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Abstract. When coastal and river floods occur concurrently or in close succession, they can cause a compound flood with
significantly higher impacts. While our understanding of compound flooding has improved over the past decade, no studies to
date have assessed the spatial correlation of compound flooding. To address this gap, we develop a framework that captures
dependence between coastal total water level and river discharge across a set of locations along the U.S. coastline. Using 41
years of observed data from 41 station combinations, we stochastically model 10,000 years of spatially-joint events of extreme
sea level and river discharge based on their dependence structure and cooccurrence rate. We define potential compound
flooding as events in which both drivers exceed their respective 99" percentile thresholds. Results based on our simulated large
event set show that the U.S. West coast shows high spatial correlation of potential compound flooding. Among all three coasts,
the West coast has the highest frequency of widespread potential compound flooding, with around 50% of compound events
arising at multiple locations simultaneously. We identify two clusters with mutually high joint occurrence rates of simultaneous
compound events on this coast, namely 1) Charleston — Crescent City — North Spit, and 2) Santa Monica — Los Angeles — La
Jolla. Widespread compound events are less frequent on the East coast where approximately 30% of potential compound
flooding may affect multiple locations. Moderate spatial dependence is observed in the central region and weaker spatial
dependence for the remaining locations on this coast. In contrast, the Gulf coast shows the weakest spatial correlation, where
over 82% of compound events only affect single locations. Our findings highlight the importance of accounting for spatial
dependence in compound flood assessments. Our large set of stochastic spatially-joint events can be used as boundary
conditions for the hydrologic-hydraulic models to simulate the surface inundation and further assess risks of compound

flooding in low-lying coastal and estuarine areas.

1 Introduction

In the contiguous United States, coastal counties are home to nearly 129 million people (NOAA, 2020) and often serve as

important economic centres (McGranahan et al., 2007). In these low-lying, densely populated areas, flooding can cause
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widespread adverse socioeconomic and environmental impacts, with an estimated annual damage of more than 180 billion US
dollars (JEC, 2024). Despite continued investments in flood adaptation and management, recent flood events, such as
Hurricanes Milton, Helene, and Ida, have demonstrated the ever-present threat of serious flood impacts in coastal regions.
Flood water levels in these areas can be influenced by both coastal drivers (e.g. high tides, wave action, and storm surges) and
riverine drivers (i.e. heavy precipitation and high river discharges). When multiple drivers coincide or occur in close
succession, they can result in a compound flood event that intensifies the overall flood hazard and causes significantly higher
impacts than when they occur in isolation. Moreover, these flood drivers are projected to co-occur more frequently in the U.S.
due to climate change factors including sea level rise (Ghanbari et al., 2021), potential changes in tropical cyclone climatology
(Gori and Lin, 2022), and projected shifts in future river flow regimes (Moftakhari et al., 2017). Together with projected
shoreline deformation (Woodruff et al., 2013) and socio-economic growth (Hallegatte et al., 2013), these changes are expected
to escalate compound flood risk in most U.S. coastal areas in the future.

Compound flooding in coastal and estuarine regions can be driven by several mechanisms (Jane et al., 2025). First, both storm
surge and rainfall (or river discharge) are extreme to cause flooding and their interaction can increase the flood extent and
depth. Second, storm surge and rainfall are moderate and do not cause flooding individually but their interaction may initiate
flooding. Third, extreme sea levels alone can cause flooding and additional rainfalls can further intensify the flooding. Fourth,
high water levels (not necessarily being extreme) can 1) create backwater effects and block free river flows to the sea (Ghanbari
etal., 2021), and 2) impede efficient drainage of heavy rainfall (Wahl et al., 2015), thereby prolonging or increasing flooding.
Synoptic weather patterns, both tropical cyclones (TCs) and extra tropical cyclones (ETCs), are the main drivers of these
compound flooding mechanisms worldwide (Lai et al., 2021). While TCs tend to cause extreme flooding, ETCs are found to
be responsible for more frequent and moderate events (Booth et al., 2016; Gori and Lin, 2022). Besides synoptic weather
patterns, coastal and river floods can also co-occur by coincidence (Couasnon et al., 2020); however, such incidents are
considered statistically independent according to probability theory (Martius et al., 2016). Traditional flood risk assessments
do not consider these interactions between flood drivers and may therefore underestimate the overall flood hazard and
associated risk (Wabhl et al., 2015; Ward et al., 2018a). Having more accurate assessments of compound flood risk could help
in the development of effective adaptation measures to reduce current and future risks.

A key step in compound flood risk assessment is accurately quantifying the dependence and joint probabilities among flood
drivers. These quantifications can provide essential boundary conditions for flood hazard and risk assessments (Eilander et al.,
2023; Moftakhari et al., 2019), and are important for designing flood protection measures in regions prone to compound
flooding (Salvadori et al., 2016; Ward et al., 2018a). In recent years, there has been a growing body of research assessing the
dependence between coastal and riverine flood drivers over a range of spatial scales. Most of these studies (e.g. Bevacqua et
al., 2017; Couasnon et al., 2018; Rueda et al., 2016) are focused on specific locations due to the complexity of the applied
multivariate statistical models. At larger spatial scales (regional to global), dependence assessments are often limited to
bivariate cases involving two flood drivers (e.g. Bevacqua et al., 2019; Couasnon et al., 2020; Ward et al., 2018), while a few

studies (e.g. Camus et al., 2021; Nasr et al., 2021) considered three or four drivers. For the entire U.S. coastline, compound
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flooding potential has been evaluated by several studies in terms of statistical dependence between storm surge and rainfall
(Wahl et al., 2015), joint probabilities of coastal water level and river discharge under sea level rise scenarios (Ghanbari et al.,
2021; Moftakhari et al., 2017), and seasonal patterns in the dependence structure among storm surge, wave, river discharge,
and rainfall-runoff (Nasr et al., 2021).

While these studies have improved our understanding of compound flooding, no studies to date have looked into the spatial
correlation of compound flooding between locations. Significant spatial dependence has been identified for both coastal
(Enriquez et al., 2020; Li et al., 2023) and riverine flooding (Metin et al., 2020; Quinn et al., 2019) in the United States.
Moreover, the storm events TCs and ETCs that may drive compound flooding can have a large spatial footprint. Therefore it
is likely that compound flooding may potentially arise across multiple locations. A recent example of widespread compound
flooding is Hurricane Harvey in 2017. It caused record-breaking rainfall, river discharge, and run-off, combined with a
moderate but long-lasting storm surge, resulting in disastrous flooding in Houston (Valle-Levinson et al., 2020).
Simultaneously, other regions including Galveston Bay, Rockport, and Richmond also saw flooding.

Therefore, the overall aim of the paper is to assess the spatial correlation of potential compound flooding from extreme sea
level and river discharge along the U.S. coastline. Potential compound flooding is defined as events during which both extreme
sea level and river discharge exceed the corresponding 99" threshold. To this end, three objectives are addressed. First, we
estimate the statistical dependence between extreme sea level and river discharge across different locations, while accounting
for relevant time lags. This includes a multivariate statistical sampling for identifying observed spatially joint events with
potential compound flooding (i.e. cooccurring events across different locations), and applying a multivariate conditional
statistical model to these events to estimate the dependence structure both spatially and between extreme sea level and river
discharge. The second objective is to develop an equivalent of 10,000 years of stochastic spatially joint events based on the
estimated dependence, which can be used as boundary conditions for physical flood inundation models. Based on the stochastic
events, the third objective is then to assess the spatial correlation of compound flood potential by looking into the co-occurrence

of extreme sea level and river discharge at different locations.

2 Data and Methodology

To investigate the spatial correlation of potential compound flooding events around the U.S. coasts, we assess dependence
between coastal and riverine flooding drivers, specifically extreme sea levels and river discharges in this study. The dependence
structure is also assessed between these drivers across different locations. This study involves the following five steps, which
are described in the subsections:

1. Selecting datasets and station combinations of tidal gauges and river discharge stations along the U.S. coastline;

2. Infilling missing values of sea level and river discharge time series;

3. Identifying joint extreme events of sea levels and river discharges at different locations;



4. Estimating the dependence structure from the identified events and generating 10,000 years of stochastic spatially
joint events using a multivariate conditional statistical model;

5. Assessing the co-occurrence of different extreme events at different locations from the generated stochastic events.

2.1 Datasets and selection of station combinations along the coastal U.S.

P
' , Eastport

I Bar Harbor
3 Portland

Boston

Toke Point "%
Astoria

i 3
Ll

New London

/ ~
South Beach A

Newport

*-sattery

Sandy Hook

Atlantic City
Baltimore

Crescent City

North Spit

Sewell point

Beaufort

N \ Wilmington

Port San L Charleston

z - Fort Pulaski
Santa Monica

Los Angeles g
ba Jolla
Fernandina Beach

A Tidal gauge

Pensacola ® River station

-------- Station combination
Apalachicola

Cedar Key.

2000
1500
Rock Port St Petersburd

1000

500

Elevation (m)

0

-500
Figure 1: The location of station combinations on the U.S. a) West, b) Gulf, and c) East coasts. The red triangles and blue circles represent
the selected NOAA tidal gauges and USGS river discharge stations in this study.

For sea levels, we use the observed hourly total water levels for the period 1980-2020 from the Global Extreme Sea-level

Analysis Version 3 database (GESLA-3) (Haigh et al., 2023). These coastal water levels consist of mean sea levels,



105

110

115

120

125

130

135

astronomical tides, and non-tidal residuals (i.e. storm surges). For the river component, we use river discharge because it
represents near-term runoff from a storm event that contributes to the riverine water levels (Bevacqua et al., 2020). Therefore,
daily mean discharge observations between 1980 and 2020 are extracted from the United States Geological Survey (USGS)

network (https://waterdata.usgs.gov/nwis/rt).

For a spatially extensive coverage of coastal locations, we select 41 GESLA-3 tidal gauges by combining stations used in
previous studies (Feng et al., 2023; Ghanbari et al., 2021; Nasr et al., 2021; Wahl et al., 2015). These 41 tidal gauges are then
paired with nearby USGS river stations, following the selection criteria based on Nasr et al. (2021) and Ward et al. (2018): 1)
minimum data completeness of 80% during 1980-2020 in the daily mean discharge time series; 2) minimum upstream
catchment area of 1000 km?; (3) maximum Euclidean distance of 500 km from the tidal gauge; and 4) maximum distance of
55 km (0.5°) between the river outlet and the tidal gauge. For some tidal gauges, several USGS river discharge stations satisfy
these rules. In these cases, we select the ones with the most complete data records preferably in the downstream area. The full
selection procedure results in 13, 7, and 21 station combinations for the West coast, Gulf of Mexico, and East coast
respectively. Figure 1 shows the locations of these station combinations and further information can be found in Table S1.

When characterising dependence, standard extreme-value theory statistical models require that the input datasets consist of
independent and identically distributed (i.i.d) variables. To satisfy this assumption, we first detrend the hourly total water level
records by removing the long-term mean sea level signal. This is achieved by subtracting the annual mean sea level using a
moving window, thereby filtering out the inter-annual to multi-decadal sea level variability (Valle-Levinson et al., 2017). River
discharges do not show such long-term variations, and so no detrending is applied to the daily mean records. To prepare for
the independence processing and maintain temporal consistency between total water level and river discharge, we further
aggregate the hourly sea levels into daily maxima. The independence is then ensured by applying a 5-day de-clustering window

(Camus et al., 2021; Maduwantha et al., 2024) with the maximum value centred in each window.

2.2 Infilling missing values of sea levels and river discharges

Gauge observation records often suffer from data gaps and may preclude a robust statistical dependence analysis between
flood drivers. Compound flood studies (e.g. Nasr et al., 2021; Wahl et al., 2015; Ward et al., 2018) that only estimate the
dependence structure between pairs of stations are less affected by these data gaps and do not attempt to infill missing
observations. As this study also investigates dependence across locations, constraining the analysis to common time periods
without missing data would likely result in very few overlapping events. We calculate the length of the 41-year observational
data with removed gaps. The data length sharply decreases from 41 years to 11.4 years for the West coast and to 3.2 years for
the combined Gulf and East coasts when only gap-free records are used, see Table S3. Using such short overlapping data
would be insufficient to robustly estimate the dependence structure.

To address this issue, other studies (e.g. Jane et al., 2020; Quinn et al., 2019) infill data gaps or missing values using
simultaneous values from nearby stations. This prepares complete time series for dependence estimation, but this approach

may introduce artificial signals such as increased correlation between locations. To preserve sufficient data coverage across
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locations, we infill missing values in the time series at those 41 combinations of tidal gauges and river stations. Across all
locations, the averaged infilling percentage is 1.73% (i.e. equivalent to 0.71 years) for the 41 observation years between 1980
and 2020, see Table S3. For daily maximum total water levels, each of these 41 tidal gauges has missing values in daily
maximum sea levels, with 33 gauges missing less than one year of data. Two gauges, Santa Monica and Bar Harbor, show the
lowest data completeness, with 3.2 and 3.6 years of missing values respectively. For daily river discharges, 10 stations contain
missing values where six stations have gaps of less than one month, two stations have missing data up to two years, and one
station (Cowlitz River) is missing 7.5 years of data.

To infill missing total water levels, long data gaps are first imputed using linear regression based on simultaneous water levels
from nearby tide gauges located within 50 km. We start the infilling process with the nearest available gauge and retain only
the values estimated from regressions with a coefficient of determination (R?) greater than 0.5. For some tide gauges where no
gauges or only a few ones without available data exist within the 50-km radius, we increase the search distance to 150 km.
The remaining non-consecutive gaps are subsequently filled using linear interpolation.

Missing daily mean river discharges are first translated from the corresponding gage height observations using rating curves.
These curves describe the empirical linear correlation between gage height and mean river discharge for individual stations

and are available from the USGS website (http://waterwatch.usgs.gov). The remaining missing values are then infilled using

linear regression with daily mean discharges from the nearest upstream river station. If there are more than one upstream river
inlets, multi-linear regression is applied to estimate the missing discharges based on simultaneous data records at all upstream
stations. Lastly, any remaining discrete missing discharges are calculated through linear interpolation. As an example, Figure
S1 shows the data infilling result at the tidal gauge Santa Monica (3.2 years of missing data) and the river station Cowlitz River

(7.5 years of missing data), as well as the methods adopted to impute specific missing values.

2.3 Identifying spatially joint extreme events of sea levels and river discharges

Storm events can impact a large stretch of coastline (Enriquez et al., 2020; Li et al., 2023) and may cause compound flooding
at multiple locations. However, individual storms are not likely to affect all parts of the U.S. coastline. To account for this
trade-off and spatial dependence, we develop datasets of spatially joint extreme events of total water levels and river discharges
for two coastal regions: (1) the West Coast, and (2) the combined Gulf of Mexico and East Coast. We group the Gulf and East
coasts together because hurricanes can make landfalls in close succession across these two regions. Prime examples of such
events are Hurricanes Helene (2024), Ian (2022) and Katrina (2005).

For each region, we first define joint extreme events that may potentially cause compound flooding at individual
locations/station combinations. This analysis involves a two-sided conditional sampling where bivariate events are selected
conditioned on one of the two drivers (i.c. total water levels and river discharges) being extreme (Jane et al., 2020). Due to the
relatively short data records used in this study, we use the peak-over-threshold (POT) approach for this process as POT
generally samples more extreme events compared to the annual maxima approach (Camus et al., 2021). However, the POT

approach introduces subjectivity in threshold selection: the threshold should be high enough to drive a good fit of marginal
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distributions, yet low enough to ensure sufficient samples for robust parameter estimation of these distributions. To reduce this
subjectivity, we apply the automated threshold estimation approach of Solari et al. (2017) to total water level and river
discharge time series to sample joint extreme events at each station combination. We account for potential time lags between
the peak water level and river discharge by allowing a +3-day lag. When conditioned on total water levels, a peak water level
is paired with the maximum river discharge occurring within a 7-day window centred on that water level; the same procedure
is used for cases conditioned on river discharges. When identifying these extreme events, we follow previous studies (e.g.
Couasnon et al., 2020; Ghanbari et al., 2021; Jane et al., 2020; Wahl et al., 2015; Ward et al., 2018) and assume that all events
arise from a single population. This simplifying assumption therefore does not account for the mixed-population effects caused
by events generated by different storms (e.g. TCs and ETCs) and hydrological processes (e.g. snowmelt and convective
rainfall).

These bivariate extreme events at individual locations are then grouped into a large dataset for each study region. To do this,
we consider a set of m locations (i.e. 13 and 28 station combinations for the West and the combined Gulf and East coasts). At
location i, we use a bivariate vector X; = (TWL;, Q;) where TWL; and Q; represent time series of paired total water level and
river discharge. The set of these components for each study region is then defined as X = {X,-, ie{l,.., m}}.

We further transform X onto a common marginal scale. Laplace margins are adopted in this study because they have been
shown to outperform other common marginals such as Gumbel distributions in the subsequent dependence modelling

framework (Keef et al., 2013). For the set X, the transformation is achieved by:

_ [ log2F,(X)}, X; < F71(0.5)
£ —log{2l1 - F.(X)1}X; = F1(0.5)

1
where F; is the marginal distribution of X;. The marginal distribution F; is semi-parametric and estimated independently per
component at individual locations. For each water level or river discharge component, a generalised Pareto distribution (GPD)
is fitted to detrended and de-clustered peak values above a specified threshold while an empirical distribution is used for those
below the threshold. We use the previously identified thresholds for this process and the underlined GPD fitting is performed
through penalised likelihood estimation using a Gaussian prior. To assess the sensitivity of the transformation results to
different marginal distributions; we also test Gumbel marginals and find that the results are insensitive to this choice.

From each transformed set ¥ s-qns = {Yi, ie{l,.., m}}, we identify spatially joint events across the entire coastal region, see
Figure 2 for an example of constructing one such event for a region with 7 locations. To do this, we first identify the primary
variable with the largest marginal value (e.g. the water level at location 4, marked in orange) among all variables from the
entire dataset, and retrieve the occurrence date and location. At this primary location, we then obtain the corresponding value
for the other variable (e.g. the river discharge in the hatched orange cell) from the sampled bivariate events. For instance, if
the largest extreme water level event occurs at a coastal station, we obtain the corresponding river discharge value at the paired

river station from the bivariate event set developed for individual locations.



205

210

215

220

vaye 770

Matched ext Matched ext
Primary variable atched extreme - atched extreme

variable (largest) variable (non-largest)
, Paired variable Matched non-extreme ! Paired peaks

1
m same location - Variable (largest) I I:] from bivariate sets

Figure 2: Schematic of the construction of one spatially joint events across the 7 locations of an exemplary coastal region. SWL refers to
total water level while Q refers to river discharge. The orange cell indicates the primary variable with the largest marginal value at the
primary location. For other locations, matched extreme variables are marked in green where the maximum of either TWL or Q within the
matching window is selected. Dark grey cells are the available extremes within the window but they are not the largest. Hatched cells are
the paired peaks to the matched variable from the bivariate events identified for individual locations. Blue cells indicate the matched non-
extreme variables; they are not from paired bivariate peaks and are marked by a blue dashed box.

Next, we match this primary event at the primary location to potential bivariate events at all other locations. Since peaks at
different locations do not necessarily occur simultaneously, we apply a time window of 7 days (£3 days around the peak for
the primary variable) in the matching process. In other words, we assess whether a compound event occurs at another location
within this time window. This process may result in multiple bivariate events identified for a single location (e.g. the three
extreme water level identified at location 7); in these cases, we retain the event with the largest marginal peak (e.g. the event
marked by a green square at location 7). If no event is found for a particular location (e.g. the case for location 2), we instead
select the maximum total water level or river discharge (e.g. the blue cells at location 2) within the 7-day window. This process
samples one spatially joint event for the entire coastal region centred around the peak of the primary variable. Once this event
is identified, we remove all peaks across all variables and locations that fall within the associated event window (ranging from
7 to 13 days, depending on the timing of the matched peaks). We then repeat the process with the updated event set, identifying
the next largest remaining marginal value to define the corresponding spatially joint event. This iterative sampling continues
until no peaks can be found in the event set.

This approach generates a separate dataset ¥ of spatially joint events of total water level and river discharge from the large
transformed dataset Y,.qns With time series of paired peaks for the two study regions in this study. Each sampled event

represents a peak bivariate event at a single location (the primary station combination) matched appropriately with potential
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peak bivariate events at all other locations. The validity of these spatially joint events is ensured by performing several

measures (see Sect. S1), and results of these measures can be found in Figure S2-3 in the supplementary materials.

2.4 Estimating the statistical dependence structure and generating a 10,000-year of spatially joint events of total water
level and river discharge

2.4.1 Dependence calculation

To assess the dependence structure between a set of variables, two main classes of statistical models have been typically used:
1) copulas, and 2) the multivariate conditional model of Heffernan and Tawn (2004). Standard copulas are used to describe
the bivariate dependence while pair-copula construction (e.g. vine copula) is developed to assess higher-dimensional
dependence. Although the copula approach has been widely used in compound flooding analyses, standard copulas impose
one type of extremal dependence in the joint tails between variables (Heffernan, 2001). Therefore, a priori selection of the
best-fit copula is often performed for paired variables of interest (e.g. Jane et al., 2020; Wabhl et al., 2015). In contrast, the
multivariate conditional model captures the dependence structure between a set of variables by estimating the conditional
distribution for the remaining variables given that a primary variable exceeds a high threshold. This approach therefore
provides more flexibility in modelling the tail dependence structures; it is however more sensitive due to the added complexity
of selecting suitably high thresholds (Tilloy et al., 2019). Nevertheless, the multivariate conditional model has been applied to
model the dependence between drivers of compound flooding at a single location (e.g. Jane et al., 2020), as well as the
dependence in the variables contributing to extreme sea levels at multiple sites (e.g. Li et al., 2023; Wyncoll et al., 2016). As
a result, we choose the multivariate conditional model of Heffernan and Tawn (2004) to estimate the dependence between total
water levels and river discharges across different locations in this study.

The multivariate conditional model works by 1) estimating the univariate marginal distribution for each variable; and 2)
calculating the pairwise dependence structure based on regression functions. We use the same marginal distributions X as
estimated in Sect. 2.3. To estimate the dependence between total water levels and river discharges across different locations,
we apply the multivariate conditional model to the transformed datasets of identified spatially joint extreme events Y =
{Yi, i €{1, ...,m}} (Sect. 2.3). The model then calculates the conditional distribution of the remaining variables from the
sampled events where a specified variable (i.e. the conditioning variable) exceeds the threshold. This procedure is repeated by
taking each variable as the conditioning variable in turn. The resultant dependence is therefore a series of pairwise regressions
with estimated residuals, based on the following equation:

Y_,|Yi=aY, +YPZ_ forY, > v (2)

where Y _; is a vector of all the variables excluding variable Y; (here the model considers two variables per location, namely 1)
total water level and 2) river discharge), v is a high threshold above which the dependence is estimated (we use the same
thresholds as identified in Sect. 2.3), a is a vector of parameters (—1 < a < 1) for overall dependence strength with positive

and negative values referring to positive and negative dependence respectively, b is another vector of parameters describing
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how the dependence changes (b < 1, with positive values meaning the variance increases as y increases), Z_; is a vector of
residuals. For a station of interest Y; and the jth station of ¥ _;, their dependence is characterized by Eq. 2 using parameters

aj|l-, b}'liﬂ and residuals Z]|L

2.4.2 Stochastic event set generation

Multivariate extremes, such as the spatially co-occurring events with potential compound flooding in this study, are scarce in
observational records. Therefore, accurate frequency analyses for such events require simulations of large event sets capturing
dependence between a set of variables (Brunner, 2023). The estimated dependence structure (Sect. 2.4.1) describes the
conditional distribution of variables at other locations when one of the two variables (i.e. total water level and river discharge)
at a given location is extreme. This information can be used to develop an event set of a large number of spatially co-occurring
events, whereby for individual events at least one variable at one location is extreme.
We apply a Monte Carlo procedure to generate a 10,000-years of spatially joint events of total water levels and river discharges
across different locations. For a given study region with m locations, we denote the 10,000-years event set as E =
{y e R™: 3i € {1, ...,m},y; > u}, where u is a high threshold. We use the same thresholds as identified in Sect. 2.3. The event
set E can be separated into subsets of events conditioned on a given variable following E; = {y € R™:y; > uandy; =
max (y)}. To quantify the number of events to be generated for each subset E;, we use a multinomial distribution with the
total event number ng of the 10,000 years and a probability vector P(Y € E;|Y € E) fori € {1, ..., m}.
To construct the multinomial distribution, we first calculate the empirical distribution of annual event counts using the dataset
of identified spatially joint extreme events ¥ (Sect. 2.3). For the 10,000 simulation years, the total event number ng is
approximated by summing up 10,000 values randomly sampled from the annual event count distribution. The next step is to
estimate the probability vector P(Y € E;|Y € E) fori € {1, ..., m}. From the identified spatially joint extreme events ¥, we
obtain the conditioning variable for each event, which is defined to have the largest marginal value among all variables. We
then calculate the likelihood of each variable being the conditioning variable. The probability vector is then combined with n,
to calculate the event number n; for each subset E;. Lastly, E; is generated by repeating the following simulation steps until n;
is satisfied:

1. Sample the value for the conditioning variable Y; from its marginal distribution, conditional on ¥; > u;

2. Independently sample a joint residual Z;;

3. Estimate the value for the remaining variables Y _; from Eq. (2) using the estimated parameters a;, b;;

4. Reject the sample Y; if Y; is not the largest among all variables on the marginal scale, and repeat the above steps until

a sample is obtained in which Y} is the largest.
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2.4.3 Validation of simulated stochastic events

To validate the stochastic events, we first compare the observed and simulated peak total water levels and river discharges
over a 41-year period at all station combinations. The simulated peak value is estimated by taking the median of 250 model
realisations of 41 years of values randomly sampled from the 10,000-year event sets. A second validation analysis is conducted
by comparing water level and river discharge return periods per station combination between observations and simulated event
sets. The observed return levels are estimated from the fitted GPD distribution of the marginal distribution for each variable
(Sect. 2.4.1). The simulated return values are the median return levels obtained from 100 model realisations, each representing
1,000 years of randomly sampled values from the 10,000-year event sets. For each realisation, return levels are calculated
empirically using the Weibull’s plotting formula (Makkonen, 2006). We also estimate the 5%-95™ confidence intervals (Cls)
for both observed and simulated return levels. For the observed values, symmetric Cls are computed based on the estimated
standard errors from 1,000 random samples. For the simulated return levels, the Cls are given by the 5" and 95™ percentiles

of the estimated return levels from the 100 realisations.

2.5 Assessing the joint occurrence of compound flooding potential across locations

From the generated stochastic sets of spatially joint events, we assess the joint occurrence of compound flooding potential
across locations. First, we quantify the joint occurrence of compound flood potential by simply counting the number of events
where both total water level and river discharge (i.e. AND hazard scenario) at individual locations exceed a range of thresholds
including the 99", 1-year, and 2-year return levels. We use these relatively high thresholds to avoid spurious consideration of
minor events for calculating the joint occurrences, as we do not further model the inundation and impact of these events in this
study. Each location has varying compound flooding potential since the number of joint occurrences may be different at
individual locations. To account for this difference and ensure comparability across locations, we therefore standardise the
results using the number of joint occurrences per year.

Second, we assess the spatial correlation of compound flood potential by estimating the relative occurrence rates. This is done
by calculating the occurrence rate of simultaneous potential compound flood events at other locations given a location of
interest experiences a potential compound flood event. A higher relative rate at a location indicates a stronger spatial correlation
of compound flooding between this location and the location of interest.

Compound flooding may occur when only one flood driver is extreme at a given location (OR hazard scenario), we refer to
such events as ‘coastal driven’ or ‘river driven’ events in this study. Since these events may also lead to (compound) flooding,
we are interested in their occurrence probabilities. For all compound flood events at a location of interest, we calculate the
relative number of: 1) compound (both drivers exceed the threshold); 2) coastal driven (only water level exceeds the threshold);
3) river driven (only water level exceeds the threshold); and 4) non-extreme (no drivers exceed the threshold) events for the

other locations.

11



320

325

330

335

3 Results and Discussions

3.1 Validation of simulated stochastic event sets
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Figure 3: Validation of the generated synthetic coastal water levels. (a) Maximum observed versus simulated peak total water levels over a
41-year period at tidal gauges on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks are
extracted from the 41-year observations, while the simulated peaks refer to the median of total water levels from 250 random model samples
of 41 years length. The red dashed line represents the identity (1:1) line. (b) Comparison between observed and simulated water level return
periods for nine selected gauges (three per coast; see the locations in Figure 1). Red dots are the empirical return periods from observed peak
water levels, while blue curves represent the return periods from the GPD fit to the observations. Orange curves refer to the empirical
estimates from the 10,000-year simulation. Shaded areas are the confidence intervals corresponding to the 5® and 95 percentiles.

In Figure 3, we show the validation results on the generated stochastic coastal water levels. Figure 3a compares the maximum
simulated water levels against observations over a 41-year period for all 41 tidal gauges along the U.S. coastlines used in this
study. Results show that the simulated 41-year maximum water levels show good agreement with observations, with an overall
coefficient of determination (R?) of 0.91 and a root mean square standard error (RMSE) of 0.4 meters across all the gauges.
The highest agreement is found at gauges on the West coast (blue). On the Gulf of Mexico (orange) and East coast (green),
our model is found to underestimate the 41-year maximum water level for some gauges such as Battery, Sandy Hook, and
Galveston (Pier 21), while the maximum water level is overestimated at Cedar Key. These misestimations are likely caused
by the different approaches for estimating maximum water levels. The observed maximum water levels over a 41-year period
may have a return period of larger than 40 years according to the extreme value analysis (e.g. see the water level comparison
for Rock Port and Charleston in Figure 3b). However, the obtained values, based on many realisations of 41-year water levels

from the stochastic set, are approximately identical to the estimated 1-in-41-year water level. This case typically occurs at
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gauges in TC-prone areas. Due to the stochastic nature of TCs, observation records of a limited length, such as 41 years in this
study, may contain too few TCs that made landfall to drive a good fit of extreme distributions to robustly estimate water level
return periods (Dullaart et al., 2021).

Fig. 2b compares the water level return periods estimated from the stochastic events (orange) and observations (blue) at nine
randomly selected gauges (three per coast). The return periods calculated from simulated water levels correspond well with
those derived from observed data, with narrower confidence intervals associated with the former mostly located within the
confidence bounds associated with the observational data. This indicates that our approach can simulate water levels close to
the marginal distributions of the observations with greater confidence, especially for high return periods. For North Spit and
Los Angeles, our approach overestimates the water levels for relatively low return periods compared to estimated return levels
using observations, which may be due to the sampling procedure used to identify spatially joint events. As this process tends
to pair the peaks of the primary variable with maximum values of the remaining variables within a lagged window, the

dependence structure may be overestimated and therefore higher values are generated.
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Figure 4: Validation of the generated synthetic river discharges. (a) Maximum observed versus simulated peak river discharges over a 41-
year period at paired river stations on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks
are extracted from the 41-year observations, while the simulated peaks refer to the median of river discharges from 250 random model
samples of 41 years length. The red dashed line represents the identity (1:1) line. (b) Comparison between observed and simulated water
level return periods for the nine stations (paired with the nine coastal gauges; see the locations in Figure 1). Red dots are the empirical return
periods from observed peak water levels, while blue curves represent the return periods from the fitted GPD using these observations. Orange
curves refer to the empirical estimates from the 10,000-year simulation. Shaded areas are the confidence intervals corresponding to the 5™
and 95" percentiles.
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Compared to total water levels, we find higher agreement between observed and simulated maximum river discharge over a
41-year period at all stations, see Figure 4a. The coefficient of determination (R?) is 0.98 and the root mean square standard
error (RMSE) is 511 m?/s across all stations. Figure 4b shows good correspondence between the return periods estimated from
the stochastic events and observations for the river stations paired with the nine selected tidal gauges. At most stations, the
simulated stochastic return levels show a narrower confidence interval. Overall, these validation results show that our approach

can generate a much longer set of spatially joint events with similar marginal distributions compared to historical observations.

3.2 Frequency analysis of simultaneous potential compound flooding with the number of affected locations
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Figure 5: Event percentage diagram with the number of locations affected by simultaneous potential compound flooding for the West Coast,
Gulf of Mexico, and East Coast. Potential compound flooding is defined by events where both total water level and river discharge exceed
their respective 99 percentiles. Over the 10,000-year simulation period, the total number of potential compound flooding events is 24,086,
15,540, and 28,635 for the West, Gulf, and East coasts, respectively.

Figure 5 shows the percentage of simulated events that may potentially cause compound flooding, categorised by the number
of affected locations for the US coastal regions. These events are those with both total water level and river discharge exceeding
the respective 99™ percentiles. Our analysis reveals that the Gulf coast shows the highest frequency of localised compound
flood events among the three US coasts, with over 82% of all potential events affecting only a single location. Nevertheless,
it is still likely (around 12%) that potential compound flood events may affect two locations on the Gulf coast, while events
that may affect more locations become increasingly rare (e.g. less than 3% for three locations and 3% for more than three
locations). In contrast, the west coast shows higher frequencies of widespread potential compound flooding. For example,
about 50% of the events may result in potential compound flooding at one location while the chances of affecting multiple

locations are 23% for two locations, 13% for three locations, 7% for four locations, and 3% for five locations. The east coast
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shows slightly lower frequencies of potential compound flooding events affecting multiple locations. The frequency of events

affecting a single location is 61%, followed by 21%, 9%, and 4% for two, three, and four locations, respectively.

3.3 Joint occurrence of extreme sea levels and river discharges at individual locations
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Figure 6: Number of joint occurrences per year between extreme total water levels and river discharges from simulated 10,000-year event
sets for (a) the West coast and (b) the combined Gulf of Mexico and East Coast. Joint occurrences are defined for events where both water
level and river discharge are above the 99™ percentile threshold. The state borders are marked in white.

We first assess the compound flooding potential at individual locations based on the annual number of joint occurrences of
total water level and river discharge above a specific threshold. Figure 6 shows the result using a threshold equivalent to the
99% percentile of the 41-year total water level and river discharge time series. The regional patterns of compound flooding
potential largely align with those reported in previous studies (e.g. Couasnon et al., 2020; Ghanbari et al., 2021; Ward et al.,
2018). For example, most locations on the US west coast show a high compound flooding potential, with an annual number of
joint occurrences exceeding 0.3. This high potential is associated with the interplay between synoptic weather systems (e.g.
ETCs) and regional orographic features, which causes simultaneous high storm surge and intense precipitation (Couasnon et
al., 2020). These storm surges elevate the total water level, and the intense rainfall results in high river discharges in a short
time as most river basins on this coast are relatively small and steep (Ward et al., 2018a). At a few locations such as Seattle,
Port San Luis, Santa Monica, and La Jolla, the compound flooding potential is relatively low and the annual number of joint
occurrences is typically smaller than 0.2. The dependence between riverine and coastal drivers in these locations is found weak

or statistically insignificant by previous studies. For example, Ward et al. (2018) found weak dependence between river
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discharge and skew surge at La Jolla, while Ghanbari et al. (2021) confirmed independence between total sea level and river
discharge at Seattle and Santa Monica.

For the Gulf of Mexico, both stations on the western part show a high compound flooding potential with an annual number of
joint exceedances of 0.38 and 0.53 for Rock Port and Galveston respectively. However, the eastern part except St. Petersburg
has a much lower joint exceedance value. This regional difference is due to seasonal patterns in river discharge and storm
surge characteristics. High storm surges/sea levels on the Gulf coast are often driven by hurricanes (i.e. TCs). For the western
part of this coast, maximum river flows also occur during hurricane seasons, while the river flow on the eastern part is often
at its largest between late winter and early spring (Berghuijs et al., 2016).

The eastern coast of the U.S. has a more complex spatial pattern of compound flooding potential with varying annual numbers
of joint occurrences. For the southeastern coast, a low joint occurrence number (<0.1) of total water level and river discharge
is found for most locations except Wilmington. Although statistical dependence is found for these locations by other studies
(e.g. Ghanbari et al., 2021; Ward et al., 2018), the dependence coefficient Kendall 7 is generally low (e.g. ranging from 0.1-
0.2 in Ghanbari et al. (2021)). The low annual number of joint occurrences may also be contributed to by the sampling method,
which is based on automated thresholds in this study. For most locations on the southeastern coast, the identified thresholds
are relatively high (see Table S2), which leads to much fewer sampled events from observations (see Figure S2) and further a
much smaller number of generated stochastic events. For the northeastern coast, we find a high compound flooding potential
for the mid-Atlantic region while locations at the far northeastern coast generally show low compound potential. These results
largely agree with previous findings (e.g. Wahl et al., 2015; Ward et al., 2018). On the eastern US coast, it is known that TCs
can drive concurrent high storm surge and precipitation (Wahl et al., 2015). However, other mechanisms such as snow melt
and convective storms that can generate riverine floods are also at play (Berghuijs et al., 2016), which could explain the

regional difference in the compound flooding potential between the southern and northern parts.
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3.4 Joint occurrence of extreme sea levels and river discharges across multiple locations
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Figure 7: Relative occurrence rate of potential compound flooding at individual locations given potential compound flooding occurs at a
primary location for the West Coast. The top-left panel shows the individual locations and the state borders are marked in white. Potential
compound flood events are defined by events with both total water levels and river discharges exceeding the 99" percentile threshold. Small
black solid circles refer to the relative occurrence rate lower than 0.05, and the number on the lower left corner of each subplot represents
the total number of stochastic events with compound flooding potential at the primary location from the 10,000-year simulated event set.

Moving from assessing compound flooding potentials at individual locations, we then assess the likelihood of simultaneous
compound flooding arising across different locations. Figure 7 maps the relative occurrence rate of potential compound flood
events at individual locations on the West coast of the United States, given the location of interest is experiencing an event

with compound flooding potential. Here potential compound flood events are defined as events with both total water level and
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river discharge exceeding the 99 percentile. Results show that for the west coast, when a given location sees potential
compound flooding, other locations are likely to experience potential compound flooding simultaneously. As one may expect,
the relative occurrence rate shows asymptotic patterns across space: These rates are relatively high at locations near the primary
location and start to decrease when the distance increases. For example, when a potential compound flood event occurs in
Seattle, the chance that Friday Harbor is also affected is relatively high (0.54) while the joint rates for other locations are much
lower (e.g. Toke Point: 0.39, Astoria: 0.27, Charleston: 0.16). At most locations, a relatively high joint occurrence rate (>0.5)
can be observed at one or two nearby locations. However, there are a few locations where three nearby locations show a high
relative occurrence rate; this is case for Astoria, Crescent City, and Los Angeles.

We also observe two clustering patterns where more than two locations show mutually high relative occurrence rates. The first
cluster is Charleston — Crescent City — North Spit; the relative occurrence rates for the other two locations are 1) 0.50 and 0.51,
2)0.56 and 0.62, and 3) 0.47 and 0.40 given each of these three locations experience potential compound flooding. The second
cluster covers the southwestern U.S. coast (Santa Monica — Los Angeles — La Jolla). These clusters correspond with clustering
results of storm surges (Enriquez et al., 2020) and total water levels (Li et al., 2023) based on in-depth statistical analyses. This
indicates that synoptic weather events (i.e. ETCs on this coast) may be responsible for large-scale compound flooding at these
locations.

To assess the sensitivity of the results to different thresholds for identifying potential compound flood events, we also apply
varying thresholds equivalent to 1- and 2-year return levels, see Figure S4-5. To maintain consistency, these varying thresholds
are only applied for the primary location while the 99'" percentile is used for the remaining locations on the west coast. We
restrict this analysis up to 2-year return levels because the number of identified stochastic events will be very small when
applying higher thresholds, and the further quantification of relative occurrent rates would be very biased based on such few
events. We find similar patterns of the relative occurrence rates for different thresholds. With increasing thresholds, these
relative occurrence rates become significantly higher. This is primary because larger storms are expected to have a greater

spatial footprint and may therefore affect more locations.
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Figure 8: Relative occurrence rate of potential compound flooding at remaining locations given potential compound flooding occurs at a

455  primary location for the combined Gulf of Mexico and East Coast. The top-left panel shows the individual locations and the state borders
are marked in white. Potential compound flooding is defined by events with both total water levels and river discharges exceeding the 99
percentile. Small black solid circles refer to the joint occurrence rate lower than 0.05, and the number on the lower left corner of each subplot
represents the total number of stochastic events with compound flooding potential at the primary location from the 10,000-year simulated
event set.
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For the Gulf of Mexico, we find lower relative occurrence rates of potential compound flooding for most locations. This shows
a weak spatial correlation of compound flooding potential between locations, suggesting that compound flooding may occur
at a local spatial scale on this coast. The reasons for this may be twofold. First, TCs are responsible for the majority of
compound flood events on this coast (Lai et al., 2021); although TCs can cause more intense storm surge and rainfall, they
have a smaller spatial footprint compared to ETCs (Dullaart et al., 2021). This is especially the case for the western Gulf coast
(i.e. Rock Port and Pier 21) where the relative occurrence rate is 0.18 and 0.13 given each of these two locations sees a potential
compound flood event in turn. Despite this, there are a few historic TC events, such as Hurricane Harvey, that resulted in
compound flooding in both locations. Second, the eastern Gulf coast has a low compound flooding potential as extreme storm
surge and high river flow typically occur in different seasons (Ward et al., 2018a). Therefore, compound flooding is unlikely
to arise at different locations.

On the East Coast, the relative occurrence rate of compound flooding potential shows mixed patterns. Both southern and
northern parts show a weak spatial correlation of compound flooding with low relative occurrence rates, which could be
associated with the low compound flooding potential in these regions. For the central part (between Swell Point to Newport),
more than 50% of the locations show a relatively low joint occurrence rate of potential compound flooding (<0.4) for the
remaining locations. Four locations, namely Swell Point, Annapolis, Sandy Hook, and Battery show a relatively high joint
occurrence rate (>0.4) at one nearby location. Baltimore shows the highest spatial correlation of compound flooding potential
with other locations: Two nearby locations Washington and Annapolis show a high relative occurrence rate of 0.44 and 0.48;
Swell Point and Reedy Point has a rate of 0.16 and 0.25 while the remaining locations show a lower occurrence rate (<0.1).
Compound flooding on the US east coast can be triggered by both TCs and ETCs, and the relative contribution of these two
weather events varies spatially, which may correlate to the regional differences of spatial correlation of compound flooding
potential.

We note that some relative occurrence rates of compound flooding potential show correlations between locations that are far
way. For example, when Panama City sees a potential compound flood, Beaufort and Portland show a relative occurrence rate
of 0.15 and 0.09, respectively (see Figure 8). Other similar instances can be found for several locations (e.g. Boston and Bar
Harbour) on the northeastern coast which show a small relative occurrence rate at locations on the Gulf coast. These
correlations can be driven by the storm events that make a landfall on the Gulf coast and then travel into certain areas (e.g. the
Carolinas) on the East coast. Prime examples of such events are Hurricane Idalia and Tropical storm Eta. On the other hand,
these correlations can be spurious due to the applied time lags in the sampling process. A +3-day lag both spatially and between
total water level and river discharge at individual locations can result in a sampled event of up to 13 days. This long duration

may unintentionally correlate individual potential compound floods across multiple locations.

3.5 Relative frequency contributions of different types of events at other locations

Compound flooding may occur when only one driver is extreme. It is therefore important to estimate the simultaneous joint

probability of different types of flood events from exceedances over either coastal or riverine flood threshold. When a location
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experiences a potential compound flood event, we assess the relative frequency contributions of different types of events at
other locations. We identify four types of events: 1) compound where both drivers exceed the respective thresholds, 2) coastal
driven where only total water level exceeds the threshold, 3) river driven where only river discharge exceeds the threshold, 4)

non-extreme events where neither of the drivers exceeds the threshold. To keep consistent, we use the 99™ threshold for both

total water level and river discharge at all locations.
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Figure 9: Relative frequency of different types of events given potential compound flooding occurs at a primary location for a) Toke Point,
b) North Spit, and c¢) Los Angeles on the U.S. West Coast. Potential compound flood event (orange) is defined for events with both total
water levels and river discharges exceeding the 99 percentile. The total number of simulated compound events at the primary location is
indicated in the title of each panel. Blue refers to coastal driven events where only the total water level exceeds the 99™ threshold, while
green refers to river driven events where only the river discharge exceeds the 99™ threshold. Purple refers to non-extreme events where
neither of the drivers exceeds the threshold.

Figure 9 shows the relative frequency of these different types of events, i.e. compound (orange), coastal-driven (blue), river-
driven (green), and non-extreme events (purple), for three selected reference locations with a relatively high compound flood
potential on the West Coast. Results for other locations on this coast can be found in Figure S8-10 in the supplementary
materials. Note that the relative frequency of compound events (orange) is the same as the relative occurrence rate shown in
Figure 7-8.

At all three locations, the likelihood of simultaneous extreme events at other locations is high, when the primary location sees
a potential compound flood event. For example, the relative frequency of extreme events (river, coastal or compound) is higher
than 0.5 at six other locations between Friday Harbor and North Spit when Toke Point experiences a potential compound flood

(Figure 9a). Similarly, this high frequency of extreme events is seen at eight other locations when both North Spit (Figure 9b)

21



515

520

525

530

535

540

545

and Los Angeles (Figure 9c) are the reference location. In most cases, the relative frequency contribution of coastal-driven
events is higher compared to the respective contribution of river-driven events. This may suggest that total water levels exhibit
stronger spatial dependence than river discharges at those locations selected in this study. The stronger dependence of total
water levels may stem from the high tide events as the spring and neap tides occur at approximately the same time everywhere
along the coastline. On the contrary, the correlation between high river discharges may not be fully captured by using a 3-day

lag between locations as used in this study.

4 Limitations and recommendations

Our framework presents an advancement over the traditional large-scale statistical dependence assessment of compound
flooding drivers, as it accounts for the spatial dependence of different drivers. However, several aspects of our framework
could be further improved. Firstly, our analysis is based on observed data that may be biased towards a few locations. For
example, no station combinations are selected for the central Gulf coast or for most parts of the coastline of Florida due to the
relatively short time-span of the gauge records at these locations. Some of the selected station combinations suffer from long
data gaps which are later infilled using simultaneous data from nearby locations. This may unintentionally increase the
correlation between these locations. Therefore, future studies are recommended to apply our framework to modelled time
series of flood drivers (e.g. storm surges (Muis et al., 2023) and river discharges (Harrigan et al., 2020)). This would improve
the assessment of spatial correlation of potential compound flooding at multiple locations, although these models cannot fully
resolve the TC activities.

Secondly, our framework is limited to extreme total water level and river discharge. However, other drivers may also contribute
to compound flooding. For example, waves were the dominant contributor to inundation along a stretch of coastline during
Hurricane Florence (Leijnse et al., 2025). In some regions with high connectivity between ground and surface water hydrology,
groundwater level is a paramount driver to consider in the compound flooding assessment (Jane et al., 2020). River discharge
is used to represent the riverine component for compound flooding; however, precipitation can be the predominant driver for
compound flooding in some regions (Sohrabi et al., 2025) and should be considered in the dependence analysis. A future
version of our framework is therefore recommended to include relevant drivers depending on the locations, thereby providing
more robust boundary conditions for assessing the inundation and risk of compound flooding.

Our results are based on a large set of stochastic events specified by spatiotemporal limits. In this study we define events for
two areas: 1) the West Coast; and 2) the combined Gulf and East coasts. Given these relatively large areas, spurious correlations
are observed for locations that are far away from each other. For example, when Panama City sees a potential compound flood,
Beaufort and Portland show a non-negligible relative occurrence rate of potential compound flooding (Figure 8). An
improvement for this would be to define the events for the identified clusters of storm surges (Enriquez et al., 2020) and
extreme sea levels (Li et al., 2023). Moreover, these spurious correlations may also stem from the applied time lags between

flood drivers and between locations. In this study, a three-day window for both factors would result in a sampled event with a
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time window of ranging from 7 to 13 days. Although the effects of time lags are found negligible on the dependence between
different drivers at individual locations (Camus et al., 2021), a long time window may unintentionally correlate individual
potential compound floods across different locations. Therefore, future work is recommended to use different lags and to
further assess the sensitivity to these assumptions.

In regions where compound flooding can result from multiple synoptic weather patterns (e.g. TCs and ETCs) and hydrological
processes (e.g. snowmelt and convective rainfall), different generation mechanisms may produce distinct dependence
structures between flood drivers (Kim et al., 2023). To capture these mixed-population effects, our stochastic event generation
could be improved by distinguishing events based on their generation types rather than combining all events into a single
population (c.f. Maduwantha et al., 2024). Such event stratifications require long and continuous time series of flood drivers
(e.g., the 122-year observations used in Maduwantha et al., (2024)), which may not be available for large-scale analyses. Future
work could therefore consider using additional datasets for a long time series synthetic TCs (e.g. Bloemendaal et al., 2020)
and ETCs derived from seasonal forecasting data (e.g. Benito et al., 2025), as well as hydrological data generated by stochastic
weather generators (e.g. Falter et al., 2015; Ullrich et al., 2021).

The final limitation of our study is the identification of the compound events using ‘AND’ hazard scenarios where both total
water levels and river discharges exceed a range of thresholds. In reality, compound flooding may occur even when neither of
these two drivers is extreme. Therefore, a more realistic identification of compound events could be based on impact thresholds
rather than hazard thresholds (Ghanbari et al., 2021). Such impact thresholds have been established for the United States,
including impact thresholds for both coastal (Sweet et al., 2018) and riverine flooding (Cosgrove et al., 2024). These thresholds
are used for forecasting purposes, enhancing public safety, and supporting actions to improve preparedness. However, these
thresholds are not available at all station combinations used in this study, which is the further reason that we use a range of

hazard thresholds for identifying potential compound flood events.

5 Conclusions

We provide the first assessment of spatial correlation of potential compound flooding from extreme sea levels and river
discharges at 41 station combinations on the US coasts. Our results are based on a large set of stochastic events simulated
using a multivariate conditional dependence model. The validation results show that our stochastic events can well capture the
observed dependence structure between total water levels and river discharges across multiple locations. Our assessment of
compound flood potentials at individual locations largely agrees with previous findings. Our frequency analysis of potential
compound flood events across locations shows that potential compound flooding is likely to affect multiple locations. On the
west coast of the U.S., around 50% of potential compound events may arise at more than one location simultaneously. Less
than 30% of potential compound flooding may affect multiple locations on the East coast, while the frequency of widespread
compound flooding is low on the Gulf coast. Our analysis of relative occurrence rates reveals that potential compound events

exhibit strong spatial correlation particularly among neighbouring locations along the U.S. West coast. Two clusters where
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multiple locations show mutually high joint occurrence rate of potential compound flooding are identified: 1) Charleston —
Crescent City — North Spit; and 2) Santa Monica — Los Angeles — La Jolla. In contrast, the Gulf Coast shows the weakest
spatial correlation while the East Coast presents mixed behaviour with moderate spatial dependence in the central region and
weaker spatial dependencies for the remaining locations. These spatial patterns may be associated with the major driving
weather patterns of compound flooding where ETCs have a larger spatial footprint and are more likely to cause widespread
events compared to TCs.

Our results advocate for considering spatial dependence in compound flood risk assessment, especially for regions prone to
large-scale synoptic weather patterns, such as Europe and eastern Asia. While the focus of this study is on the US coasts, the
methodologies developed in this study are readily transferable to other coastal and estuarine regions facing the challenges of
compound flooding. Our stochastic event sets can be used as boundary conditions for coupled hydrologic-hydraulic models
for simulating the surface inundation and assessing flood risk. Our results of relative contributions of different types of events
along the coastlines can facilitate more effective trans-regional flood risk management through better flood adaptation,

planning, and emergency response in low-lying coastal catchments.

Data availability

The dataset containing 10,000 years of spatially joint events of extreme sea levels and river discharges along the U.S. coastlines

is publicly available on Zenodo: https:/doi.org/10.5281/zenodo.15728000 (Li, 2025a) under the Creative Commons

Attribution 4.0 International license.

Code availability
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Attribution 4.0 International license. The scripts rely on several open-source R and Python packages, including Texmex
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