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Abstract. When coastal and river floods occur concurrently or in close succession, they can cause a compound flood with 10 

significantly higher impacts. While our understanding of compound flooding has improved over the past decade, no studies to 

date have assessed the spatial correlation of compound flooding. To address this gap, we develop a framework that captures 

dependence between coastal total water level and river discharge across a set of locations along the U.S. coastline. Using 41 

years of observed data from 41 station combinations, we stochastically model 10,000 years of spatially-joint events of extreme 

sea level and river discharge based on their dependence structure and cooccurrence rate. We define potential compound 15 

flooding as events in which both drivers exceed their respective 99th percentile thresholds. Results based on our simulated large 

event set show that the U.S. West coast shows high spatial correlation of potential compound flooding. Among all three coasts, 

the West coast has the highest frequency of widespread potential compound flooding, with around 50% of compound events 

arising at multiple locations simultaneously. We identify two clusters with mutually high joint occurrence rates of simultaneous 

compound events on this coast, namely 1) Charleston – Cresent City – North Spit, and 2) Santa Monica – Los Angeles – La 20 

Jolla. Widespread compound events are less frequent on the East coast where approximately 30% of potential compound 

flooding may affect multiple locations. Moderate spatial dependence is observed in the central region and weaker spatial 

dependence for the remaining locations on this coast. In contrast, the Gulf coast shows the weakest spatial correlation, where 

over 82% of compound events only affect single locations. Our findings highlight the importance of accounting for spatial 

dependence in compound flood assessments. Our large set of stochastic spatially-joint events can be used as boundary 25 

conditions for the hydrologic-hydraulic models to simulate the surface inundation and further assess risks of compound 

flooding in low-lying coastal and estuarine areas. 

1 Introduction 

In the contiguous United States, coastal counties are home to nearly 129 million people (NOAA, 2020) and often serve as 

important economic centres (McGranahan et al., 2007). In these low-lying, densely populated areas, flooding can cause 30 
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widespread adverse socioeconomic and environmental impacts, with an estimated annual damage of more than 180 billion US 

dollars (JEC, 2024). Despite continued investments in flood adaptation and management, recent flood events, such as 

Hurricanes Milton, Helene, and Ida, have demonstrated the ever-present threat of serious flood impacts in coastal regions. 

Flood water levels in these areas can be influenced by both coastal drivers (e.g. high tides, wave action, and storm surges) and 

riverine drivers (i.e. heavy precipitation and high river discharges). When multiple drivers coincide or occur in close 35 

succession, they can result in a compound flood event that intensifies the overall flood hazard and causes significantly higher 

impacts than when they occur in isolation. Moreover, these flood drivers are projected to co-occur more frequently in the U.S. 

due to climate change factors including sea level rise (Ghanbari et al., 2021), potential changes in tropical cyclone climatology 

(Gori and Lin, 2022), and projected shifts in future river flow regimes (Moftakhari et al., 2017). Together with projected 

shoreline deformation (Woodruff et al., 2013) and socio-economic growth (Hallegatte et al., 2013), these changes are expected 40 

to escalate compound flood risk in most U.S. coastal areas in the future.  

Compound flooding in coastal and estuarine regions can be driven by several mechanisms (Jane et al., 2025). First, both storm 

surge and rainfall (or river discharge) are extreme to cause flooding and their interaction can increase the flood extent and 

depth. Second, storm surge and rainfall are moderate and do not cause flooding individually but their interaction may initiate 

flooding. Third, extreme sea levels alone can cause flooding and additional rainfalls can further intensify the flooding. Fourth, 45 

high water levels (not necessarily being extreme) can 1) create backwater effects and block free river flows to the sea (Ghanbari 

et al., 2021), and 2) impede efficient drainage of heavy rainfall  (Wahl et al., 2015), thereby prolonging or increasing flooding. 

Synoptic weather patterns, both tropical cyclones (TCs) and extra tropical cyclones (ETCs), are the main drivers of these 

compound flooding mechanisms worldwide (Lai et al., 2021). While TCs tend to cause extreme flooding, ETCs are found to 

be responsible for more frequent and moderate events. Besides synoptic weather patterns, coastal and river floods can also co-50 

occur by coincidence (Couasnon et al., 2020); however, such incidents are considered statistically independent according to 

probability theory (Martius et al., 2016). Traditional flood risk assessments do not consider these interactions between flood 

drivers and may therefore underestimate the overall flood hazard and associated risk (Wahl et al., 2015; Ward et al., 2018). 

Having more accurate assessments of compound flood risk could help in the development of effective adaptation measures to 

reduce current and future risks. 55 

A key step in compound flood risk assessment is accurately quantifying the dependence and joint probabilities among flood 

drivers. These quantifications can provide essential boundary conditions for flood hazard and risk assessments (Eilander et al., 

2023; Moftakhari et al., 2019), and are important for designing flood protection measures in regions prone to compound 

flooding (Salvadori et al., 2016; Ward et al., 2018). In recent years, there has been a growing body of research assessing the 

dependence between coastal and riverine flood drivers over a range of spatial scales. Most of these studies (e.g. Bevacqua et 60 

al., 2017; Couasnon et al., 2018; Rueda et al., 2016) are focused on specific locations due to the complexity of the applied 

multivariate statistical models. At larger spatial scales (regional to global), dependence assessments are often limited to 

bivariate cases involving two flood drivers (e.g. Bevacqua et al., 2019; Couasnon et al., 2020; Ward et al., 2018), while a few 

studies (e.g. Camus et al., 2021; Nasr et al., 2021) considered three or four drivers. For the entire U.S. coastline, compound 
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flooding potential has been evaluated by several studies in terms of statistical dependence between storm surge and rainfall 65 

(Wahl et al., 2015), joint probabilities of coastal water level and river discharge under sea level rise scenarios (Ghanbari et al., 

2021; Moftakhari et al., 2017), and seasonal patterns in the dependence structure among storm surge, wave, river discharge, 

and rainfall-runoff (Nasr et al., 2021).  

While these studies have improved our understanding of compound flooding, no studies to date have looked into the spatial 

correlation of compound flooding between locations. Significant spatial dependence has been identified for both coastal 70 

(Enríquez et al., 2020; Li et al., 2023) and riverine flooding (Metin et al., 2020; Quinn et al., 2019) in the United States. 

Moreover, the storm events TCs and ETCs that may drive compound flooding can have a large spatial footprint. Therefore it 

is likely that compound flooding may potentially arise across multiple locations. A recent example of widespread compound 

flooding is Hurricane Harvey in 2017. It caused record-breaking rainfall, river discharge, and run-off, combined with a 

moderate but long-lasting storm surge, resulting in disastrous flooding in Houston (Valle-Levinson et al., 2020). 75 

Simultaneously, other regions including Galveston Bay, Rockport, and Richmond also saw flooding.  

Therefore, the overall aim of the paper is to assess the spatial correlation of potential compound flooding from extreme sea 

level and river discharge along the U.S. coastline. Potential compound flooding is defined as events during which both extreme 

sea level and river discharge exceed the corresponding 99th threshold. To this end, three objectives are addressed. First, we 

estimate the statistical dependence between extreme sea level and river discharge across different locations, while accounting 80 

for relevant time lags. This includes a multivariate statistical sampling for identifying observed spatially joint events with 

potential compound flooding (i.e. cooccurring events across different locations), and applying a multivariate conditional 

statistical model to these events to estimate the dependence structure both spatially and between extreme sea level and river  

discharge. The second objective is to develop an equivalent of 10,000 years of stochastic spatially joint events based on the 

estimated dependence, which can be used as boundary conditions for physical flood inundation models. Based on the stochastic 85 

events, the third objective is then to assess the spatial correlation of compound flood potential by looking into the co-occurrence 

of extreme sea level and river discharge at different locations.  

2 Data and Methodology 

To investigate the spatial correlation of potential compound flooding events around the U.S. coasts, we assess dependence 

between coastal and riverine flooding drivers, specifically extreme sea levels and river discharges in this study. The dependence 90 

structure is also assessed between these drivers across different locations. This study involves the following five steps, which 

are described in the subsections: 

1. Selecting datasets and station combinations of tidal gauges and river discharge stations along the U.S. coastline; 

2. Infilling missing values of sea level and river discharge time series; 

3. Identifying joint extreme events of sea levels and river discharges at different locations; 95 
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4. Estimating the dependence structure from the identified events and generating 10,000 years of stochastic spatially 

joint events using a multivariate conditional statistical model; 

5. Assessing the co-occurrence of different extreme events at different locations from the generated stochastic events. 

2.1 Datasets and selection of station combinations along the coastal U.S. 

 100 

Figure 1: The location of station combinations on the U.S. a) West, b) Gulf, and c) East coasts. The red triangles and blue circles represent 

the selected NOAA tidal gauges and USGS river discharge stations in this study. 

For sea levels, we use the observed hourly total water levels from the Global Extreme Sea-level Analysis Version 3 database 

(GESLA-3) (Haigh et al., 2023), from which we extract daily maxima for the period 1980-2020. These coastal water levels 
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consist of mean sea levels, astronomical tides, and non-tidal residuals (i.e. storm surges). To remove the effects of mean sea 105 

level variations, we detrend the time series by subtracting the annual mean sea levels using a moving window. For the river 

component, we use river discharge because it represents near-term runoff from a storm event that contributes to the riverine 

water levels (Bevacqua et al., 2020). Therefore, daily mean discharge observations between 1980 and 2020 are extracted from 

the United States Geological Survey (USGS) network (https://waterdata.usgs.gov/nwis/rt).  

For a spatially extensive coverage of coastal locations, we select 41 GESLA-3 tidal gauges by combining stations used in 110 

previous studies (Feng et al., 2023; Ghanbari et al., 2021; Nasr et al., 2021; Wahl et al., 2015). These 41 tidal gauges are then 

paired with nearby USGS river stations, following the selection criteria based on Nasr et al. (2021) and Ward et al. (2018): 1) 

minimum data completeness of 80% during 1980-2020 in the daily mean discharge time series; 2) minimum upstream 

catchment area of 1000 km2; (3) maximum Euclidean distance of 500 km from the tidal gauge; and 4) maximum distance of 

55 km (0.5°) between the river outlet and the tidal gauge. For some tidal gauges, several USGS river discharge stations satisfy 115 

these rules. In these cases, we select the ones with the most complete data records preferably in the downstream area. The full 

selection procedure results in 13, 7, and 21 station combinations for the West coast, Gulf of Mexico, and East coast 

respectively. Figure 1 shows the locations of these station combinations and further information can be found in Table S1. 

2.2 Infilling missing values of sea levels and river discharges 

Gauge observation records often suffer from data gaps and may preclude a robust statistical analysis of both spatial dependence 120 

and dependence between flood drivers. Therefore, we first infill the missing values in the time series at those selected tidal 

gauges and river stations. Over the 41 years between 1980 and 2020, each of these 41 tidal gauges has missing values in daily 

maximum sea levels, with 33 gauges missing less than one year of data. Two gauges, Santa Monica and Bar Harbor, show the 

lowest data completeness, with 3.2 and 3.6 years of missing values respectively. For daily river discharges, 10 stations contain 

missing values where six stations have gaps of less than one month, two stations have missing data up to two years, and one 125 

station (Cowlitz River) is missing 7.5 years of data.    

To infill missing total water levels, long data gaps are first imputed using linear regression based on simultaneous water levels 

from nearby tide gauges located within 50 km. We start the infilling process with the nearest available gauge and retain only 

the values estimated from regressions with a coefficient of determination (R2) greater than 0.5. For some tide gauges where no 

gauges or only a few ones without available data exist within the 50-km radius, we increase the search distance to 150 km. 130 

The remaining non-consecutive gaps are subsequently filled using linear interpolation.  

Missing daily mean river discharges are first translated from the corresponding gage height observations using rating curves. 

These curves describe the empirical linear correlation between gage height and mean river discharge for individual stations 

and are available from the USGS website (http://waterwatch.usgs.gov). The remaining missing values are then infilled using 

linear regression with daily mean discharges from the nearest upstream river station. If there are more than one upstream river 135 

inlets, multi-linear regression is applied to estimate the missing discharges based on simultaneous data records at all upstream 

stations. Lastly, any remaining discrete missing discharges are calculated through linear interpolation. As an example, Fig. S1 
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shows the data infilling result at the tidal gauge Santa Monita (3.2 years of missing data) and the river station Cowlitz River 

(7.5 years of missing data), as well as the methods adopted to impute specific missing values. 

2.3 Identifying spatially joint extreme events of sea levels and river discharges 140 

Storm events can impact a large stretch of coastline (Enríquez et al., 2020; Li et al., 2023) and may cause compound flooding 

at multiple locations. However, individual storms are not likely to affect all parts of the U.S. coastline. To account for this 

trade-off and spatial dependence, we develop datasets of spatially joint extreme events of total water levels and river discharges 

for two coastal regions: (1) the West Coast, and (2) the combined Gulf of Mexico and East Coast. We group the Gulf and East 

coasts together because hurricanes can make landfalls in close succession across these two regions. Prime examples of such 145 

events are Hurricanes Helene (2024), Ian (2022) and Katrina (2005).  

For each region, we first define joint extreme events that may potentially cause compound flooding at individual 

locations/station combinations. This analysis involves a two-sided conditional sampling where bivariate events are selected 

conditioned on one of the two drivers (i.e. total water levels and river discharges) being extreme (Jane et al., 2020). Due to the 

relatively short data records used in this study, we use the peak-over-threshold (POT) approach for this process as POT 150 

generally samples more extreme events compared to the annual maxima approach (Camus et al., 2021). However, the POT 

approach introduces subjectivity in threshold selection: the threshold should be high enough to drive a good fit of marginal 

distributions, yet low enough to ensure sufficient samples for robust parameter estimation of these distributions. To reduce this 

subjectivity, we apply the automated threshold estimation approach of Solari et al. (2017) to total water level and river 

discharge time series to sample joint extreme events at each station combination. The independence between identified events 155 

is ensured by applying a 5-day de-clustering window (Camus et al., 2021; Maduwantha et al., 2024) to each time series, where 

the maximum value of each event is centred in the 5-day window. We also account for potential time lags between the peak 

water level and river discharge by allowing a ±3-day lag. When conditioned on total water levels, a peak water level is paired 

with the maximum river discharge occurring within a 7-day window centred on that water level; the same procedure is used 

for cases conditioned on river discharges. 160 

We further transform these bivariate events of paired total water levels and river discharges onto their marginal scales. Laplace 

marginal distributions are adopted in this study because they have been shown to outperform other common marginals such as 

Gumbel distributions in the subsequent dependence modelling framework (Keef et al., 2013). To assess the sensitivity of the 

results to different marginal distributions; we also test Gumbel marginals and find that the results are insensitive to this choice. 

These transformed events are then grouped into a large dataset with Laplace marginal values for each of the two study regions.  165 

From each dataset, we identify spatially joint events across the entire coastal region. To do this, we first identify the primary 

variable with the largest marginal value among all variables from the entire dataset, and retrieve the occurrence date and 

location. At this primary location, we then obtain the corresponding value for the other variable from the sampled bivariate 

events. For instance, if the largest extreme water level event occurs at a coastal station, we obtain the corresponding river 

discharge value at the paired river station from the bivariate event set developed for individual locations.  170 
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Next, we match this primary event at the primary location to potential bivariate events at all other locations. Since peaks at 

different locations do not necessarily occur simultaneously, we apply a time window of 7 days (±3 days around the peak for 

the primary variable) in the matching process. In other words, we assess whether a compound event occurs at another location 

within this time window. This process may result in multiple bivariate events identified for a single location; in these cases, 

we retain the event with the largest peak (on the marginal scale). If no event is found for a particular location, we instead select 175 

the maximum total water level or river discharge within the 7-day window. This process samples one spatially joint event for 

the entire coastal region centred around the peak of the primary variable. Once this event is identified, we remove all peaks 

across all variables and locations that fall within the associated event window (ranging from 7 to 13 days, depending on the 

timing of the matched peaks). We then repeat the process with the updated event set, identifying the next largest remaining 

marginal value to define the corresponding spatially joint event. This iterative sampling continues until no peaks can be found 180 

in the event set. 

This approach generates a separate dataset of spatially joint events of total water level and river discharge for each of the two 

coastal regions in this study. Each sampled event represents a peak bivariate event at a single location (the primary station 

combination) matched appropriately with potential peak bivariate events at all other locations. The validity of these spatially 

joint events is ensured by performing several measures (see Sect. S1), and results of these measures can be found in Fig. S2-3 185 

in the supplementary materials.  

2.4 Estimating the statistical dependence structure and generating a 10,000-year of spatially joint events of total water 

level and river discharge 

2.4.1 Dependence calculation 

To assess the dependence structure between a set of variables, two main classes of statistical models have been typically used: 190 

1) copulas, and 2) the multivariate conditional model of Heffernan and Tawn (2004). Standard copulas are used to describe 

the bivariate dependence while pair-copula construction (e.g. vine copula) is developed to assess higher-dimensional 

dependence. Although the copula approach has been widely used in compound flooding analyses, standard copulas impose 

one type of extremal dependence in the joint tails between variables (Heffernan, 2001). Therefore, a priori selection of the 

best-fit copula is often performed for paired variables of interest (e.g. Jane et al., 2020; Wahl et al., 2015). In contrast, the 195 

multivariate conditional model captures the dependence structure between a set of variables by estimating the conditional 

distribution for the remaining variables given that a primary variable exceeds a high threshold. This approach therefore 

provides more flexibility in modelling the tail dependence structures; it is however more sensitive due to the added complexity 

of selecting suitably high thresholds (Towe et al., 2019). Nevertheless, the multivariate conditional model has been applied to 

model the dependence between drivers of compound flooding at a single location (e.g. Jane et al., 2020), as well as the 200 

dependence in the variables contributing to extreme sea levels at multiple sites (e.g. Li et al., 2023; Wyncoll et al., 2016). As 

a result, we choose the multivariate conditional model of Heffernan and Tawn (2004) to estimate the dependence between total 

water levels and river discharges across different locations in this study. 
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The multivariate conditional model works by 1) estimating the univariate marginal distribution for each variable; and 2) 

calculating the pairwise dependence structure based on regression functions. The marginal distributions are semi-parametric 205 

as a generalised Pareto distribution (GPD) is fitted to peak values above a specified threshold and an empirical distribution is 

used for those below the threshold. We use the same thresholds as identified in Sect. 2.3 for this process and the underlined 

GPD fitting process is performed using the Maximum Likelihood Estimation (MLE) approach in the multivariate conditional 

model. These estimated marginal distributions are then used to transform the water levels and river discharges to their common 

scales. To remain consistent with Sect. 2.3, Laplace scales are adopted in this work.  210 

To estimate the dependence between total water levels and river discharges across different locations, we apply the multivariate 

conditional model to the transformed datasets of identified spatially joint extreme events (Sect. 2.3). The model then calculates 

the conditional distribution of the remaining variables from the sampled events where a specified variable (i.e. the conditioning 

variable) exceeds the threshold. This procedure is repeated by taking each variable as the conditioning variable in turn. The 

resultant dependence is therefore a series of pairwise regressions with estimated residuals, based on the following equation: 215 

𝒀−𝒊|𝑌𝑖 = 𝒂𝑌𝑖 + 𝑌𝑖
𝒃𝒁−𝒊 for 𝑌𝑖 > 𝑣 (1) 

where 𝒀−𝒊 is a vector of all the variables excluding variable 𝑌𝑖 (here the model considers two variables per location, namely 1) 

total water level and 2) river discharge), 𝑣 is a high threshold above which the dependence is estimated (it can be different 

from the threshold used for marginal distributions), 𝒂 is a vector of parameters (−1 < 𝒂 < 1)  for overall dependence strength 

with positive and negative values referring to positive and negative dependence respectively, 𝒃 is another vector of parameters 

describing how the dependence changes (𝒃 < 1, with positive values meaning the variance increases as 𝑦 increases), 𝒁−𝒊 is a 220 

vector of residuals. For a station of interest 𝑌𝑖 and the 𝑗th station of 𝒀−𝒊, their dependence is characterized by Eq. 1 using 

parameters 𝑎𝑗|𝑖, 𝑏𝑗|𝑖, and residuals 𝑍𝑗|𝑖 . 

2.4.2 Stochastic event set generation 

Multivariate extremes, such as the spatially co-occurring events with potential compound flooding in this study, are scarce in 

observational records. Therefore, accurate frequency analyses for such events require simulations of large event sets capturing 225 

dependence between a set of variables (Brunner, 2023). Based on the estimated dependence structure (Sect. 2.4.1), we apply 

a Monte Carlo procedure to generate a 10,000-years of spatially joint events of total water levels and river discharges across 

different locations for each study region.  

To do this, we first calculate the empirical distribution of annual event counts using the dataset of identified spatially joint 

extreme events (Sect. 2.3). For each of these events, we also estimate the conditioning variable, which is defined to have the 230 

largest marginal value among all variables. We then calculate the likelihood of each variable being the conditioning variable, 

and this information is further used in a multinomial distribution to estimate the empirical distribution of conditioning 

variables. For each year of simulation (in total 10,000 years), the number of events to be generated is sampled from the annual 
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event count distribution, while the conditioning variable for each event is randomly sampled from the corresponding 

distribution of conditioning variables. Lastly, each event is generated by the steps given below: 235 

1. Sample the value for the conditioning variable 𝑌𝑖 from its marginal distribution, conditional on 𝑌𝑖 > 𝑢; 

2. Independently sample a joint residual 𝒁𝒊; 

3. Estimate the value for the remaining variables 𝒀−𝒊 from Eq. (1) using the estimated parameters 𝒂𝒊, 𝒃𝒊; 

4. Reject the sample 𝒀𝒊 if 𝑌𝑖 is not the largest among all variables on the marginal scale, and repeat the above steps until 

a sample is obtained in which 𝑌𝑖 is the largest. 240 

2.4.3 Validation of simulated stochastic events 

To validate the stochastic events, we first compare the observed and simulated peak total water levels and river discharges 

over a 41-year period at all station combinations. The simulated peak value is estimated by taking the median of 250 model 

realisations of 41 years of values randomly sampled from the 10,000-year event sets. A second validation analysis is conducted 

by comparing water level and river discharge return periods per station combination between observations and simulated event 245 

sets. The observed return levels are estimated from the fitted GPD distribution of the marginal distribution for each variable 

(Sect. 2.4.1), while the simulated return values are calculated empirically using the Weibull’s plotting formula (Makkonen, 

2006).    

2.5 Assessing the joint occurrence of compound flooding potential across locations 

From the generated stochastic sets of spatially joint events, we assess the joint occurrence of compound flooding potential 250 

across locations. First, we quantify the joint occurrence of compound flood potential by simply counting the number of events 

where both total water level and river discharge (i.e. AND hazard scenario) at individual locations exceed a range of thresholds 

including the 99th, 1-year, and 2-year return levels. We use these relatively high thresholds to avoid spurious consideration of 

minor events for calculating the joint occurrences, as we do not further model the inundation and impact of these events in this 

study. Each location has varying compound flooding potential since the number of joint occurrences may be different at 255 

individual locations. To account for this difference and ensure comparability across locations, we therefore standardise the 

results using the number of joint occurrences per year.  

Second, we assess the spatial correlation of compound flood potential by estimating the relative occurrence rates. This is done 

by calculating the occurrence rate of simultaneous potential compound flood events at other locations given a location of 

interest experiences a potential compound flood event. A higher relative rate at a location indicates a stronger spatial correlation 260 

of compound flooding between this location and the location of interest.  

Compound flooding may occur when only one flood driver is extreme at a given location (OR hazard scenario), we refer to 

such events as ‘coastal driven’ or ‘river driven’ events in this study. Since these events may also lead to (compound) flooding, 

we are interested in their occurrence probabilities. For all compound flood events at a location of interest, we calculate the 

relative number of: 1) compound (both drivers exceed the threshold); 2) coastal driven (only water level exceeds the threshold); 265 
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3) river driven (only water level exceeds the threshold); and 4) non-extreme (no drivers exceed the threshold) events for the 

other locations. 

3 Results and Discussions 

3.1 Validation of simulated stochastic event sets 

 270 

Figure 2: Validation of the generated synthetic coastal water levels. (a) Maximum observed versus simulated peak total water levels over a 

41-year period at tidal gauges on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks are 

extracted from the 41-year observations, while the simulated peaks refer to the median of total water levels from 250 random model samples 

of 41 years length. The red dashed line represents the identity (1:1) line. (b) Comparison between observed and simulated water level return 

periods for nine selected gauges (three per coast; see the locations in Figure 1). Red dots are the empirical return periods from observed peak 275 
water levels, while blue curves represent the return periods from the GPD fit to the observations. Orange curves refer to the empirical 

estimates from the 10,000-year simulation. Shaded areas are the confidence intervals corresponding to the 5th and 95th percentiles.  

In Fig. 2, we show the validation results on the generated stochastic coastal water levels. Fig. 2a compares the maximum 

simulated water levels against observations over a 41-year period for all 41 tidal gauges along the U.S. coastlines used in this 

study. Results show that the simulated 41-year maximum water levels show good agreement with observations, with an overall 280 

coefficient of determination (R2) of 0.91 and a root mean square standard error (RMSE) of 0.4 meters across all the gauges. 

The highest agreement is found at gauges on the West coast (blue). On the Gulf of Mexico (orange) and East coast (green), 

our model is found to underestimate the 41-year maximum water level for some gauges such as Battery, Sandy Hook, and 

Galveston (Pier 21), while the maximum water level is overestimated at Cedar Key. These misestimations are likely caused 
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by the different approaches for estimating maximum water levels. The observed maximum water levels over a 41-year period 285 

may have a return period of larger than 40 years according to the extreme value analysis (e.g. see the water level comparison 

for Rock Port and Charleston in Fig. 2b). However, the obtained values, based on many realisations of 41-year water levels 

from the stochastic set, are approximately identical to the estimated 1-in-41-year water level. This case typically occurs at 

gauges in TC-prone areas. Due to the stochastic nature of TCs, observation records of a limited length, such as 41 years in this 

study, may contain too few TCs that made landfall to drive a good fit of extreme distributions to robustly estimate water level 290 

return periods (Dullaart et al., 2021).     

Fig. 2b compares the water level return periods estimated from the stochastic events (orange) and observations (blue) at nine 

randomly selected gauges (three per coast). The return periods calculated from simulated water levels correspond well with 

those derived from observed data, with narrower confidence intervals associated with the former mostly located within the 

confidence bounds associated with the observational data. This indicates that our approach can simulate water levels close to 295 

the marginal distributions of the observations with greater confidence, especially for high return periods. For North Spit and 

Los Angeles, our approach overestimates the water levels for relatively low return periods compared to estimated return levels 

using observations, which may be due to the sampling procedure used to identify spatially joint events. As this process tends 

to pair the peaks of the primary variable with maximum values of the remaining variables within a lagged window, the 

dependence structure may be overestimated and therefore higher values are generated.  300 

 

Figure 3: Validation of the generated synthetic river discharges. (a) Maximum observed versus simulated peak river discharges over a 41-

year period at paired river stations on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks 

are extracted from the 41-year observations, while the simulated peaks refer to the median of river discharges from 250 random model 

samples of 41 years length. The red dashed line represents the identity (1:1) line. (b) Comparison between observed and simulated water 305 
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level return periods for the nine stations (paired with the nine coastal gauges; see the locations in Figure 1). Red dots are the empirical return 

periods from observed peak water levels, while blue curves represent the return periods from the fitted GPD using these observations. Orange 

curves refer to the empirical estimates from the 10,000-year simulation. Shaded areas are the confidence intervals corresponding to the 5th 

and 95th percentiles.  

Compared to total water levels, we find higher agreement between observed and simulated maximum river discharge over a 310 

41-year period at all stations, see Fig. 3a. The coefficient of determination (R2) is 0.98 and the root mean square standard error 

(RMSE) is 511 m3/s across all stations. Fig. 3b shows good correspondence between the return periods estimated from the 

stochastic events and observations for the river stations paired with the nine selected tidal gauges. At most stations, the 

simulated stochastic return levels show a narrower confidence interval. Overall, these validation results show that our approach 

can generate a much longer set of spatially joint events with similar marginal distributions compared to historical observations.  315 

3.2 Frequency analysis of simultaneous potential compound flooding with the number of affected locations 

 

Figure 4: Frequency diagram with the number of locations affected by simultaneous potential compound flooding for the West Coast, Gulf 

of Mexico, and East Coast. Potential compound flooding is defined by events where both total water level and river discharge exceed their 

respective 99th percentiles. The total number of potential compound flooding events is 24,086, 15,540, and 28,635 for the West, Gulf, and 320 
East coasts derived from the 10,000-year stochastic sets.  

Fig. 4 shows the frequency of events that may potentially cause compound flooding, categorized by the number of affected 

locations for the US coastal regions. These events are those with both total water level and river discharge exceeding the 

respective 99th percentiles. Our analysis reveals that the Gulf coast shows the highest frequency of localised compound flood 

events among the three US coasts, with over 82% of all potential events affecting only a single location. Nevertheless, it is still 325 

likely (around 12%) that potential compound flood events may affect two locations on the Gulf coast, while events that may 

affect more locations become increasingly rare (e.g. less than 3% for three locations and 3% for more than three locations). In 

https://doi.org/10.5194/egusphere-2025-2993
Preprint. Discussion started: 7 July 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

contrast, the west coast shows higher frequencies of widespread potential compound flooding. For example, about 50% of the 

events may result in potential compound flooding at one location while the chances of affecting multiple locations are 23% 

for two locations, 13% for three locations, 7% for four locations, and 3% for five locations. The east coast shows slightly lower 330 

frequencies of potential compound flooding events affecting multiple locations. The frequency of events affecting a single 

location is 61%, followed by 21%, 9%, and 4% for two, three, and four locations, respectively. 

3.3 Joint occurrence of extreme sea levels and river discharges at individual locations 

 

Figure 5: Number of joint occurrences per year between extreme total water levels and river discharges from simulated 10,000-year event 335 
sets for (a) the West coast and (b) the combined Gulf of Mexico and East Coast. Joint occurrences are defined for events where both water 

level and river discharge are above the 99th percentile threshold. The state borders are marked in white. 

We first assess the compound flooding potential at individual locations based on the annual number of joint occurrences of 

total water level and river discharge above a specific threshold. Fig. 5 shows the result using a threshold equivalent to the 99th 

percentile of the 41-year total water level and river discharge time series. The regional patterns of compound flooding potential 340 

largely align with those reported in previous studies (e.g. Couasnon et al., 2020; Ghanbari et al., 2021; Ward et al., 2018). For 

example, most locations on the US west coast show a high compound flooding potential, with an annual number of joint 

occurrences exceeding 0.3. This high potential is associated with the interplay between synoptic weather systems (e.g. ETCs) 

and regional orographic features, which causes simultaneous high storm surge and intense precipitation (Couasnon et al., 2020). 

These storm surges elevate the total water level, and the intense rainfall results in high river discharges in a short time as most 345 

river basins on this coast are relatively small and steep (Ward et al., 2018). At a few locations such as Seattle, Port San Luis, 
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Santa Monica, and La Jolla, the compound flooding potential is relatively low and the annual number of joint occurrences is 

typically smaller than 0.2. The dependence between riverine and coastal drivers in these locations is found weak or statistically 

insignificant by previous studies. For example, Ward et al. (2018) found weak dependence between river discharge and skew 

surge at La Jolla, while Ghanbari et al. (2021) confirmed independence between total sea level and river discharge at Seattle 350 

and Santa Monica. 

For the Gulf of Mexico, both stations on the western part show a high compound flooding potential with an annual number of 

joint exceedances of 0.38 and 0.53 for Rock Port and Galveston respectively. However, the eastern part except St. Petersburg 

has a much lower joint exceedance value. This regional difference is due to seasonal patterns in river discharge and storm 

surge characteristics. High storm surges/sea levels on the Gulf coast are often driven by hurricanes (i.e. TCs). For the western 355 

part of this coast, maximum river flows also occur during hurricane seasons, while the river flow on the eastern part is often 

at its largest between late winter and early spring (Berghuijs et al., 2016).   

The eastern coast of the U.S. has a more complex spatial pattern of compound flooding potential with varying annual numbers 

of joint occurrences. For the southeastern coast, a low joint occurrence number (<0.1) of total water level and river discharge 

is found for most locations except Wilmington. Although statistical dependence is found for these locations by other studies 360 

(e.g. Ghanbari et al., 2021; Ward et al., 2018), the dependence coefficient Kendall τ is generally low (e.g. ranging from 0.1-

0.2 in Ghanbari et al. (2021)). The low annual number of joint occurrences may also be contributed to by the sampling method, 

which is based on automated thresholds in this study. For most locations on the southeastern coast, the identified thresholds 

are relatively high (see Table S2), which leads to much fewer sampled events from observations (see Fig. S2) and further a 

much smaller number of generated stochastic events. For the northeastern coast, we find a high compound flooding potential 365 

for the mid-Atlantic region while locations at the far northeastern coast generally show low compound potential. These results 

largely agree with previous findings (e.g. Wahl et al., 2015; Ward et al., 2018). On the eastern US coast, it is known that TCs 

can drive concurrent high storm surge and precipitation (Wahl et al., 2015). However, other mechanisms such as snow melt 

and convective storms that can generate riverine floods are also at play (Berghuijs et al., 2016), which could explain the 

regional difference in the compound flooding potential between the southern and northern parts.  370 
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3.4 Joint occurrence of extreme sea levels and river discharges across multiple locations 

 

Figure 6: Relative occurrence rate of potential compound flooding at individual locations given potential compound flooding occurs at a 

primary location for the West Coast. The top-left panel shows the individual locations and the state borders are marked in white. Potential 

compound flood events are defined by events with both total water levels and river discharges exceeding the 99th percentile threshold. Small 375 
black solid circles refer to the relative occurrence rate lower than 0.05, and the number on the lower left corner of each subplot represents 

the total number of stochastic events with compound flooding potential at the primary location from the 10,000-year simulated event set. 

Moving from assessing compound flooding potentials at individual locations, we then assess the likelihood of simultaneous 

compound flooding arising across different locations. Fig. 6 maps the relative occurrence rate of potential compound flood 

events at individual locations on the West coast of the United States, given the location of interest is experiencing an event 380 

with compound flooding potential. Here potential compound flood events are defined as events with both total water level and 
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river discharge exceeding the 99th percentile. Results show that for the west coast, when a given location sees potential 

compound flooding, other locations are likely to experience potential compound flooding simultaneously. As one may expect, 

the relative occurrence rate shows asymptotic patterns across space: These rates are relatively high at locations near the primary 

location and start to decrease when the distance increases. For example, when a potential compound flood event occurs in 385 

Seattle, the chance that Friday Harbor is also affected is relatively high (0.54) while the joint rates for other locations are much 

lower (e.g. Toke Point: 0.39, Astoria: 0.27, Charleston: 0.16). At most locations, a relatively high joint occurrence rate (>0.5) 

can be observed at one or two nearby locations. However, there are a few locations where three nearby locations show a high 

relative occurrence rate; this is case for Astoria, Cresent City, and Los Angeles.  

We also observe two clustering patterns where more than two locations show mutually high relative occurrence rates. The first 390 

cluster is Charleston – Cresent City – North Spit; the relative occurrence rates for the other two locations are 1) 0.50 and 0.51, 

2) 0.56 and 0.62, and 3) 0.47 and 0.40 given each of these three locations experience potential compound flooding. The second 

cluster covers the southwestern U.S. coast (Santa Monica – Los Angeles – La Jolla). These clusters correspond with clustering 

results of storm surges (Enríquez et al., 2020) and total water levels (Li et al., 2023) based on in-depth statistical analyses. This 

indicates that synoptic weather events (i.e. ETCs on this coast) may be responsible for large-scale compound flooding at these 395 

locations.      

To assess the sensitivity of the results to different thresholds for identifying potential compound flood events, we also apply 

varying thresholds equivalent to 1- and 2-year return levels, see Fig. S4-5. To maintain consistency, these varying thresholds 

are only applied for the primary location while the 99th percentile is used for the remaining locations on the west coast. We 

restrict this analysis up to 2-year return levels because the number of identified stochastic events will be very small when 400 

applying higher thresholds, and the further quantification of relative occurrent rates would be very biased based on such few 

events. We find similar patterns of the relative occurrence rates for different thresholds. However, these relative occurrence 

rates become significantly higher with increasing thresholds, which indicates that a bigger storm tends to affect more locations.  
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Figure 7: Relative occurrence rate of potential compound flooding at remaining locations given potential compound flooding occurs at a 405 
primary location for the combined Gulf of Mexico and East Coast. The top-left panel shows the individual locations and the state borders 

are marked in white. Potential compound flooding is defined by events with both total water levels and river discharges exceeding the 99 th 

percentile. Small black solid circles refer to the joint occurrence rate lower than 0.05, and the number on the lower left corner of each subplot 

represents the total number of stochastic events with compound flooding potential at the primary location from the 10,000-year simulated 

event set. 410 
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For the Gulf of Mexico, we find lower relative occurrence rates of potential compound flooding for most locations. This shows 

a weak spatial correlation of compound flooding potential between locations, suggesting that compound flooding may occur 

at a local spatial scale on this coast. The reasons for this may be twofold. First, TCs are responsible for the majority of 

compound flood events on this coast (Lai et al., 2021); although TCs can cause more intense storm surge and rainfall, they 

have a smaller spatial footprint compared to ETCs (Dullaart et al., 2021). This is especially the case for the western Gulf coast 415 

(i.e. Rock Port and Pier 21) where the relative occurrence rate is 0.18 and 0.13 given each of these two locations sees a potential 

compound flood event in turn. Despite this, there are a few historic TC events, such as Hurricane Harvey, that resulted in 

compound flooding in both locations. Second, the eastern Gulf coast has a low compound flooding potential as extreme storm 

surge and high river flow typically occur in different seasons (Ward et al., 2018). Therefore, compound flooding is unlikely to 

arise at different locations. 420 

On the East Coast, the relative occurrence rate of compound flooding potential shows mixed patterns. Both southern and 

northern parts show a weak spatial correlation of compound flooding with low relative occurrence rates, which could be 

associated with the low compound flooding potential in these regions. For the central part (between Swell Point to Newport), 

more than 50% of the locations show a relatively low joint occurrence rate of potential compound flooding (<0.4) for the 

remaining locations. Four locations, namely Swell Point, Annapolis, Sandy Hook, and Battery show a relatively high joint 425 

occurrence rate (>0.4) at one nearby location. Baltimore shows the highest spatial correlation of compound flooding potential 

with other locations: Two nearby locations Washington and Annapolis show a high relative occurrence rate of 0.44 and 0.48; 

Swell Point and Reedy Point has a rate of 0.16 and 0.25 while the remaining locations show a lower occurrence rate (<0.1). 

Compound flooding on the US east coast can be triggered by both TCs and ETCs, and the relative contribution of these two 

weather events varies spatially, which may correlate to the regional differences of spatial correlation of compound flooding 430 

potential.   

We note that some relative occurrence rates of compound flooding potential show correlations between locations that are far 

way. For example, when Panama City sees a potential compound flood, Beaufort and Portland show a relative occurrence rate 

of 0.15 and 0.09, respectively (see Fig. 7). Other similar instances can be found for several locations (e.g. Boston and Bar 

Harbour) on the northeastern coast which show a small relative occurrence rate at locations on the Gulf coast. These 435 

correlations can be driven by the storm events that make a landfall on the Gulf coast and then travel into certain areas (e.g. the 

Carolinas) on the East coast. Prime examples of such events are Hurricane Idalia and Tropical storm Eta. On the other hand, 

these correlations can be spurious due to the applied time lags in the sampling process. A ±3-day lag both spatially and between 

total water level and river discharge at individual locations can result in a sampled event of up to 13 days. This long duration 

may unintentionally correlate individual potential compound floods across multiple locations. 440 

3.5 Relative frequency contributions of different types of events at other locations  

Compound flooding may occur when only one driver is extreme. It is therefore important to estimate the simultaneous joint 

probability of different types of flood events from exceedances over either coastal or riverine flood threshold. When a location 
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experiences a potential compound flood event, we assess the relative frequency contributions of different types of events at 

other locations. We identify four types of events: 1) compound where both drivers exceed the respective thresholds, 2) coastal 445 

driven where only total water level exceeds the threshold, 3) river driven where only river discharge exceeds the threshold, 4) 

non-extreme events where neither of the drivers exceeds the threshold. To keep consistent, we use the 99th threshold for both 

total water level and river discharge at all locations.  

 

Figure 8: Relative frequency of different types of events given potential compound flooding occurs at a primary location for a) Toke Point, 450 
b) North Spit, and c) Los Angeles on the U.S. West Coast. Potential compound flood event (orange) is defined for events with both total 

water levels and river discharges exceeding the 99th percentile. The total number of simulated compound events at the primary location is 

indicated in the title of each panel. Blue refers to coastal driven events where only the total water level exceeds the 99th threshold, while 

green refers to river driven events where only the river discharge exceeds the 99th threshold. Purple refers to non-extreme events where 

neither of the drivers exceeds the threshold.  455 

Fig. 8 shows the relative frequency of these different types of events, i.e. compound (orange), coastal-driven (blue), river-

driven (green), and non-extreme events (purple), for three selected reference locations with a relatively high compound flood 

potential on the West Coast. Results for other locations on this coast can be found in Fig. S8-10 in the supplementary materials. 

Note that the relative frequency of compound events (orange) is the same as the relative occurrence rate shown in Fig. 6-7.   

At all three locations, the likelihood of simultaneous extreme events at other locations is high, when the primary location sees 460 

a potential compound flood event. For example, the relative frequency of extreme events (river, coastal or compound) is higher 

than 0.5 at six other locations between Friday Harbor and North Spit when Toke Point experiences a potential compound flood 

(Fig. 8a). Similarly, this high frequency of extreme events is seen at eight other locations when both North Spit (Fig. 8b) and 

Los Angeles (Fig. 8c) are the reference location. In most cases, the relative frequency contribution of coastal-driven events is 
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higher compared to the respective contribution of river-driven events. This may suggest that total water levels exhibit stronger 465 

spatial dependence than river discharges at those locations selected in this study. The stronger dependence of total water levels 

may stem from the high tide events as the spring and neap tides occur at approximately the same time everywhere along the 

coastline. On the contrary, the correlation between high river discharges may not be fully captured by using a 3-day lag between 

locations as used in this study.   

4 Limitations and recommendations 470 

Our framework presents an advancement over the traditional large-scale statistical dependence assessment of compound 

flooding drivers, as it accounts for the spatial dependence of different drivers. However, several aspects of our framework 

could be further improved. Firstly, our analysis is based on observed data that may be biased towards a few locations. For 

example, no station combinations are selected for the central Gulf coast or for most parts of the coastline of Florida due to the 

relatively short time-span of the gauge records at these locations. Some of the selected station combinations suffer from long 475 

data gaps which are later infilled using simultaneous data from nearby locations. This may unintentionally increase the 

correlation between these locations. Therefore, future studies are recommended to apply our framework to modelled time 

series of flood drivers (e.g. storm surges (Muis et al., 2023) and river discharges (Harrigan et al., 2020)). This would improve 

the assessment of spatial correlation of potential compound flooding at multiple locations, although these models cannot fully 

resolve the TC activities.  480 

Secondly, our framework is limited to extreme total water level and river discharge. However, other drivers may also contribute 

to compound flooding. For example, waves were the dominant contributor to inundation along a stretch of coastline during 

Hurricane Florence (Leijnse et al., 2025). In some regions with high connectivity between ground and surface water hydrology, 

groundwater level is a paramount driver to consider in the compound flooding assessment (Jane et al., 2020). River discharge 

is used to represent the riverine component for compound flooding; however, precipitation can be the predominant driver for 485 

compound flooding in some regions (Sohrabi et al., 2025) and should be considered in the dependence analysis. A future 

version of our framework is therefore recommended to include relevant drivers depending on the locations, thereby providing 

more robust boundary conditions for assessing the inundation and risk of compound flooding.  

Our results are based on a large set of stochastic events specified by spatiotemporal limits. In this study we define events for 

two areas: 1) the West Coast; and 2) the combined Gulf and East coasts. Given these relatively large areas, spurious correlations 490 

are observed for locations that are far away from each other. For example, when Panama City sees a potential compound flood, 

Beaufort and Portland show a non-negligible relative occurrence rate of potential compound flooding (Fig. 7). An improvement 

for this would be to define the events for the identified clusters of storm surges (Enríquez et al., 2020) and extreme sea levels 

(Li et al., 2023). Moreover, these spurious correlations may also stem from the applied time lags between flood drivers and 

between locations. In this study, a three-day window for both factors would result in a sampled event with a time window of 495 

ranging from 7 to 13 days. Although the effects of time lags are found negligible on the dependence between different drivers 
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at individual locations (Camus et al., 2021), a long time window may unintentionally correlate individual potential compound 

floods across different locations. Therefore, future work is recommended to use different lags and to further assess the 

sensitivity to these assumptions. In regions where compound flooding can result from multiple synoptic weather patterns, 

different types of storm events may produce distinct dependence structures between flood drivers (Kim et al., 2023). To better 500 

capture these variations, our stochastic event generation could be benefit from distinguishing events between storm types rather 

than combining all events into a single population (c.f. Maduwantha et al., 2024).  

The final limitation of our study is the identification of the compound events using ‘AND’ hazard scenarios where both total 

water levels and river discharges exceed a range of thresholds. In reality, compound flooding may occur even when neither of 

these two drivers is extreme. Therefore, a more realistic identification of compound events could be based on impact thresholds 505 

rather than hazard thresholds (Ghanbari et al., 2021). Such impact thresholds have been established for the United States, 

including impact thresholds for both coastal (Sweet et al., 2018) and riverine flooding (Cosgrove et al., 2024). These thresholds 

are used for forecasting purposes, enhancing public safety, and supporting actions to improve preparedness. However, these 

thresholds are not available at all station combinations used in this study, which is the further reason that we use a range of 

hazard thresholds for identifying potential compound flood events.  510 

5 Conclusions  

We provide the first assessment of spatial correlation of potential compound flooding from extreme sea levels and river 

discharges at 41 station combinations on the US coasts. Our results are based on a large set of stochastic events simulated 

using a multivariate conditional dependence model. The validation results show that our stochastic events can well capture the 

observed dependence structure between total water levels and river discharges across multiple locations. Our assessment of 515 

compound flood potentials at individual locations largely agrees with previous findings. Our frequency analysis of potential 

compound flood events across locations shows that potential compound flooding is likely to affect multiple locations. On the 

west coast of the U.S., around 50% of potential compound events may arise at more than one location simultaneously. Less 

than 30% of potential compound flooding may affect multiple locations on the East coast, while the frequency of widespread 

compound flooding is low on the Gulf coast. Our analysis of relative occurrence rates reveals that potential compound events 520 

exhibit strong spatial correlation particularly among neighbouring locations along the U.S. West coast. Two clusters where 

multiple locations show mutually high joint occurrence rate of potential compound flooding are identified: 1) Charleston – 

Cresent City – North Spit; and 2) Santa Monica – Los Angeles – La Jolla. In contrast, the Gulf Coast shows the weakest spatial 

correlation while the East Coast presents mixed behaviour with moderate spatial dependence in the central region and weaker 

spatial dependencies for the remaining locations. These spatial patterns may be associated with the major driving weather 525 

patterns of compound flooding where ETCs have a larger spatial footprint and are more likely to cause widespread events 

compared to TCs. 
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Our results advocate for considering spatial dependence in compound flood risk assessment, especially for regions prone to 

large-scale synoptic weather patterns, such as Europe and eastern Asia. While the focus of this study is on the US coasts, the 

methodologies developed in this study are readily transferable to other coastal and estuarine regions facing the challenges of 530 

compound flooding. Our stochastic event sets can be used as boundary conditions for coupled hydrologic-hydraulic models 

for simulating the surface inundation and assessing flood risk. Our results of relative contributions of different types of events 

along the coastlines can facilitate more effective trans-regional flood risk management through better flood adaptation, 

planning, and emergency response in low-lying coastal catchments. 
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