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Abstract: Binary forecasts on hydroclimatic extremes play a critical part in disaster prevention and risk management. While 

the recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts, this 

paper presents an extension to binary forecasts on the occurrence versus non-occurrence of hydroclimatic extremes. 

Specifically, seventeen verification metrics on the accuracy and discrimination of binary forecasts are employed and scorecards 

are generated to showcase the predictive performance. A case study is devised for binary forecasts of wet and warm extremes 10 

obtained from both deterministic and ensemble forecasts generated by three data-driven models, i.e., Pangu-Weather, 

GraphCast and FuXi, and two numerical weather prediction products, i.e., ECMWF’s IFS HRES and IFS ENS. The results 

show that the receiver operating characteristic skill score (ROCSS) serves as a suitable metric due to its relative insensitivity 

to the rarity of hydroclimatic extremes. For wet extremes, the GraphCast tends to outperform the IFS HRES with the total 

precipitation of ERA5 reanalysis data as the ground truth. For warm extremes, the Pangu-Weather, GraphCast and FuXi tend 15 

to be more skilful than the IFS HRES within 3-day lead time but become less skilful as lead time increases. In the meantime, 

the IFS ENS tends to provide skilful forecasts of both wet and warm extremes at different lead times and at the global scale. 

Through diagnostic plots of forecast time series at selected grid cells, it is observed that at longer lead times, forecasts generated 

by data-driven models tend to be smoother and less skilful compared to those generated by physical models. Overall, the 

extension of the WeatherBench 2 facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful 20 

information for forecast applications. 
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1 Introduction 25 

Accurate numerical weather prediction (NWP) is of great importance to the economy and society (Bi et al., 2023; Lam et 

al., 2023; Bauer et al., 2015). Conventionally, physical NWP models formulate the governing equations of coupled physical 

processes in land, ocean and atmosphere and therefore predict weather conditions in the near future based on predetermined 

initial meteorological fields (Lam et al., 2023; Bauer et al., 2015). Due to advances in remote sensing, data assimilation and 

computational infrastructure, physical NWP models have witnessed steady improvements and been extensively employed in 30 

operational forecasting (Bauer et al., 2020). For example, the European Centre for Medium-range Weather Forecast (ECMWF) 

operates the Integrated Forecast System (IFS) that has implemented a remarkable resolution upgrade and methodology for 

high-resolution forecasts (HRES) and ensemble forecasts (ENS) at the horizontal resolution of 0.1 degrees since January 2016 

(Balsamo et al., 2023). 

Data-driven NWP models have recently gained increasing popularity in hydroclimatic forecasting (Ben Bouallègue et al., 35 

2024; Rasp et al., 2024; de Burgh-Day and Leeuwenburg, 2023; Xu et al., 2024a). Early models, such as the UNet architecture-

based cubed sphere projection (Weyn et al., 2020) and deep Resnet architecture-based models (Clare et al., 2021; Rasp and 

Thuerey, 2021), were of moderate spatial-temporal resolution and forecast skill. Recent deep learning models, such as graph 

neural network (Keisler, 2022) and FourCastNet (Pathak et al., 2022), began to match operational NWP models in resolution 

and skills. Pangu-Weather (Bi et al., 2023) and GraphCast (Lam et al., 2023) even outperformed the HRES in terms of some 40 

deterministic metrics. The Neural General Circulation Models (NeuralGCM) that integrates data-drive and physical modules 

is considered to be the first hybrid model obtaining competitive or better scores than the HERS (Kochkov et al., 2024). The 

GenCast generates global ensemble forecasts that are comparative or even more skilful than the ENS (Price et al., 2025). 

There is a growing demand to verify the capability of physical and data-driven models in generating skilful hydroclimatic 

forecasts (Olivetti and Messori, 2024a; Zhong et al., 2024; Ben Bouallègue et al., 2024). In response to the need of a unified 45 

benchmark, the WeatherBench has been established to host a common dataset of forecasts and observations and utilizes popular 

evaluation metrics for forecast comparisons (Rasp et al., 2020). Owing to rapid advances in data-driven NWP models, the 

WeatherBench 2 has been developed to support global medium-range forecast verification (Rasp et al., 2024). By following 

established practices in the World Meteorological Organisation (WMO), the WeatherBench 2 pays attention to both 

deterministic and ensemble forecasts generated by physical and data-driven NWP models (Jin et al., 2024). Forecast 50 

verification is performed by an open-source Python code and publicly available, cloud-optimized ground-truth and baseline 

datasets (Jin et al., 2024; Olivetti and Messori, 2024b; Rasp et al., 2024). 

Besides deterministic and ensemble forecasts, there is a demand of binary forecasts in disaster prevention and risk 

management (Ben Bouallègue et al., 2024; Larraondo et al., 2020). Operational applications usually pay attention to the 
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occurrence versus non-occurrence of certain hydroclimatic extremes instead of their precise magnitude (Larraondo et al., 2020; 55 

Rasp et al., 2020). Binary forecasts meet this demand by emphasizing the ability to capture hydroclimatic extremes, ensuring 

that models are not rewarded for merely minimizing average errors and unrealistically smooth forecasts (Ferro and Stephenson, 

2011; Rasp et al., 2020). Therefore, this paper aims to extend the WeatherBench 2 to binary forecasts. The objectives are: 1) 

to account for verification metrics on binary forecasts derived from global precipitation and temperature forecasts; 2) to present 

scorecards to showcase the predictive performance on wet and warm extremes; and 3) to examine the sensitivity of different 60 

metrics to predefined thresholds of hydroclimatic extremes. As will be shown in the methods and results, the extension 

facilitates an effective intercomparison among binary forecasts of hydroclimatic extremes generated by both data-driven and 

physical models. 

 

2 Forecasts and metrics in the WeatherBench 2 65 

2.1 Forecast datasets 

The WeatherBench 2 presents a benchmark for verifying and comparing the performance of data-driven and physical 

NWP models (Rasp et al., 2024). On its website (https://weatherbench2.readthedocs.io), there is a database containing past 

forecasts in the year 2020: 

1) The HRES generated by the ECMWF’s IFS is widely regarded as one of the best global deterministic weather forecasts 70 

(Rasp et al., 2024). It offers 10-day forecasts at the horizontal resolution of 0.1 degrees with 137 vertical levels (Balsamo et 

al., 2023). In the WeatherBench 2, the HRES is primarily used as the baseline for comparing the performance of data-driven 

models. 

2) The ENS generated by the IFS’s ensemble version is widely known as one of the best global ensemble weather forecasts. 

It consists of 1 control member and 50 perturbed members (Balsamo et al., 2023). In the WeatherBench 2, the ENS also serves 75 

as an important baseline, with the mean value of the 50 members, i.e., ENS Mean, being extensively used (Rasp et al., 2024). 

3) The 10-day global forecasts generated by the Pangu-Weather consist of 5 upper-air variables at 13 vertical levels and 

4 surface variables at the horizontal resolution of 0.25 degrees (Bi et al., 2023). The Pangu-Weather is based on the vision 

transformer architecture and hierarchical temporal aggregation. Four time steps, i.e., 1, 3, 6 and 24 hours, are chained 

autoregressively to generate forecast at any lead time based on the current atmospheric states. It is noted that two sets of Pangu-80 

Weather forecasts, which are respectively based on the ERA5 and HRES initializations, are generated (Rasp et al., 2024). 

4) The 10-day forecasts generated by the GraphCast includes 6 upper-air variables at a maximum of 37 vertical levels and 

5 surface variables at the horizontal resolution of 0.25 degrees (Lam et al., 2023). The GraphCast is based on the architecture 
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of graph neural network. It runs autoregressively to forecast atmospheric states for the next time step based on states from the 

previous 2 time steps at the temporal resolution of 6 hours. Similarly, there are two sets of GraphCast forecasts generated from 85 

the ERA5 and HRES initializations (Rasp et al., 2024). 

5) The 15-day global forecasts generated by the FuXi consists of 5 upper-air variables at 13 vertical levels and 5 surface 

variables at the horizontal resolution of 0.25 degrees (Chen et al., 2023). The FuXi is an autoregressively cascading model 

based on the U-Transformer architecture. It consists of three sub-models fine-tuned for forecasting 0-5, 5-10 and 10-15 days 

ahead at the temporal resolution of 6 hours. Atmospheric states are forecasted based on states from the previous 2 time steps. 90 

 

2.2 Verification metrics 

The WeatherBench 2 takes into consideration in total 6 metrics for deterministic forecasts and 6 metrics for ensemble 

forecasts, as shown in Table 1. The ERA5 reanalysis data is used as the ground truth for verifying the data-driven models. For 

the sake of fair comparison with the data-driven models, the initial conditions of the IFS HRES is used as the ground truth for 95 

the verification of IFS forecasts (Lam et al., 2023). As precipitation is not available for the IFS HRES’s initial conditions, the 

total precipitation of ERA5 reanalysis data is used as the ground truth data for all models. Following the initial version of the 

WeatherBench 2, the verification is conducted for forecasts initialized at 00 and 12 UTC for the period from 1 January 2020 

to 31 December 2020. All forecasts, baseline data and ground truth data are resampled to the horizontal resolution of 1.5 

degrees that is used as the standard resolution for forecasts verification by the WMO and ECWMF (Rasp et al., 2024). 100 

 

Table 1. Verification metrics of deterministic and ensemble forecasts in the WeatherBench 2. 

Forecast Metric [min, max] Optimal value 

Deterministic Root mean square error (RMSE) [0, +∞) 0 

 Mean square error [0, +∞) 0 

 Mean absolute error [0, +∞) 0 

 Bias (−∞, +∞) 0 

 Anomaly correlation coefficient [−1, 1] 1 

 Stable Equitable Error in Probability Space (SEEPS) [0, 1] 0 

Ensemble Continuous ranked probability score (CRPS) [0, +∞) 0 

 Ranked probability score (RPS) [0, +∞) 0 

 Spread-Skill Ratio [0, 1] 1 

 Energy score [0, +∞) 0 

 Brier score (BS) [0, 1] 0 

 Ignorance score [0, +∞) 0 
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3 Verification of binary hydroclimatic forecasts 

3.1 Conversion to binary forecasts 105 

Binary forecasts on the occurrence versus non-occurrence of target events can be generated from deterministic and 

ensemble forecasts by using predefined thresholds of hydroclimatic events (Ben Bouallègue et al., 2024). In operational 

applications, binary forecasts of extreme precipitation events and heatwaves can respectively be derived from precipitation 

and temperature forecasts (Huang and Zhao, 2022; Lang et al., 2014; Zhao et al., 2022; Slater et al., 2023). As to precipitation, 

the 90th percentile of the 24-hour accumulation of total precipitation (TP24h) is considered as the threshold, above which the 110 

TP24h is considered as the wet extreme (North et al., 2013; Xiong et al., 2024). As to temperature, the 90th percentile of the 

24-hour maximum of 2m temperature (T2M24h) is set as the threshold, above which the T2M24h is categorized as the warm 

extreme (Xiong et al., 2024; Zhao et al., 2024). It is noted that the thresholds at each grid cell are separately calculated. Given 

the pre-defined threshold 𝑞, deterministic forecasts are converted into either 0 or 1: 

𝐼(𝑓𝑛 > 𝑞) = {
1, 𝑓𝑛 > 𝑞
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)  

where 𝑓
𝑛
  represents the 𝑛 -th deterministic forecast. In the meantime, ensemble forecasts are converted into forecast 115 

probabilities using the Weibull’s plotting position (Makkonen, 2006): 

𝑝𝑓𝑛 =
∑ 𝐼(𝑓𝑛,𝑚 > 𝑞)𝑀
𝑚=1

𝑀 + 1
 (2)  

where 𝑓𝑛,𝑚 is the 𝑚-th member of the 𝑛-th ensemble forecasts and 𝑀 is the number of ensemble members. 

The comparison of binary forecasts against the corresponding observations facilitate four categories, i.e., true positives 

(𝑎), false positives (𝑏), false negatives (𝑐) and true negatives (𝑑), as shown in Table 2 (Larraondo et al., 2020). Specifically, 

the true positives indicate that target occurrences are successfully forecasted; the false positives indicate non-occurrences 120 

incorrectly forecasted as occurrences; the false negatives indicate target occurrences incorrectly forecasted as non-occurrences; 

and the true negatives indicate non-occurrences that are correctly forecasted as non-occurrences. The proportion of the 

observed occurrences to the total number of occurrences and non-occurrences is the base rate ((𝑎 + 𝑐)/𝑁), with lower values 

often corresponding to events that are more extreme (Ferro and Stephenson, 2011). 
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Table 2. Contingency table for binary forecasts. 

 Observed occurrences Observed non-occurrences Total 

Forecasted 

occurrences 
𝑎 =

{
 

 ∑ 𝐼(𝑓𝑛 > 𝑞|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 > 𝑝|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑏 =

{
 

 ∑ 𝐼(𝑓𝑛 > 𝑞|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 > 𝑝|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑎 + 𝑏 
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Forecasted 

non-

occurrences 

𝑐 =

{
 

 ∑ 𝐼(𝑓𝑛 ≤ 𝑞|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 ≤ 𝑝|𝑝𝑜𝑛 = 1)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑑 =

{
 

 ∑ 𝐼(𝑓𝑛 ≤ 𝑞|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 = 1

∑ 𝐼(𝑝𝑓𝑛 ≤ 𝑝|𝑝𝑜𝑛 = 0)
𝑁

𝑛=1
, 𝑖𝑓 𝑀 ≥ 2

 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑁 

Where 𝑀 = 1 and 𝑀 ≥ 2 respectively represent deterministic and ensemble forecasts; 𝑁 is the number of pairs of observations and 

forecasts for verification; 𝑝𝑜𝑛 represents the binary observation which is 1 for occurrences and 0 for non-occurrences; 𝑝 denotes the 

probability thresholds above which occurrences are forecasted to occur for ensemble forecasts. 
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3.2 Verification metrics for binary forecasts 

Given the challenges posed by varying hydroclimatic extremes and imbalanced samples, in total 17 metrics are utilized 

to examine the performance of binary forecasts (Jolliffe and Stephenson, 2012; North et al., 2013). Notably, there are 8 base-

rate-dependent metrics and 9 base-rate-independent metrics. On the one hand, the base-rate-dependent metrics facilitate 

insights into the performance in relation to varying frequency of extreme events (Jolliffe and Stephenson, 2012). On the other 135 

hand, the base-rate-independent metrics are applicable to comparing forecasts across different climate regions or time periods, 

in which the frequency of extreme events differs substantially (Ferro and Stephenson, 2011; Jacox et al., 2022). Their equations, 

ranges and optimal values are presented in Table 3. 

 

Table 3. Metrics for binary forecasts. 140 

Metric Equation 
[min, 

max]  

Optimal 

value 
Reference 

Base-rate-dependent metrics     

Accuracy (ACC), proportion 

correct 
𝐴𝐶𝐶 =

𝑎 + 𝑑

𝑁
 [0, 1] 1 (Finley, 1884) 

Success ratio (SR), precision 𝑆𝑅 =
𝑎

𝑎 + 𝑏
 [0, 1] 1 (Lagadec et al., 2016) 

Critical success index (CSI), threat 

score, Gilbert score 
𝐶𝑆𝐼 =

𝑎

𝑎 + 𝑏 + 𝑐
 [0, 1] 1 

(Donaldson et al., 1975; 

Gilbert, 1884) 

Gilbert skill score (GSS), 

equitable threat score 
𝐺𝑆𝑆 =

𝑎 − 𝑎𝑟
𝑎 + 𝑏 + 𝑐 − 𝑎𝑟

, 𝑎𝑟 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑁
 

[−1/3, 

1] 
1 

(Gilbert, 1884; Schaefer, 

1990) 

Heidke skill score (HSS), Cohen’s 

Kappa 
𝐻𝑆𝑆 =

𝑎 + 𝑑 − 𝑎𝑟 − 𝑑𝑟
𝑁 − 𝑎𝑟 − 𝑑𝑟

, 𝑑𝑟 =
(𝑏 + 𝑑)(𝑐 + 𝑑)

𝑁
 [−1, 1] 1 

(Gomis-Cebolla et al., 

2023; Heidke, 1926) 

Extreme dependence score (EDS) 𝐸𝐷𝑆 =
ln[(𝑎 + 𝑐)/𝑁] − ln𝐻

ln[(𝑎 + 𝑐)/𝑁] + ln𝐻
 [−1, 1] 1 

(Primo and Ghelli, 2009; 

Stephenson et al., 2008) 

Symmetric extreme dependence 

score (SEDS) 
𝑆𝐸𝐷𝑆 =

ln[(𝑎 + 𝑏)/𝑁] − ln𝐻

ln[(𝑎 + 𝑐)/𝑁] + ln𝐻
 [−1, 1] 1 

(Orozco López et al., 

2010) 

Potential relative economic value 

(REV) 
𝑅𝐸𝑉 = max

0≤𝑝≤1
 
min{𝑎 + 𝑐, 𝑟} − [(𝑎 + 𝑏)𝑟 + 𝑐]

min{𝑎 + 𝑐, 𝑟} − (𝑎 + 𝑐)𝑟
 [0, 1] 1 

(Richardson, 2006, 2000; 

Wilks, 2001) 
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Base-rate-independent metrics     

Hit rate (H), sensitivity, recall, 

probability of detection 
𝐻 =

𝑎

𝑎 + 𝑐
 [0, 1] 1 (Swets, 1986) 

False alarm rate (F), probability of 

false detection 
𝐹 =

𝑏

𝑏 + 𝑑
 [0, 1] 0 (Donaldson et al., 1975) 

Specificity, true negative rate 

(TNR) 
𝑇𝑁𝑅 =

𝑑

𝑏 + 𝑑
 [0, 1] 1 (Agrawal et al., 2023) 

Odds ratio skill score (ORSS), 

Yule’s Q 
𝑂𝑅𝑆𝑆 =

𝑎𝑑 − 𝑏𝑐

𝑎𝑑 + 𝑏𝑐
 [−1, 1] 1 (Stephenson, 2000) 

Peirce’s skill score (PSS), 

Hanssen and Kuipers discriminant 
𝑃𝑆𝑆 =

𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑐)(𝑏 + 𝑑)
= 𝐻 − 𝐹 [−1, 1] 1 (Peirce, 1884) 

Extremal dependence index (EDI) 𝐸𝐷𝐼 =
ln 𝐹 − ln𝐻  

ln 𝐹 + ln𝐻
 [−1, 1] 1 

(Ferro and Stephenson, 

2011) 

Symmetric extremal dependence 

index (SEDI) 
𝑆𝐸𝐷𝐼 =

ln𝐹 − ln𝐻 + ln(1 − 𝐻) − ln(1 − 𝐹) 

ln 𝐹 + ln𝐻 + ln(1 − 𝐻) + ln(1 − 𝐹)
 [−1, 1] 1 

(Ferro and Stephenson, 

2011) 

Area under receiver operating 

characteristic (ROC) curve (AUC) 
𝐴𝑈𝐶 = ∫ 𝐻𝑑𝐹

1

0

 [0, 1] 1 (Swets, 1986) 

ROC skill score (ROCSS) 𝑅𝑂𝐶𝑆𝑆 = 2(𝐴𝑈𝐶 − 0.5) [−1, 1] 1 (Swets and Swets, 1986) 

Where 𝑎   𝑏   𝑐  and 𝑑  respectively denote the number of true positives  false positives  false negatives and true negatives  with the 

equations shown in Table 2; 𝑁 is the number of pairs of observations and forecasts; 𝑝 denotes the probability thresholds above which the 

events are forecasted to occur for ensemble forecasts; 𝑟 represents the cost-loss ratio for calculating the relative economic value; all 

calculation equations of other variables can be found in this table. 
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The 8 base-rate-dependent metrics in Table 3 are influenced by the underlying distribution of observed occurrences and 

non-occurrences (Jolliffe and Stephenson, 2012). The accuracy is calculated as the ratio between the number of true positives 

and the total number of occurrences and non-occurrences (Finley, 1884). The success ratio (SR) measures the number of true 

positives divided by the number of forecasted occurrences (Lagadec et al., 2016). The critical success index (CSI) is the number 

of true positives divided by the total number of forecasted and observed occurrences (Chakraborty et al., 2023; Gilbert, 1884; 150 

Donaldson et al., 1975). The Gillert skill score (GSS) evaluates the fraction of true positives over the observed and forecasted 

occurrences after adjusting for the random true positives (Chen et al., 2018; Coelho et al., 2022). The Heidke skill score (HSS) 

measures the accuracy relative to that of the random forecasts (Gomis-Cebolla et al., 2023). The extreme dependency score 

(EDS) (Stephenson et al., 2008) and the symmetric extreme dependency score (SEDS) (Orozco López et al., 2010) can measure 

the general performance of binary forecasts for rare events. The potential relative economic value (REV) quantifies the 155 

potential value of a forecast over a range of different probability thresholds (𝑝) to make decision (Richardson, 2006, 2000; 

Wilks, 2001). It compares the saved expense using the forecasts instead of climatology relative to the saved expense using the 
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perfect forecast (Price et al., 2025). 

The 9 base-rate-independent metrics in Table 3 are valuable for rare events due to their stability to the variation in the 

proportion of observed occurrences (Ferro and Stephenson, 2011). The hit rate and false alarm rate respectively quantify the 160 

proportion of true positives in observed occurrences and the proportion of false positives in observed non-occurrences (Swets, 

1986). The specificity measures the percentage of true negatives to observed non-occurrences (Agrawal et al., 2023). The odds 

ratio skill score (ORSS) examines the improvement over the random forecasts, emphasizing the balance between positive and 

negative samples (Stephenson, 2000). The Peirce’s skill score (PSS) has similar formulation to HSS but does not depend on 

event frequency (Chakraborty et al., 2023). For deterministic forecasts, the PSS equals to the maximum value of REV when 165 

the cost-loss ratio equals to the base rate (Richardson, 2006). The extremal dependence index (EDI) and the symmetric 

extremal dependence index (SEDI) are designed to be nondegenerate to measure the predictive performance for rare events. 

(Ferro and Stephenson, 2011). The receiver operating characteristic (ROC) examines the discrimination between true positives 

and false positives, quantified by the area under the ROC curve (AUC) (Swets, 1986). The ROC skill score (ROCSS) compares 

the discriminative ability over random forecasts.  170 

Among the 17 metrics, the ROCSS is base-rate-independent and suitable for both deterministic and probabilistic forecasts 

of binary events. By contrast, the other metrics need some predefined probability thresholds to convert probabilistic forecasts 

into deterministic forecasts. Therefore, the ROCSS is selected as the primary verification metric in the analysis. For 

probabilistic forecasts, the ROCSS is calculated by considering the hit rate and false alarm rate for all possible thresholds of 

probability (Huang and Zhao, 2022). It is noted that higher ROCSS values indicate better forecast skill. 175 

 

3.3 Forecast verification 

Considering data availability and forecast settings, the verification focuses on 8 sets of forecasts: IFS’s HRES, ENS and 

ENS Mean; operational forecasts from Pangu-Weather, GraphCast; and hindcasts from Pangu-Weather, GraphCast and FuXi. 

The ground truth, spatial resolution, initial forecast time and verification period are selected by following the WeatherBench 180 

2. A set of predefined thresholds ranging from the 80th to 99th percentiles of the ground truth data in 2020 are considered for 

sensitivity analysis (Olivetti and Messori, 2024b; North et al., 2013). For the comparison at individual grid cells, the 17 metrics 

are one by one calculated. Furthermore, the 17 metrics are calculated using the area-weighting method for the regions pre-

determined by the ECMWF’s scorecards, as shown in Table 4 (Rasp et al., 2024). 

 185 

Table 4. Regions that are included in the ECMWF’s scorecards. 

Region Range Region Range 
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Northern hemisphere (extra-tropics) latitude ≥ 20° Europe 35° ≤ latitude ≤ 75°, -12.5° ≤ longitude ≤ 42.5° 

Southern hemisphere (extra-tropics) latitude ≤ -20° North America 25° ≤ latitude ≤ 60°, -120° ≤ longitude ≤ -75° 

Tropics -20°≤ latitude ≤ 20° North Atlantic 25° ≤ latitude ≤ 60°, -70° ≤ longitude ≤ -20° 

Extra-tropics |latitude| ≥ 20° North Pacific 25° ≤ latitude ≤ 60°, 145° ≤ longitude ≤ -130° 

Arctic latitude ≥ 60° East Asia 25° ≤ latitude ≤ 60°, 102.5° ≤ longitude ≤ 150° 

Antarctic latitude ≤ -60° AusNZ -45°≤ latitude ≤ -12.5°, 120° ≤ longitude ≤ 175° 

AusNZ: Australia and New Zealand. 

 

Considering that hydroclimatic observations are subject to heteroscedasticity and autocorrelation due to spatial and 

temporal clustering of hydroclimatic extremes (Olivetti and Messori, 2024b), the cluster-robust standard errors are used to 190 

correct the paired t test (Liang and Zeger, 1986; Shen et al., 1987). Specifically, the corrected two-sided paired t test is 

performed at the significance level of 0.05 to assess the differences in the performance between data-driven models and IFS 

HRES (Olivetti and Messori, 2024b). For comparison at individual grid cells, the same paired t test is performed with p value 

that is corrected for multiple testing using global false-discovery rates at the significance level of 0.1 (Benjamini and Hochberg, 

1995; Olivetti and Messori, 2024b). This setting corresponds to the significance level of 0.05 for spatially correlated 195 

hydroclimatic extremes (Wilks, 2016). 

 

4 Results 

4.1 Predictive performance across the globe 

Scorecards of the globally area-weighted ROCSS relative to the IFS HRES baseline are shown in Figure 1. As expected, 200 

forecasts become less skilful as lead time increases from 1 day to 10 days. This outcome is in general due to the accumulation 

of forecast errors over time caused by the autoregressive architecture of these models (Olivetti and Messori, 2024b; Bonavita, 

2024). For wet extremes, the IFS ENS, IFS ENS Mean, GraphCast (operational) and GraphCast tend to outperform the IFS 

HRES. At the lead times of 3 and 10 days, the ROCSS is respectively 0.59 and 0.16 for the IFS HRES, 0.90 and 0.55 for the 

IFS ENS, 0.61 and 0.17 for the IFS ENS Mean, 0.65 and 0.20 for the GraphCast (operational), 0.61 and 0.16 for the GraphCast 205 

and 0.54 and 0.08 for the FuXi. For warm extremes, the GraphCast and FuXi tend to be more skilful than the IFS HRES within 

3-day lead time. As lead time increases, data-driven forecasts are generally less skilful than the IFS HRES. This result is not 

surprising since the over-smoothing is observed to be more prominent among data-driven models than physical models 

(Bonavita, 2024; Lam et al., 2023). It is highlighted that the IFS ENS is remarkably more skilful than the IFS HRES at the 
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lead time from 1 to 10 days. At the lead times of 3 and 10 days, the ROCSS is respectively 0.68 and 0.42 for the IFS HRES, 210 

0.92 and 0.86 for the IFS ENS, 0.62 and 0.32 for the IFS ENS Mean, 0.63 and 0.29 for the Pangu-Weather, 0.68 and 0.39 for 

the GraphCast and 0.68 and 0.32 for the FuXi. 

 

 

Figure 1. Globally area-weighted ROCSS for wet and warm extremes. The oper. denotes the operational version. The red and blue 215 

borders indicate significantly different performances compared to the IFS HRES at the significance level of 0.05. 

 

Scorecards of the area-weighted ROCSS for wet extremes relative to the IFS HRES baseline are illustrated by region in 

Figure 2. Overall, the IFS ENS stands out across different regions and lead times. The GraphCast (operational) tends to 

outperform the IFS HRES. The GraphCast tend to be better than the IFS HRES in Southern Hemisphere (extra-tropics), Arctic, 220 

Antarctic, Europe, North Pacific, East Asia and AusNZ. In Europe, at the lead times of 3 and 10 days, the ROCSS is 

respectively 0.73 and 0.19 for the IFS HRES, 0.96 and 0.64 for the IFS ENS, 0.76 and 0.23 for the GraphCast (operational), 

0.77 and 0.22 for the GraphCast and 0.69 and 0.11 for the FuXi. In the meantime, the FuXi tends to outperform the IFS HRES 

in the Southern Hemisphere (extra-tropics), tropics, North Atlantic and AusNZ at lead time less than 3 days. Except for the 

Arctic and Antarctic, the IFS ENS Mean tends to be better than the IFS HRES. The GraphCast (operational) is comparable to 225 

the IFS ENS Mean and marginally better in the polar regions. In the Antarctic region, the ROCSS is 0.63 and 0.06 for the IFS 

HRES, 0.59 and 0.01 for the IFS ENS Mean and 0.66 and 0.06 for the GraphCast (operational) at lead times of 3 and 10 days. 
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Figure 2. Regionally area-weighted ROCSS of different forecasts for wet extreme. The red and blue borders indicate significantly 230 

different performance compared to the IFS HRES at the significance level of 0.05. 

 

Scorecards of the regionally area-weighted ROCSS for warm extremes relative to the IFS HRES baseline are showcased 

in Figure 3. The Pangu-Weather, GraphCast and FuXi tend to outperform the IFS HRES within 3-day lead time except for the 



 12 

Arctic and Antarctic. These results are consistent with the results of a previous study on forecast accuracy of the magnitude 235 

for warm extremes (Olivetti and Messori, 2024b). In the North America, North Atlantic, North Pacific, East Asia and AusNZ, 

the GraphCast and FuXi tend to outperform the IFS HRES at longer lead times even up to 10 days. The ROCSS in the North 

Atlantic is respectively 0.39, 0.58 and 0.49 for the IFS HRES, GraphCast and FuXi at the 10-day lead time. On the other hand, 

the performances of all data-driven forecasts tend to be worse than that of the IFS HRES in the Arctic and Antarctic. In Europe, 

the ROCSS is respectively 0.78, 0.71, 0.76 and 0.75 for the IFS HRES, Pangu-Weather, GraphCast and FuXi at 5-day lead 240 

time. As averaging the ensemble members can filter unpredictable features to get smoother forecasts, it is not surprising that 

the IFS ENS Mean does not always perform as well as the IFS HRES and IFS ENS for warm extremes (Ben Bouallègue et 

al., 2024). 
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 245 

Figure 3. As for Figure 2, but for warm extremes. 

 

4.2 Predictive performance of wet extremes 

The differences in the ROCSS for wet extremes in comparison with the IFS HRES baseline are illustrated in Figure 4. 

Overall, the IFS ENS tends to outperform the IFS HRES at most grid cells across the globe. Except for the Northern Africa 250 
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and Arabian Peninsula, the GraphCast’s operational forecasts are comparable or more skilful than the IFS HRES. The 

GraphCast is not as skilful as the IFS HRES in more grid cells, such as the Northern Africa, Central Australia and Central Asia. 

The FuXi tends to be less skilful than the IFS HRES in most grid cells, such as the Northern Africa, Atlantic and Pacific. As 

the lead time increases, the IFS ENS and GraphCast (operational) are observed to outperform the IFS HRES, while the 

GraphCast and FuXi underperform. These results are consistent with the results of Figure 1 and Figure 2. In Northern Africa, 255 

forecasts of the three data-driven models tend to be less skilful than the IFS HRES and IFS ENS. As the GraphCast and FuXi 

exhibit no hits and so many false positives for many of or even almost all the grid cells in this region, the ROCSS is nearly -1 

so that their forecasts tend to be worse than the IFS HRES in the Northern Hemisphere (extra-tropics) and Tropics. 

 

 260 

Figure 4. Differences of IFS ENS, GraphCast (operational), GraphCast and FuXi in ROCSS to the IFS HRES for wet extremes at 

each grid cell. The grey colour indicates grid with no statistically significant differences at the significance level of 0.1. 

 

The time series for 24-hour accumulation of total precipitation from different forecasts initialized at 00 UTC are shown 
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for three grid cells in Figure 5. The grid cells A, B and C are selected respectively due to the better, close and worse performance 265 

of data-driven models in relative to the IFS HRES. Overall, data-driven models can capture the temporal dynamics of 

precipitation but their forecasts are smoother than the IFS HRES (Zhong et al., 2024; Xu et al., 2024b). For grid cells A and B, 

the five sets of forecasts have nearly equal number of true negatives; the IFS HRES show more true positives but more false 

negatives; the GraphCast is more capable of capturing the wet extremes but tends to produce more false positives; the IFS 

ENS Mean and FuXi tend to underestimate the wet extremes, resulting in more false negatives but fewer false positives. For 270 

grid cell C that is located in the Northern Africa, the GraphCast and FuXi tend to overestimate the low precipitation and 

underestimate the high precipitation, leading to zero numbers of true negatives for the FuXi and zero numbers of false negatives 

for both. At the lead times of 3 and 10 days, the ROCSS is respectively 0.48 and 0.09 for the IFS HRES, 0.80 and 0.53 for the 

IFS ENS, 0.31 and 0.21 for the operational GraphCast, -0.94 and -0.96 for the GraphCast and -1.00 and -1.00 for the FuXi. 

 275 
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Figure 5. Time series plots of TP24h forecasts initialized at 00 UTC for the IFS HRES, IFS ENS, IFS ENS Mean, GraphCast and 

FuXi over three selected grid cells, i.e., A (44°N, 94°E), B (54°N, 1.5°W) and C (23.5°N, 20°E). 
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4.3 Predictive performance of warm extremes 280 

The differences in ROCSS for warm extremes in comparison with the IFS HRES baseline are illustrated in Figure 6. The 

IFS ENS tends to outperform the IFS HRES, especially in low-latitude regions. As the lead time increases, the IFS ENS tends 

to be more skilful than the IFS HRES. The ROCSS of the Pangu-Weather, GraphCast and FuXi is similar to that of the IFS 

HRES but is lower in most grids of the Pacific, Atlantic and Arctic. The GraphCast tends to outperform the IFS HRES in the 

Northern Atlantic near the Gulf of Mexico. The spatial patterns of the differences in ROCSS are consistent with the results of 285 

Figure 3. As the lead time increases to 10 days, the area where the Pangu-Weather, GraphCast and FuXi are more skilful than 

the IFS HRES decreases. On the other hand, even for lead time of 10 days, the GraphCast and FuXi continue to outperform 

the IFS HRES in some regions of the North Atlantic. The different performances of global weather forecasts in different regions 

emphasize the necessity to verify and calibrate hydroclimatic forecasts before operational application (Ben Bouallègue et al., 

2024; Huang et al., 2022). 290 
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Figure 6. Differences of IFS ENS, Pangu-Weather, GraphCast and FuXi in ROCSS to the IFS HRES for warm extremes at each 

grid cell. The grey colour indicates grid with no statistically significant differences at the significance level of 0.1. 

 295 

The time series for 24-hour maximum of 2m temperature from different forecasts initialized at 00 UTC are shown for 

three grid cells in Figure 7. The grid cells D, E and F are also selected respectively due to the better, close and worse 

performance of data-driven models in relative to the IFS HRES. Overall, the Pangu-Weather, GraphCast and FuXi exhibit 

similar temperature dynamics over time to those of the IFS HRES. For grid cell D, the Pangu-Weather, GraphCast and FuXi 

tend to outperform the IFS HRES. The Pangu-Weather tends to underestimate the temperature, leading to less true positives 300 

and more false negatives. The GraphCast and FuXi show more true positives. For grid cell E, these models show a nearly equal 

number of true positives and true negatives, resulting in similar ROCSS. For grid cell F, the data-driven models tend to be less 

accurate than the IFS HRES. The Pangu-Weather, GraphCast and FuXi tend to underestimate the temperature, leading to more 

false negatives and less true positives. As the lead time increases from 3 to 10 days, the ROCSS reduces from 0.48 to 0.28 for 

the Pangu-Weather, from 0.51 to 0.22 for the GraphCast and from 0.54 to 0.17 for the FuXi. By contrast, the IFS HRES and 305 

IFS ENS change less. The ROCSS decreases from 0.76 to 0.56 for the IFS HRES and from 0.95 to 0.86 for the IFS ENS. 

 



 19 

 

Figure 7. Time series plots of T2M24h forecasts initialized at 00 UTC for the IFS HRES, IFS ENS, Pangu-Weather, GraphCast and 

FuXi over three selected grid cells, i.e., D (20°N, 75°W), E (39°N, 70°W) and F (15°S, 10°E). 310 
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4.4 Sensitivity to predefined thresholds 

The globally area-weighted performance under different predefined thresholds is illustrated for 5-day lead time in Figure 

8. The ROCSS is base-rate-independent and suitable simultaneously for deterministic and probabilistic forecasts of binary 

events. It is noted that the REV needs predefined cost-loss ratios to calculate the potential values of forecasts, while the cost-315 

loss ratios may be different for hydroclimatic extremes with different threshold percentiles. In the meantime, the SEDI is also 

applicable to extreme events because of its base-rate independence and nondegenerate limit (North et al., 2013; Jolliffe and 

Stephenson, 2012; Brodie et al., 2024). The base-rate-independent metrics changes little as the predefined thresholds increase 

from the 80th to the 99th percentile. Specifically, as to forecast wet extremes at 5-day lead time, the scores of GraphCast 

decrease from 0.74 to 0.56 for SEDI and from 0.43 to 0.23 for ROCSS as the thresholds increase from the 80th to the 99th 320 

percentile. By contrast, the scores of GraphCast increase from 0.81 to 0.98 for 1-BS, from 0.87 to 0.95 for ORSS and from 

0.51 to 0.52 for SEDS. These metrics are not suitable for hydroclimatic extremes because it contradicts that rarer events are 

often more difficult to predict (Ferro and Stephenson, 2011). 
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 325 

Figure 8. Globally area-weighted performance in forecasting wet extremes and warm extremes with different threshold percentiles 

at 5-day lead time. The REV is calculated with a fixed cost-loss-ratio of 0.2 only for purposes of illustration. 

 

The globally area-weighted ROCSS under different predefined thresholds is shown in Figure 9. Overall, the ROCSS 

decreases for all eight sets of forecasts as the predefined thresholds increase from the 80th to the 99th percentile. The IFS ENS 330 

tends to perform better in forecasting wet extremes and warm extremes. Among the available data-driven models, the 

GraphCast (operational) tends to be more skilful for wet extremes; for warm extremes, the FuXi tends to be more skilful at 

lead times less than 5 days and the GraphCast tends to be better at lead time more than 5 days. Specifically, as to forecast wet 

extremes at 5-day lead time, the ROCSS decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to 0.77 for IFS ENS and from 

0.53 to 0.26 for GraphCast (operational). As to forecast warm extremes at 5-day lead time, the ROCSS decreases from 0.69 to 335 

0.41 for IFS HRES, from 0.93 to 0.83 for IFS ENS and from 0.70 to 0.29 for GraphCast. When the lead time is longer than 3 

days, the GraphCast, GraphCast (operational) and FuXi tend to be more skilful than the Pangu-Weather and Pangu-Weather 

(operational) in predicting warm extremes (Olivetti and Messori, 2024b). 
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Figure 9. Globally area-weighted ROCSS for wet extremes and warm extremes with different threshold percentiles. 

 

5 Discussion 

5.1 Implications on forecaster’s dilemma 

Binary hydroclimatic forecasts provide useful information for disaster prevention and risk mitigation (Ben Bouallègue et 345 

al., 2024; Merz et al., 2020). Verification metrics of deterministic and ensemble forecasts, such as the RMSE and CRPSS, in 

general focus on the overall predictive performance across a range of events (Huang and Zhao, 2022; Rasp et al., 2024). They 

tend to reward models that minimize average errors and unrealistically smooth forecasts, leading to limited guidance to forecast 

hydroclimatic extremes (Ferro and Stephenson, 2011; Rasp et al., 2020). By contrast, verification metrics of binary forecasts 

provide valuable additional information by emphasizing the ability to discriminate certain hydroclimatic extremes that do not 350 

directly relate to average errors (Larraondo et al., 2020). In this paper, the results show that for warm extremes, the Pangu-
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Weather, GraphCast and FuXi tend to be more skilful than the IFS HRES within 3-day lead time but become less skilful as 

lead time increases. The verification of binary hydroclimatic forecasts seems to be more stringent for data-driven models since 

the observed lead time in which there exists outperformance of data-driven models tends to be shorter than that under 

continuous forecasts (Lam et al., 2023; Bi et al., 2023; Chen et al., 2023). In the supplement, the results across global grid cells 355 

in terms of the HSS and SEDI also support this result. 

The climate system is high-dimensional and complex so that there won't be a single verification metric to showcase all 

essential characteristics of a good forecast (Rasp et al., 2024; Jolliffe and Stephenson, 2012). While verifications metrics of 

binary forecasts emphasize the discrimination, they are unable to reflect other attributes to quantify the forecast quality, such 

as reliability, resolution and uncertainty (Murphy, 1993). Although the GraphCast is more capable of capturing the wet 360 

extremes, it tends to produce more false positives. This result implies the “forecaster’s dilemma”, i.e., conditioning on 

outcomes is incompatible with the theoretical assumptions of established forecast evaluation methods (Lerch et al., 2017). 

From this perspective, a combination of multiple verification metrics and diagnostic plots is in demand (Larraondo et al., 2020; 

Huang and Zhao, 2022). As shown in Fig. S1 and Fig. S4 in the supplement, the values of BS for the FuXi are better than that 

for the HRES at the lead time of 10 days, which is different to the results for ROCSS in Fig.4. Considering that the BS tends 365 

to reflect the average performance and is influenced by the unbalanced number of occurrences and non-occurrences, better 

values of a single metric do not mean a more useful forecast (Rasp et al., 2024). Overall, the process of forecast verification 

needs to be guided by the demand of operational applications (Ben Bouallègue and the AIFS team, 2024; Rasp et al., 2024). 

 

5.2 Use of ground truth data 370 

High-resolution forecasts are essential for accurately capturing multi-scale processes of hydroclimatic extremes (Liu et 

al., 2024a; Charlton-Perez et al., 2024; Xu et al., 2025). It is noted that hydroclimatic forecasts of coarse spatial resolution tend 

to miss the required small-scale variability, such as the intensity and structure of typhoon (Ben Bouallègue et al., 2024; Selz 

and Craig, 2023). Also, they may miss extreme values and the underlying evolution processes due to the mismatch between 

forecast time step and event time (Pasche et al., 2025). Therefore, there exists a demand to enhance the spatial and temporal 375 

resolution of data-driven models (Xu et al., 2024b; Zhong et al., 2024). It is noted that diffusion models have recently been 

shown to be effective for km-scale atmospheric downscaling (Mardani et al., 2025). In addition, hybrid models that utilize 

global forecasts from data-driven models to drive high-resolution regional models, such as the weather research and forecasting 

(WRF) model, can improve the forecast accuracy and resolution for extreme precipitation and tropical cyclones (Liu et al., 

2024b; Xu et al., 2024b, 2025). Given that the metrics listed in Table 3 are suitable to different spatial and temporal scales, the 380 

WeatherBench 2 is capable of evaluating for high-resolution forecast data. 
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Part of forecast skill of data-driven models on wet and warm extremes can stem from the unfair setting of ground truth 

data (Rasp et al., 2024; Lam et al., 2023). As for the WeatherBench 2, it is worthwhile to note that the verification of 

precipitation using ERA5 reanalysis data as ground truth data is a compromised setting and should be considered as a 

placeholder for more accurate precipitation data (Rasp et al., 2024). While this comparison is not fair to the IFS models, the 385 

results indicate that using data-driven models to forecast global medium-range precipitation is promising. In addition, the 

verification is limited to the wet and warm extremes occurring in 2020 due to current data availability. The short verification 

period can provide limited information about the model performance and sensitive results to the climate variability (Olivetti 

and Messori, 2024b). With the availability of more data on hydroclimatic forecasts and baseline ground-truth observations, 

binary forecasts of hydroclimatic extremes deserve more in-depth verification. In the meantime, the different roles that the 390 

operational IFS analysis and ERA5 reanalysis data play in the initial conditions to generate forecasts also deserve further 

verification (Ben Bouallègue et al., 2024; Liu et al., 2024a; Xu et al., 2024b). 

 

6 Conclusions 

This paper has presented an extension of the WeatherBench 2 to binary hydroclimatic forecasts by utilizing seventeen 395 

verification metrics. Specifically, the TP24h and T2M24h are calculated from the available forecasts and ground truth in the 

WeatherBench 2; and the 90th percentiles of the ground truth data in 2020 are set as the predefined thresholds above which 

the wet and warm extremes are respectively detected. Through a case study of binary forecasts generated by 3 data-driven 

models and 2 physical models, the results show that for wet extremes, the GraphCast and its operational version tend to 

outperform the IFS HRES when the total precipitation of ERA5 reanalysis data is used as the ground truth. Their globally area-400 

weighted ROCSS is 0.46, 0.50 and 0.43 at 5-day lead time, respectively. For warm extremes, the GraphCast and FuXi tend to 

be more skilful than the IFS HRES within 3-day lead time while they can be less skilful as the lead time increases. At the lead 

times of 3 and 10 days, the ROCSS is 0.68 and 0.42 for the IFS HRES, 0.92 and 0.86 for IFS ENS, 0.63 and 0.29 for Pangu-

Weather, 0.68 and 0.39 for GraphCast and 0.68 and 0.32 for FuXi. When the predefined thresholds of wet extremes increase 

from the 80th to 99th percentile, the ROCSS decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to 0.77 for IFS ENS and 405 

from 0.53 to 0.26 for GraphCast (operational) at 5-day lead time. The extension of the WeatherBench 2 to binary forecasts 

facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast 

applications. 
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Code and data availability 410 

The raw data, i.e., forecasts and ground truth data, used in this paper are downloaded from the WeatherBench 2 and are 

archived on the Zenodo under https://doi.org/10.5281/zenodo.15066828 (Li and Zhao, 2025a) and under 

https://doi.org/10.5281/zenodo.15066898 (Li and Zhao, 2025b). 

The code and scripts performing all the analysis and plots are archived on the Zenodo under 

https://doi.org/10.5281/zenodo.15067282 (Li and Zhao, 2025c). All the analysis results are archived on the Zenodo under 415 

https://doi.org/10.5281/zenodo.15067178 (Li and Zhao, 2025d). 

To guarantee future compatibility with the WeatherBench 2, the code and scripts have been made a push request to its 

successor, i.e., WeatherBench-X. 
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