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General comment 

The study proposes a statistical framework for evaluating the spatial correlation of compound flooding, 

demonstrating its use for some coastal locations in the USA. While the methodology appears 

potentially valuable for flood risk assessments in coastal cities, the manuscript currently lacks sufficient 

detail to fully convey its approach and practical implementation. This limits the reader’s ability to 

understand and apply the proposed framework. Furthermore, the accompanying scripts intended to 

reproduce the analysis are incomplete.  

We would like to thank the reviewer for their time and effort dedicated to reviewing our manuscript. 

We are pleased to read that the reviewer finds the presented methodology potentially valuable for 

flood risk assessments in coastal cities.  

In response to the detailed and constructive feedback, we have thoroughly revised the manuscript. 

Specifically, we have: 

1. Expanded the description of our methodological framework by adding the necessary 

mathematical formulations and a schematic illustrating the construction of spatially joint event;  

2. Clarified several methodological choices, including the use of daily data and the choice of 

infilling data gaps; and 

3. Acknowledged the key limitation related to ignoring the mixed-population effects. 

In addition, we have reviewed the available scripts and uploaded all required functions and scripts to 

the current repository. Both the dataset and code repositories are now openly accessible to facilitate 

a better understanding and broader adoption of the proposed approach and developed datasets. The 

dataset can be retrieved at: https://doi.org/10.5281/zenodo.15728000; and the scripts are available 

at: https://doi.org/10.5281/zenodo.17464793. 

We believe that these revisions have substantially improved the manuscript. Our detailed response to 

specific comments are provided in the sections below. 

Major comments 

1. L108: Why did the authors use daily data and not instantaneous (e.g., hourly or 15-minute) data? 

Thank you for your comment. When characterising dependence between compound flood drivers, 

standard extreme-value theory statistical models (e.g. copulas, max-stable processes, and the applied 

multivariate conditional model) require independent and identically distributed (i.i.d) random 

variables as input. This is commonly achieved by detrending and de-clustering the raw time series. As 

extreme sea level and high discharge events often last several days, the typical time window for de-

clustering is more than 12 hours. Therefore, daily values would be a better choice for this process 

compared to instantaneous data. In addition, USGS discharge observations are only available at a daily 

time scale while the original sea level records are hourly and sometimes 6-min for particular stations. 

https://doi.org/10.5281/zenodo.15728000
https://doi.org/10.5281/zenodo.17464793


To maintain consistency between these two datasets, we aggregate the instantaneous sea levels into 

daily maxima.  

We have reflected on this point in the manuscript: 

L118: When characterising dependence, standard extreme-value theory statistical models require 

that the input datasets consist of independent and identically distributed (i.i.d) variables. To satisfy 

this assumption, we first detrend the hourly total water level records by removing the long-term 

mean sea level signal. This is achieved by subtracting the annual mean sea level using a moving 

window, thereby filtering out the inter-annual to multi-decadal sea level variability (Valle-Levinson 

et al., 2017). River discharges do not show such long-term variations, and so no detrending is 

applied to the daily mean records. To prepare for the independence processing and maintain 

temporal consistency between total water level and river discharge, we further aggregate the 

hourly sea levels into daily maxima. The independence is then ensured by applying a 5-day de-

clustering window  (Camus et al., 2021; Maduwantha et al., 2024) with the maximum value 

centred in each window. 

2. L120-139: Instead of filling up data gaps based on information from nearby stations, would have 
been possible to perform all the analyses only considering time periods and storms unaffected by 
these gaps? Please discuss pros and cons of the two alternative approaches. 

Thank you for raising this good point. As the applied statistical model and other similar models like 

copulas struggle to process missing values, considering only time periods where data are available at 

all locations would likely lead to very few overlapping events. Using this small sample may be 

insufficient to calculate the dependence structure. In contrast, using the complete data with infilled 

missing values largely increases the number of extreme events but may introduce artificial signals and 

may unintentionally increase the correlation between these locations. 

We have included this discussion in the manuscript: 

L127: Gauge observation records often suffer from data gaps and may preclude a robust 

statistical dependence analysis between flood drivers. Compound flood studies (e.g. Nasr et 

al., 2021; Wahl et al., 2015; Ward et al., 2018) that only estimate the dependence structure 

between pairs of stations are less affected by these data gaps and do not attempt to infill 

missing observations. As this study also investigates dependence across locations, constraining 

the analysis to common time periods without missing data would likely result in very few 

overlapping events. We calculate the length of the 41-year observational data with removed 

gaps. The data length sharply decreases from 41 years to 11.4 years for the West coast and to 

3.2 years for the combined Gulf and East coasts when only gap-free records are used, see Table 

S3. Using such short overlapping data would be insufficient to robustly estimate the 

dependence structure. 

To address this issue, other studies (e.g. Jane et al., 2020; Quinn et al., 2019) infill data gaps or 

missing values using simultaneous values from nearby stations. This prepares complete time 

series for dependence estimation, but this approach may introduce artificial signals such as 

increased correlation between locations. To preserve sufficient data coverage across locations, 

we infill the missing values in the time series at those 41 combinations of tidal gauges and river 

stations. Across all locations, the averaged infilling percentage is 1.73% (i.e. equivalent to 0.71 



years) for the 41 observation years between 1980 and 2020, see Table S3. For daily maximum 

total water levels, each of the 41 tidal gauges has missing values, with 33 gauges missing less 

than one year of data. Two gauges, Santa Monica and Bar Harbor, show the lowest data 

completeness, with 3.2 and 3.6 years of missing values respectively. For daily river discharges, 

10 stations contain missing values where six stations have gaps of less than one month, two 

stations have missing data up to two years, and one station (Cowlitz River) is missing 7.5 years 

of data. 

Table S3: Comparison of data lengths between original data with removed gaps and complete data 

with infilled gaps for the West and the combined Gulf and East coasts. Numbers in the brackets show 

the average percentage of infilled data across all stations.  

Method West Gulf + East 

Constrained to commonly available events 
(excluding missing values) 

11.4 years 3.2 years 

Complete time series (infilling missing 
values) 

41 years (1.73%)  41 years (1.73%) 

 

3. L161-186, as well as Section 2.4, provide a description of critical methodological steps of this work; 
however, they lack a rigorous mathematical framework. The authors should include suitable 
mathematical formulations, possibly using subscripts for referring to generic locations or events, 
when explaining the proposed approach. 

We agree. We have expanded the description of our methodological steps by including the necessary 

mathematical formulations and a schematic exemplifying the construction of spatially joint events, see 

below. 

L181: These bivariate extreme events at individual locations are then grouped into a large 

dataset for each study region. To do this, we consider a set of 𝑚  locations (i.e. 13 and 28 

station combinations for the West and the combined Gulf and East coasts). At location 𝑖, we 

use a bivariate vector 𝑋𝑖 = (𝑇𝑊𝐿𝑖, 𝑄𝑖)  where 𝑇𝑊𝐿𝑖  and 𝑄𝑖   represent time series of paired 

total water level and river discharge. The set of these components for each study region is 

then defined as 𝑿 = {𝑋𝑖, 𝑖 ∈ {1, … , 𝑚}}.  

We further transform 𝑿 onto a common marginal scale. Laplace margins are adopted in this 

study because they have been shown to outperform other common marginals such as Gumbel 

distributions in the subsequent dependence modelling framework (Keef et al., 2013). For the 

set 𝑿, the transformation is achieved by: 

𝑌𝑖 = {
𝑙𝑜𝑔{2𝐹𝑖(𝑋𝑖)}, 𝑋𝑖 < 𝐹𝑖

−1(0.5)  

−𝑙𝑜𝑔{2[1 − 𝐹𝑖(𝑋𝑖)]}, 𝑋𝑖 ≥ 𝐹𝑖
−1(0.5)

 (1) 

where 𝐹𝑖 is the marginal distribution of 𝑋𝑖. The marginal distribution 𝐹𝑖 is semi-parametric and 

estimated independently per component at individual locations. For each water level or river 

discharge component, a generalised Pareto distribution (GPD) is fitted to detrended and de-

clustered peak values peak values above a specified threshold while an empirical distribution 

is used for those below the threshold. We use the previously identified thresholds for this 

process and the underlined GPD fitting is performed through penalised likelihood estimation 

using a Gaussian prior. To assess the sensitivity of the transformation results to different 



marginal distributions; we also test Gumbel marginals and find that the results are insensitive 

to this choice.  

 L194: From each transformed set 𝒀𝒕𝒓𝒂𝒏𝒔 = {𝑌𝑖 , 𝑖 ∈ {1, … , 𝑚}} , we identify spatially joint 

events across the entire coastal region, see Figure 2 for an example of constructing one such 

event for a region with 7 locations. To do this, we first identify the primary variable with the 

largest marginal value (e.g. the water level at location 4, marked in orange) among all variables 

from the entire dataset, and retrieve the occurrence date and location. At this primary location, 

we then obtain the corresponding value for the other variable (e.g. the river discharge in the 

hatched orange cell) from the sampled bivariate events. For instance, if the largest extreme 

water level event occurs at a coastal station, we obtain the corresponding river discharge value 

at the paired river station from the bivariate event set developed for individual locations.  

 

 

Figure 2: Schematic of the construction of one spatially joint events across the 7 locations of an 

exemplary coastal region. SWL refers to total water level while Q refers to river discharge. The orange 

cell indicates the primary variable with the largest marginal value at the primary location. For other 

locations, matched extreme variables are marked in green where the maximum of either TWL or Q 

within the matching window is selected. Dark grey cells are the available extremes within the window 

but they are not the largest. Hatched cells are the paired peaks to the matched variable from the 

bivariate events identified for individual locations. Blue cells indicate the matched non-extreme 

variables; they are not from paired bivariate peaks and are marked by a blue dashed box.  

L213: This process may result in multiple bivariate events identified for a single location (e.g. the 

three extreme water level identified at location 7); in these cases, we retain the event with the 

largest marginal peak (e.g. the event marked by a green square at location 7). If no event is found 

for a particular location (e.g. the case for location 2), we instead select the maximum total water 

level or river discharge (e.g. the blue cells at location 2) within the 7-day window. 

L222: This approach generates a separate dataset 𝒀 of spatially joint events of total water level 

and river discharge from the large transformed dataset 𝒀𝒕𝒓𝒂𝒏𝒔 with time series of paired peaks for 

the two study regions in this study. 



L244: The multivariate conditional model works by 1) estimating the univariate marginal 

distribution for each variable; and 2) calculating the pairwise dependence structure based on 

regression functions. We use the same marginal distributions 𝑿  as estimated in Sect. 2.3. To 

estimate the dependence between total water levels and river discharges across different locations, 

we apply the multivariate conditional model to the transformed datasets of identified spatially 

joint extreme events 𝒀 = {𝑌𝑖, 𝑖 ∈ {1, … , 𝑚}} (Sect. 2.3). 

L262: The estimated dependence structure (Sect. 2.4.1) describes the conditional distribution of 

variables at other locations when one of the two variables (i.e. total water level and river discharge) 

at a given location is extreme. This information can be used to develop an event set of a large 

number of spatially co-occurring events, whereby for individual events at least one variable at one 

location is extreme. 

We apply a Monte Carlo procedure to generate a 10,000-years of spatially joint events of total 

water levels and river discharges across different locations for each study region. We denote this 

10,000-years event set as 𝐸 = {𝒚 ∈ ℝ𝒅: ∃𝑖 ∈ {1, … , 𝑚}, 𝑦𝑖 > 𝑢}, where 𝑢 is a high threshold. We 

use the same thresholds as identified in Sect. 2.3. The event set 𝐸 can be separated into subsets 

of events conditioned on a given variable following 𝐸𝑖 = {𝒚 ∈ ℝ𝑑: 𝑦𝑖 > 𝑢 and 𝑦𝑖 = max (𝒚)}. To 

quantify the number of events to be generated for each subset 𝐸𝑖  , we use a multinomial 

distribution with the total event number 𝑛𝑠  of the 10,000 years and a probability vector 

𝑃(𝒀 ∈ 𝐸𝑖|𝒀 ∈ 𝐸) for 𝑖 ∈ {1, … , 𝑚}. 

To construct the multinomial distribution, we first calculate the empirical distribution of annual 

event counts using the dataset of identified spatially joint extreme events 𝒀 (Sect. 2.3). For the 

10,000 simulation years, the total event number 𝑛𝑠 is approximated by summing up 10,000 values 

randomly sampled from the annual event count distribution. The next step is to estimate the 

probability vector 𝑃(𝒀 ∈ 𝐸𝑖|𝒀 ∈ 𝐸) for 𝑖 ∈ {1, … , 𝑚}. From the identified spatially joint extreme 

events 𝒀, we obtain the conditioning variable for each event, which is defined to have the largest 

marginal value among all variables. We then calculate the likelihood of each variable being the 

conditioning variable. The probability vector is then combined with 𝑛𝑠  to calculate the event 

number 𝑛𝑖 for each subset 𝐸𝑖. Lastly, 𝐸𝑖  is generated by repeating the following simulation steps 

until 𝑛𝑖 is satisfied. 

4. While addressing the previous comment, the authors should clarify if and how they account for 
mixed-population effects within each water-level or flow time series. In several parts of the 
manuscript (e.g., L288, L355, L368, L415), the authors observe that there are different possible 
generating mechanisms for these extremes, such as tropical cyclones and extra tropical cyclones 
affecting storm surges, or snowmelt and convective events affecting riverine flooding. Could the 
coexistence of different parent distributions limit the applicability of the proposed methodology? 
The authors should discuss these aspects in detail. 

Thank you for raising this good point. The proposed framework does not account for mixed-population 

effects and instead assumes that all extreme events originate from a single population. This 

simplification is primarily because addressing those effects would require stratifying historical events 

into distinct categories, such as TC-, ETC-driven events as well as those generated by hydrological 

processes like snowmelt and convective rainfall. Such event stratifications require long data time series 

(e.g., the 122-year observations used in Maduwantha et al., (2024)), which are not yet available for 

large-scale analyses. We recognise that this is one of the key limitations of this study. We have reflected 



on this point and have suggested potential ways that could be used to account for mixed-population 

effects for future studies.  

L176: When identifying these extreme events, we follow previous studies (e.g. Couasnon et 

al., 2020; Ghanbari et al., 2021; Jane et al., 2020; Wahl et al., 2015; Ward et al., 2018) and 

assume that all events arise from a single population. This simplifying assumption therefore 

does not account for the mixed-population effects caused by events generated by different 

storms (e.g. TCs and ETCs) and hydrological processes (e.g. snowmelt and convective rainfall). 

L550: In regions where compound flooding can result from multiple synoptic weather patterns 

(e.g. TCs and ETCs) and hydrological processes (e.g. snowmelt and convective rainfall), 

different generation mechanisms may produce distinct dependence structures between flood 

drivers (Kim et al., 2023). To capture these mixed-population effects, our stochastic event 

generation could be improved by distinguishing events based on their generation types rather 

than combining all events into a single population (c.f. Maduwantha et al., 2024). Such event 

stratifications require long and continuous time series of flood drivers (e.g., the 122-year 

observations used in Maduwantha et al., (2024)), which may not be available for large-scale 

analyses. Future work could therefore consider using additional datasets for a long time series 

synthetic TCs (e.g. Bloemendaal et al., 2020) and ETCs derived from seasonal forecasting data 

(e.g. Benito et al., 2025), as well as hydrological data generated by stochastic weather 

generators (e.g. Falter et al., 2015; Ullrich et al., 2021). 

5. L402: it is expected that larger storms will have a greater spatial footprint and affect a larger 
number of stations. The authors should therefore rephrase the sentence at L402. For example: 
“However, these relative occurrence rates become significantly higher with increasing thresholds, 
reflecting the fact that bigger storms can affect more locations” 

Thank you for pointing this out. The sentence has now been rephrased into: 

L450: With increasing thresholds, these relative occurrence rates become significantly higher. 

This is primary because larger storms are expected to have a greater spatial footprint and may 

therefore affect more locations. 

6. The code provided to reproduce the analyses (assets for the review process) apparently lacks 
several parts, including a routine for automated threshold selection (L154), and subroutines that 
are called within the provided scripts. Those subroutines contain functions that are used in the 
shared scripts; without those files, it is impossible to run the provided codes. E.g., in the R script 
“Cal_dependence_autmoated_thres.R”, calls to the following missing scripts are included: 
“transFun.HT04.R”, “predict.mex.conditioned.R”, “u2gpd.R”, “revTransform.R”, “Migpd_Fit.R”, 
“mexTransform.R”. 

Thank you for your careful review of the scripts and for raising this important point. We have included 

all the necessary functions and codes in the repository. In addition, both the dataset and code 

repositories are now publicly accessible to facilitate a better understanding and broader adoption of 

the proposed approach and developed datasets.  

The dataset can be retrieved at: https://doi.org/10.5281/zenodo.15728000; and the scripts to 

generate this dataset and figures related to this submission can be found at: 

https://doi.org/10.5281/zenodo.17464793. 

https://doi.org/10.5281/zenodo.15728000
https://doi.org/10.5281/zenodo.17464793


Minor comments 

1. L49-50: add references supporting this statement regarding the effects of TCs and ETCs on extreme 

and moderate, more frequent events, respectively. 

Thank you. We have added references to this statement, see below: 

L49: While TCs tend to cause extreme flooding, ETCs are found to be responsible for more frequent 

and moderate events (Booth et al., 2016; Gori & Lin, 2022). 

2. Fig 2b, L293-296: How were the 5th-95th-percentile confidence intervals obtained? 

Thank you. For the observed data, the 5th-95th confidence intervals were calculated using the 

rl.evmOpt.R function in the texmex R package. This function assumes a simple symmetric confidence 

interval based on the estimated approximate standard errors from 1,000 random observations. For the 

simulated data, the confidence intervals were estimated by taking the 5th and 95th percentiles from 

100 model realisations of 1,000 years of values randomly sampled from the 10,000-year event sets.  

We have added this information in Section 2.4.3 of Data and Methodology, as follows: 

L291: The simulated return values are the median return levels obtained from 100 model 

realisations, each representing 1,000 years of randomly sampled values from the 10,000-year 

event sets. For each realisation, return levels are calculated empirically using the Weibull’s plotting 

formula (Makkonen, 2006). We also estimate the 5th-95th confidence intervals (CIs) for both 

observed and simulated return levels. For the observed values, symmetric CIs are computed based 

on the estimated standard errors from 1,000 random samples. For the simulated return levels, the 

CIs are given by the 5th and 95th percentiles of the estimated return levels from the 100 realisations.               

3. Fig 4 is unclear. Does the y-axis show the percentage of events affecting 1, 2, …, etc. distinct 

locations over the 10,000-simulation period? If yes, please consider using a more informative label 

for the y-axis. 

Thank you for your good suggestion. Yes, the y-axis indeed shows the percentage of events with 

associated affected locations over the 10,000-year simulation period. We have changed the label into 

Percentage of simulated events.  

 



Figure 5: Event percentage diagram with the number of locations affected by simultaneous potential 

compound flooding for the West Coast, Gulf of Mexico, and East Coast. Potential compound flooding 

is defined by events where both total water level and river discharge exceed their respective 99th 

percentiles. Over the 10,000-year simulation period, the total number of potential compound flooding 

events is 24,086, 15,540, and 28,635 for the West, Gulf, and East coasts, respectively.  
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