

1

2

3 **Cross-Seasonal Impact of SST Anomalies over the Tropical Central
4 Pacific Ocean on the Antarctic Stratosphere**

5

6 Yucheng Zi^{1,2,3,4}, Zhenxia Long³, Jinyu Sheng², Gaopeng Lu¹, Will Perrie^{2,3,5}, and Ziniu Xiao^{1,4}

7

8

9 *Correspondence:* Zhenxia Long (Zhenxia.Long@dfo-mpo.gc.ca) and Ziniu. Xiao (xiaozn@lasg.iap.ac.cn)

10

11 ¹ School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

12 ² Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

13 ³ Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

14 ⁴ State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric
15 Physics, Chinese Academy of Sciences, Beijing, China

16 ⁵ Department of Engineering Mathematics & Internetworking, Dalhousie University, Halifax, Canada

17

18

19

20

21

22

23

24

25

26 **Abstract**

27 In this study we examine the cross–seasonal effects of boreal winter sea surface temperature
28 (SST) anomalies over the central tropical Pacific (Niño4 region) on Antarctic stratospheric
29 circulation and ozone transport during the subsequent austral winter using ERA5 reanalysis of 45
30 years (1980–2024). Our analyses show that warm (cold) SST anomalies in Niño4 region during
31 December–February are associated with polar stratospheric warming (cooling), a weakened
32 (strengthened) stratospheric polar vortex (SPV), and enhanced (suppressed) polar ozone
33 concentrations during July–September of the subsequent year. This delayed response is mediated
34 by a Pacific–South America (PSA) teleconnection, which excites planetary waves that propagate
35 upward into stratosphere and modify the Brewer–Dobson circulation. In addition, as the influence
36 of Niño4 SSTs on the PSA teleconnection pattern diminishes during July–September, surface heat
37 feedback at mid and high latitudes becomes critically important for planetary waves. Specifically,
38 persistent South Pacific SST warming and sea-ice loss over the Amundsen and Ross Seas reinforce
39 planetary waves by releasing heat from ocean into atmosphere. A multivariate regression statistical
40 model using predictors of boreal winter Niño4 SST, June PSA, June South Pacific SST, and May–
41 June sea-ice concentration (SIC) indices explain approximately 35 % of the variance in austral
42 winter stratospheric temperatures. These findings highlight a previously underexplored pathway
43 through which tropical Pacific SST anomalies modulate Antarctic stratospheric dynamics and
44 chemistry on seasonal timescales. This implies a new insight into tropical–polar coupling and
45 provides a potential signal for extended–range forecasts of ozone depletion risk.

46

47 **Keywords:** El Niño–Southern Oscillation (ENSO); Stratospheric warming; Stratospheric polar
48 vortex (SPV); Antarctic ozone; Pacific–South America (PSA) pattern; Multivariate regression

49

50 **1 Introduction**

51 The Antarctic stratospheric circulation is largely governed by the wintertime Stratospheric
52 Polar Vortex (SPV), which is a major driver of weather and climate variability across the Southern
53 Hemisphere (Baldwin et al., 2021). Compared to its Northern Hemisphere counterpart, the
54 Antarctic SPV is generally more stable, owing to weaker thermal contrasts between the ocean and
55 land. Despite this stability, the Antarctic SPV exhibits considerable interannual variability
56 (Domeisen et al., 2019; Baldwin et al., 2021). Furthermore, the Antarctic stratosphere plays a
57 crucial role in modulating weather and climate in the Southern Hemisphere through the seasonal
58 evolution of SPV and its dynamics processes and interaction with ozone chemistry (Thompson et
59 al., 2005; Solomon et al., 2016).

60 Previous studies revealed large interannual variations and long-term trends in the SPV,
61 stratospheric temperatures, and ozone concentrations (Karpetchko et al., 2005). In the late 20th
62 century, anthropogenic emissions of chlorofluorocarbons (CFCs) cooled the polar stratosphere,
63 intensified the SPV, and caused severe springtime ozone depletion, which resulted in the formation
64 of the Antarctic ozone hole (Solomon et al., 2016). After the implementation of the Montreal
65 Protocol for phasing out production and consumption of ozone-depleting substances, signs of ozone
66 recovery have emerged, accompanied by a gradual weakening of the SPV and associated
67 stratospheric warming (Solomon et al., 2016). Superimposed on the long-term trends of SPV are
68 substantial interannual variations and extreme events. For instance, exceptionally weak SPV
69 episodes triggered by sudden stratospheric warmings (SSWs) occurred respectively in 2002, 2010,
70 2019, and 2024 (Thompson and Solomon, 2002; Esler et al., 2006; Laat and Weele 2011; Shen et
71 al., 2020; Zi et al., 2025), and an unusually strong SPV event driven by the pronounced ozone
72 depletion occurred in 2020 (Lim et al., 2024).

73 Several natural factors contribute to the above-mentioned SPV variability. The phase of the
74 Quasi-Biennial Oscillation (QBO), for instance, modulates planetary-wave propagation and can
75 either strengthen or weaken the SPV (Kuroda et al., 2007). El Niño–Southern Oscillation (ENSO)
76 events also leave distinct warm- and cold-year signatures on Antarctic stratospheric temperatures
77 and ozone through changes in tropospheric wave forcing and the Brewer–Dobson (B-D) circulation
78 (Yang et al., 2015; Stone et al., 2022; Rao et al., 2023; Wang et al., 2025). In addition, solar-cycle
79 variability contributes to interannual modulation by altering ultraviolet irradiance and stratospheric

80 heating rates (Kuroda et al., 2007). Alongside these natural drivers, fluctuations in the atmospheric
81 burdens of ozone-depleting substances and greenhouse gases continue to influence both the
82 magnitude and nature of Antarctic stratospheric variability (Singh and Bhargawa, 2019).

83 ENSO is the most prominent mode of interannual climate variability (Wang, 2018).
84 Developing in boreal autumn and peaking in winter, ENSO influences the global weather patterns
85 through atmospheric teleconnections (McPhaden et al., 2006). It also modulates the SPV primarily
86 via the Pacific–North America (PNA) and Pacific–South America (PSA) wave trains (Garfinkel
87 and Hartmann, 2008; Ineson and Scaife, 2009; Barriopedro and Calvo, 2014; Polvani et al., 2017;
88 Song and Son, 2018; Zhang et al., 2022). In the Northern Hemisphere, El Niño events enhance
89 tropical convection and amplify the PNA pattern, strengthening the Aleutian Low, which in turn
90 increases upward wave activity and weakens the SPV (Garfinkel and Hartmann, 2008; Butler and
91 Polvani, 2011; Zhang et al., 2022). In the Southern Hemisphere, central Pacific (CP-type) El Niño
92 events during September–February enhance convection near the South Pacific Convergence Zone
93 (SPCZ), which triggers the PSA wave trains that can weaken the Antarctic SPV, resulting in
94 stratospheric warming and ozone enhancement (Hurwitz et al., 2011a,b; Yang et al., 2015; Manatsa
95 and Mukwada, 2017; Domeisen et al., 2019; Ma et al., 2022). In contrast, Eastern Pacific (EP-type)
96 El Niño events were found to produce weaker stratospheric responses (Hurwitz et al., 2011a;
97 Zubiaurre and Calvo, 2012).

98 Although many studies were made on the Antarctic stratosphere's simultaneous or 1-2 months
99 lag responses to ENSO from September to February (L'Heureux and Thompson, 2006; Silvestri
100 and Vera, 2009; Hu and Fu, 2010; Fogt et al., 2011; Lin et al., 2012; Kim et al., 2017; Ma et al.,
101 2022), our knowledge remains very limited on the ENSO's cross–seasonal and delayed effects
102 (Manatsa and Mukwada, 2017; Niu et al., 2023). Some previous studies found that delayed ozone
103 responses occur in the year following an ENSO event (Lin and Qian, 2019), while others suggested
104 that tropical sea surface temperature (SST) anomalies as early as June can influence stratospheric
105 circulation later in the year (Grassi et al., 2008; Evtushevsky et al., 2015; Lim et al., 2018; Stone
106 et al., 2022). Yang et al. (2015) examined correlations between ENSO and Antarctic stratospheric
107 temperatures during July–September, but these were primarily interpreted as concurrent responses.
108 Despite these studies, the physical mechanisms by which ENSO events in boreal winter influence
109 the Antarctic stratosphere during the following austral winter (July–September) remain poorly

110 understood. Better understanding of ENSO's delayed impact is particularly important, since the
111 SPV in the austral winter is strongest and most susceptible to dynamical disturbances, with
112 significant implications for polar ozone chemistry (Lin et al., 2009; Thompson et al., 2011).

113 The main objective of this study is to examine how the boreal winter SST anomalies (SSTs)
114 influence the Antarctic stratosphere during the following austral winter, with a special emphasis on
115 mechanisms by which Niño4 SSTs modulate polar stratospheric dynamics and ozone transport, and
116 associated planetary wave propagation and mid-latitude sea-air interactions. A multi-regression
117 analysis will also be used to evaluate the potential for predicting stratospheric temperature
118 anomalies based on early-season climate indicators. The structure of this paper is as follows.
119 Section 2 describes the data and methodology. Section 3 presents quantification of the ENSO–
120 Antarctic stratosphere relationship. Section 4 shows an examination of the underlying dynamical
121 mechanisms. Section 5 presents the multivariate regression analysis. Section 6 is a summary and
122 conclusion.

123

124 **2. Data and methods**

125 **2.1 Data**

126 The 6-hourly and monthly-mean atmospheric variables in the 45-year period 1980–2024
127 extracted from the ERA5 reanalysis (Hersbach et al., 2023a,b) are used in this study. This reanalysis
128 with a horizontal resolution of $1^\circ \times 1^\circ$ was generated by the European Centre for Medium-Range
129 Weather Forecasts (ECMWF). These atmospheric variables at 37 vertical pressure levels include
130 the geopotential height, horizontal and vertical winds, temperature, sea level pressure (SLP), ozone
131 mass mixing ratio, total column ozone (TCO3), net surface downward short-wave radiation flux,
132 net surface upward long-wave radiation flux, latent and sensible heat fluxes, outgoing long-wave
133 radiation flux (OLR). The monthly sea surface temperature (SST) and sea-ice concentration (SIC)
134 during the same study period were also extracted from ERA5 reanalysis.

135 Several indices (such as Niño3, Niño3.4, and Niño4) based on SST anomalies averaged over
136 a given region have been used to monitor the dynamic activities in the tropic Pacific (Bamston et
137 al. 1997; Trenberth, 1997). Niño 3 is the SST anomalies averaged over the region between 5°N
138 and 5°S and between 150°W and 90°W , and has been used for monitoring and predicting El
139 Niño and La Niña events (Trenberth, 1997). Niño 3.4 is the SST anomalies averaged over the region

140 between 5 °N–5 °S and 170 °W–120 °W, and has been used as the primary index for monitoring
141 ENSO due to its ability to capture basin-scale variability (Bamston et al. 1997). Niño 4 is the SST
142 anomalies averaged over the region between 5 °N–5 °S and 160 °W–150 °W, which is to monitor
143 SST anomalies in the central equatorial Pacific. In this study, the SST indices for Niño3, Niño3.4,
144 and Niño4 were obtained from the HadISST1.1 dataset (Rayner et al., 2003).

145 The Pacific–South America pattern (PSA) index was used to examine stratosphere and
146 troposphere interactions, which was derived by projecting area–weighted SLP anomalies south of
147 20 °S onto the second Empirical Orthogonal Function (EOF) mode (Mo and Higgins, 1998). All
148 anomalies are calculated relative to the 1991–2020 daily and monthly climatology, and all data
149 have been detrended. Statistical significance is assessed using the Student t-test.

150

151 2.2 Method

152 2.2.1 E–P flux

153 The Eliassen–Palm (E–P) theorem is used to diagnose interactions between eddies and the
154 zonal–mean flow in both the stratosphere and troposphere (Andrews et al., 1987). The E–P flux (\vec{F})
155 and its divergence ($\nabla \cdot \vec{F}$) are defined:

$$156 \quad \vec{F} = (\vec{F}_\varphi, \vec{F}_p) = r_0 \cos \varphi \left\{ -[u'v'], \frac{f}{[\theta_p]} [v'\theta'] \right\} \quad (1)$$

$$157 \quad \nabla \cdot \vec{F} = \frac{1}{r_0 \cos \varphi} \frac{\partial}{\partial \varphi} (\vec{F}_\varphi \cos \varphi) + \frac{\partial}{\partial p} (\vec{F}_p) \quad (2)$$

158 where u and v are the zonal and meridional wind components, respectively, and θ is the
159 potential temperature. φ and p denote latitude and pressure, respectively. f is the Coriolis
160 parameter, and r_0 is Earth's radius. Square brackets [] indicate zonal averages, and primes (')
161 denote deviations from the zonal mean.

162

163 2.2.2 Takaya–Nakamura (TN01) wave activity flux

164 The Takaya–Nakamura (2001) wave activity flux (TN01 flux) has been used for determining
165 the horizontal propagation of quasi-stationary Rossby waves in a zonally varying background flow
166 (Takaya and Nakamura, 2001). The zonal (F_x) and meridional (F_y) components of TN01 are

167 defined as:

$$168 F_x = \frac{p}{2|U^*|r_0^2} \left(\frac{U}{\cos \varphi} \left(\left(\frac{\partial \psi'}{\partial \lambda} \right)^2 - \psi' \frac{\partial^2 \psi'}{\partial \lambda^2} \right) + V \left(\frac{\partial \psi'}{\partial \lambda} \frac{\partial \psi'}{\partial \varphi} - \psi' \frac{\partial^2 \psi'}{\partial \lambda \partial \varphi} \right) \right) \quad (3)$$

$$169 F_y = \frac{p}{2|U^*|r_0^2} \left(U \left(\frac{\partial \psi'}{\partial \lambda} \frac{\partial \psi'}{\partial \varphi} - \psi' \frac{\partial^2 \psi'}{\partial \lambda \partial \varphi} \right) + V \cos \varphi \left(\left(\frac{\partial \psi'}{\partial \varphi} \right)^2 - \psi' \frac{\partial^2 \psi'}{\partial \varphi^2} \right) \right) \quad (4)$$

170 where ψ represents the stream function, λ and φ denote longitude and latitude, respectively, and
171 $|U^*|$ is the magnitude of the total horizontal wind velocity. U and V are the climatological mean
172 zonal and meridional wind components, respectively, while p is pressure, and r_0 is Earth's radius.

173

174 2.2.3 Residual mean meridional circulation

175 The Transformed Eulerian–Mean (TEM) formulation suggested by Andrews and McIntyre
176 (1976, 1978) has widely been employed for diagnosing the large–scale circulation in the middle
177 atmosphere. Different from the conventional Eulerian mean, the TEM framework accounts for eddy
178 heat and momentum fluxes, thereby providing a more accurate representation of actual mass
179 transport. In particular, the residual mean meridional circulation encapsulates the net effect of both
180 mean flow and wave–induced eddy motions, making it especially useful for diagnosing
181 stratospheric processes, such as B–D circulation and wave–driven anomalies associated with
182 stratospheric warming. It is defined as:

$$183 [v]^* = [v] - \frac{1}{\rho_0} \frac{\partial}{\partial z} \left(\frac{\rho_0 [v' \theta']}{[\theta_z]} \right) \quad (5)$$

$$184 [w]^* = [w] - \frac{1}{r_0 \cos \varphi} \frac{\partial}{\partial \varphi} \left(\frac{\cos \varphi [v' \theta']}{[\theta_z]} \right) \quad (6)$$

185 where $[v]^*$ and $[w]^*$ denote the meridional and vertical components of the residual velocity,
186 respectively. The vertical coordinate z is the log-pressure height defined as $z =$
187 $-H \log \frac{p}{1000 \text{ hPa}}$, where H is the scale height (≈ 7 km). All other variables are consistent with
188 those defined in Equations (1)–(4).

189

190 3 Impacts of ENSO on stratospheric atmospheric circulation

191 To quantify the cross–seasonal response of the Antarctic stratospheric circulation to ENSO,

192 we first correlate three ENSO indices: Niño4, Niño3.4, and Niño3, with the stratospheric
193 temperature (T_{10-30}) and zonal wind (U_{10-30}) over Antarctica during the subsequent July–September
194 period. Here, T_{10-30} refers to the zonal-mean temperature averaged over 60 °S–90 °S at 10–30 hPa,
195 and U_{10-30} refers to the zonal-mean zonal wind averaged over 40 °S–50 °S at the same pressure
196 levels (Table 1).

197

198 **Table 1.** Correlation coefficients between Niño4, Niño3.4 and Niño3 indices and zonal-mean temperature index
199 (T_{10-30}) averaged over 60 °S to 90 °S as well as zonal wind index (U_{10-30}) averaged over 40 °S to 50 °S at 10–30
200 hPa.

	T_{10-30} _Jul	T_{10-30} _Aug	T_{10-30} _Sep	U_{10-30} _Jul	U_{10-30} _Aug	U_{10-30} _Sep
Niño4_Sep	0.37***	0.36**	0.32**	-0.26*	-0.31**	-0.30**
Niño4_Oct	0.35**	0.36**	0.34**	-0.22	-0.29*	-0.32**
Niño4_Nov	0.37***	0.40***	0.32**	-0.22	-0.32**	-0.31**
Niño4_Dec	0.38***	0.42***	0.35**	-0.24	-0.37***	-0.34**
Niño4_Jan	0.42***	0.43***	0.30**	-0.31**	-0.40***	-0.33**
Niño4_Feb	0.41***	0.41***	0.31**	-0.30**	-0.38***	-0.32**
Niño4_Mar	0.38***	0.39***	0.30**	-0.23	-0.34**	-0.28*
Niño3.4_Sep	0.34**	0.26*	0.20	-0.20	-0.21	-0.20
Niño3.4_Oct	0.32**	0.27*	0.24	-0.19	-0.21	-0.23
Niño3.4_Nov	0.34**	0.29*	0.23	-0.20	-0.23	-0.23
Niño3.4_Dec	0.37***	0.31**	0.25*	-0.19	-0.24	-0.23
Niño3.4_Jan	0.38***	0.32**	0.21	-0.24	-0.26*	-0.21
Niño3.4_Feb	0.38***	0.32**	0.21	-0.25*	-0.26*	-0.21
Niño3.4_Mar	0.36**	0.35**	0.25*	-0.23	-0.28*	-0.23
Niño3_Sep	0.33**	0.22	0.14	-0.18	-0.17	-0.16
Niño3_Oct	0.31**	0.21	0.18	-0.17	-0.16	-0.18
Niño3_Nov	0.32**	0.23	0.19	-0.17	-0.18	-0.18
Niño3_Dec	0.35**	0.25*	0.21	-0.16	-0.18	-0.18
Niño3_Jan	0.35**	0.25*	0.16	-0.20	-0.19	-0.16
Niño3_Feb	0.36**	0.27*	0.16	-0.20	-0.19	-0.15
Niño3_Mar	0.29*	0.31**	0.20	-0.21	-0.23	-0.19

201

202 Note: Colors and asterisks denote statistical significance: red with *** for the 99 % confidence level, blue
203 with ** for 95 %, and magenta with * for 90 %.

204

205 Among the three indices, the Niño4 index has the largest correlation with Antarctic
206 stratospheric circulations (Table 1). In particular, the Niño4 index exhibits a significantly positive

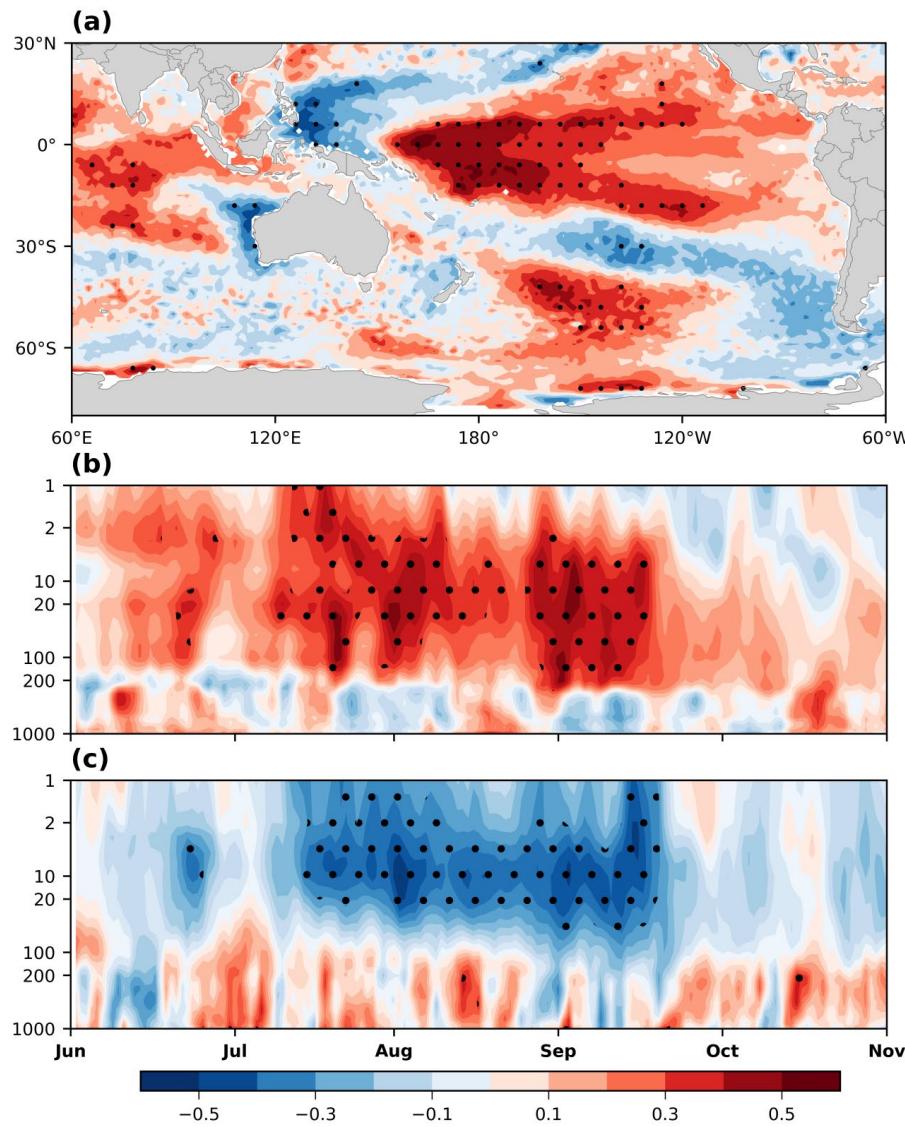
207 correlation with the subsequent July–September mean T_{10-30} index, with correlations from
208 September to March reaching the 95 % confidence level. Here, the largest correlation occurs during
209 boreal winter (December–February), with correlation coefficients exceeding 0.30 at the 95 %
210 confidence level ($R > 0.30$, $p < 0.05$). The January Niño4 index shows the highest correlation with
211 August T_{10-30} ($R > 0.43$, $p < 0.01$). Additionally, the December–February Niño4 index is
212 significantly negatively correlated with the July–September U_{10-30} index, with the largest negative
213 correlation found between the January Niño4 and August U_{10-30} ($R = -0.40$, $p < 0.01$). These
214 correlations are consistent with stratospheric warming (cooling) and a weakened (strong)
215 Stratospheric polar vortex (SPV) associated with warm (cold) central Pacific SSTs.

216 In comparison with Niño4, the Niño3.4 index has weaker correlations with stratospheric
217 temperature and zonal wind. The January Niño3.4 has the highest correlation with July T_{10-30} ($R \approx$
218 0.38, $p < 0.01$), while the correlation with September T_{10-30} is not statistically significant. Similarly,
219 its correlation with U_{10-30} is weak, with only a marginally significant negative correlation between
220 the January–March Niño3.4 index and July–August U_{10-30} at the 90 % confidence level. However,
221 the Niño3 index exhibits the weakest correlation with the polar stratosphere. While a moderate
222 correlation with T_{10-30} is observed during July–August, correlations in September are very weak
223 and do not exceed the 90 % significance threshold.

224 We next examine the connection of ENSO phases in the preceding boreal winter with the
225 Antarctic stratospheric circulation anomalies in July–September for 45 years 1980–2024 (Table 2).
226 Here, we define a warm (cold) stratospheric year as the year when the July–September mean T_{10-30}
227 index is ≥ 0.5 (≤ -0.5) standard deviations or when the U_{10-30} index is ≤ -0.5 (≥ 0.5) standard
228 deviations. During the study period of 45 years, 14 are boreal winter El Niño years, of which 8 are
229 followed by stratospheric warming events and 4 by cooling events, corresponding to an occurrence
230 rate of 57 % and 28.5 %, respectively. Notably, 6 out of these 8 warming cases occur after central
231 Pacific El Niño events. The remaining two cases, 2015/16 and 2023/24, are classified as eastern
232 Pacific El Niño events, but are also accompanied by warm SSTs in the tropical central Pacific. By
233 comparison, among 17 boreal winter La Niña years, 11 are followed by stratospheric cooling events
234 and 4 by warming events, corresponding to occurrence rates of 65 % and 23.5 %, respectively. Of
235 the 13 ENSO–neutral years, four are associated with stratospheric warming events and another four
236 with cooling events, indicating no clear preference for either condition during neutral years.

237

238 **Table 2.** Relationship between ENSO phases in the preceding boreal winter and Antarctic stratospheric
239 temperature (AST) anomalies during July–September for the 45-year period (1980–2024).


240

Year (DJF)	Event Type	AST Anomalies	Year (DJF)	Event Type	AST Anomalies
1980–1981	Neutral	Cold (C)	2002–2003	El Niño (CP)	C
1981–1982	Neutral	C	2003–2004	Neutral	W
1982–1983	El Niño (EP)	C	2004–2005	El Niño (CP)	W
1983–1984	La Niña	Warm(W)	2005–2006	La Niña	C
1984–1985	La Niña	Normal (N)	2006–2007	El Niño (CP)	W
1985–1986	Neutral	W	2007–2008	La Niña	C
1986–1987	El Niño (CP)	C	2008–2009	La Niña	C
1987–1988	El Niño (CP)	W	2009–2010	El Niño (CP)	W
1988–1989	La Niña	C	2010–2011	La Niña	C
1989–1990	Neutral	N	2011–2012	La Niña	W
1990–1991	Neutral	C	2012–2013	Neutral	N
1991–1992	El Niño (CP)	W	2013–2014	Neutral	N
1992–1993	Neutral	N	2014–2015	El Niño (CP)	C
1993–1994	Neutral	N	2015–2016	El Niño (EP)	W
1994–1995	El Niño (CP)	N	2016–2017	La Niña	W
1995–1996	La Niña	W	2017–2018	La Niña	C
1996–1997	Neutral	W	2018–2019	El Niño (CP)	W
1997–1998	El Niño (EP)	C	2019–2020	Neutral	C
1998–1999	La Niña	C	2020–2021	La Niña	C
1999–2000	La Niña	C	2021–2022	La Niña	C
2000–2001	La Niña	C	2022–2023	La Niña	N
2001–2002	Neutral	W	2023–2024	E (EP)	W
El Niño		La Niña	Neutral		
Total: 14		Total: 17	Total: 13		
Warm (CP) / Cold		Warm / Cold	Warm / Cold		
8 (6) / 4		4 / 11	4 / 4		
57% / 28.5%		23.5% / 65%	31% / 31%		

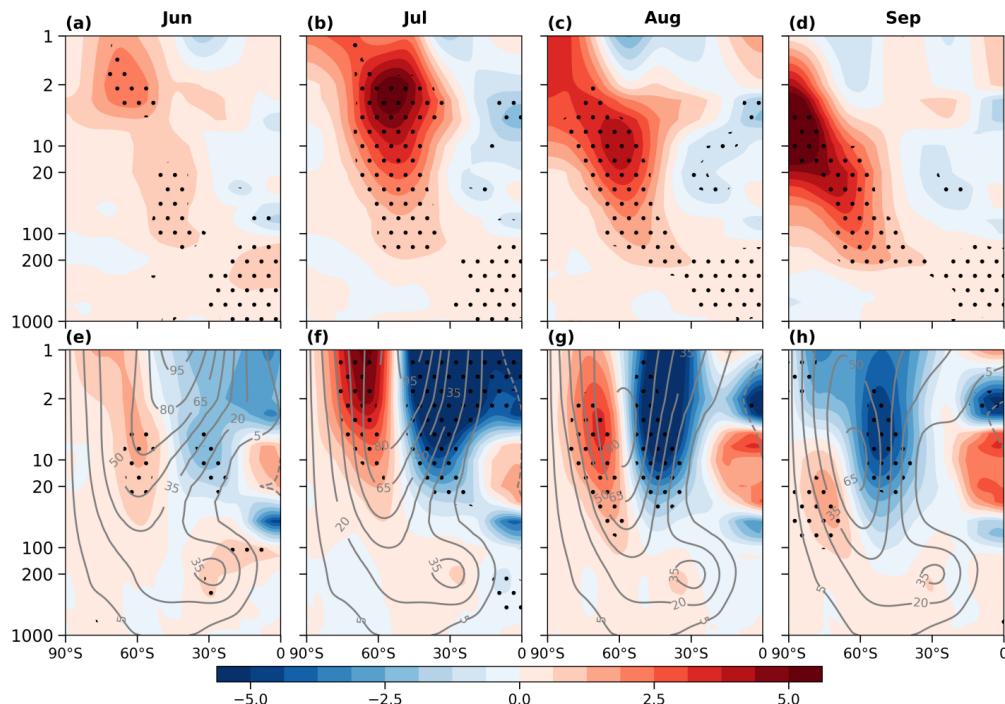
241

242 Correlation coefficients between the July–September mean T_{10-30} index and the global SST
243 field from the preceding boreal winter are shown in Figure 1a. The highest correlation coefficients
244 are observed in the central Pacific, particularly over the Niño4 region. Additionally, significant
245 positive correlations appear over the North Indian Ocean and the South Pacific, likely reflecting
246 remote responses to ENSO (Alexander et al., 2002).

247

248

249 **Figure 1.** (a) Correlation coefficients between July–September mean T_{10-30} index and January–March mean SST,
250 (b) Correlation coefficients between December–February mean Niño4 index and daily Temperature averaged
251 over 60°S – 90°S , and (c) same as (b), but for zonal-mean zonal wind averaged over 40°S – 50°S . Black dots
252 represent the 95 % confidence level.

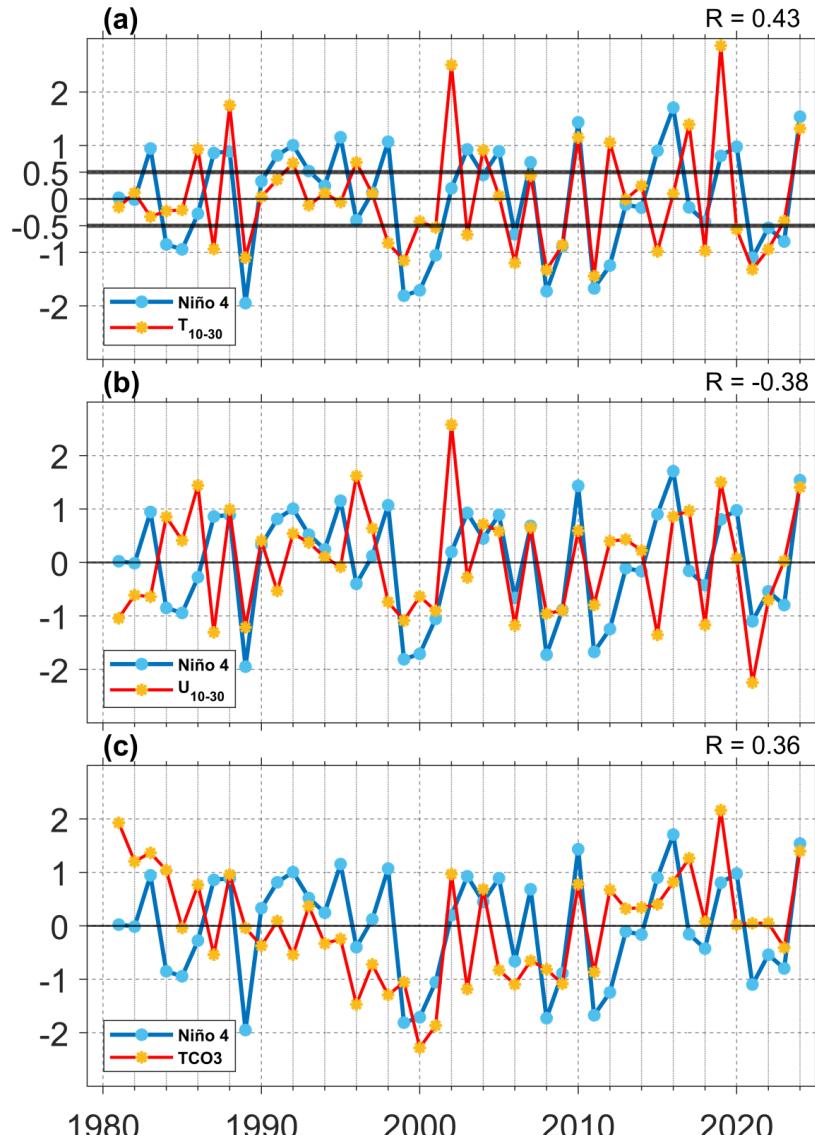

253

254 The most pronounced impacts of SSTs over the Niño4 region occur, however, above 100 hPa
255 during the austral winter of the following year. Figs. 1b-c present the correlations between the
256 boreal winter Niño4 index and the Antarctic daily zonal-mean temperature (averaged over 60°S –

257 90 °S) and zonal-mean zonal wind (averaged over 40 °S–50 °S) from June to September of the
258 following year. The Niño4 index exhibits significant positive correlations with stratospheric
259 temperature and negative correlations with zonal wind during July–September, consistent with the
260 stratospheric warming and weakened SPV.

261 To further examine the impacts of Niño4 SST anomalies on the stratospheric temperatures and
262 the SPV, 17 warm years and 14 cold years according to ± 0.5 standard of the Niño4 index are
263 selected to calculate composite differences in zonal-mean temperature and zonal wind (Fig. 2). In
264 June, warming is primarily observed in the upper polar stratosphere and the tropical troposphere,
265 with the strongest signal at 1–5 hPa (Fig. 2a). As the season progresses, the warming intensifies
266 and gradually propagates downward, with peak anomalies centered around ~ 60 °S in July–August
267 (Figs. 2b–c). This warming reaches its maximum at 10 hPa around 80–90 °S in September (Fig.
268 2d).
269

270
271 **Figure 2.** (a-d) Composite differences in zonal-mean temperatures between Niño4 warm and cold years from
272 June to September, and (d-h) same as (a-d), but for zonal-mean zonal winds. The climatological mean of zonal-
273 mean zonal winds is computed from 1991–2020 (contour, unit: m/s). Black dots indicate regions statistically


274 significant at the 95 % confidence level.

275

276 The stratospheric temperature anomalies are accompanied by a significant weakening of the
277 polar stratospheric westerlies (Figs. 2e–h). Under climatological conditions, the polar night jet
278 typically establishes and strengthens gradually from June to July, centered near 1 hPa and around
279 45 °S (Figs. 2e–f). The jet core then migrates poleward and downward in August and weakens in
280 September (Figs. 2g–2h). However, during warm Niño4 years, anomalous easterlies emerge south
281 of 45 °S as early as June (Fig. 2e) and progressively shift poleward from July to September,
282 substantially weakening the climatological westerlies (Figs. 2f–h). Simultaneously, anomalous
283 westerlies develop south of 60 °S, indicating a notable poleward contraction of the SPV (Figs. 2f–
284 h). This pattern reflects a delayed yet robust stratospheric response to warm SST anomalies in the
285 tropical central Pacific.

286 Figures 3a–b present time series of the boreal winter Niño4 index alongside the July–
287 September mean T_{10-30} and U_{10-30} indices from 1981–2024. The Niño4 index exhibits a significant
288 positive correlation with the T_{10-30} index ($R = 0.43$, $p < 0.01$) (Fig. 3a) and a significant negative
289 correlation with the U_{10-30} index ($R = -0.38$, $p < 0.01$) (Fig. 3b), both are significant at the 99 %
290 confidence level, indicating that a high (low) Niño4 index is typically associated with a warmer
291 (colder) polar stratosphere and weaker (stronger) SPV. Notably, several prominent sudden
292 stratospheric warming (SSW) events (e.g., 1988, 2019, 2024) coincide with positive Niño4 SSTs
293 (Fig. 3a). The associated stratospheric changes also influence Antarctic ozone concentrations
294 (Wang et al., 2025). For instance, TCO3 shows a strong positive correlation with both the T_{10-30}
295 index ($R = 0.56$, $p < 0.01$) and the boreal winter Niño4 index ($R = 0.36$, $p < 0.01$), both statistically
296 significant at the 99 % confidence level (Fig. 3c). This suggests that warm (cold) Niño4 events
297 enhance (suppress) poleward ozone transport, thereby increasing (decreasing) ozone
298 concentrations over Antarctica.

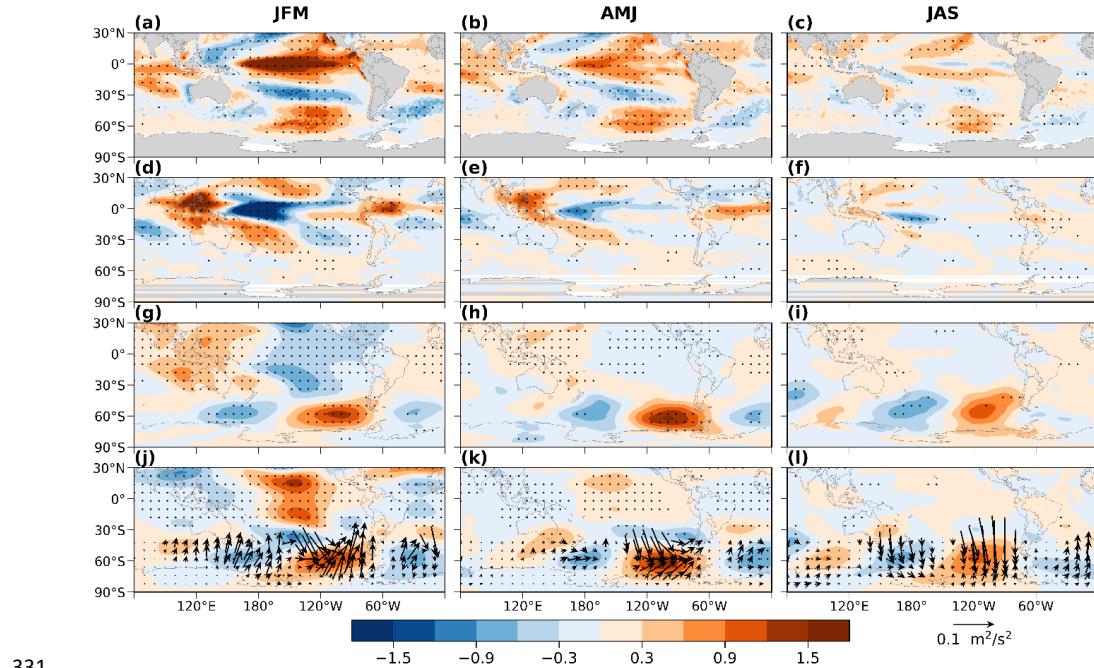
299

300
301 **Figure 3.** Time series of standardized Niño4 index (blue line), along with (a) July–September mean T_{10-30} index
302 (red line), (b) July–September mean U_{10-30} index (red line, multiplied by -1), and (c) July–September mean TCO3
303 index (red line) from 1981 to 2024. R in the upper right corner denotes the correlation coefficient between the
304 Niño4 index and the T_{10-30} , U_{10-30} , and TCO3 indices, respectively.

305

306 **4 Effects of anomalous planetary waves**

307 **4.1 Stratospheric temperature and zonal wind**


308 Previous studies suggested that polar stratospheric warming is primarily driven by the upward
309 propagation of planetary waves from the troposphere, which disturb the SPV through wave–mean

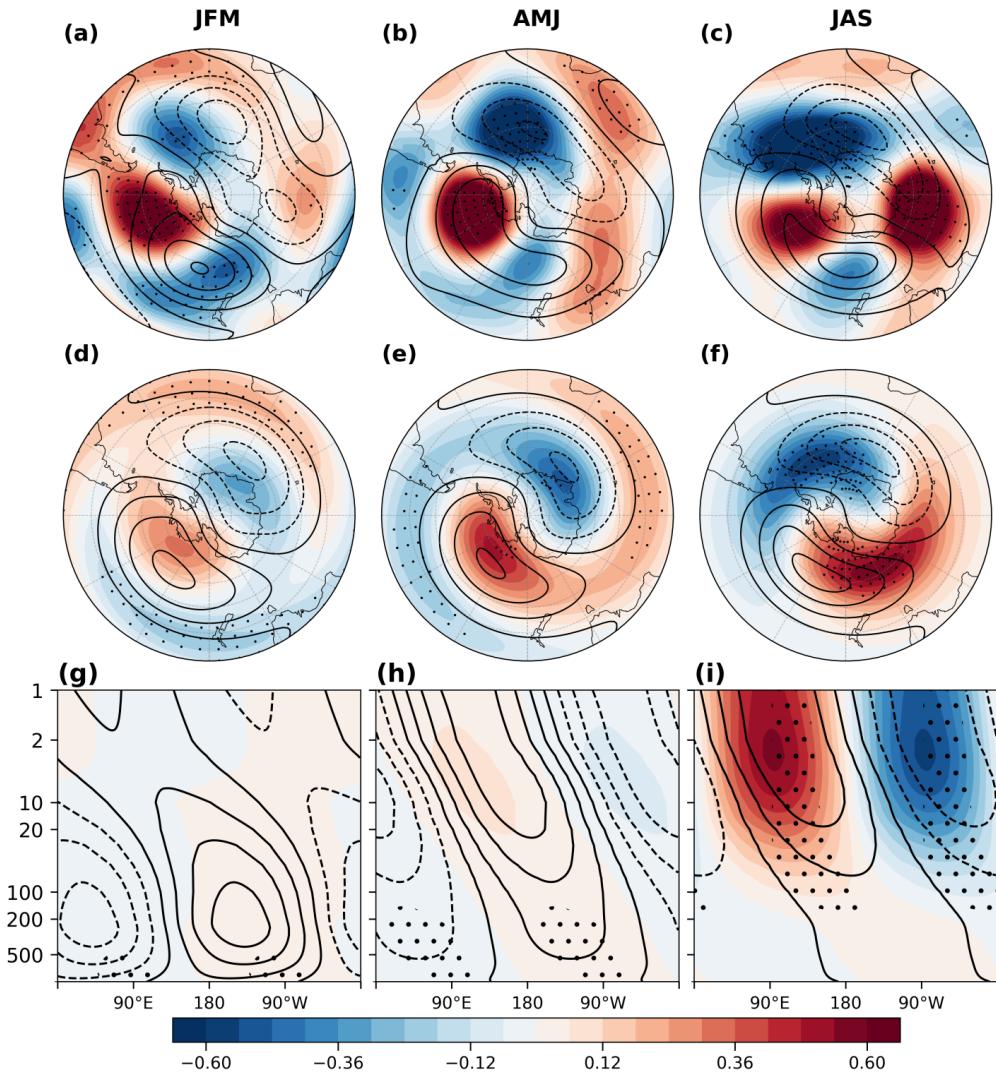
310 flow interactions (Baldwin et al., 2021). To evaluate the effect of planetary wave activity on
311 Antarctic stratospheric temperature anomalies during different Niño4 SST events, the composite
312 differences of key atmospheric variables were calculated between warm and cold Niño4 years,
313 averaged over consecutive three-month periods from January to September of the following year.

314 During the mature phase of El Niño (January–March), positive SST anomalies develop in the
315 central and eastern Pacific (Fig. 4a). As SST increases, cumulus convection intensifies in the central
316 Pacific (Fig. 4d), accompanied by a negative SLP anomaly and a positive geopotential height
317 anomaly at 250 hPa over the tropical central Pacific, indicating a barotropic response (Figs. 4g,j).
318 Furthermore, the convection anomaly triggers a southward-propagating teleconnection wave train
319 at 250hPa, as suggested by the TN01 flux (Vector, Fig. 4j). This wave train, known as the PSA
320 teleconnection (Mo and Higgins, 1998), features a positive geopotential height anomaly over the
321 southeastern Pacific (near 110 °W, 60 °S) and a negative anomaly over the southwestern Pacific
322 (near 150 °W, 40 °S) (Fig. 4j). The warm Niño4 SSTs and their associated convection responses
323 over the tropical central Pacific persist into April–June (Figs. 4b,e,h,k). Although the amplitude of
324 the high and low-pressure centers over the southeastern and southwestern Pacific weakens, the PSA
325 wave train remains active (Fig. 4k). By July–September (austral winter), the warm Niño4 SSTs and
326 their associated barotropic responses begin to dissipate (Figs. 4c,i,l). However, despite the
327 weakening of tropical convection (Fig. 4f), it is strong enough to sustain a weak mid-latitude PSA
328 wave train, maintaining a persistent positive geopotential height anomaly over the southeastern
329 Pacific and a negative anomaly over the South Atlantic, as indicated by the TN01 flux (Fig. 4l).

330

331

332 **Figure 4.** (a-c) Composite differences of SST (shaded, unit: K) for three-month means of: (a) January–March, (b) April–June and (c) July–September, (d-f) same as (a-c), but for OLR (shaded, unit: $1.5 \times 10^6 \text{ W/m}^2$), (g-i) same as (a-c), but for SLP (shaded, unit: 300 Pa), and (j-l) same as (a-c), but for geopotential heights at 250 hPa (shaded, unit: 5 dagpm) and TN01 flux (vector, unit: $0.1 \text{ m}^2/\text{s}^2$). Black dots indicate regions statistically significant at the 336 95 % confidence level.


337

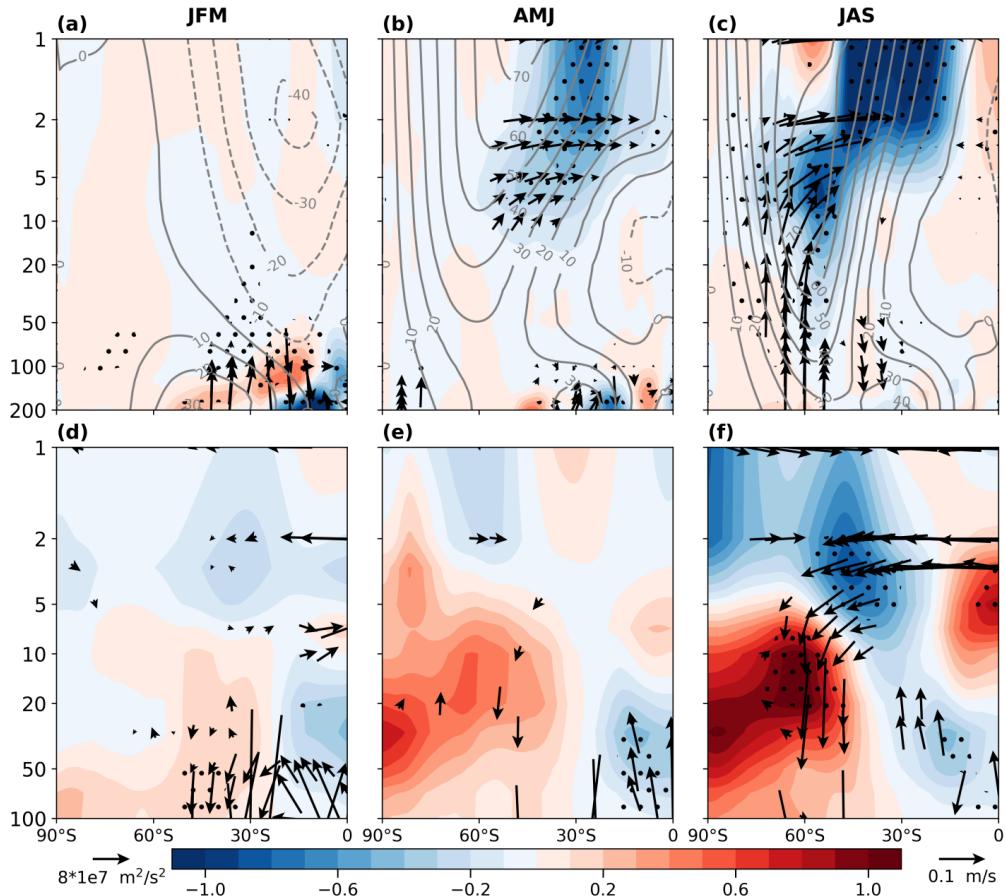
338 The geopotential height anomaly extends into the lower stratosphere and remains statistically 339 significant at 100 hPa (Fig. 5). The climatological geopotential height at 100 hPa is characterized 340 by a wave-1 pattern, featuring a positive center over the South Pacific and a negative center over 341 the Atlantic Ocean and Indian Ocean sectors (contour lines in Fig. 5). During January–February– 342 March (JFM) (austral summer), geopotential height anomalies associated with warm central Pacific 343 SSTs form a wave train, with a positive center over the southeastern Pacific and two negative 344 centers over the southwestern Pacific and the southern Atlantic (Fig. 5a). However, this pattern 345 does not align well with the climatological wave-1 structure, indicating a displacement of the wave 346 pattern (Fig. 5d). Moreover, the anomalous wave-1 centers at high latitudes are not statistically 347 significant (Fig. 5d). Although the wave-1 component of the geopotential height shows a westward 348 tilt with altitude and broadly resembles with the climatological structure, this alignment is only 349 statistically significant below 500 hPa (Fig. 5g). As a result, planetary waves are not substantially

350 amplified in the lower stratosphere, primarily due to the prevailing easterly winds in the upper
351 stratosphere over Antarctica in JFM (contours, Fig. 6a), which inhibit upward propagation of
352 planetary waves (Baldwin et al., 2021). This is further supported by the E-P flux vectors, which
353 show that planetary wave propagation is largely confined below 50 hPa in the mid- and low-
354 latitudes (Fig. 6a).

355

356

357 **Figure 5.** (a-c) Same as Figure 4, but for geopotential heights at 100 hPa (shaded, unit: 5 dagpm), where the
358 climatological geopotential heights at 100 hPa is calculated from 1991–2020 (contours, unit: dagpm), (d-f) same
359 as (a-c), but for wave-1 of geopotential heights at 100 hPa, and (g-i) same as (a-c), but for wave-1 of geopotential



360 heights at 1000–1hPa averaged from 45 °S–75 °S (shaded, unit: 30 dagpm). Black dots indicate the regions
361 statistically significant at the 95 % confidence level.

362

363 During April-May-June (AMJ), the positive geopotential height center over the southeastern
364 Pacific and the negative center over the southern Atlantic become more pronounced (Fig. 5b),
365 aligning more closely with the climatological wave-1 pattern (Fig. 5e). This alignment contributes
366 to a westward tilt of the geopotential height field with altitude (Fig. 5h). However, this vertical tilt
367 is only statistically significant below 100 hPa (Fig. 5h). During this period, stratospheric zonal
368 winds gradually transition to a westerly regime, but large portions of the upper polar stratosphere
369 continue to experience weak westerlies or even easterlies (contours, Fig. 6b). As a result, a
370 significant portion of the planetary waves are refracted equatorward, and their ability to disturb the
371 polar stratosphere remains limited (Fig. 6b).

372

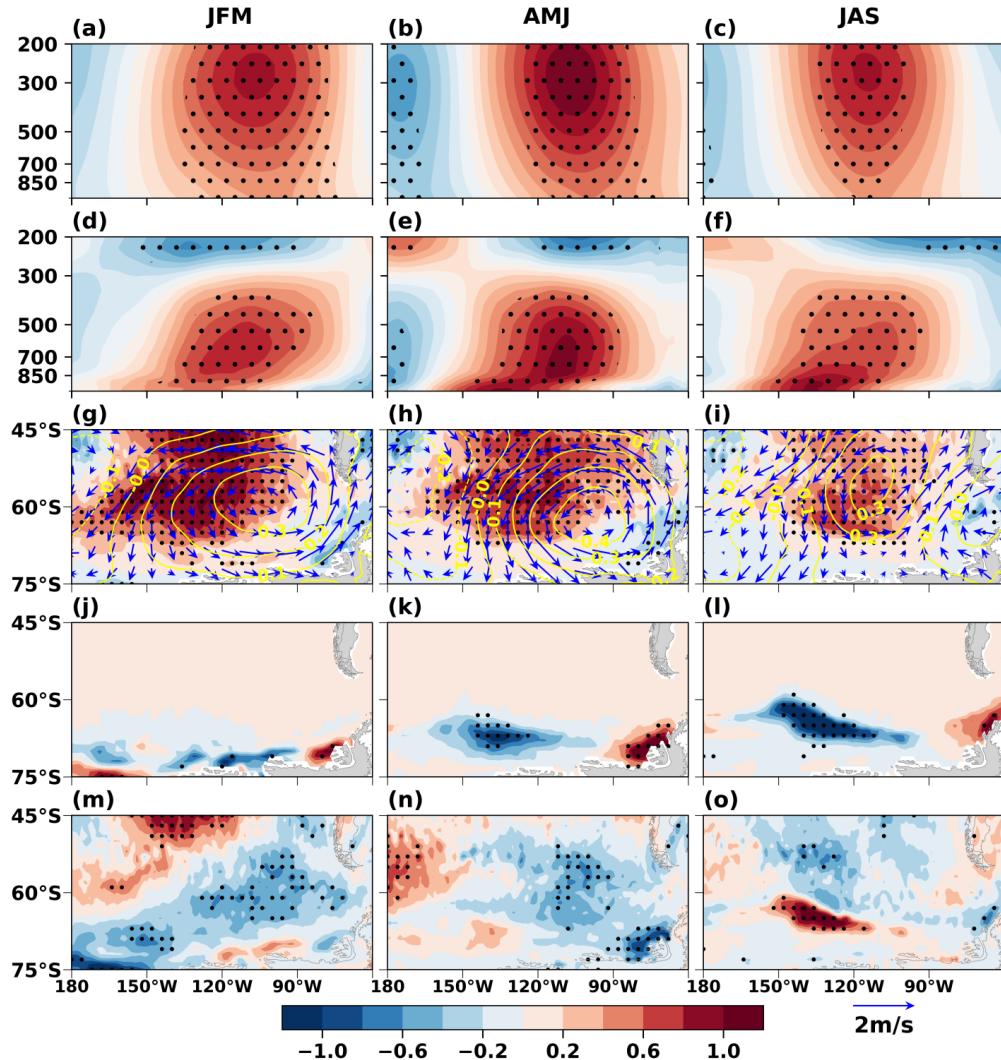
373

374 **Figure 6.** (a-c) Same as Figure 4, but for E-P flux (vector: m^2/s^2) and its divergence (shaded, unit: 60 m/s/day),
375 where the climatological zonal-mean zonal winds are calculated from 1991–2020 (contours, unit: m/s), and (d-f)
376 same as (a-c), but for the residual mean circulation (vector, unit: m/s) and ozone mass mixing ratio (shaded, unit:
377 $3 \times 10^{-6} \text{ kg/kg}$). Black dots denote regions statistically significant at the 95 % confidence level.

378

379 During July–August–September (JAS), the geopotential height centers over the southeastern
380 Pacific weaken, while the positive center over the southern Indian Ocean strengthens significantly
381 (Fig. 5c). This spatial pattern enhances the climatological wave-1 trough and ridge structure (Fig.
382 5f) and exhibits a westward tilt of the geopotential height field with altitude, which becomes
383 statistically significant in the stratosphere (Fig. 5i). During this period, the polar regions enter the
384 polar night, with minimal solar heating, which increases baroclinicity in the mid- and high-
385 latitudes. The stratosphere becomes fully dominated by strong westerly winds, creating favorable
386 conditions for the upward propagation of planetary waves into the polar stratosphere (contour lines,

387 Fig. 6c). Through wave–mean flow interactions, these waves induce strong wave convergence,
388 which perturbs the SPV and leads to significant polar stratospheric warming (Fig. 6c).


389 This relationship is reversed under cold Niño4 SST conditions. Specifically, when cold SST
390 anomalies occur in the central tropical Pacific, planetary wave activity and their associated
391 disturbances to the stratosphere are suppressed, leading to polar stratospheric cooling and a
392 strengthening SPV.

393 **4.2 Mid-latitude sea-air interactions**

394 **4.2.1 Ocean responses**

395 Niño4 SSTs influence mid-latitude ocean temperatures through atmospheric teleconnections.
396 During JFM, a positive Niño4 SSTs trigger a PSA teleconnection pattern, resulting in a high-
397 pressure anomaly centered near 110 °W, 60 °S over the southeastern Pacific (Figs. 4j and 7g). The
398 associated poleward surface winds and adiabatic subsidence warm the lower troposphere (Figs.
399 7a,d), while the ocean gains heat, as indicated by the negative net heat flux anomaly, defined as the
400 sum of latent and sensible heat fluxes, long-wave radiant and short-wave radiant heating (Fig. 7m),
401 leading to a localized SST warming (Fig. 7g). Simultaneously, there is a modest reduction in SIC
402 in the Amundsen and Ross Seas (Fig. 7j).

403

404

405 **Figure 7.** (a-c) Same as Figure 4, but for geopotential heights (shaded, unit: 5 dagpm) averaged over 45 °S–75 °S,
406 (d-f) same as (a-c), but for temperatures (shaded, unit: K) averaged over 45 °S–75 °S, (g-i) same as Figure 4, but
407 for SST (shaded, unit: K), SLP (contours, unit: 1000 Pa), and 10-meter winds (vector, unit: 2 m/s), (j-l) same as
408 (a-c), but for SIC (unit: 100 %), and (m-o) same as (a-c), but for net upward total heat flux (the sum of net
409 turbulence heat flux, upward long-wave heat flux and net downward short-wave heat flux, shaded, unit: 3 W/m²).
410 Black dots denote regions statistically significant at the 95 % confidence level.

411

412 A similar pattern persists during AMJ (Figs. 7b,e). The PSA pattern associated with warm
413 Niño4 SSTs remains evident (Fig. 4k), although the area of negative net heat flux contracts (Fig.
414 7n), and continues to support elevated SSTs in the southeastern Pacific through ongoing sea-air

415 heat exchange (Fig. 7h). As a result, SIC in the Amundsen and the Ross Seas declines further (Fig.
416 7k). Additionally, sustained tropospheric warming enhances geopotential height anomalies in both
417 the troposphere and lower stratosphere (Figs. 7b,e).

418 **4.2.2 Ocean feedback to the atmosphere**

419 While the tropospheric warming center is located between 500 hPa and 850 hPa during JFM
420 and AMJ, the maximum warming shifts below 850 hPa in JAS, suggesting an increased influence
421 from the ocean surface (Figs. 7d-f). During the JAS, the Niño4 SST warming weakens (Fig. 4c),
422 indicating a reduced influence of equatorial central-Pacific SSTs. Nevertheless, due to the ocean's
423 large heat capacity, warm SSTs in the southeastern Pacific persist (Fig. 7i), although with reduced
424 amplitude, implying that the accumulated heat is gradually being released (Fig. 7o). A pronounced
425 positive geopotential height anomaly associated with the PSA pattern also remains over this region
426 (Fig. 4l), likely sustained by local sea-air interactions.

427 In JAS, surface heat flux is largely associated with sea-ice loss in the Amundsen and Ross Seas
428 (Figs. 7l,o). Specifically, the sustained warm SSTs drive substantial sea-ice loss, which reduces
429 surface albedo and enhances short-wave radiation absorption, further accelerating sea-ice decline
430 (Figs. 7i,l,o). During this stage, although the negative net heat flux anomalies persist north of 60 °S,
431 their intensity is relatively weak. In contrast, significant oceanic heat is released to the atmosphere
432 in the regions where sea-ice has retreated (Fig. 7o), warming the lower troposphere (Fig. 7f) and
433 sustaining the positive geopotential height anomaly by lifting isobaric surfaces (Fig. 7c). Notably,
434 while net heat flux is dominated by ocean heat uptake during JFM and AMJ, the influence of sea-
435 ice loss becomes predominant in JAS, resulting in net heat release from the ocean to the atmosphere
436 (Figs. 7m-o). This positive feedback reinforces the Southern Hemisphere zonal-wave pattern and
437 amplifies the planetary wave anomalies (Zi et al., 2025).

438 **4.3 Ozone transport**

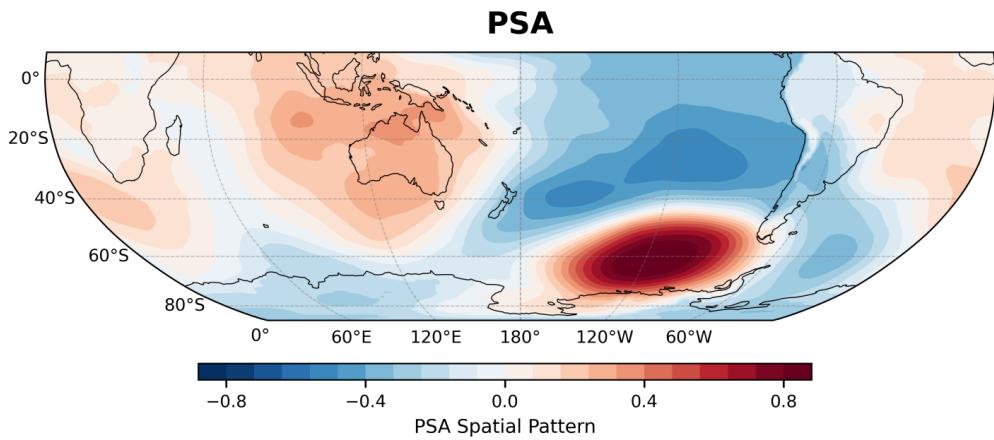
439 The enhanced planetary wave activity associated with the Niño4 SST warming not only warms
440 the polar stratosphere but also significantly alters the B-D residual circulation and polar ozone
441 transport (Wang et al., 2025). Figures 6d–6f present the composite differences in the zonal-mean
442 residual circulation and ozone mass mixing ratio between warm and cold Niño4 years, each
443 averaged over three-month periods from January to September of the following year.

444 During JFM, convective anomalies in the tropical Pacific Ocean drive changes in the residual

445 circulation (Fig. 4d), resulting in decreases to the ozone mass mixing ratio in the tropical lower
446 stratosphere and increased values in the mid-latitude lower stratosphere (Fig. 6d). However,
447 upward-propagating planetary waves are largely confined below 50 hPa in the mid- and low-
448 latitudes (Fig. 6a), strengthening the residual circulation primarily north of 60 °S. As a result, ozone
449 transport to higher altitudes and into the polar region remains limited (Fig. 6d). In AMJ, although
450 convective anomalies in the tropical Pacific Ocean persist and wave activity increases in the upper
451 stratosphere (Fig. 6b), many of the waves are refracted equatorward, resulting in only modest polar
452 ozone transport (Fig. 6e). In JAS, however, upward-propagating planetary waves are strongly
453 refracted toward mid- and high-latitudes, enhancing the residual circulation and promoting both
454 poleward and upward ozone transport (Fig. 6f). The increased poleward ozone transport enhances
455 solar radiation absorption, playing an important role in the polar stratospheric warming through
456 dynamical-chemical coupling (Solomon et al., 2016). In addition, adiabatic warming associated
457 with descending air in the residual circulation further contributes to the stratospheric warming over
458 the polar region.

459

460 **5 Multivariate regression model**


461 The preceding analyses reveal that boreal winter Niño4 SSTs exert a significant lagged
462 influence on the Antarctic stratospheric circulation and ozone transport during the subsequent
463 austral winter. This finding has important implications for the seasonal prediction of stratospheric
464 variability. However, although the boreal winter Niño4 index is significantly correlated with July–
465 September mean T_{10-30} index, it accounts for only 18.5 % of the variance in stratospheric
466 temperature ($R^2 = 0.185$). To enhance predictive skill, additional predictors must be incorporated.

467 Previous studies found that The PSA teleconnection associated with Niño4 SSTs is a key
468 mechanism influencing the Antarctic stratosphere. The PSA pattern is represented by the second
469 EOF mode of monthly SLP anomalies (Fig. 8a). The corresponding PSA index is defined as the
470 time series of this EOF mode. During boreal winter, the PSA index is significantly correlated with
471 the Niño4 index ($R = 0.40$, $p < 0.01$), suggesting that Niño4 SSTs modulate the PSA pattern.
472 Furthermore, correlating the PSA index from December to the following September with the July–
473 September mean T_{10-30} index shows that the June PSA index exhibits the strongest relationship (R

474 = 0.47, $p < 0.01$). Interestingly, the June PSA index is only moderately correlated with the winter
475 Niño4 index ($R = 0.28$, $p < 0.1$), indicating that it partially captures independent variability.

476

477

478 **Figure 8.** PSA teleconnection pattern represented by the second EOF mode of monthly SLP.

479

480 The loss of sea-ice in the Amundsen and Ross Seas, along with the warm South Pacific SSTs
481 pattern, can also influence stratospheric temperatures during July–September through sea-air
482 interactions. The strongest correlation between the July–September mean T_{10-30} and Antarctic SIC
483 in the Amundsen and Ross Seas (averaged over 180 °W–90 °W) occurs in May–June ($R = -0.43$, p
484 < 0.01). However, the May–June SIC index is also significantly correlated with the preceding
485 winter Niño4 index ($R = -0.42$, $p < 0.01$). Therefore, both Antarctic SIC anomalies and Antarctic
486 stratospheric temperature variations may be driven by the influence of boreal winter Niño4 SSTs,
487 implying that sea-ice loss itself might not be the primary driver of stratospheric warming.

488 In addition, a South Pacific SST index (SST_{SP}) was defined as the regional mean SST over
489 160 °W–130 °W and 30 °S–60 °S. Correlation analysis shows that the June SST_{SP} index has the
490 strongest correlation with the July–September mean T_{10-30} index ($r = 0.31$, $p < 0.05$).

491 As a result, a multivariate linear regression (MLR) model is used to quantitatively assess the
492 linear relationship between the stratospheric temperature index (T_{10-30}) and potential predictors
493 including the Niño4 index, PSA index, South Pacific SST index (SST_{SP}), and SIC index. We have

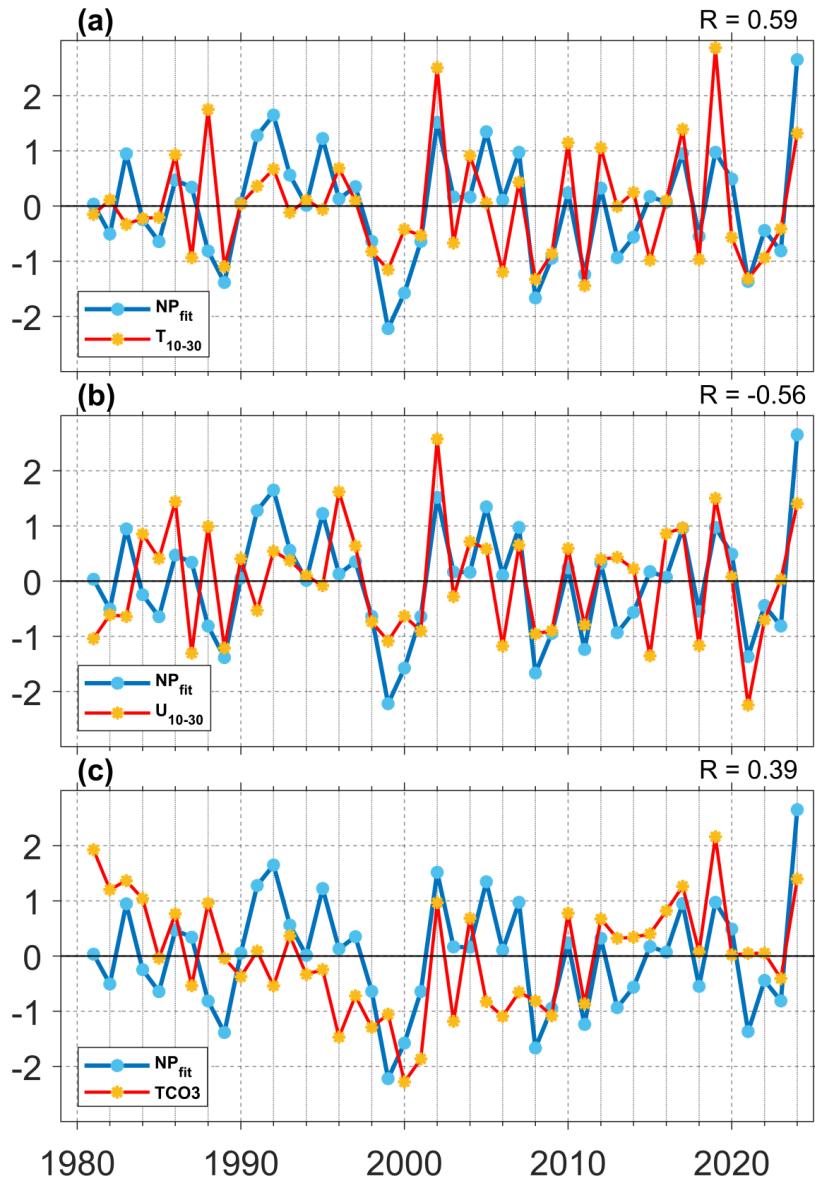
494
$$T_{10-30} = \beta_0 + \beta_1 Ni\tilde{n}o4 + \beta_2 PSA + \beta_3 SST_{SP} + \beta_4 SIC + \varepsilon \quad (7)$$

495 where β_0 is the intercept, β_1 , β_2 , β_3 , β_4 are the regression coefficients associated with each
496 predictor, and ε denotes the residual error term. Prior to the regression analysis based on Eq. (7),
497 all input time series are standardized. The regression analysis is performed using MATLAB's fitlm
498 function, which yields estimates of regression coefficients, standard errors, t-statistics, and p-values,
499 along with overall model diagnostics, such as the coefficient of determination (R^2) and the F-
500 statistic. To evaluate the significance of individual predictors, three confidence levels are adopted:
501 90 %, 95 %, and 99 %, corresponding to p-value thresholds of 0.1, 0.05, and 0.01, respectively.
502 Predictors with p-values below these thresholds are considered statistically significant. The overall
503 performance and goodness-of-fit of the model are assessed using the R^2 metric.

504 To predict the July–September mean T_{10-30} index, the boreal winter Niño4 ($Ni\tilde{\text{o}}4_{-DJF}$) index,
505 the June PSA (PSA_{-Jun}) index, the June SST_{SP} ($SST_{SP_{-Jun}}$) index, and the May–June mean SIC
506 (SIC_{-MJ}) index are used as predictors in Eq. (7). We yield

$$507 \quad T_{10-30} = 0.2765 Ni\tilde{\text{o}}4_{-DJF} + 0.2879 PSA_{-Jun} + 0.1176 SST_{SP_{-Jun}} - 0.1347 SIC_{-MJ} + \varepsilon \quad (8)$$

508 with $\beta_0 = 0$. This four-variable linear regression model yields a coefficient of determination (R^2)
509 of 0.35, indicating that the predictors collectively explain approximately 35 % of the variance in
510 the July–September mean T_{10-30} index. The model's F-statistic is 5.24 with a corresponding p-value
511 of 0.00178, which is significant at the 99 % confidence level.


512 Among the predictors, $Ni\tilde{\text{o}}4_{-DJF}$ and PSA_{-Jun} exhibit statistically significant regression
513 coefficients ($p = 0.0201$ and $p = 0.0065$, respectively), confirming their primary roles in modulating
514 stratospheric temperature. In contrast, $SST_{SP_{-Jun}}$ and SIC_{-MJ} are not individually significant ($p =$
515 0.41 and $p = 0.40$, respectively), suggesting that their linear contributions are relatively weak.
516 Nevertheless, the regression coefficients of $SST_{SP_{-Jun}}$ and SIC_{-MJ} indices are positive (0.1176) and
517 negative (-0.1347), respectively, implying potential nonlinear effects associated with South Pacific
518 SST increases and sea-ice loss over the Amundsen and Ross Seas. For instance, while the changes
519 in $SST_{SP_{-Jun}}$ and SIC_{-MJ} are linked to high pressure anomalies associated with the PSA, increases in
520 SST and reductions in SIC, in turn, reinforce these high pressure anomalies (Fig. 7c), highlighting
521 a nonlinear feedback process.

522 To assess model performance, the regression-based fitted index (referred to as NP_{fit}) was
523 compared with observed July–September mean T_{10-30} , U_{10-30} , and $TCO3$ (Fig. 9). The NP_{fit} index

524 shows significant correlation with observed values for T_{10-30} ($R = 0.59, p < 0.01$), U_{10-30} ($R = -0.56, p < 0.01$), and $TCO3$ ($R = 0.39, p < 0.01$), all of which exceed the corresponding correlation values
525 ($R = 0.4, -0.38$ and 0.36) obtained using Niño4 index alone (Fig. 2). While the boreal winter Niño4
526 index can serve as a useful predictor of Antarctic stratospheric variability, incorporating additional
527 indices, namely the June PSA, June South Pacific SST, and May–June mean SIC over the
528 Amundsen and Ross Seas indices, enhances predictive skill. This underscores the importance of
529 both tropical forcing and extratropical feedback processes in modulating polar stratospheric
530 circulation.
531

532

533

534 **Figure 9.** Same as Figure 3, but for the NP_{fit} index (blue line), along with (a) July–September mean T_{10-30} index
535 (red line), (b) July–September mean U_{10-30} index (red line, multiplied by -1), and (c) July–September mean $TCO3$
536 index (red line) from 1981 to 2024. R in the upper right corner is the correlation coefficient between NP_{fit} index
537 and T_{10-30} , U_{10-30} , and $TCO3$ indices, respectively.

538

539 6 Conclusions and discussions

540 The cross–seasonal influence of the El Niño–Southern Oscillation (ENSO) on Antarctic
541 stratospheric circulation was investigated in this study using ERA5 reanalysis of 45 years (1980–

542 2024). Our analysis revealed that sea surface temperature (SST) anomalies have a significant
543 impact on the stratospheric temperatures. Specifically, warm (cold) SST anomalies (SSTs) in the
544 Niño4 region (Central Pacific) during boreal winter are followed by significantly warming (cooling)
545 of the Antarctic stratosphere in the subsequent austral winter (July–September), accompanied by a
546 weakening (strengthening) of the stratospheric polar vortex (SPV). Among the ENSO indices
547 (Niño3, Niño3.4, Niño4), the boreal winter Niño4 index exhibits the strongest and most robust
548 correlation with the July–September polar stratospheric temperature (T_{10-30}) index, reaching $R \approx$
549 0.43 ($p < 0.01$). In contrast, correlations with Niño3.4 and Niño3 indices (Eastern Pacific) are
550 substantially weaker, suggesting that Niño4 SSTs are the primary drivers of the observed Antarctic
551 stratospheric responses.

552 The underlying dynamics involve the Pacific–South America (PSA) teleconnection pattern
553 triggered by Niño4 SSTs and mediated through wave–mean flow interactions. During boreal winter,
554 warm SSTs in the Niño4 region enhance convection near the dateline, exciting a Rossby wave train
555 that propagates poleward and eastward across the Southern Hemisphere. This wave activity
556 generates a positive geopotential height anomaly over the southeastern South Pacific and a negative
557 anomaly over the South Atlantic, reinforcing the climatological wave-1 ridge and trough structure.
558 As the seasonal transition into austral summer and winter progresses, the Antarctic stratospheric
559 circulation shifts toward a more westerly regime, creating favorable conditions for planetary waves
560 into the polar stratosphere. The convergence of Eliassen–Palm (E–P) fluxes, followed by wave
561 breaking, induces stratospheric warming and a deceleration of the SPV.

562 It was also found that warm SSTs in the South Pacific and sea-ice loss over the Amundsen and
563 Ross Seas can reinforce the mid and high latitudes zonal wave train through sea–air interactions.
564 Specially, PSA teleconnection associated with Niño4 warming drives ocean heat uptake and rising
565 SSTs in the southeast Pacific from January–March to April–June. With progression of seasons, this
566 remote forcing weakens during the June–September, a local sea-air feedback becomes dominant,
567 persistent warm waters accelerate sea-ice melt, and the subsequent oceanic heat release sustains
568 the atmospheric high pressure anomaly, thereby strengthening the planetary wave anomaly.

569 Furthermore, stronger planetary wave anomalies induced by warm Niño4 SSTs were found to
570 play a crucial role in modulating Antarctic ozone transport. These anomalous waves enhance the
571 residual circulation, facilitating the ozone transport from the tropics to the polar stratosphere and

572 leading to elevated ozone concentrations over Antarctica. The increased ozone concentrations
573 enhance ultraviolet absorption, further amplifying stratospheric warming. Simultaneously, a
574 warmer stratosphere inhibits the formation of polar stratospheric clouds (PSCs), thereby
575 suppressing the heterogeneous chemical reactions responsible for ozone depletion and mitigating
576 Antarctic ozone loss (Solomon et al., 2016).

577 A multivariate regression statistical model was used in this study to determine the linear
578 relationship between stratospheric temperature variations and Niño4 SST. The Niño4 index alone
579 accounts for approximately 18 % of the variance in July–September polar stratospheric
580 temperatures. However, when the June PSA index, June South Pacific SST (SST_{SP}) index, and the
581 May–June mean Antarctic sea-ice concentration (SIC) index are included as additional predictors,
582 the explained variance nearly doubles to 35 %. This highlights the combined importance of both
583 tropical forcing and mid–latitude atmospheric responses in stratospheric temperature predictability.
584 Such forecasts based on this multivariate regression model can provide lead times of up to 1–6
585 months for anticipating potential stratospheric warming events and assessing the risk of ozone
586 depletion during the austral winter.

587 Nonetheless, a substantial portion of stratospheric variability remains unexplained. This
588 reflects the influence of atmospheric internal dynamics, as well as contributions from other drivers
589 such as the Quasi–Biennial Oscillation (QBO), solar activity, and mid–latitude tropospheric wave
590 sources. Additional predictors may be identified through a range of approaches, including
591 numerical modeling, machine learning, and causal inference.

592

593 **Code and data availability.**

594 The ERA5 reanalysis data are available from the European Centre for Medium–Range
595 Weather Forecasts at Hersbach et al. (2023). Niño4 index came from National Oceanic and
596 Atmospheric Administration (<https://psl.noaa.gov/data/timeseries/month/DS/Nino4/>,
597 <https://psl.noaa.gov/data/timeseries/month/DS/Nino3/>, and
598 <https://psl.noaa.gov/data/timeseries/month/DS/Nino34/>). The code used in this article is accessible
599 from the corresponding author.

600

601 **Author contributions**

602 YZ, ZL, JS, and ZX contributed to the conceptualization of the study. YZ designed the
603 methodology, developed the software, performed the validation, formal analysis, investigation, data
604 curation, and visualization. JS, GL, and ZX were responsible for funding acquisition, project
605 administration, and providing the necessary resources. The work was supervised by ZL, JS, GL,
606 WP, and ZX. YZ prepared the original manuscript with contributions from ZL, JS, WP, and ZX.
607 All authors contributed to the review and editing of the final manuscript.

608

609 **Competing interests**

610 The contact author has declared that none of the authors has any competing interests.

611

612 **Acknowledgments**

613 The research was supported by the National Natural Science Foundation of China (42394123
614 and 42394122), “Transforming Climate Action” program (TCA-LRP-20240B-1.1-WP6JS) led by
615 Dalhousie University, Canada, Natural Sciences and Engineering Research Council of Canada to
616 JS (NSERC, Grant NOs: 217081), and the China Scholarship Council (CSC, 202306340119). We
617 also appreciate all the support provided by the Department of Oceanography, Dalhousie University.

618

619 **Financial support**

620 This research was supported by the National Natural Science Foundation of China (42394123
621 and 42394122), the “Transforming Climate Action” program (TCA-LRP-20240B-1.1-WP6JS),
622 Natural Sciences and Engineering Research Council of Canada to JS (NSERC, Grant NOs: 217081),
623 and the China Scholarship Council (CSC, 202306340119).

624

625 **References**

626 Alexander, M.A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., and Scott, J. D.: The
627 Atmospheric Bridge: The Influence of ENSO Teleconnections on Air–Sea Interaction over the
628 Global Oceans, *Journal of Climate*, 15, 2205–2231, [https://doi.org/10.1175/1520-0442\(2002\)015<2205:tabtio>2.0.co;2](https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2), 2002.

630 Andrews, D. G. and McIntyre, M. E.: An exact theory of nonlinear waves on a Lagrangian-mean
631 flow, *Journal of Fluid Mechanics*, 89, 609–646, <https://doi.org/10.1017/s0022112078002773>,
632 1978.

633 Andrews, D. G. and McIntyre, M. E.: Planetary Waves in Horizontal and Vertical Shear: The
634 Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration, *Journal of the
635 Atmospheric Sciences*, 33, 2031–2048, [https://doi.org/10.1175/1520-0469\(1976\)033<2031:pwihav>2.0.co;2](https://doi.org/10.1175/1520-0469(1976)033<2031:pwihav>2.0.co;2), 1976.

637 Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic Press,
638 115, 421–422, <https://doi.org/10.1002/qj.49711548612>, 1987.

639 Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes,
640 *Science*, 294, 581–584, <https://doi.org/10.1126/science.1063315>, 2001.

641 Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton - Perez, AndrewJ.,
642 Domeisen, DanielaI. V., Garfinkel, ChaimI., Garny, H., Gerber, EdwinP., Hegglin, MichaelaI.,
643 Langematz, U., and Pedatella, NicholasM.: Sudden Stratospheric Warnings, *Reviews of
644 Geophysics*, 59, <https://doi.org/10.1029/2020rg000708>, 2021.

645 Bamston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a highly ENSO - related
646 sst region in the equatorial pacific: Research note, *Atmosphere-Ocean*, 35, 367 – 383,
647 <https://doi.org/10.1080/07055900.1997.9649597>, 1997.

648 Barriopedro, D. and Calvo, N.: On the Relationship between ENSO, Stratospheric Sudden
649 Warmings, and Blocking, *Journal of Climate*, 27, 4704–4720, <https://doi.org/10.1175/jcli-d-13-00770.1>, 2014.

651 Butler, A. H. and Polvani, L. M.: El Niño, La Niña, and stratospheric sudden warmings: A
652 reevaluation in light of the observational record, *Geophysical Research Letters*, 38, n/a-n/a,
653 <https://doi.org/10.1029/2011gl048084>, 2011.

654 Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern
655 Oscillation to the Stratosphere, *Reviews of Geophysics*, 57, 5–47,
656 <https://doi.org/10.1029/2018rg000596>, 2019.

657 Esler, J. G., Polvani, L. M., and Scott, R. K.: The Antarctic stratospheric sudden warming of 2002:
658 A self - tuned resonance?, *Geophysical Research Letters*, 33,
659 <https://doi.org/10.1029/2006gl026034>, 2006.

660 Evtushevsky, O. M., Kravchenko, V. O., Hood, L. L., and Milinevsky, G. P.: Teleconnection
661 between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time
662 lags, *Climate Dynamics*, 44, 1841–1855, <https://doi.org/10.1007/s00382-014-2375-2>, 2015.

663 Fogt, R. L., Bromwich, DavidH., and Hines, KeithM.: Understanding the SAM influence on the
664 South Pacific ENSO teleconnection, *Climate Dynamics*, 36, 1555–1576,

665 <https://doi.org/10.1007/s00382-010-0905-0>, 2011.

666 667 668 Garfinkel, C. I. and Hartmann, D. L.: Different ENSO teleconnections and their effects on the stratospheric polar vortex, *Journal of Geophysical Research: Atmospheres*, 113, <https://doi.org/10.1029/2008jd009920>, 2008.

669 670 671 Grassi, B., Redaelli, G., and Visconti, G.: Tropical SST Preconditioning of the SH Polar Vortex during Winter 2002, *Journal of Climate*, 21, 5295–5303, <https://doi.org/10.1175/2008jcli2136.1>, 2008.

672 673 674 675 676 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Dataset, <https://doi.org/10.24381/cds.bd0915c6>, 2023a.

677 678 679 680 681 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Dataset, <https://doi.org/10.24381/cds.adbb2d47>, 2023b.

682 683 684 Hu, Y. and Fu, Q.: Stratospheric warming in Southern Hemisphere high latitudes since 1979, *Atmospheric Chemistry and Physics*, 9, 4329–4340, <https://doi.org/10.5194/acp-9-4329-2009>, 2010.

685 686 687 Hurwitz, M. M., Newman, P. A., Oman, L. D., and Molod, A. M.: Response of the Antarctic Stratosphere to Two Types of El Niño Events, *Journal of the Atmospheric Sciences*, 68, 812–822, <https://doi.org/10.1175/2011jas3606.1>, 2011a.

688 689 690 691 Hurwitz, M. M., Song, I.-S., Oman, L. D., Newman, P. A., Molod, A. M., Frith, S. M., and Nielsen, J. E.: Response of the Antarctic stratosphere to warm pool El Niño Events in the GEOS CCM, *Atmospheric Chemistry and Physics*, 11, 9659–9669, <https://doi.org/10.5194/acp-11-9659-2011>, 2011b.

692 693 Ineson, S. and Scaife, A. A.: The role of the stratosphere in the European climate response to El Niño, *Nature Geoscience*, 2, 32–36, <https://doi.org/10.1038/ngeo381>, 2009.

694 695 696 Karpetchko, A., Kyrö, E., and Knudsen, B. M.: Arctic and Antarctic polar vortices 1957 – 2002 as seen from the ERA - 40 reanalyses, *Journal of Geophysical Research: Atmospheres*, 110, <https://doi.org/10.1029/2005jd006113>, 2005.

697 698 699 700 Kim, B.-M., Choi, H., Kim, S.-J., and Choi, W.: Amplitude-dependent relationship between the Southern Annular Mode and the El Niño Southern Oscillation in austral summer, *Asia-Pacific Journal of Atmospheric Sciences*, 53, 85–100, <https://doi.org/10.1007/s13143-017-0007-6>, 2017.

701 702 703 Kuroda, Y., Deushi, M., and Shibata, K.: Role of solar activity in the troposphere - stratosphere coupling in the Southern Hemisphere winter, *Geophysical Research Letters*, 34, <https://doi.org/10.1029/2007gl030983>, 2007.

704 L'Heureux, M. L. and Thompson, D. W. J.: Observed Relationships between the El Niño–Southern

705 Oscillation and the Extratropical Zonal-Mean Circulation, *Journal of Climate*, 19, 276–287,
706 <https://doi.org/10.1175/jcli3617.1>, 2006.

707 Laat, A. T. J., and Weele, M. V.: The 2010 Antarctic ozone hole: Observed reduction in ozone
708 destruction by minor sudden stratospheric warmings, *Scientific Reports*, 1,
709 <https://doi.org/10.1038/srep00038>, 2011.

710 Lim, E. - P., Hendon, H. H., and Thompson, D. W. J.: Seasonal Evolution of Stratosphere -
711 Troposphere Coupling in the Southern Hemisphere and Implications for the Predictability of
712 Surface Climate, *Journal of Geophysical Research: Atmospheres*, 123, 12,002-12,016,
713 <https://doi.org/10.1029/2018jd029321>, 2018.

714 Lim, E., Zhou, L., Young, G., Abhik, S., Rudeva, I., Hope, P., Wheeler, M. C., Arblaster, J. M.,
715 Hendon, H. H., Manney, G., Son, S., Oh, J., and Garreaud, R. D.: Predictability of the 2020
716 Strong Vortex in the Antarctic Stratosphere and the Role of Ozone, *Journal of Geophysical
717 Research: Atmospheres*, 129, <https://doi.org/10.1029/2024jd040820>, 2024.

718 Lin, J. and Qian, T.: Impacts of the ENSO Lifecycle on Stratospheric Ozone and Temperature,
719 *Geophysical Research Letters*, 46, 10646–10658, <https://doi.org/10.1029/2019gl083697>,
720 2019.

721 Lin, P., Fu, Q., and Hartmann, D. L.: Impact of Tropical SST on Stratospheric Planetary Waves in
722 the Southern Hemisphere, *Journal of Climate*, 25, 5030–5046, [https://doi.org/10.1175/jcli-d-11-00378.1](https://doi.org/10.1175/jcli-d-
723 11-00378.1), 2012.

724 Lin, P., Fu, Q., Solomon, S., and Wallace, J. M.: Temperature Trend Patterns in Southern
725 Hemisphere High Latitudes: Novel Indicators of Stratospheric Change, *Journal of Climate*,
726 22, 6325–6341, <https://doi.org/10.1175/2009jcli2971.1>, 2009.

727 Ma, C., Yang, P., Tan, X., and Bao, M.: Possible Causes of the Occurrence of a Rare Antarctic
728 Sudden Stratospheric Warming in 2019, *Atmosphere*, 13, 147,
729 <https://doi.org/10.3390/atmos13010147>, 2022.

730 Manatsa, D. and Mukwada, G.: A connection from stratospheric ozone to El Niño-Southern
731 Oscillation, *Scientific Reports*, 7, <https://doi.org/10.1038/s41598-017-05111-8>, 2017.

732 McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating Concept in Earth
733 Science, *Science*, 314, 1740–1745, <https://doi.org/10.1126/science.1132588>, 2006.

734 Mo, K.C. and Higgins, R. W.: The Pacific–South American Modes and Tropical Convection during
735 the Southern Hemisphere Winter, *Monthly Weather Review*, 126, 1581–1596,
736 [https://doi.org/10.1175/1520-0493\(1998\)126<1581:tpsmam>2.0.co;2](https://doi.org/10.1175/1520-0493(1998)126<1581:tpsmam>2.0.co;2), 1998.

737 Niu, Y., Xie, F., and Wu, S.: ENSO Modoki Impacts on the Interannual Variations of Spring
738 Antarctic Stratospheric Ozone, *Journal of Climate*, 36, 5641–5658,
739 <https://doi.org/10.1175/jcli-d-22-0826.1>, 2023.

740 Polvani, L. M., Sun, L., Butler, A. H., Richter, J. H., and Deser, C.: Distinguishing Stratospheric
741 Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the
742 North Atlantic and Eurasia, *Journal of Climate*, 30, 1959–1969, [https://doi.org/10.1175/jcli-d-16-0277.1](https://doi.org/10.1175/jcli-d-
743 16-0277.1), 2017.

744 Rao, J., Garfinkel, C. I., Ren, R., Wu, T., and Lu, Y.: Southern Hemisphere Response to the Quasi-

745 Biennial Oscillation in the CMIP5/6 Models, *Journal of Climate*, 36, 2603–2623,
746 <https://doi.org/10.1175/jcli-d-22-0675.1>, 2023.

747 Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent,
748 E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine
749 air temperature since the late nineteenth century, *Journal of Geophysical Research: Atmospheres*, 108, <https://doi.org/10.1029/2002jd002670>, 2003.

750

751 Shen, X., Wang, L., and Osprey, S.: Tropospheric Forcing of the 2019 Antarctic Sudden
752 Stratospheric Warming, *Geophysical Research Letters*, 47,
753 <https://doi.org/10.1029/2020gl089343>, 2020.

754 Silvestri, G. and Vera, C.: Nonstationary Impacts of the Southern Annular Mode on Southern
755 Hemisphere Climate, *Journal of Climate*, 22, 6142–6148,
756 <https://doi.org/10.1175/2009jcli3036.1>, 2009.

757 Singh, A. K. and Bhargawa, A.: Atmospheric burden of ozone depleting substances (ODSs) and
758 forecasting ozone layer recovery, *Atmospheric Pollution Research*, 10, 802–807,
759 <https://doi.org/10.1016/j.apr.2018.12.008>, 2019.

760 Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and Schmidt, A.: Emergence of
761 healing in the Antarctic ozone layer, *Science*, 353, 269–274,
762 <https://doi.org/10.1126/science.aae0061>, 2016.

763 Song, K. and Son, S.-W.: Revisiting the ENSO–SSW Relationship, *Journal of Climate*, 31, 2133–
764 2143, <https://doi.org/10.1175/jcli-d-17-0078.1>, 2018.

765 Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E., and Fyfe, J. C.: On the Southern
766 Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation,
767 *Journal of Climate*, 35, 1963–1981, <https://doi.org/10.1175/jcli-d-21-0250.1>, 2022.

768 Takaya, K. and Nakamura, H.: A Formulation of a Phase-Independent Wave-Activity Flux for
769 Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow, *Journal*
770 of the Atmospheric Sciences, 58, 608–627, [https://doi.org/10.1175/1520-0469\(2001\)058<0608:afoapi>2.0.co;2](https://doi.org/10.1175/1520-0469(2001)058<0608:afoapi>2.0.co;2), 2001.

771

772 Thompson, D. W. J. and Solomon, S.: Interpretation of Recent Southern Hemisphere Climate
773 Change, *Science*, 296, 895–899, <https://doi.org/10.1126/science.1069270>, 2002.

774 Thompson, D. W. J., Baldwin, M. P., and Solomon, S.: Stratosphere–Troposphere Coupling in the
775 Southern Hemisphere, *Journal of the Atmospheric Sciences*, 62, 708–715,
776 <https://doi.org/10.1175/jas-3321.1>, 2005.

777 Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.:
778 Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, *Nature*
779 *Geoscience*, 4, 741–749, <https://doi.org/10.1038/ngeo1296>, 2011.

780 Trenberth, K. E.: The Definition of El Niño, *Bulletin of the American Meteorological Society*, 78,
781 2771 – 2777, [https://doi.org/10.1175/1520-0477\(1997\)078<2771:tdeeno>2.0.co;2](https://doi.org/10.1175/1520-0477(1997)078<2771:tdeeno>2.0.co;2), 1997.

782 Wang, C.: A review of ENSO theories, *National Science Review*, 5, 813–825,
783 <https://doi.org/10.1093/nsr/nwy104>, 2018.

784 Wang, Z., Zhang, J., Zhao, S., and Li, D.: The joint effect of mid-latitude winds and the westerly

785 quasi-biennial oscillation phase on the Antarctic stratospheric polar vortex and ozone,
786 Atmospheric Chemistry and Physics, 25, 3465–3480, <https://doi.org/10.5194/acp-25-3465-2025>, 2025.

788 Yang, C., Li, T., Dou, X., and Xue, X.: Signal of central Pacific El Niño in the Southern
789 Hemispheric stratosphere during austral spring, Journal of Geophysical Research: Atmospheres, 120, <https://doi.org/10.1002/2015jd023486>, 2015.

791 Zhang, R., Zhou, W., Tian, W., Zhang, Y., Liu, Z., and Cheung, P. K. Y.: Changes in the Relationship
792 between ENSO and the Winter Arctic Stratospheric Polar Vortex in Recent Decades, Journal
793 of Climate, 35, 5399–5414, <https://doi.org/10.1175/jcli-d-21-0924.1>, 2022.

794 Zi, Y., Long, Z., Sheng, J., Lu, G., Perrie, W., and Xiao, Z.: The Sudden Stratospheric Warming
795 Events in the Antarctic in 2024, Geophysical Research Letters, 52, <https://doi.org/10.1029/2025gl115257>, 2025.

797 Zubiaurre, I. and Calvo, N.: The El Niño–Southern Oscillation (ENSO) Modoki signal in the
798 stratosphere, Journal of Geophysical Research: Atmospheres, 117, <https://doi.org/10.1029/2011jd016690>, 2012.

800