Author Response to Referee #2: Assessing the spatial correlation of potential compound flooding in
the United States

Huazhi Li, Robert A. Jane, Dirk Eilander, Alejandra R. Enriquez, Toon Haer, and Philip J. Ward

General comment

The study proposes a statistical framework for evaluating the spatial correlation of compound flooding,
demonstrating its use for some coastal locations in the USA. While the methodology appears
potentially valuable for flood risk assessments in coastal cities, the manuscript currently lacks sufficient
detail to fully convey its approach and practical implementation. This limits the reader’s ability to
understand and apply the proposed framework. Furthermore, the accompanying scripts intended to
reproduce the analysis are incomplete.

We would like to thank the reviewer for their time and effort dedicated to reviewing our manuscript.
We are pleased to read that the reviewer finds the presented methodology potentially valuable for
flood risk assessments in coastal cities.

In response to the detailed and constructive feedback, we have thoroughly revised the manuscript.
Specifically, we have:

1. Expanded the description of our methodological framework by adding the necessary
mathematical formulations and a schematic illustrating the construction of spatially joint event;

2. Clarified several methodological choices, including the use of daily data and the choice of
infilling data gaps; and

3. Acknowledged the key limitation related to ignoring the mixed-population effects.

In addition, we have reviewed the available scripts and uploaded all required functions and scripts to
the current repository. Both the dataset and code repositories are now openly accessible to facilitate
a better understanding and broader adoption of the proposed approach and developed datasets. The
dataset can be retrieved at: https://doi.org/10.5281/zen0d0.15728000; and the scripts are available
at: https://doi.org/10.5281/zen0do.17464793.

We believe that these revisions have substantially improved the manuscript. Our detailed response to
specific comments are provided in the sections below.

Major comments

1. L108: Why did the authors use daily data and not instantaneous (e.g., hourly or 15-minute) data?

Thank you for your comment. When characterising dependence between compound flood drivers,
standard extreme-value theory statistical models (e.g. copulas, max-stable processes, and the applied
multivariate conditional model) require independent and identically distributed (i.i.d) random
variables as input. This is commonly achieved by detrending and de-clustering the raw time series. As
extreme sea level and high discharge events often last several days, the typical time window for de-
clustering is more than 12 hours. Therefore, daily values would be a better choice for this process
compared to instantaneous data. In addition, USGS discharge observations are only available at a daily
time scale while the original sea level records are hourly and sometimes 6-min for particular stations.
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To maintain consistency between these two datasets, we aggregate the instantaneous sea levels into
daily maxima.

We have reflected on this point in the manuscript:

L118: When characterising dependence, standard extreme-value theory statistical models require
that the input datasets consist of independent and identically distributed (i.i.d) variables. To satisfy
this assumption, we first detrend the hourly total water level records by removing the long-term
mean sea level signal. This is achieved by subtracting the annual mean sea level using a moving
window, thereby filtering out the inter-annual to multi-decadal sea level variability (Valle-Levinson
et al., 2017). River discharges do not show such long-term variations, and so no detrending is
applied to the daily mean records. To prepare for the independence processing and maintain
temporal consistency between total water level and river discharge, we further aggregate the
hourly sea levels into daily maxima. The independence is then ensured by applying a 5-day de-
clustering window (Camus et al., 2021; Maduwantha et al., 2024) with the maximum value
centred in each window.

2. L120-139: Instead of filling up data gaps based on information from nearby stations, would have
been possible to perform all the analyses only considering time periods and storms unaffected by
these gaps? Please discuss pros and cons of the two alternative approaches.

Thank you for raising this good point. As the applied statistical model and other similar models like
copulas struggle to process missing values, considering only time periods where data are available at
all locations would likely lead to very few overlapping events. Using this small sample may be
insufficient to calculate the dependence structure. In contrast, using the complete data with infilled
missing values largely increases the number of extreme events but may introduce artificial signals and
may unintentionally increase the correlation between these locations.

We have included this discussion in the manuscript:

L127: Gauge observation records often suffer from data gaps and may preclude a robust
statistical dependence analysis between flood drivers. Compound flood studies (e.g. Nasr et
al.,, 2021; Wahl et al., 2015; Ward et al., 2018) that only estimate the dependence structure
between pairs of stations are less affected by these data gaps and do not attempt to infill
missing observations. As this study also investigates dependence across locations, constraining
the analysis to common time periods without missing data would likely result in very few
overlapping events. We calculate the length of the 41-year observational data with removed
gaps. The data length sharply decreases from 41 years to 11.4 years for the West coast and to
3.2 years for the combined Gulf and East coasts when only gap-free records are used, see Table
S3. Using such short overlapping data would be insufficient to robustly estimate the
dependence structure.

To address this issue, other studies (e.g. Jane et al., 2020; Quinn et al., 2019) infill data gaps or
missing values using simultaneous values from nearby stations. This prepares complete time
series for dependence estimation, but this approach may introduce artificial signals such as
increased correlation between locations. To preserve sufficient data coverage across locations,
we infill the missing values in the time series at those 41 combinations of tidal gauges and river
stations. Across all locations, the averaged infilling percentage is 1.73% (i.e. equivalent to 0.71



years) for the 41 observation years between 1980 and 2020, see Table S3. For daily maximum
total water levels, each of the 41 tidal gauges has missing values, with 33 gauges missing less
than one year of data. Two gauges, Santa Monica and Bar Harbor, show the lowest data
completeness, with 3.2 and 3.6 years of missing values respectively. For daily river discharges,
10 stations contain missing values where six stations have gaps of less than one month, two
stations have missing data up to two years, and one station (Cowlitz River) is missing 7.5 years

of data.

Table S3: Comparison of data lengths between original data with removed gaps and complete data

with infilled gaps for the West and the combined Gulf and East coasts. Numbers in the brackets show

the average percentage of infilled data across all stations.

Method

West

Gulf + East

Constrained to commonly available events
(excluding missing values)

11.4 years

3.2 years

Complete time series (infilling missing
values)

41 years (1.73%)

41 years (1.73%)

3. L161-186, as well as Section 2.4, provide a description of critical methodological steps of this work;
however, they lack a rigorous mathematical framework. The authors should include suitable
mathematical formulations, possibly using subscripts for referring to generic locations or events,

when explaining the proposed approach.

We agree. We have expanded the description of our methodological steps by including the necessary

mathematical formulations and a schematic exemplifying the construction of spatially joint events, see

below.

L181: These bivariate extreme events at individual locations are then grouped into a large
dataset for each study region. To do this, we consider a set of m locations (i.e. 13 and 28
station combinations for the West and the combined Gulf and East coasts). At location i, we
use a bivariate vector X; = (TWL;, Q;) where TWL; and Q; represent time series of paired
total water level and river discharge. The set of these components for each study region is
then defined as X = {Xi, i €{1, ...,m}}.

We further transform X onto a common marginal scale. Laplace margins are adopted in this
study because they have been shown to outperform other common marginals such as Gumbel
distributions in the subsequent dependence modelling framework (Keef et al., 2013). For the
set X, the transformation is achieved by:

- { log{2F,(X))}, X; < F1(0.5) 0

Y -log{2[1 - (X)), X; = F(0.5)
where F; is the marginal distribution of X;. The marginal distribution F; is semi-parametric and
estimated independently per component at individual locations. For each water level or river
discharge component, a generalised Pareto distribution (GPD) is fitted to detrended and de-
clustered peak values peak values above a specified threshold while an empirical distribution
is used for those below the threshold. We use the previously identified thresholds for this
process and the underlined GPD fitting is performed through penalised likelihood estimation
using a Gaussian prior. To assess the sensitivity of the transformation results to different



marginal distributions; we also test Gumbel marginals and find that the results are insensitive
to this choice.

L194: From each transformed set Yirgns = {Yi, i €{1, ...,m}}, we identify spatially joint
events across the entire coastal region, see Figure 2 for an example of constructing one such
event for a region with 7 locations. To do this, we first identify the primary variable with the
largest marginal value (e.g. the water level at location 4, marked in orange) among all variables
from the entire dataset, and retrieve the occurrence date and location. At this primary location,
we then obtain the corresponding value for the other variable (e.g. the river discharge in the
hatched orange cell) from the sampled bivariate events. For instance, if the largest extreme
water level event occurs at a coastal station, we obtain the corresponding river discharge value
at the paired river station from the bivariate event set developed for individual locations.

Other locations — Primary location —_— Other locations

Lags

Matching window

Lags

. . Matched extreme Matched extreme
- Primary variable - variable (largest) - variable (non-largest)

V, Paired variable Matched non-extreme : Paired peaks
////% same location - Variable (largest) |:| ||:| from bivariate sets

Figure 2: Schematic of the construction of one spatially joint events across the 7 locations of an
exemplary coastal region. SWL refers to total water level while Q refers to river discharge. The orange
cell indicates the primary variable with the largest marginal value at the primary location. For other
locations, matched extreme variables are marked in green where the maximum of either TWL or Q
within the matching window is selected. Dark grey cells are the available extremes within the window
but they are not the largest. Hatched cells are the paired peaks to the matched variable from the
bivariate events identified for individual locations. Blue cells indicate the matched non-extreme
variables; they are not from paired bivariate peaks and are marked by a blue dashed box.

L213: This process may result in multiple bivariate events identified for a single location (e.g. the
three extreme water level identified at location 7); in these cases, we retain the event with the
largest marginal peak (e.g. the event marked by a green square at location 7). If no event is found
for a particular location (e.g. the case for location 2), we instead select the maximum total water
level or river discharge (e.g. the blue cells at location 2) within the 7-day window.

L222: This approach generates a separate dataset Y of spatially joint events of total water level
and river discharge from the large transformed dataset Y ;.4ns With time series of paired peaks for
the two study regions in this study.



L244: The multivariate conditional model works by 1) estimating the univariate marginal
distribution for each variable; and 2) calculating the pairwise dependence structure based on
regression functions. We use the same marginal distributions X as estimated in Sect. 2.3. To
estimate the dependence between total water levels and river discharges across different locations,
we apply the multivariate conditional model to the transformed datasets of identified spatially
joint extreme events Y = {Yi, i €{1, ...,m}} (Sect. 2.3).

L262: The estimated dependence structure (Sect. 2.4.1) describes the conditional distribution of
variables at other locations when one of the two variables (i.e. total water level and river discharge)
at a given location is extreme. This information can be used to develop an event set of a large
number of spatially co-occurring events, whereby for individual events at least one variable at one
location is extreme.

We apply a Monte Carlo procedure to generate a 10,000-years of spatially joint events of total
water levels and river discharges across different locations for each study region. We denote this
10,000-years event set as E = {y eR4:3i e {1,...,m},y; > u}, where u is a high threshold. We
use the same thresholds as identified in Sect. 2.3. The event set E can be separated into subsets
of events conditioned on a given variable following E; = {y € R%: y; > u and y; = max (y)}. To
quantify the number of events to be generated for each subset E;, we use a multinomial
distribution with the total event number ng of the 10,000 years and a probability vector
P(Y €E;|Y €E)fori€{1,..,m}.

To construct the multinomial distribution, we first calculate the empirical distribution of annual
event counts using the dataset of identified spatially joint extreme events Y (Sect. 2.3). For the
10,000 simulation years, the total event number ng is approximated by summing up 10,000 values
randomly sampled from the annual event count distribution. The next step is to estimate the
probability vector P(Y € E;|Y € E) fori € {1, ..., m}. From the identified spatially joint extreme
events ¥, we obtain the conditioning variable for each event, which is defined to have the largest
marginal value among all variables. We then calculate the likelihood of each variable being the
conditioning variable. The probability vector is then combined with ng to calculate the event
number n; for each subset E;. Lastly, E; is generated by repeating the following simulation steps
until n; is satisfied.

While addressing the previous comment, the authors should clarify if and how they account for
mixed-population effects within each water-level or flow time series. In several parts of the
manuscript (e.g., L288, L355, L368, L415), the authors observe that there are different possible
generating mechanisms for these extremes, such as tropical cyclones and extra tropical cyclones
affecting storm surges, or snowmelt and convective events affecting riverine flooding. Could the
coexistence of different parent distributions limit the applicability of the proposed methodology?
The authors should discuss these aspects in detail.

Thank you for raising this good point. The proposed framework does not account for mixed-population

effects and instead assumes that all extreme events originate from a single population. This

simplification is primarily because addressing those effects would require stratifying historical events

into distinct categories, such as TC-, ETC-driven events as well as those generated by hydrological

processes like snowmelt and convective rainfall. Such event stratifications require long data time series

(e.g., the 122-year observations used in Maduwantha et al., (2024)), which are not yet available for

large-scale analyses. We recognise that this is one of the key limitations of this study. We have reflected



on this point and have suggested potential ways that could be used to account for mixed-population
effects for future studies.

L176: When identifying these extreme events, we follow previous studies (e.g. Couasnon et
al., 2020; Ghanbari et al., 2021; Jane et al., 2020; Wahl et al., 2015; Ward et al., 2018) and
assume that all events arise from a single population. This simplifying assumption therefore
does not account for the mixed-population effects caused by events generated by different
storms (e.g. TCs and ETCs) and hydrological processes (e.g. snowmelt and convective rainfall).

L550: In regions where compound flooding can result from multiple synoptic weather patterns
(e.g. TCs and ETCs) and hydrological processes (e.g. snowmelt and convective rainfall),
different generation mechanisms may produce distinct dependence structures between flood
drivers (Kim et al., 2023). To capture these mixed-population effects, our stochastic event
generation could be improved by distinguishing events based on their generation types rather
than combining all events into a single population (c.f. Maduwantha et al., 2024). Such event
stratifications require long and continuous time series of flood drivers (e.g., the 122-year
observations used in Maduwantha et al., (2024)), which may not be available for large-scale
analyses. Future work could therefore consider using additional datasets for a long time series
synthetic TCs (e.g. Bloemendaal et al., 2020) and ETCs derived from seasonal forecasting data
(e.g. Benito et al., 2025), as well as hydrological data generated by stochastic weather
generators (e.g. Falter et al., 2015; Ullrich et al., 2021).

5. L402: it is expected that larger storms will have a greater spatial footprint and affect a larger
number of stations. The authors should therefore rephrase the sentence at L402. For example:
“However, these relative occurrence rates become significantly higher with increasing thresholds,
reflecting the fact that bigger storms can affect more locations”

Thank you for pointing this out. The sentence has now been rephrased into:

L450: With increasing thresholds, these relative occurrence rates become significantly higher.
This is primary because larger storms are expected to have a greater spatial footprint and may
therefore affect more locations.

6. The code provided to reproduce the analyses (assets for the review process) apparently lacks
several parts, including a routine for automated threshold selection (L154), and subroutines that
are called within the provided scripts. Those subroutines contain functions that are used in the
shared scripts; without those files, it is impossible to run the provided codes. E.g., in the R script
“Cal_dependence_autmoated_thres.R”, calls to the following missing scripts are included:
“transFun.HT04.R”, “predict.mex.conditioned.R”, “u2gpd.R”, “revTransform.R”, “Migpd_Fit.R”,
“mexTransform.R”.

Thank you for your careful review of the scripts and for raising this important point. We have included
all the necessary functions and codes in the repository. In addition, both the dataset and code
repositories are now publicly accessible to facilitate a better understanding and broader adoption of
the proposed approach and developed datasets.

The dataset can be retrieved at: https://doi.org/10.5281/zen0d0.15728000; and the scripts to
generate this dataset and figures related to this submission can be found at:
https://doi.org/10.5281/zenodo.17464793.
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Minor comments

1. L49-50: add references supporting this statement regarding the effects of TCs and ETCs on extreme
and moderate, more frequent events, respectively.

Thank you. We have added references to this statement, see below:

L49: While TCs tend to cause extreme flooding, ETCs are found to be responsible for more frequent
and moderate events (Booth et al., 2016; Gori & Lin, 2022).

2. Fig2b, L293-296: How were the 5th-95th-percentile confidence intervals obtained?

Thank you. For the observed data, the 5™-95" confidence intervals were calculated using the
rl.,evmOpt.R function in the texmex R package. This function assumes a simple symmetric confidence
interval based on the estimated approximate standard errors from 1,000 random observations. For the
simulated data, the confidence intervals were estimated by taking the 5 and 95™ percentiles from
100 model realisations of 1,000 years of values randomly sampled from the 10,000-year event sets.

We have added this information in Section 2.4.3 of Data and Methodology, as follows:

L291: The simulated return values are the median return levels obtained from 100 model
realisations, each representing 1,000 years of randomly sampled values from the 10,000-year
event sets. For each realisation, return levels are calculated empirically using the Weibull’s plotting
formula (Makkonen, 2006). We also estimate the 5%-95" confidence intervals (Cls) for both
observed and simulated return levels. For the observed values, symmetric Cls are computed based
on the estimated standard errors from 1,000 random samples. For the simulated return levels, the
Cls are given by the 5™ and 95™ percentiles of the estimated return levels from the 100 realisations.

3. Fig 4 is unclear. Does the y-axis show the percentage of events affecting 1, 2, ..., etc. distinct
locations over the 10,000-simulation period? If yes, please consider using a more informative label
for the y-axis.

Thank you for your good suggestion. Yes, the y-axis indeed shows the percentage of events with
associated affected locations over the 10,000-year simulation period. We have changed the label into
Percentage of simulated events.
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