1	Supporting	Inform	ation	for
l	Supporting	mjorm	anon	jor

Aircraft-based observation of volatile organic compounds

- **(VOCs) over the North China Plain**
- 4 Yibo Huangfu^{1,#}, Ziyang Liu^{1,#}, Bin Yuan^{1,*}, Sihang Wang¹, Xianjun He¹, Wei Zhou²,
- 5 Fei Wang², Ping Tian², Wei Xiao², Yuanmou Du², Jiujiang Sheng^{2,*}, Min Shao¹
- 6 ¹ College of Environment and Climate, Institute for Environmental and Climate
- 7 Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
- 8 for Environmental Quality, Jinan University, Guangzhou 511443, China
- 9 ² Beijing Weather Modification Center, Beijing 100089, China
- 10 # These authors contributed equally to this work
- * Corresponding author: Bin Yuan (byuan@jnu.edu.cn), Jiujiang Sheng
- 12 (jiujiangsheng@163.com)

Table S1. The list of VOC species calibrated with standard gas.

	•
VOC species	Ion formula
Methanol	CH ₄ OH ⁺
Acetonitrile	$C_2H_3NH^+$
Acetaldehyde	$\mathrm{C_2H_4OH}^+$
Ethanol	$\mathrm{C_2H_6OH}^+$
Acetone	$\mathrm{C_3H_6OH}^+$
Isoprene	$\mathrm{C}_5\mathrm{H}_8\mathrm{H}^+$
MVK&MACR*	$\mathrm{C_4H_6OH}^+$
MEK	$\mathrm{C_4H_8OH}^+$
Benzene	$C_6H_6H^+$
Toluene	$\mathrm{C_7H_8H}^+$
Styrene	$\mathrm{C_8H_8H}^+$
C8 acromatics	$C_8H_{10}H^+$
C9 aromatics	$C_9H_{12}H^+$
C10 aromatics	$C_{10}H_{14}H^{+}$
Monoterpenes	$C_{10}H_{16}H^{+}$

¹⁴

^{*} Methyl vinyl ketone (MVK) and methacrolein (MACR) were measured as their sum

¹⁶ by PTR-ToF-MS

Table S2. The heights of the planetary boundary layer (HPBL) of Beijing determined by the air parcel method during all the aerial surveys in Sep. 2017 and Jul. 2019.

Date and time	Aerial survey stage	HPBL (m)	
2017/09/09	Ascending stage	1100	
12:06-16:54	Descending stage	1200	
2017/09/12	Ascending stage	900	
12:16-16:10	Descending stage	1600	
2017/09/13	Ascending stage	1000	
13:35-16:55	Descending stage	1400	
2017/09/14	Ascending stage	850	
12:31-16:58	Descending stage	1300	
2017/09/15	Ascending stage	450	
10:36-13:05	Descending stage	750	
2019/07/14	Ascending stage	750	
9:41-12:18	Descending stage	1700	

Table S3. The means and standard deviations of VOC concentrations during all aerial surveys in Sep. 2017 in ppb.

Species	Sep. 9, 2017	Sep. 12, 2017	Sep. 13, 2017	Sep. 14, 2017	Sep. 15, 2017
Methanol	7.51±6.74	4.29±2.35	10.86±9.92	10.42±9.51	9.92±10.17
Acetonitrile	0.26 ± 0.14	0.30 ± 0.06	0.43 ± 0.16	0.38 ± 0.17	0.35 ± 0.13
Acetaldehyde	3.11±1.92	2.35±1.91	3.44±3.11	3.34±3.21	2.32±2.39
Ethanol	10.81 ± 14.23	6.29±8.29	17.09±21.56	23.03±36.10	14.47±22.72
Acetone	4.01±2.16	3.23±1.12	5.70±3.98	4.99 ±3.15	4.23±1.87
Isoprene	0.92±0.96	1.63±0.93	2.22±1.29	2.03±1.46	4.25±0.51
MVK&MACR*	0.60±0.73	3.65±1.13	3.65±1.65	2.64±1.22	1.79±0.72
MEK °	0.57±0.59	0.70±0.18	1.08±0.91	1.16±0.91	0.83±0.74
Benzene	0.46±0.38	0.20±0.37	0.61±0.66	0.49 ± 0.52	0.43 ± 0.41
Toluene	0.37 ± 0.34	0.44±0.27	0.65 ± 0.64	0.8 ±0.91	0.60±0.89
Styrene	0.28±0.20	0.09±0.13	0.07±0.08	0.08±0.09	0.06±0.08
C8 aromatics	0.62±0.55	0.63±0.37	1.20±2.33	1.24±1.96	1.13±1.95
C9 aromatics	0.34±0.19	0.55±0.20	0.59±0.33	0.48 ± 0.42	0.41±0.34
C10 aromatics	0.3±0.22	0.34±0.14	0.29±0.15	0.25±0.15	0.22±0.14

Monoterpenes	0.19±0.17	1.34±0.23	0.95±0.24	0.71±0.21	0.59±0.18
Total VOCs	30.38±27.41	25.87±13.41	48.83 ± 45.32	52.10 ± 57.67	41.18 ± 41.44

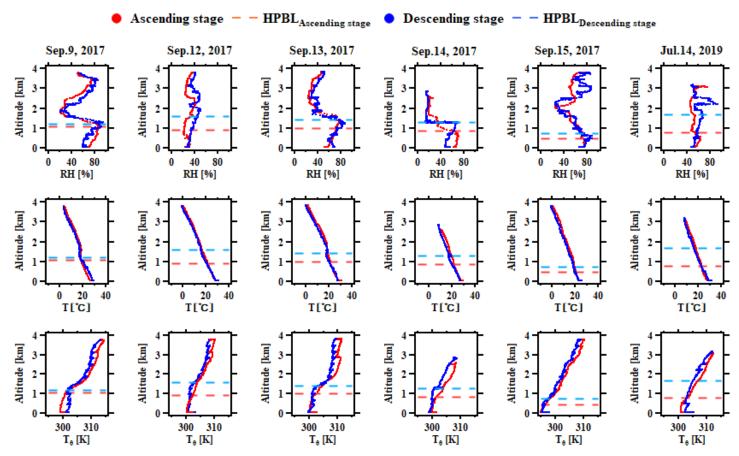
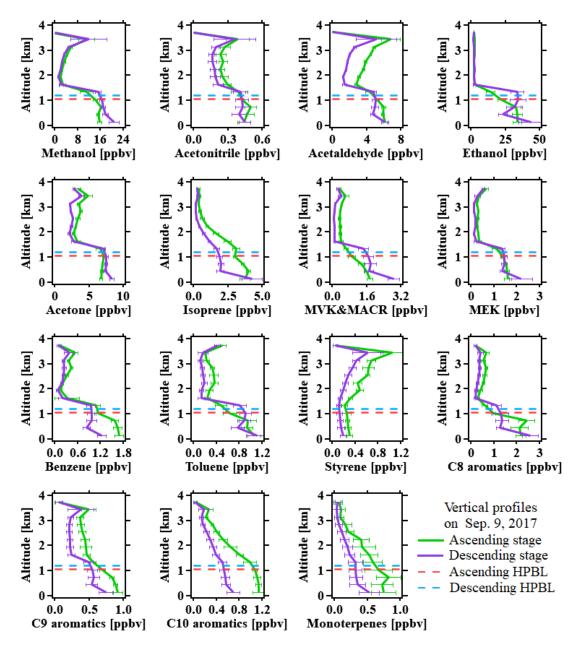
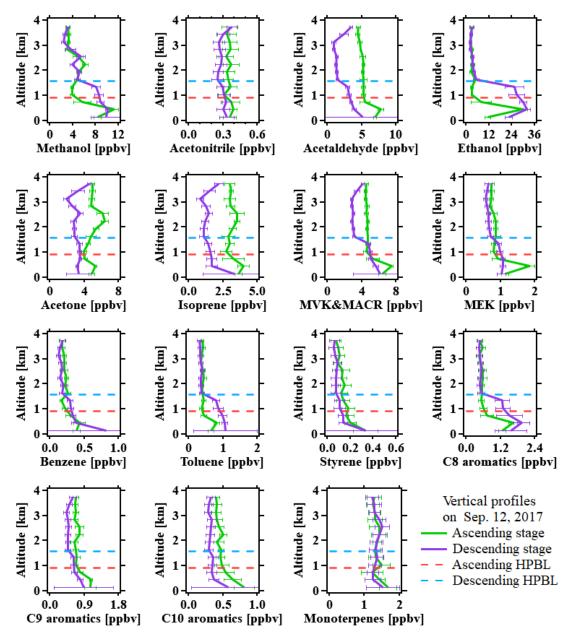
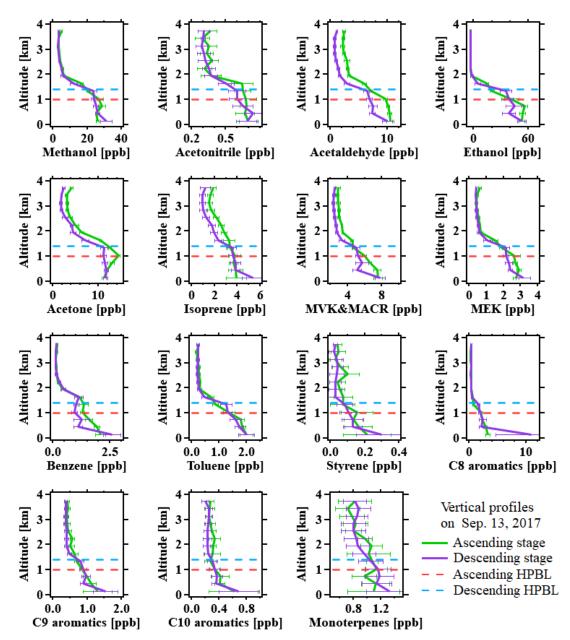

^{*} Methyl vinyl ketone (MVK) and methacrolein (MACR) were measured as their sum by PTR-ToF-MS.

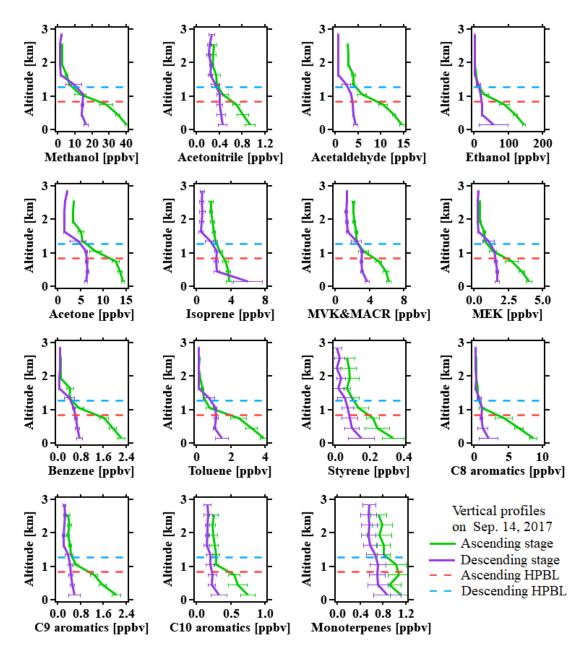
Table S4. The means and standard deviations of VOC concentrations below the planetary boundary layer (PBL) during all aerial surveys in Sep.
2017 in ppb.

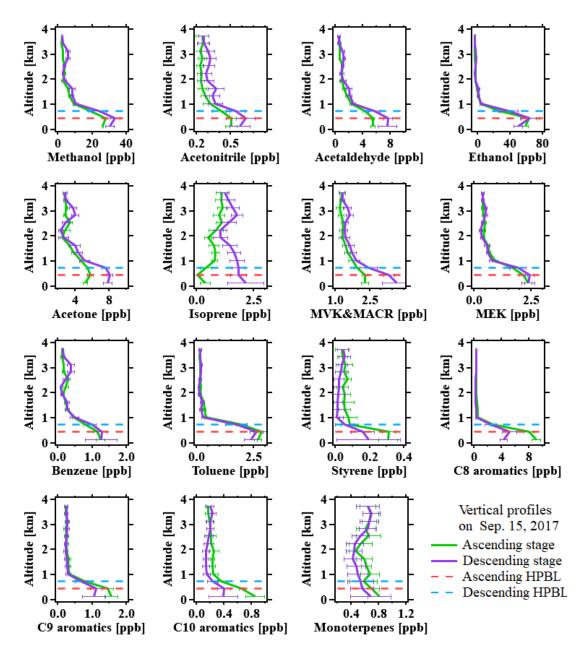

Species	Sep. 9, 2017	Sep. 12, 2017	Sep. 13, 2017	Sep. 14, 2017	Sep. 15, 2017	AVG±SD
Methanol	17.56±1.77	9.43±2.07	27.00±3.08	21.23±10.50	29.65±4.73	21.94±8.30
Acetonitrile	0.43±0.06	0.34±0.06	0.68±0.09	0.55±0.22	0.58±0.10	0.53±0.16
Acetaldehyde	5.28 ± 0.66	5.26±4.35	8.79±1.56	6.69±4.42	6.91±1.34	6.66±2.86
Ethanol	32.82±7.98	22.84±7.76	54.34±8.33	62.52±51.91	59.07±14.46	46.74±26.38
Acetone	7.51±0.51	3.85±1.19	11.47±0.62	8.39±3.44	7.52±1.02	8.10±2.72
Isoprene	2.63 ±0.99	2.99±1.69	4.19±0.93	3.69±1.77	4.49±0.74	3.60±1.40
MVK&MACR*	1.94±0.48	6.03±2.11	6.59±1.22	4.03±1.28	3.07±0.67	4.10±2.18
MEK	1.58±0.36	1.11±0.22	2.63±0.41	2.21±0.99	2.29±0.34	2.02±0.72
Benzene	1.08±0.28	0.56±1.30	1.74±0.65	1.07±0.65	1.20±0.27	1.19±0.73
Toluene	0.93±0.17	0.94±0.63	1.81±0.28	1.88±1.13	2.37±0.47	1.59±0.80
Styrene	0.17±0.07	0.26±0.44	0.19±0.12	0.17±0.11	0.16±0.12	0.18±0.19
C8 aromatics	1.66±0.59	1.51±0.47	4.39±4.43	3.20±3.04	4.71±1.97	3.18±2.95
C9 aromatics	0.64±0.15	0.88±0.52	1.16±0.36	0.88±0.64	1.03±0.32	0.91±0.44

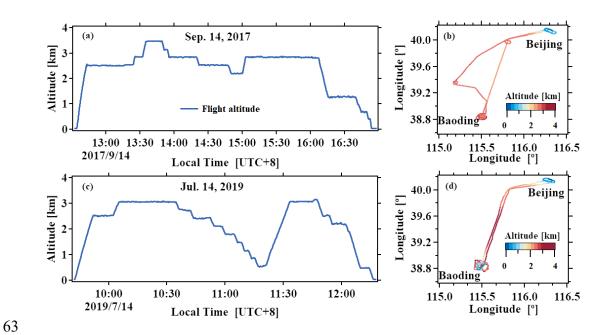
C10 aromatics	0.65±0.21	0.56±0.38	0.49±0.26	0.38±0.22	0.40±0.20	0.51±0.27
Monoterpenes	0.42±0.19	1.46±0.38	1.18±0.29	0.84±0.24	0.61±0.22	0.84 ± 0.45


^{*} Methyl vinyl ketone (MVK) and methacrolein (MACR) were measured as their sum by PTR-ToF-MS.


Figure S1. Vertical profiles of meteorological factors during Sep. 2017 and Jul. 2019 aerial surveys. The red and blue dots are the data measured during the ascending and descending stages, respectively. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.


Figure S2. Vertical profiles of VOC mixing ratios during the ascending (in green) and descending stages (in purple) for the aerial survey on Sep.9th, 2017, with error bars. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.


Figure S3. Vertical profiles of VOC mixing ratios during the ascending (in green) and descending stages (in purple) for the aerial survey on Sep.12th, 2017, with error bars. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.


Figure S4. Vertical profiles of VOC mixing ratios during the ascending (in green) and descending stages (in purple) for the aerial survey on Sep.13th, 2017, with error bars. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.

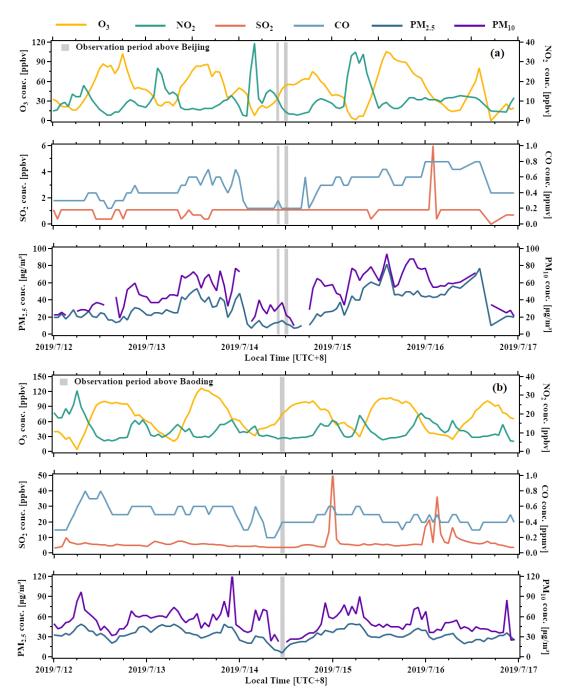

Figure S5. Vertical profiles of VOC mixing ratios during the ascending (in green) and descending stages (in purple) for the aerial survey on Sep.14th, 2017, with error bars. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.

Figure S6. Vertical profiles of VOC mixing ratios during the ascending (in green) and descending stages (in purple) for the aerial survey on Sep.15th, 2017, with error bars. The red and blue dashed lines show the HPBL during the ascending and descending stages, respectively.

Figure S7. Time series of flight altitudes and flight routes on Sep.14th, 2017 (a, b) and Jul. 14^{th} , 2019 (c, d). The flight routes are color-coded with altitudes.

Figure S8. Time series of criteria pollutants including ozone, NO₂, SO₂, CO, PM_{2.5}, and PM₁₀ on Sep. 14th, 2019, over Beijing (a) and Baoding (b). Data is obtained from the Beijing Changping Town station and the Baoding natatorium station, the closest national air quality monitoring stations to the flight trajectories. Shaded areas indicate the observation periods.