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Abstract. Coastal storm-induced flooding threatens millions of people and infrastructures, highlighting the need for
comprehensive flood risk assessments. A key component of these assessments is the spatial characterization of total water
level (TWL), the primary driver of coastal impacts. We propose a homogeneous methodology for developing large-scale
TWL hindcasts to estimate extreme events, considering possible spatial variabilities in marine dynamics. This methodology
is applied to the European coastline, integrating downscaled nearshore waves, storm surges, and tides. The resulting hourly
time series of the TWL have a spatial resolution of 1 km and covers the period from 1985 to 2021. Spatial variability is
considered in foreshore slopes and extreme value detection thresholds, addressing common simplifications in large-scale
studies. In addition to a characterization of extreme events based on the relative contributions of TWL components,
sensitivity analyses of the wave contribution, wave data resolution, foreshore slopes, and wave setup formulations are
conducted. The tide-dominated Atlantic coast is most affected by the wave dataset. The storm surge-dominated Baltic region
exhibits the lowest confidence in estimating TWL return levels, partially due to the data and methods used. The
Mediterranean Sea, characterized by a mixed environment, is the most sensitive to the inclusion of wave contribution. A
classification of TWL extremes revealed that no regions have extreme events dominated by wave setup, while those

dominated by tides show the highest return levels.

1 Introduction

The assessment of coastal impacts resulting from extreme coastal flooding events is essential for understanding and
mitigating associated potential risks (Neumann et al., 2015). These risks include, among others, damage to coastal
infrastructure and the built environment, as well as impacts on the population and ecosystems (Barnard et al., 2019; Rashid
et al., 2021; Rasmussen et al., 2022). The total water level (TWL) is the most commonly used indicator in coastal flooding
studies. It is frequently used as a forcing variable for flood models aimed at generating maps of flood extent and depth.
Accurate coastal flood estimates require that TWL includes a proper spatial characterization of all relevant components (i.e.,
waves, storm surges, and astronomical tides) (Cabrita et al., 2024; Kirezci et al., 2020; Pugh, 1987). However, estimating

extreme TWL at coastal locations becomes increasingly complex as the spatial scale of the study domain increases.
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One key challenge lies in the method used to reconstruct the TWL, which requires the selection and characterization of
relevant components at appropriate spatial and temporal scales. We consider TWL as a combination of astronomical tide
(driven by gravitational forces), storm surge (caused by strong winds and low atmospheric pressures during storms), and a
contribution by ocean waves (usually the wave setup, which is an increase of sea level in the surf zone) (Pugh &
Woodworth, 2014). Among these, assessing the contribution of waves is particularly critical, as it involves evaluating
nearshore wave conditions and the associated wave setup, which depending on the formulation can be influenced by the
foreshore slope. A second key challenge concerns the choice of an extreme value analysis (EVA) method. EVA is used to
assess the likelihood of extreme events by means of a statistical long-term extreme distribution in order to derive return
levels corresponding to specified return periods (Coles, 2001). Each stage in this process introduces uncertainty, from data
selection and the formulation used to calculate wave contributions to TWL, to the definition of extreme events (e.g.,
threshold selection) and the fitting of statistical distributions to estimate return levels (Hinkel et al., 2021; Toimil et al.,
2020).

Initial attempts at assessing coastal flood impacts at large scales relied on the DIVA model (Vafeidis et al., 2008), which
provided TWL and return level scenarios. More recent efforts have focused on improving the spatial resolution and temporal
extent of large-scale TWL hindcasts. For example, TWL has been globally reconstructed from 1993 to 2013 at a 111 km
resolution (Vitousek et al., 2017). For the European coastline, TWL from 1979 to 2014 was calculated with a 25 km
resolution (Vousdoukas et al., 2016), and from 2010 to 2019 with 2.5 km resolution (Le Gal et al., 2023).

With respect to TWL components, storm surges and astronomical tides are commonly included in flood studies, whereas the
wave component is often neglected despite its potential importance along many coasts (Muis et al., 2015, 2016; Paprotny et
al., 2016, 2018). At large scales, few studies include wave effects, which may take different forms depending on the
processes considered. These include: (1) static wave setup, defined as the superelevation of the coastal water surface due to
wave breaking; (2) dynamic wave setup which adds the effect of the infragravity swash to the static wave setup; and (3)
wave runup, which further includes the incident swash component (Stockdon et al., 2006). While the estimation of
infragravity swash remains uncertain at large scales, incident swash generally does not sustain flooding capable of causing
coastal damage (Hinkel et al., 2021). For two-dimensional flood modeling, the wave contribution component is usually
represented by the static wave setup (hereafter referred to as wave setup). Several methods exist for estimating wave setup at
large scales. The most widely used is the empirical approach proposed by Guza & Thornton (1981), which estimates wave
setup as a fraction of the significant wave height (Hs), namely 0.2Hs. However, this method often leads to overestimation of
wave setup (Hinkel et al., 2021). More accurate alternatives involve simplified parametrizations. For instance, the semi-
empirical formulation by Stockdon et al. (2006) has been adopted globally (Rueda et al., 2017; Vitousek et al., 2017), as well
as the Shore Protection Manual method (Kirezci et al., 2020; USACE, 1984). One way these parametrizations improve
accuracy is by incorporating nearshore bathymetry, particularly the foreshore slope (Dodet et al., 2019; Gomes da Silva et
al., 2020).
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A limitation within the use of wave parametrizations lies in accurately characterizing the foreshore slope at large scales.
Despite its importance, this parameter remains difficult to quantify, which limits its practical applicability in many coastal
assessments. Consequently, some authors applied a constant slope of 1:30 (Kirezci et al., 2020), while others used a wave
setup formulation designed for dissipative beaches (Vitousek et al., 2017), that does not require slope data (Stockdon et al.,
2006). Alternatively, a method developed by Sunamura (1984) allows for the estimation of spatially and temporally varying
foreshore slopes based on wave conditions. Compared with locally observed slopes and globally constant values, this method
accounts for morphological feedback, given that evolving beach morphology can influence wave contributions to sea level,
as considered in Sunamura’s formulation (Melet et al., 2020).

Another limitation in these studies is that offshore wave conditions are often used, despite their coarse resolution and limited
suitability for accurately assessing coastal impacts. More precise estimates of coastal flooding require nearshore wave data,
which better capture the relevant coastal dynamics, as wave setup is not an offshore process (Dodet et al., 2019). The use of
nearshore information is however limited at large geographical scales due to modeling complexity and computational
demands, resulting in reduced data availability.

Regarding the second key challenge, the most commonly used approaches for identifying extreme events in EVA include the
annual maxima (AM) and the peak-over-threshold (POT) methods (Bezak et al., 2014). Sensitivity analyses in various
studies suggest that no single method is optimal for all cases. On the one hand, the AM selects at least one value per year
(Haigh et al., 2014a; Paprotny et al., 2016), being most appropriate when a time series longer than 30 years is available. To
address the limited sample provided by AM, Vitousek et al. (2017) adjusted the selection of events to the 3-largest events per
year. Notably, large-scale studies applying traditional AM to identify a single event per year are mostly centered in storm
surge events (Haigh et al., 2014a; Muis et al., 2016; Paprotny et al., 2016). On the other hand, the POT method better
exploits the available data by considering that extreme events are independent readings that represent a certain single event
(Soomere et al., 2018). Rather than analyzing the temporal distribution of events, POT bases its selection on the magnitude
of the events which is directly related to the threshold. Depending on the chosen threshold, larger sample sizes of extremes
are obtained than with AM (Kirezci et al., 2020; Le Gal et al., 2023). However, threshold selection is not straightforward. It
must be high enough to exclude non-extreme events but low enough to ensure a sufficiently large sample for statistical
analysis (Harley, 2017). In addition, the selected maxima peaks must represent independent extreme events, so a minimum
span must be considered between two consecutive peaks. A stable threshold based on objective criteria, rather than arbitrary
decisions, ensures consistency and more reliable results (Arns et al., 2013). Previous studies have tested different percentiles
as the threshold and the 98™ percentile (P98) of the TWL time series was used globally (Kirezci et al., 2020) while the 971
percentile (P97) was adopted for the European coast (Le Gal et al., 2023). We note that the selection of a percentile is
dependent on the length of the available time series and time resolution, among others. Alternatively, a fixed TWL value can
be used, although not suitable for large-scale studies where extreme magnitudes vary widely. To address spatial variability, a
threshold corresponding to an average number of independent events per year across the European coastline has also been
adopted (Vousdoukas et al., 2016).
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The selection of distribution types for estimating return levels also carries important implications that need to be carefully
evaluated. For example, two-parameter distributions, such as the Gumbel distribution for AM (Paprotny et al., 2016) or the
exponential distribution for POT, simplify the process and are advantageous at large scales due to reduced degrees of
freedom and restricted value ranges. However, the three-parameter distributions such as the GEV for AM (Vitousek et al.,
2017) and the Generalized Pareto Distribution (GPD) for POT (Kirezci et al., 2020), may yield more robust and stable results
(Bezak et al., 2014). Ultimately, the choice depends on regional and data characteristics. Nevertheless, the key features of an
EVA application go beyond the method adopted to sample extreme events or the statistical model used to fit the data.
Depending on the regional climatic characteristics, data available, and the variables considered (e.g., individual sources,
combined drivers, and outputs of coastal hazards), the most suitable approach may vary (Coles, 2001).

Accordingly, in this work, we address the above challenges by proposing a methodology for reconstructing large-scale TWL
hindcasts and estimating extreme events. Basing on the hypothesis that a standardized strategy to estimate extreme TWL can
effectively capture the diverse conditions governing coastal dynamics across large scales, the objective of this study was to
create a homogeneous methodology which considers possible heterogenous marine climate characteristics relevant in coastal
storms. We apply our method to the European coastline, producing hourly TWL time series at 1 km resolution spanning
from 1985 to 2021. This represents the longest and highest spatial resolution TWL time series for Europe to date,
incorporating nearshore wave information. Our TWL formulation includes wave setup, storm surges, and astronomical tides.
The wave setup is computed semi-empirically using spatially and temporally varying foreshore slopes. Extreme events are
identified using the POT method with a spatially variable threshold, and return levels are estimated with an exponential fit.
To demonstrate the robustness of our approach, we conduct a series of sensitivity analyses of the effect different wave
component options and POT thresholds have on the assessment of extreme events. For those, return levels extracted from
EVA and flooded area derived from a static flood model are used as indicators of the effects certain decisions taken during

the extreme TWL estimation process might have on coastal flooding.

2 Data and Methods

The methodology developed to estimate extreme TWL at the large-scale is presented in Fig. 1. We reconstructed a TWL
hindcast on an hourly basis by linearly summing time series of wave setup, storm surges, and astronomical tides. The wave
setup was estimated with a semi-empirical formulation (Stockdon et al., 2006) considering spatially and temporally variable
foreshore slopes (Sunamura, 1984). To identify extreme events in the TWL hindcast, we applied the POT method, using a
spatially variable threshold. The selected extreme events were fitted to an exponential function to estimate return levels.
Different steps of the methodology were evaluated and validated through sensitivity analyses focusing on: (1) wave

contribution; (2) components of wave setup; and (3) the POT threshold.
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Figure 1: Methodology applied in the present study for TWL hindcast reconstruction and extreme value analysis (left). Sensitivity
analyses applied to the wave contribution, wave setup components, and POT threshold (right).

2.1 Study Area

The study area comprises the European coastline. Prior to reconstructing the TWL hindcast, coastal target points (CTP) were
defined along the European coast. These points were used for downscaling wave conditions and reconstructing the TWL,
with the objective of creating a continuous line of equally spaced points as close to the coast as possible. Due to the lack of
high-resolution homogeneous bathymetry data at this scale, the CTPs were selected based on their relative depth (h/L),
where h represents the water depth and L the corresponding wavelength of the wave peak period with an exceedance
probability of 0.1. In total, 51010 CTP with relative depth of approximately 0.1 were chosen, with an interval of 1 km

between them and as close as possible to the coast.

2.2 Climate-related Datasets

The still water level includes the mean sea level, astronomical tide, and storm surge. Here, the local mean sea level is used as
benchmark. The hourly time series of the astronomical tide and storm surge were reconstructed from the tidal constituents of
the TPXO9 model (Egbert & Erofeeva, 2002) and from a European regional storm surge hindcast developed using the
ROMs model (Shchepetkin & McWilliams, 2005), respectively. The astronomical tide provides data in coastal areas at a
spatial resolution of 1/30° (approximately 3.5 km), whilst the European storm surge hindcast used provides storm surge
information along the European coast at 5-11 km spatial resolution. The offshore waves were obtained from a European

regional hindcast developed with the WaveWatchlll numerical model (Tolman, 2009). This provides wave outputs along the
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European coastline at a spatial resolution of 1/8° (10-15 km). The nearshore wave dataset was developed based on the DOW
approach (Camus et al., 2013), which combines numerical wave simulations using the SWAN model with advanced
statistical techniques in order to reach 1 km spatial resolution throughout the European coastline. Atmospheric forcings from
the ERADS reanalysis (Hersbach et al., 2020) were used to generate these datasets consistently. A more detailed description of
the models and their configuration used, as well as an assessment of the data quality in coastal areas by comparison against
coastal buoys and tide gauge records is provided in the Sea level and wave datasets section of the Supplementary Material.

At each CTP, hourly time series were obtained for the astronomical tide, storm surge, offshore wave conditions and
nearshore wave conditions. As the offshore wave hindcast, storm surge hindcast, and TPXO databases do not share the same
spatial resolution as the nearshore wave dataset, the data from the nearest grid point was assigned to each CTP for those

variables.

2.3 Total Water Level

The TWL time series from 1985 to 2021 on an hourly basis at each CTP by linearly adding the time series of astronomical
tide, storm surge, and wave setup (1).

TWL = wave setup + SS + AT D
where SS is the storm surge and AT the astronomical tide.
Wave setup was used to represent the wave contribution to TWL. Using nearshore wave conditions, it was calculated with

the semi-empirical formulation, (2) and (3) (Stockdon et al., 2006) with a variable intertidal slope, (4) (Sunamura, 1984).

n = 0.035B,/H;L, (2)
TZ
b= )

where {3 is the foreshore slope of the beach, between the low and high tide limits, H is the significant wave height, L, is the

deep-water wavelength, and T is the wave period.
1

B= 0.12( s >_2 ()

T gD

where g is gravitational acceleration and D is the mean sediment grain size, set at 250 um, representative of fine to medium
grain size and following Rueda et al. (2017). The calculated foreshore slope time series for each CTP was capped at 0.20 and
normalized to ensure a mean close to 0.04, reflecting the global median beach slopes reported locally (Barboza & Defeo,
2015). The approach used to apply the approximation for the foreshore slope followed Melet et al. (2020).

Upon the TWL reconstruction, the stationarity of the time series was verified in each CTP and a validation of the hindcast
was performed by identifying historical coastal storms observed in the literature and comparing to the values estimated here.
In total, 36 events were validated for different events and across distinct areas of the European coastline. A summary of the

references and locations validated is presented in the Supplementary Material. The validation was performed against still
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water level, static wave setup-based TWL, dynamic wave setup-based TWL, and wave-runup-based TWL, following
Stockdon et al. (2006).

2.4 Extreme Value Analysis

The POT method was used to identify extreme events in the TWL hindcast. At each CTP, we selected a threshold that
resulted in an average of two events per year, with a minimum interval of 72 hours between events. Next, we estimated the
TWL return values (i.e., TWL values associated with return periods) by fitting the extreme sample to an exponential model.

To refine the methodology, we conducted several tests regarding the extreme event selection method, the threshold applied
and the distribution fits. Preliminary tests applied were carried out on a set of points selected using clustering methods
(Camus et al., 2011), as detailed in the Supplementary Material (Fig. S4). We compared the results of return levels and
confidence intervals obtained from AM method using GEV and Gumbel distributions, and from the POT method using both
exponential and GPD fits (Supplementary Fig. S5), as well as different thresholds options tested in POT (Supplementary Fig.
S6). The initial thresholds tested included the five lowest annual maxima at each CTP. A stability check of the resulting
parameters was assessed through a residual life plot (Coles, 2001; Liu et al., 2023) (Supplementary Fig. S7) and concluded
that the optimal average amount of events per year (L) was two. At the European scale, we validated the resulting fit using
various tests, including the Anderson-Darling test and an assessment of the significance of the shape parameter

(Supplementary Fig. S8 and Supplementary Fig. S9).

2.5 Relative Contributions of TWL components

To better understand the dominant conditions at each CTP, the relative contributions of each TWL component were
computed (astronomical tide, storm surge, and wave setup). The contribution of each component was calculated by
extracting its value from its respective time series at the corresponding time step and determining its proportion relative to
the TWL. For mean conditions, we calculated this for each time step within the entire time series and then calculated the
mean contribution for each component. For the extreme conditions, relative contributions of each TWL component were
calculated for each peak identified by the POT.

2.6 Sensitivity Analyses

Figure 1 also presents the three sensitivity analyses performed. The first two analyses refer to the inclusion of waves in a
TWL study, while the third analysis examines the adopted threshold as part of EVA. Within these analyses, the EVA method
(POT followed by exponential fit) was adopted in all cases. Two indicators were used to determine how sensitive results are
to the different options tested in each analysis. On the one hand, the 100-yr TWL resulting from an exponential fit was
analyzed. The variability of results was studied to determine the relative influence each option has on the outcome. On the

other hand, the corresponding 100-yr TWL flooded area (FA) resulting from a static flood model applied to the European
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floodplain was evaluated. The floodplain was defined as the terrain below 15 m in elevation and hydraulically connected to
the sea, based on the 25 m resolution Copernicus EU-DEM (Copernicus, 2019).

2.6.1 Sensitivity analysis: wave contribution

As part of the validation of the TWL reconstruction, different options were tested in terms of the characterization of the
wave contribution. Following the equations by Stockdon et al. (2006) with a variable intertidal slope, (4) (Sunamura, 1984)
we tested: (1) static wave setup, following equation (2); (2) dynamic wave setup, as in equations (5) and (6); and (3) wave
runup, equation (7). After each wave contribution was computed, the corresponding TWL was reconstructed by adding the
storm surge and astronomical tide time series. The same resulting TWL variants used in this analysis, were the ones adopted

in the TWL reconstruction validation.

Sic = 0.06,/H,L, (5)

Nayn =M + Si6 (6)
H.L,(0.5638 + 0.004
- 11+ TS >

2.6.2 Sensitivity analysis: wave setup components

Three elements were tested in the wave setup analysis: (1) the wave dataset (downscaled nearshore wave conditions and
large-scale wave conditions, hereafter referred to as offshore wave conditions); (2) the foreshore slope approximation
(variable and constant); and (3) the wave setup formulation (semi-empirical and standard). The combinations of these
elements resulted in six TWL reconstruction approaches. While approach A represents the methodology developed in the
present study, the remaining approaches were only used in this sensitivity analysis.
First, we calculated wave setup with the same formulation (2) but applying offshore wave conditions instead of nearshore
downscaled conditions. Then, we applied the wave setup formulation by Guza & Thornton (1981) to both offshore and
nearshore wave conditions (8).

n = 0.2H, (8)
For the comparison of foreshore slope approximations, we applied the variable slope approximation (Sunamura, 1984) to
offshore wave conditions and also adopted a constant foreshore slope of 0.03 (Kirezci et al., 2020). Both foreshore slope
options were used in conjunction with the semi-empirical wave setup formulation shown in equation (2) (Stockdon et al.,
2006) and with both wave datasets. In total, six approaches were tested, as shown in Table 1. The same EVA method (POT

with a threshold of A=2 fitted to an exponential fit) was applied to all approaches to obtain the 100-yr return levels.
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Table 1: Approaches used to reconstruct TWL in the sensitivity analysis of wave setup components, showing their respective
combinations of wave datasets, foreshore slope approximations, and wave setup formulations adopted.

Approach Dataset Foreshore slope Wave setup
A Nearshore Sunamura (1984) Stockdon et al. (2006)
B Nearshore Kirezci et al. (2020) Stockdon et al. (2006)
C Nearshore Guza and Thornton (1981)
D Offshore Sunamura (1984) Stockdon et al. (2006)
E Offshore Kirezci et al. (2020) Stockdon et al. (2006)
F Offshore Guza and Thornton (1981)

2.6.3 Sensitivity analysis: POT threshold

Since the POT method is sensitive to the chosen threshold, which can introduce subjectivity and affect the results, a
sensitivity analysis is needed to assess how robust and consistent the estimates are. Although the threshold selected in this
study corresponds to a variable value corresponding to an average of 2 extremes events samples per year (A=2) in each CTP,
other options were tested. The variability in the extreme TWL results was also analyzed for occurrence rates of A=1 and A=3.
The exponential distribution was fitted to the three resulting thresholds to obtain the 100-yr return levels. Outcomes were
examined through the variability of results, Anderson-Darling tests, and the uncertainty represented by the 95™ confidence
intervals of 100-yr TWL.

3 Results
3.1 Wave and sea level datasets processing and total water level computation

Figure 2 presents the 2021 hindcast of all variables used in this study for four coastal target points (CTP) in which we
reconstructed the TWL hindcast. The CTPs used as examples throughout this study were selected from a list of test points.
The locations of the test points are presented in the Supplementary Fig. S4. Point 1 is located on the Atlantic coast of France,
point 2 in Estonia in the Baltic Sea, point 3 in Greece in the Mediterranean Sea, and point 4 in Norway (Fig. 2g). These
points represent the centroids of the four most distinct clusters obtained from a K-means clustering applied to the relative
contributions of the TWL components. Offshore wave conditions (Fig. 2a) were downscaled to the coast (hereinafter,
nearshore wave conditions; see Fig. 2b), from which wave setup (Fig. 2c) was calculated to represent the wave component.

The nearshore wave dataset accounts for the presence of ice at higher latitudes. Storm surge (Fig. 2d) and astronomical tide
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data from TPXO (Fig. 2e) were then added to the wave setup hindcast to obtain the TWL (Fig. 2f) time series. As a
consequence, the variability of the TWL reflects the heterogeneity of the spatial distribution of its three components. The
distinction between offshore and nearshore wave conditions is evident, particularly at points 3 and 4 where notable
differences are observed. The results highlight that while the TWL time series of points 1 and 5 are primarily influenced by
tides, point 2 appears to be dominated by storm surge. However, although point 4 shows smaller oscillations, higher wave

setup values raise its TWL time series, unlike point 1, where the series remains centered around 0 m.
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Figure 2: Hindcast time series referred to 2021 for the following variables: offshore significant wave height (a), nearshore
significant wave height (b), nearshore wave setup (c), storm surge (d), astronomical tide (e), and TWL (f). Location of the CTPs
used as examples (g). Time series are represented in the same colors as its corresponding CTP.

3.2 Validation of TWL reconstruction

Figure 3 presents the validation of the TWL hindcast reconstruction. The validation was performed by comparing our

estimated values against previously observed historical storms across the study area, based on previous studies. For more

10
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details on the references used in the validation of the TWL, please refer to the Supplementary Material (Table S2). In total,
five TWL approaches were tested: still water level (astronomical tide and storm surge) (Fig. 3a), TWL with static wave setup
(Fig. 3b), TWL with dynamic wave setup (Fig. 3c), TWL with wave runup (Fig. 3d), and TWL considering the most similar
result in each point, referred to as the best approach (Fig. 3e). The latter presents the best performance in estimating
historical extreme TWL events with 98.1% of the TWL variability being captured, an RMSE of 0.173 m, and a bias of 0.023
m. However, given the large-scale aspect of this study, applying a heterogeneous method such as this is not feasible due to
the different climatic conditions one might encounter and the fact that not all CTPs have been validated in order to identify
which would be the best approach in each case. Within the four remaining options available for a homogeneous TWL
reconstruction approach at the large-scale, the TWL based on static wave setup shows the best performance with 87.9% of
the TWL variability being captured, an RMSE of 0.438 m indicating an average error of 7.5%, and a bias of -0.151 m.
Meanwhile, TWL based on still water level leads to a greater level of underestimation and the remaining two approaches, an
even greater level of overestimation. These results highlight the importance that other aspects might have on the resulting
TWL and, consequently, coastal flooding. Notably, the cases in which static wave setup underestimates TWL the most are
located along the Atlantic coast, such as Santander (Spain), Brouage (France), and the Ebel Estuary (Germany). This could
be an indication that these regions are sensitive to infragravity waves, provided that dynamic wave setup offers a more

accurate estimate of TWL.
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Figure 3: TWL reconstruction validation based on TWL with still water level (a), static wave setup (b), dynamic wave setup (c),
wave runup (d), and based on the best approach when comparing historical coastal storms observed in different points across the
study area (e), according to previous studies.
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3.3 Extreme value analysis of the total water level

Figure 4 shows the TWL threshold used in the POT method to select the extreme events (Fig. 4a) as well as the
corresponding TWL percentiles associated with these thresholds for each CTP (Fig. 4b—c). The results emphasize the
importance of considering the spatial variability of thresholds as neither the TWL thresholds nor the corresponding
percentiles are uniform across the study area. When adopting A=2, the TWL threshold ranges from 0.3 m in the Messina
Strait (Italy) to 7.2 m in the Bristol Channel (Great Britain), while corresponding percentiles range from P31.6 near the
Lofoten Islands (Norway) to P99.9 in the Wash (Great Britain). Approximately 85.5% of the coastline is characterized by
percentiles above the P99. Regions such as northern Norway and the Baltic Sea exhibit lower percentile equivalence,
between P31.6 and P90. This may be attributed to the presence of ice, which is considered in this study. When providing
shoreline protection by acting as a physical barrier against high water levels, this variable lowers the baseline conditions,
allowing for even small disturbances to cause impacts (Wang & Bernier, 2023). When applying a constant percentile
threshold across the study area, A varies from 12.1 to 68.3 for P90 and 1.4 to 14.5 for P99.5. This suggests that using a
constant threshold would lead to an excessive number of events in regions such as the Dutch coast and the Irish Sea, for
example. Whereas in others regions, such as the Baltic Sea, the sample size would be insufficient, resulting in unstable
results of EVA and return levels of TWL. The spatial distributions of A using P90 and P99.5 constant thresholds are provided
in Supplementary Fig. S10.
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Figure 4: TWL threshold adopted in each CTP for the POT analysis (a). TWL percentile that corresponds to the threshold
adopted in each point, highlighting points where the associated percentile is above P99.5 (b) and lower than P90 (c).

12



305

310

315

320

325

https://doi.org/10.5194/egusphere-2025-2998
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Figure 5 provides the spatial distribution of the 100-yr TWL for the coast of Europe and the associated 95" confidence
interval values (Fig. 5b) at each CTP. This result is shown in percentage relative to the return level itself to facilitate the
comparison of the results between different regions. For example, the 100-yr TWL in France is 3.5 + 0.12 m, or 0.3% (Fig.
5c¢). While in Estonia it is 1.6 + 0.17 m, or 10.8% (Fig. 5d) and in Greece, it is 0.7 £ 0.07 m, or 9.8% (Fig. 5e). Higher
confidence interval values indicate a broader confidence band and, consequently, greater uncertainty in the distribution fit.
With TWL values reaching up to 8.5 m in the Bristol Channel, the highest 100-yr TWL values are observed around the
British Isles and along the English Channel. This region also shows the narrowest confidence intervals, with the confidence
band fluctuating by less than 4% for the 100-yr TWL. This may be linked to the dominant tidal regime in this area, which
due to its high amplitude modulates both mean and extreme conditions. The Mediterranean Sea shows the lowest 100-yr
TWLs, with values ranging from 0.49 m in the Messina Strait to 2 m in the Adriatic Sea. In this region, the 95" confidence
interval increases from approximately 6.5% in the Gibraltar Strait to 11% in Greece. In the Baltic Sea, 100-yr TWL range
from 0.91 m south of Stockholm to 2.52 m in St. Petersburg, increasing towards the regions of the inner gulfs. Additionally,
this region displays the widest confidence intervals, ranging from 9% to 12% for the 100-yr TWL. Overall, these results
suggest that return level estimates are more reliable in areas where TWL is dominated by the astronomical tide, such as the
Bay of Biscay, where confidence intervals range from 2% to 5%. Similar behavior, albeit with slightly lower values, is

observed for the 50-yr TWL (see Supplementary Fig. S11).
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Figure 5: Spatial distribution of the 100-yr return period TWL resulting from POT with an exponential fit (a). Spatial distribution
of the 95th confidence interval relative to the 100-yr TWL event, in percentage (b). Examples of individual CTP with the
exponential fits applied to the POT samples to extract return levels of TWL (c, d, e).
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3.4 Relative contributions of mean and extreme total water levels

Figure 6 displays the average storm conditions based on the relative contribution of TWL components at peak moment.
Examples are shown for three points: point 1 on the Atlantic coast of France (Fig. 6a), point 2 in Estonia in the Baltic Sea
(Fig. 6b), and point 3 in Greece in the Mediterranean Sea (Fig. 6¢). The shape of the average storm at each point reflects the
dominant TWL component during storms. We observe distinct behaviors: point 1 is tide-dominated, point 2 is storm surge-
dominated, and point 3 reflects mixed-storm conditions. While point 1 shows semi-diurnal tidal oscillations, point 2 exhibits
a single TWL peak, characteristic of a typical storm surge event. Point 3 shows a similar pattern to point 2, but also includes
tidal noise throughout the average event. The spatial distribution of TWL component contributions is presented in Fig. 6d—f.
Although diverse, it is possible to observe patterns across the study area and the larger European regions previously
identified in the study: Atlantic coast, Baltic Sea, and Mediterranean Sea. Figure 6 also presents the dispersion of relative
contributions of TWL components, aggregated per European basin. These help with the graphical representation of the
uncertainty surrounding the different patterns observed and the characterization of three macro-regions (Fig. 6g—i).

First, the dominance of the astronomical tide along the Atlantic coast is evident and modulates storms regardless of their
origin, although at different levels depending on the basin. Tidal contributions along the most exposed Atlantic coast can
reach 100%, especially along the Atlantic Iberia and Bay of Biscay. The more northern basins tend to present less dominance
of the astronomical tide and more presence of storm surge and wave setup. Notably, the North Sea is the most balanced basin
in this region in terms of the contributions of the three components. This is likely due to its shallow waters and extensive
continental platform which enhance the action of storm surge. Second, the highest storm surge contributions found in the
Baltic Sea also reach 100%. Storm surge tends to be higher in the Baltic Sea due to its wider continental platform. The
transition role of the Kattegat Bay is reflected in the higher contribution of astronomical tide as opposed to the remaining
two basins. Third, although the highest wave setup contributions are in the Mediterranean Sea, this region also experiences
storm surge contributions above 50%. Within this region, the Adriatic Sea shows the highest contribution of storm surge
likely because of its shallow water enabling the propagation of storm surges as well as the its lower level of exposure to
incoming waves. Meanwhile, the lonian Sea presents the highest contributions of wave setup, likely because of its exposure
levels and lower astronomical tide when compared to the Central Mediterranean basin.

The results show that even in parts of the Baltic and Mediterranean Seas the tide reaches a contribution of more than 20%.
These results reinforce the need to account for all three TWL components. Wave setup is particularly relevant under average
conditions, especially in semi-enclosed seas (see Supplementary Material). Astronomical tide becomes crucial during the
most extreme conditions, even in microtidal areas. Storm surges, often the primary source of extreme TWL, tend to sustain
elevated water levels for extended periods. Neglecting any one of these components may lead to an underestimating TWL,

particularly if a storm coincides with a spring high tide, thereby increasing coastal risk.
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Relative contributions of average storm conditions
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Figure 6: Examples of individual CTP with average storm conditions per TWL component (a, b, ¢). Spatial distribution of mean
relative contributions of astronomical tide (d), storm surge (e), and wave setup (f) under extreme conditions. Dispersion of relative
contributions of TWL components per European basin, grouped per European region (g, h, i).

3.5 Sensitivity analysis: wave contribution component

Figure 7a presents the variability of 100-yr TWL given the different options of wave contribution component: static wave

setup, dynamic wave setup, and wave runup. The highest variabilities are observed in the Mediterranean Sea which could be

an indication of higher contributions of waves to TWL compared to the remaining two components or a response to low

ranges of TWL, indicating that even a slight change in the wave contribution is noticed in the estimation of TWL extremes.

Meanwhile, the lowest variabilities are found in the Baltic Sea, probably a response to its limited exposure to incoming

waves.
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Figure 7b presents the FA per European basin, relative to their respective floodplain area, under the 100-yr TWL when
adopting different wave contribution components. Overall, the highest increase in the FA happens when changing from a
static wave setup based-TWL to a dynamic wave setup based-approach. The basins most affected include Central
Mediterranean and Iberia and Biscay. The former is located in a region typically known for coastal wave storms (Lobeto et
al., 2024). The latter indicates to be a region sensitive to infragravity waves, which had been observed in the TWL
reconstruction validation as well. Meanwhile, the least affected basins are Kattegat Bay and the Gulfs, both located in the
Baltic Sea. Besides presenting low values of TWL, these basins are also amongst the steepest floodplains. However, when
looking at the macro EU regions, the most affected one is the Mediterranean Sea, followed by the Atlantic coast and the
Baltic Sea. These results indicate a possible spatial variability of the wave contribution to TWL. Finally, the European FA
under static wave setup is 36.82%, with dynamic wave setup it is 40.40%, and with wave runup it increases to 41.23%.
These results show that while the large-scale results do not change much, it is important to zoom in to smaller regions and
basins to identify areas in which such decisions might affect the most.

Sensitivity analysis: wave contribution component
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Figure 7: Sensitivity analysis of the wave contribution considered in the TWL reconstruction: static wave setup vs dynamic wave
setup vs wave runup. (a) 100-yr TWL variability found in the results. (b) Results of flooded area proportional to the floodplain in
each European basin considering the 100-yr TWL.

3.6 Sensitivity analysis: wave setup components

Figure 8 presents the sensitivity analysis of the different TWL approaches tested, using the 100-yr TWL as the indicator.
Figure 8a compares this indicator under offshore versus nearshore wave conditions. Positive values indicate that offshore
TWL is higher than the nearshore TWL, and negative values indicate the opposite. The results highlight the spatial
variability of the TWL outcomes. Generally, offshore data results in lower TWL along the Atlantic coast and higher TWL in
the Baltic and Mediterranean Seas compared to nearshore data. This suggests a greater degree of wave transformation on the
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Atlantic coast than in the semi-enclosed seas. These discrepancies can be explained by the geometry and exposure of the
different regions. First, the steeper bathymetry of the Atlantic coast enhances wave shoaling processes, leading to higher
waves as they approach the shore. In contrast, the shallower waters and gentler slopes in the Mediterranean and Baltic Seas
could result in greater wave energy dissipation, as waves encounter the seabed earlier and lose energy more quickly.
Although not accounted for in this study, non-linear processes involved in wave transformation, such as refraction and wave-
breaking mechanisms, could be the reason behind such differences as wave transformation processes affect TWL mainly in
areas with steep beach slopes and complex offshore bathymetry (Serafin et al.,, 2019). Second, the Atlantic coast has a
larger fetch, allowing for the development of higher waves, and is more exposed to coastal winds, which amplifies wave
energy. Conversely, the Mediterranean Sea has a smaller fetch, producing more localized and less energetic waves. These
factors also result in greater discrepancies in wave conditions within the semi-enclosed seas compared to the Atlantic coast,
where offshore and nearshore wave conditions are more similar.

Figure 8b identifies the most influential wave component when comparing different TWL modeling approaches. Using the
100-yr TWL as an indicator, 29% of CTPs are most sensitive to dataset selection, while 0.1% are most influenced by the
foreshore slope approximation and 70.1% are most influenced by the wave setup method. Dataset selection is the dominant
factor along the Atlantic coast. In contrast, the wave setup formulation becomes more important in the semi-enclosed Baltic
and Mediterranean Seas. These differences arise from the increased need for accurate data when modeling a wider range of
wave conditions. This is particularly critical along the Atlantic coast, where the wave climate is highly energetic (Lobeto et
al., 2024). On the other hand, the marginal seas, such as the Baltic or the Mediterranean, exhibit lower TWLs making the
accuracy of wave setup estimation crucial. Even the smallest errors in this component can lead to significant discrepancies in
the TWL predictions, potentially affecting the accuracy of coastal impacts assessments. Additionally, the low influence the
foreshore slope approximation may be due to the conservative approach adopted for capping and normalizing the foreshore
slopes (Melet et al., 2020).

Figure 8c presents the influence each wave contribution component tested has on the resulting 100-yr TWL FA, averaged
per European basin. Across the entire study area, the most influential element is the wave setup formulation with values
ranging from 49.3% along the NE Atlantic basin to 84.0% in the Central Baltic Sea. When comparing the dataset and the
slope approximation elements, the Baltic Sea presents more influence from the slope approach, with the exception of the
Kattegat Bay which could be described as a transition region rather than being part of the Baltic Sea. Moreover, Central
Mediterranean also presents higher influence of the slope approximation than the dataset. The difference, however is only
0.2%. The remaining basins across the study area, show the slope approach as the least influential element. When comparing
the influences of the dataset and the wave setup formulation, most of the study area present a negative correlation. Along the
Atlantic coast and the Baltic Sea, as the influence of the dataset increases, the influence of the wave setup formulation
decreases.
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Sensitivity analysis: wave setup component
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Figure 8: Sensitivity analysis of the wave setup components: data resolution, foreshore slope approximation, and wave setup
formulation. (a) Differences in 100-yr TWL when applying offshore instead of nearshore wave conditions. This plot isolates the
influence of wave data resolution by comparing TWL approach D against A. (b) Dominant component explaining the 100-yr TWL
variability. (c) Influence of wave setup components on the 100-yr flooded area variability averaged per EU basin.

3.7 Sensitivity analysis: POT threshold

Figure 9 presents the sensitivity analysis regarding the POT threshold, comparing EVA results when adopting a variable
threshold corresponding to an average of 1 event per year (A=1), 2 events (A=2), or 3 events (A=3). Although the
corresponding TWL threshold varies up to 30%, the resulting 100-yr TWL up to 20% (Fig. 9a), and the corresponding 95"
confidence interval up to 4%. The highest TWL threshold variabilities occur in the Baltic Sea, whereas the highest 100-yr
TWL variabilities occur in the Mediterranean. Meanwhile, the Atlantic coast is the least sensitive to the POT threshold
selection. Figure 9b display results of an Anderson-Darling test when adopting the different POT thresholds. A rejected null-
hypothesis indicates that the sample does not fit an exponential curve. Out of the 51,010 CTPS, only 121 CTPs indicate that
none of the options lead to robust samples. The results shown for A=1 and A=2 are similar, with approximately 6.5% of the
CTPs not adjusting well to an exponential fit. Meanwhile, A=3 leads to more than double of the number of CTPs rejecting
the null hypothesis (15.3%). Figure 9c—d indicate which threshold tested lead to the highest and lowest uncertainty as
represented by the 95" confidence interval of the 100-yr TWL EVA results. Although, A=1 indicates an overall good fit of
the samples in the Anderson-Darling test, this is the threshold leading to the highest uncertainty of return levels. A possible
explanation is that A=1 leads to excessively small sample sizes, leading to instability in the EVA. Meanwhile, although
adopting A=3 yields the lowest uncertainty in most CTPs, the confidence interval difference between A=2 and A=3 remains
below 1% for the majority of CTPs, indicating minimal impact for 73.3% of the CTPs. For results on the TWL threshold
variability, confidence interval variability, and Anderson-Darling test spatial distributions, please refer to the Supplementary
Material.

Ultimately, there is no single threshold which solves the different challenges in all 51,010 CTPs. However, given the poorer

results from the Anderson-Darling test with A=3, the higher uncertainties of the estimated return levels provided by A=1, and
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the overall low 100-yr TWL variability across the different methods, A=2 represents a reasonable balance between accuracy,
robustness, and sample size to be used in EVA.

Sensitivity analysis: POT threshold
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Figure 9: Sensitivity analysis of the POT threshold selected. Variable thresholds corresponding to an average of 1 extreme event
per year (A=1), 2 events (2=2), and 3 events (A=3) were tested. Spatial variability 100-yr TWL variability (a). Anderson-Darling test
results when adopting A=1, A=2, and A=3 (b). A rejected null hypothesis indicates that the sample does not fit the exponential fit.
Uncertainty of results indicating which A leads to the highest uncertainties (c) and the lowest uncertainties (d) of return levels,
based on the 95™ confidence level.

3.8 Uncertainty in extreme values of TWL

Table 2 presents the overall characterization of the study area regarding TWL extremes, aggregated per EU basin, including
the overall uncertainties of 100-yr TWL and its corresponding FA. Results from the sensitivity analysis on the wave
contribution were not considered in the quantification of uncertainties shown as the inclusion of infragravity waves and
runup would overemphasize the role of waves in TWL estimates. When looking at the entire study area, 100-yr TWL has an
uncertainty of 14.5%. As more detail is added to the analysis, the 100-yr TWL uncertainty decreases to 9.2% along the
Atlantic coast and 11% in the Baltic Sea, while it increases to 23% in the Mediterranean Sea. In most cases, 100-yr TWL
uncertainty increases with increasing relative contribution of wave setup. Notably, the European basins with the highest
relative contributions of wave setup, Central Mediterranean and lonian Sea, are also the ones with the highest uncertainties
of the 100-yr TWL. Meanwhile, in the Baltic Sea, the lower relative contribution that wave setup has on TWL could be the
reason for the decrease in uncertainty.
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Regarding the 100-yr FA, the study area presents an uncertainty of 2.5% which increases to 3.0% along the Atlantic and
Mediterranean coasts and decreases to 1.7% in the Baltic Sea. However, this does not mean that the European scale map is
more reliable but perhaps that it is masking some key responses coastal impacts might have when a different wave setup
component is adopted. The higher uncertainties in FA are found in basins with higher magnitudes of TWL along the Atlantic
coast. Oppositely, the lowest uncertainties in FA tend to occur in the Baltic Sea, where TWL magnitudes are smaller. This
could be a consequence of the static flood model which is sensitive to the water level used as input, so even a slight increase
in the 100-yr TWL might lead to a greater increase in FA. Overall, uncertainties in 100-yr TWL and FA do not necessarily
correlate. The results show that large uncertainties in 100-yr TWL, when occurring in areas where TWL is typically low,
may lead to minimal variability in FA. This is because the variations in 100-yr TWL remain small compared to changes in

terrain elevation, limiting their impact on flood extent.

Table 2: Characterization of the study area based on TWL extremes and aggregated per EU basin. EVA results are summarized in
TWL threshold corresponding to a A=2 and 100-yr TWL (mean + standard deviation). Relative contributions refer to average per
basin and considering all peaks identified by POT. Uncertainties consider only tests performed in the sensitivity analyses of wave
setup components and POT threshold.

EVA Relative contribution Uncertainties
EU basin TWL 100-yr | 1o gy STOYM  Wave |100-yr TWL 100-yr FA

threshold (m) TWL (m) surge (%) setup (%) (%) (%)
Norway Sea 1.7+0.3 24+04 55.7 31.8 125 11.6 31
NE Atlantic 31+11 39+12 71.1 20.8 8.2 8.5 5.1
North Sea 25+1.0 35+11 50.1 42.4 7.5 7.0 1.8
English Channel 44+£15 51+1.6 88.0 7.7 4.3 4.9 4.1
Iberia and Biscay 25+05 3.0x0.6 84.1 4.8 111 8.9 7.0
Macaronesia 1.6+0.1 1.8+0.2 81.3 1.2 175 94 2.1
Kattegat Bay 09+0.1 1.7+0.2 7.3 87.1 5.6 7.7 1.1
Central Baltic 0.7+01 14+0.3 0.6 88.1 11.3 143 2.3
Gulfs 08+0.1 1.7+0.3 0.3 91.7 8.0 10.5 1.1
Central Mediterranean 05+0.1 0701 22.6 55.6 21.8 26.2 5.4
lonian Sea 04+01 0.7£0.1 145 64.1 21.4 25.1 1.3
Adriatic Sea 06+0.1 11+02 24.4 66.1 9.5 13.8 2.3

3.9 Classification of extreme TWL events

Figure 10 presents the European classification of extreme TWL events, considering the 100-yr TWL and the dominance of

TWL components regarding their relative contributions. The results show that there are no regions where the wave setup
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dominates, although it could be an important source of extreme events, as previously shown. The highest 100-yr TWLs are
found in areas where the astronomical tide dominates, mainly along the Atlantic coast. In the Baltic Sea, storm surge
dominates all CTPs analyzed and the most sheltered areas are where the 100-yr TWL are the highest. In the Mediterranean
Sea, the most exposed regions are where extreme events are mostly mixed, probably an indicative of the wave setup
contribution which might not be enough to dominate but still relevant in decreasing the influence of the other TWL
components.

Classification of extreme events

Latitude (°)
(9]
o
g | -

45+
40
35
30|
25
-20 -10 0 10 20 30 40
Longitude (°)

Figure 10: European classification of extreme events considering the range of 100-yr TWL and the dominance of TWL
components regarding their relative contributions.

4 Discussion

Currently, there remains a strong need to provide coastal flooding maps at large geographic scales. TWL is the primary input
for coastal flood modeling and must be characterized appropriately for the scale of analysis. Without a proper assessment of
TWL, estimating extreme conditions becomes more uncertain (Rohmer et al., 2021; Toimil et al., 2020). However, TWL
calculation is complex and presents several challenges. We have presented a methodology for estimating large-scale TWL
extremes and applied it to the European coast at the highest resolution to date. For the first time, this was done using
nearshore wave conditions, particularly important for semi-enclosed European seas, where offshore data can lead to TWL
overestimation. The methodology incorporates spatial variability typical of large-scale coastal studies. This was achieved by
using spatially and temporally variable foreshore slopes during TWL reconstruction and by applying spatially variable
threshold in the POT method. An analysis of relative contributions helped the interpretation of extreme TWL behavior along

the European coastline. The characterization of three macro-regions (Atlantic coast, Baltic Sea, and Mediterranean Sea)
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supported the understanding of the degrees of uncertainty observed across different regions in distinct steps of the
methodology.

One key outcome is how impactful methodological choices for wave contribution in TWL reconstruction can be. The
proportion of the European floodplain which is inundated under various TWL approaches varies by up to 10%, depending on
wave dataset selection, foreshore slope approach, and wave setup formulation. This area is roughly the size of the Cantabrian
region in Spain or twice the size of Zeeland in the Netherlands. The most significant variation in flooded area in Europe
under 100-yr TWL scenario results from changes in wave setup formulation. Using the Guza & Thornton (1981) method
yields 4 — 7% more flooded area than the Stockdon et al. (2006) formulation, regardless of the foreshore slope assumption.
Whereas using a constant foreshore slope yields 1% more flooded area than incorporating variable slopes. Similarly,
nearshore TWL produces 3% more flooded area than offshore TWL. While these effects merit further analysis at a higher
resolution and on a smaller scale, the results suggest that relying on offshore wave conditions, common in the literature, may
lead to an underestimation of the actual flooded area.

A second outcome is the application of an EVA methodology appropriate for large-scale studies. The POT approach focuses
on high-magnitude events, unlike annual maxima (AM) methods, that assume a single extreme event to occur per year. Our
findings show that the threshold selection greatly influences sample size, particularly when applying a constant percentile
threshold. Comparing our thresholds to those used in previous studies, we found that 87% of the study uses a threshold
above P97 (Le Gal et al., 2023), 86.1% above P98 (Kirezci et al., 2020), and 85.8% above P98.5 (Paprotny et al., 2016).
Although high, these percentages imply that a large portion of the coast would not be adequately represented using these
thresholds, leading to inconsistent analysis. To ensure robust EVA approach, besides the sensitivity analysis on the threshold
adopted, we also conducted an analysis on distribution fits to estimate return levels. Around 13% of the coast exhibited a
significant shape parameter, justifying the use of Generalized Pareto Distribution (GPD) instead of an exponential
distribution (see Supplementary Fig. S8). Most of these points presented a negative shape parameter and half of them were
located in tide-dominated areas, where the TWL is modulated by the astronomical tide. However, due to the narrow
confidence bands in these regions, we opted to retain the exponential fit, simplifying the method for continental-scale
applications.

A third key insight is the importance of understanding the sources of extreme TWL events. Dominant TWL components
provide insight into storm behaviors and potential impacts. The spatial patterns we observed had been reported before. The
more exposed, tide-dominated Atlantic coast and the more sheltered and storm surge-dominated Baltic and Mediterranean
Seas were identified by previous studies, even neglecting waves (Merrifield et al., 2013). However, our results differ from
others in the literature due to our wave setup characterization. For example, a wave setup formulation specific to dissipative
beaches, which tends to overestimate wave setup, has been adopted by other authors (Vitousek et al., 2017). This led them to
understate storm surge contribution in extreme TWL in Europe, contrary to our findings. Additionally, their 111 km
resolution excluded marginal seas, where we observed significant storm surge contributions. Similar patterns of storm surge

contributions were identified in the Baltic Sea and of wave setup dominance in the Mediterranean Sea. Yet, lower tidal
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contributions than what we encountered for the Atlantic coast have been reported, likely due to the inclusion of the swash
component, which decreases tide influence (Melet et al., 2018). In our study, we excluded swash by using the static wave
setup, as swash operates on a scale of seconds to minutes, whereas flood events typically last hours to days (Hinkel et al.,
2021; Parker et al., 2023).

Finally, we highlight the importance of considering TWL as a combination of its three components. For example, as we
move towards more extreme return levels, the relative contribution of storm surge increases, exposing the coast to prolonged
high TWL, which can also heighten wave setup processes (Su et al., 2024). However, we acknowledge that wave setup alone
cannot drive coastal flooding. On the one hand, wave setup represents an increase in mean sea level of only a few
centimeters to a couple of meters (ldier et al., 2019). On the other hand, the width of the coast affected by this increase in
mean sea level is only tens to a couple hundred meters long (Dodet et al., 2019). The volume of water being propagated
towards the coast potentially leading to coastal flooding is not large when compared to tides and storm surges, which
increase mean sea level over several kilometers of extension (Woodworth et al., 2019). Additionally, although our study
shows that astronomical tide modulates extreme TWL in many regions, it should be pointed out that the main drivers of
TWL driving coastal flooding are the unexpected extreme sea levels due to waves or storm surges as a result of storm
conditions. This is because in physical-terms, this is an expected oscillation to which coastal communities are well adjusted
to. However, our analysis shows that without the inclusion of astronomical tide, coastal flooding would probably not occur
in many regions of the study area.

The methodology developed addresses the key challenges introduced regarding the TWL reconstruction and the EVA
method selected. As a consequence, it also introduces new sources of uncertainties given the limitations inherited by some of
the approaches adopted. For instance, even though the use of static wave setup as a component of TWL was validated, we
acknowledge the possible overestimation of this component in areas such as the Baltic and Mediterranean Seas. Several
factors could contribute to this. First, the use a semi-empirical setup formulation developed for open-coasts and beaches. It
should be noted that although both our results and the literature indicate semi-empirical formulations as more adequate, they
also present limitations (Dodet et al., 2019). For example, the formulation adopted here was not designed for use in all types
of wave regimes or beach profiles (Plant & Stockdon, 2015). Second, the use of modeled foreshore slopes including capping
and normalization, which may inaccurately represent the range and distributions of observed beach slopes in different coastal
environments. This simplification can lead to the underestimation of the wave contribution in steep slopes or overestimation
in gentler ones (Melet et al., 2020). Third, the adoption of a constant sediment grain size in the application of the Sunamura
(1984) foreshore slope approximation is generic and cannot represent the entire study area. This decision might overestimate
the resulting foreshore slopes in areas such as wetlands and mudflats which have finer sediment grain sizes. However,
although beach types and sediment materials are diverse across the European continent, the value adopted here follow the
global study by Rueda et al. (2017) and agrees with values observed in smaller scale studies across the study area (Anthony
& Héquette, 2007; Duo et al., 2020; Horn & Walton, 2007).
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Extreme TWL events can cause severe coastal impacts as water overtops land defenses, reaching communities,
infrastructure, assets, and buildings (Vousdoukas et al., 2018). Proper reconstruction of TWL and its extreme events is the
first step for accurate flood hazard assessment. Large-scale evaluations help us identify hotspots for more detailed risk
assessments. Two key limitations of large-scale studies remain. First, the computational demands of working with large
datasets are high. However, improvements in data availability and computational efficiency have enabled this study to
deliver high-resolution, high-quality TWL extreme estimates across Europe. Second, simplifications and assumptions are
often required to handle diverse coastal environments. In this study, the TWL as a linear sum of its components overlooks
non-linear interactions between TWL components, important in regions with wide continental shelves and enclosed lagoons
(Bertin et al., 2012; Lorenz et al., 2023), such as the Baltic and Mediterranean Seas. According to Arns et al. (2020), by not
considering non-linear interactions between tide and storm surge, for example, can lead to 30% increase in estimated
extreme water levels, 16% increase in coastal flooding costs, and 8% increase in exposed people globally. A strategy to
address such issue at the large-scale is to run a hydrodynamic model with both tidal and meteorological forcings combined
(Haigh et al., 2014b). This approach, however, does not consider the contribution of waves.

Finally, we point out that although this study present extreme TWL at an unprecedented resolution for the entire coastal zone
of Europe, one could find diversifications of beach profiles and types, from sandy to rocky formations, within the 1 km
distance adopted. Thus, although the TWL resolution adopted here is unprecedented at this scale, it remains insufficient for

local-scale applications, where higher-resolution data are needed to support detailed planning.
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