable has a direct or indirect physical relationship with
landslide occurrence, possesses sufficient explanatory power in the GeoDetector
analysis, and reflects geomorphological and ecological processes under high-

vegetation conditions. Accordingly, the following hypotheses were proposed.”

References:

Chicas, S. D., Li, H., Mizoue, N., Ota, T., Du, Y., & Somogyvari, M. (2024). Landslide
susceptibility mapping core-base factors and models’ performance variability: a
systematic review. Natural Hazards, 120(14), 12573-12593.
http://doi.org/10.1007/s11069-024-06697-9

Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R,, Park, H., & Shao, C. (2016).
Applications of structural equation modeling (SEM) in ecological studies: an
updated review. Ecological Processes, 5(1), 19. http://doi.org/10.1186/s13717-
016-0063-3

Pourghasemi, H. R., Teimoori Yansari, Z., Panagos, P., & Pradhan, B. (2018). Analysis
and evaluation of landslide susceptibility: a review on articles published during
2005-2016 (periods of 2005-2012 and 2013-2016). Arabian Journal of
Geosciences, 11(9), 193. http://doi.org/10.1007/s12517-018-3531-5

Segoni, S., Ajin, R. S., Nocentini, N., & Fanti, R. (2024). Insights Gained from the
Review of Landslide Susceptibility Assessment Studies in Italy. Remote

Sensing, 16(23), 4491. https://doi.org/10.3390/rs16234491

Wang, Y. A., & Rhemtulla, M. (2021). Power Analysis for Parameter Estimation in
Structural Equation Modeling: A Discussion and Tutorial. Advances in Methods
and  Practices in  Psychological  Science, 4(1), 1403230957.
http://doi.org/10.1177/2515245920918253

[Comment 8] please redraw the Fig. 6.

Response:
Thank you for your suggestion. We have redrawn and optimized Figure 6 by

adding a sloping background, illustrating the distribution of shrubs, trees, and grasses


http://doi.org/10.1186/s13717-016-0063-3
http://doi.org/10.1186/s13717-016-0063-3
http://doi.org/10.1007/s12517-018-3531-5
https://doi.org/10.3390/rs16234491

on the slope, and incorporating a rainfall scenario at the top of the figure. These
elements were integrated with the original schematic to more clearly depict the

conceptual processes, resulting in the revised Figure 6 presented in the manuscript.

Fig.6. Slope Stress Analysis Diagram

Furthermore, to comply with the journal’s publication requirements, we have also
refined several other figures to achieve a consistent style and improved graphical
quality across the manuscript. For Figure 1, we added a new basemap for panels (a)
and (b). In (a), the names of other provinces were removed, while Sichuan Province
was retained and highlighted. Panel (b) now more clearly shows the location of the
study area. In (c), the color scheme and north arrow were updated for better visual
clarity. In addition, panels (d—h) were supplemented with partially interpreted

landslides in densely vegetated areas based on visual interpretation.
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Fig. 1. Location map of Jinkouhe District

For Figure 7, the north arrow was replaced, and a new layer title “LSI” was added

to improve the figure’s interpretability.
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Fig. 2. Landslide susceptibility assessment map



For Figure 9, the image was simplified by replacing the previously cluttered
multicolor layout with a yellow-and-blue scheme. Yellow arrows represent the total
effects of conditioning factors on landslide susceptibility, while blue dashed lines

indicate the indirect interactions among factors.
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Fig. 3. SEM of landslide susceptibility.
For Figure 10, we removed the landslide point distribution to make the map

clearer, and added a legend, scale bar, and north arrow for each scenario to improve

consistency and clarity.
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[Comment 9] Lines 330-332, It would be useful to give the areas (north, southwest,

etc.);

Response:
Thank you for your insightful comment. We have adjusted the sentence order in
this section and re-added directional information to clarify the distribution of high and

very high susceptibility zones. The revised text is as follows:

# 3.1 Landslide susceptibility mapping and distribution characteristics ( Revised

manuscript line 369)

“‘Moderate susceptibility zones are widespread across the northern, western, and
southwestern regions. High and very high susceptibility zones, though smaller in
coverage, exhibit a "cross-shaped” spatial distribution, primarily located in the central-
eastern and northeastern parts of the study area, with a small portion in the southwest.

Very high susceptibility zones are scattered within the high susceptibility areas.”

[Comment 10] Line 335, please left a space between Fig.7.landslide......

Response: Thank you for pointing out this error. We have corrected it in the revised

manuscript.

[Comment 11] Lines 352-353, the title 3.3 can be revised as “Slope stability

calculation considering artificial waste sediment and vegetation self-weight”.

Response: Thank you for your precise comment. We agree with your suggestion and

have revised the original subsection title accordingly.

[Comment 12] This section provides a thorough discussion of the results-based part
and the differences and improvements compared to previous studies, and also offers
an outlook on future work. However, it is necessary to more clearly point out the
unique aspects of this research (for example, "integrating macroscopic susceptibility
with microscopic mechanics"). The outlook for future research can be more specific,
for example: how to utilize interpretable machine learning and multi-source data

fusion, rather than just making general statements:



Response: Thank you very much for this valuable and constructive comment. We
appreciate the reviewer’s recognition of the comprehensive discussion of our results
and agree that the unique aspects and future perspectives of this study should be
stated more clearly. In the revised manuscript, we emphasize that the novelty of this
research lies in revealing that even areas with dense vegetation coverage, which are
often considered stable, can still experience shallow landslides under the combined
influence of rainfall, vegetation weight, and human disturbances. By integrating
macroscopic susceptibility analysis with microscopic mechanical interpretation, our
study connects regional-scale assessments with field-scale processes and provides

new insight into the dual role of vegetation in slope stability.

In addition, the Outlook section has been refined to include more targeted content.
Future research could consider applying optical remote sensing image classification
and InSAR deformation monitoring to identify potentially unstable slopes. At the same
time, interpretable machine learning models, such as SHAP-based approaches, could
be used to quantify the nonlinear interactions, threshold effects, and spatial
heterogeneity among key conditioning factors. These methods would improve the
interpretability of susceptibility assessments and enhance the temporal and spatial
resolution of landslide prediction and early warning in densely vegetated mountainous
regions. These additions make the outlook more specific and provide feasible

directions for extending the current research.

# 4.4 Comparison with previous studies and scope for future research (Revised

manuscript line 593)

“Existing studies on landslides have predominantly focused on rainfall-related
triggering mechanisms, such as rainfall intensity, duration, and antecedent moisture
conditions (Gatto et al., 2025; Zhang et al., 2025). For example, Cui et al. (2024)
analyzed the characteristics and causes of a similar landslide in this area using
Massflow V2.8 simulations. They identified rainfall and human activities as key
triggers, but insufficiently addressed interactions between soil, moisture, and external

forces (such as natural wind and human mining activities) under high vegetation



conditions. This limited simulation accuracy. In these studies, vegetation is often
treated as a background environmental condition or a stabilizing factor, while its
mechanical and hydrological roles are rarely quantified explicitly. As a result,
landslides occurring in highly vegetated areas are commonly interpreted primarily as
a response to extreme rainfall, with comparatively limited attention paid to vegetation-
related processes themselves. Consequently, from the perspective of vegetation as
an active influencing factor, research addressing why landslides still occur in areas

with dense vegetation coverage remains relatively scarce.

Furthermore, An et al. (2025) investigated the mechanisms of landslide
occurrence in densely vegetated areas by examining the interactions between terrain
and lithological properties. They highlighted that in natural forests, landslides tend to

initiate along the soil —bedrock interface. Owing to the shallow soil layer and

pronounced permeability contrast, perched water readily accumulates above this
interface, thereby reducing shear strength and triggering slope failure. Their work
underscores the significant role of vegetation as a key intermediary that links various
environmental factors in shaping landslide susceptibility. Nevertheless, their study
treated terrain and lithology primarily as background environmental conditions and
did not account for slope damage induced by wind drag on trees. In contrast, the
present study incorporates wind forces both in the macroscopic assessment of
landslide susceptibility and in the stability analysis of specific slopes.The results of
our study support and extend these findings by demonstrating that high vegetation

coverage does not necessatrily imply low landslide susceptibility.

Our study integrates regional-scale susceptibility assessment with site-scale
mechanical interpretation. This multi-scale framework bridges macroscopic statistical
patterns and microscopic physical processes, providing a more comprehensive

understanding of vegetation’s ‘double-edged” effect on landslide development. The
novelty of this work lies not only in identifying the limitations of vegetation s stabilizing

role, but also in clarifying the conditions under which its negative effects may become
significant. But research on vegetation types, height, and growth conditions (such as
thickness and types of soil and human activity disturbances) in relation to landslide
risks remains limited. Future research could apply optical remote sensing image
classification and InSAR deformation monitoring to identify potentially unstable slopes
and capture temporal deformation characteristics (Li et al., 2025). When combined



with interpretable machine learning approaches, such as SHAP-based models,
together with analytical tools like GeoDetector and SEM, these methods can quantify
nonlinear interactions, threshold effects, and spatial heterogeneity among
conditioning factors (Sun et al., 2024, Wen et al., 2025), thereby improving the
interpretability of susceptibility evaluation and enhancing the prediction capability for

landslides in densely vegetated areas.”
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[Comment 13] Line 364, the title should be changed to “Analysis of landslide driving
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factors and their interaction pathways”. This part, the authors mainly emphasize the

factors and the interactions.

Response: Thank you for your valuable comment. We agree with your suggestion

and have revised the subsection title accordingly.

[Comment 14] Line 453, the title should be precise. This part mainly compared the
landslide susceptibility under different factors combination, so maybe this title will be
more suitable: “differences and explanations of landslide susceptibility results under

different factor combinations”.

Response: Thank you for pointing out this inappropriate expression. It has been

corrected in the revised manuscript.

Thank you again for the reviewer's constructive comments. We hope the revisions
and responses will make our manuscript suitable for publication in Natural Hazards

and Earth System Sciences.



