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Abstract. Accurate estimates of future land carbon sinks and thus the remaining carbon budget to achieve the Paris climate

goals requires rigorous modelling of the carbon sequestration potential of the terrestrial biosphere. Estimating the terrestrial

carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles, yet coupled

carbon-nitrogen cycle models exhibit large uncertainties. Leaf chlorophyll, chlleaf , is an indicator of the leaf nitrogen content

stored within photosynthetic nitrogen pools and is central to the exchange of carbon, water and energy between the biosphere5

and the atmosphere. In this work, we harness an advanced remote sensing (RS) chlleaf product to evaluate a terrestrial biosphere

model, QUantifying Interactions between terrestrial Nutrient CYcles and the climate system (QUINCY), which explicitly

models chlleaf . We focus on comparing the spatial and seasonal patterns of modelled and observed chlleaf , and then further

assessing if modelled leaf area and productivity agree with a RS leaf area index product and in-situ eddy covariance-based

gross primary production, respectively. In addition, we conduct additional simulations to test two alternative formulations10

of leaf-internal nitrogen allocation within QUINCY. Our analysis over a globally representative set of locations reveals that

QUINCY chlleaf magnitudes are mostly in line with the RS chlleaf values. However, QUINCY chlleaf tends to show a narrower

numerical range compared to RS for specific ecosystem types, such as grasslands. While the seasonal cycle of QUINCY

chlleaf mostly corresponds well to the observations, for many deciduous forests, the increase in QUINCY’s chlleaf predictions

in spring and the decrease in autumn were delayed compared to observations. Our results also show that compared to the15

original leaf nitrogen allocation scheme of QUINCY, the revised scheme produced a more reasonable sensitivity of gross

primary production to increases in chlleaf . However, the revised scheme did not directly lead to improvement in simulating

chlleaf and gross primary production. Our study shows the value of RS products linked to N cycle that will be useful in both

carbon and nitrogen modelling, and paves way for closer linking of RS and TBMs.
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1 Introduction

The terrestrial biosphere currently takes up approximately one-third of the anthropogenic fossil fuel carbon emissions (Friedling-

stein et al., 2023), and thereby playing pivotal role in slowing global climate warming (Nabuurs et al., 2022). The carbon (C)

cycle is closely linked to the terrestrial nitrogen (N) cycle, as photosynthesis and plant growth require sufficient nutrient supply.

Land carbon uptake is limited by nitrogen in many ecosystems (LeBauer and Treseder, 2008; Fisher et al., 2012; Tamm, 1991;25

Vitousek and Howarth, 1991; Ziehn et al., 2021), however, the magnitude of this limitation remains unclear. This highlights

the need to better understand the coupled C and N cycles (Seiler et al., 2024), as future changes in climate will also affect these

cycles (Arora et al., 2020).

Terrestrial biosphere models (TBMs) can be used to simulate coupled C and nutrient cycles and land-atmosphere interactions

under a changing climate. In recent decades, TBMs have taken in an increasing number of factors affecting plant photosyn-30

thesis, such as nutrient limitation (Blyth et al., 2021). Whilst Kou-Giesbrecht et al. (2023) reported that TBMs are capable of

reproducing the historical terrestrial C sink with a sufficient level of performance, uncertainties persist. TBMs use different

modeling approaches to represent N limitation of photosynthesis and the effect of N availability on leaf N, which can lead to

varying results regarding plant productivity (Medlyn et al., 2015). Leaf N can be obtained directly from soil N availability by

using a fixed parameter or with flexible parametrization using leaf C:N ratios (Thomas et al., 2015). Increasing model com-35

plexity regarding modeling the N limitation can thereby also introduce further uncertainties into the estimates of the carbon

sink (Fisher and Koven, 2020; Famiglietti et al., 2021), through both process and parameter uncertainty, given the inclusion of

new process equations. These uncertainties are also reflected in significant divergence of N pools and fluxes modelled by the

current generation of TBMs (Kou-Giesbrecht et al., 2023). In addition, the modelled responses of photosynthesis to elevated

atmospheric carbon dioxide (CO2) or to N deposition vary between different TBMs, requiring a better understanding of the N40

cycle (Davies-Barnard et al., 2020; Arora et al., 2020; Meyerholt et al., 2020; Zaehle et al., 2014). It is therefore important to

better constrain the nitrogen dynamics in these models.

One of the major sources of uncertainty in modeling the land carbon sink with TBMs is the uncertainty in estimating the leaf

photosynthetic capacity and photosynthetic rate (Bonan et al., 2011; Rogers et al., 2017). Leaf chlorophyll (chlleaf ) is intrinsi-

cally related to plant photosynthesis, due to its role in generating biochemical energy for the carboxylation reactions within the45

Calvin-Benson cycle, through the harvesting of solar radiation. Previous work has demonstrated that leaf chlorophyll content

is a strong proxy for photosynthetic capacity (Croft et al., 2017; Lu et al., 2020; Luo et al., 2021). The maximum carboxylation

rate at the 25 ◦C reference temperature (Vc(max),25) represents the limitation of photosynthesis by the Rubisco enzyme, which

is the main regulator in light-saturated photosynthesis (Houborg et al., 2013). Due to the investment of N in chlleaf molecules

and an optimal N investment strategy to ensure close co-ordination between light-harvesting and carboxylation reactions, there50

is a close relationship between leaf N and chlleaf (Sage et al., 1987; Evans, 1989). In-situ observations of chlleaf can there-

fore be used to improve the parametrization of physiological schemes within TBMs to improve GPP estimates (Luo et al.,
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2018, 2019; Lu et al., 2022; Thum et al., 2025). However, many of the contemporary TBMs do not represent chlleaf , and the

widely used version of the FvCB model (Farquhar et al., 1980) for photosynthesis description does not explicitly take into

account the role of chlleaf in photosynthesis. In addition, the majority of TBMs only consider total canopy N and its vertical55

distribution (Vuichard et al., 2019; Best et al., 2011; Clark et al., 2011).

In addition to in-situ observations, remote sensing (RS) of the Earth’s vegetation provides comprehensive data for evaluating

TBMs. Leaf nitrogen is difficult to retrieve directly from RS observations (Farella et al., 2022), in comparison to chlleaf which

is more feasible to derive remotely (Croft and Chen, 2018), due to the presence of large chlorophyll absorption features in

visible wavelengths. The advantage of using remotely sensed chlleaf is its global and seasonal coverage and relatively long60

time span, compared to in-situ observations. Similarly as in-situ observations, RS chlleaf can be harnessed to improve the

modeled photosynthetic processes which include Vc(max) (Houborg et al., 2013). For example, Liu et al. (2023) retrieved

global daily Vc(max) for C3 biomes by using RS chlleaf and RS solar-induced chlorophyll fluorescence. Another advantage of

RS chlleaf is that they are linked to space-borne observations of leaf area index (LAI), both retrievable remotely (Croft et al.,

2020). This allows the modeled leaf surface area to be evaluated simultaneously with chlleaf .65

In this study, we utilized a spatial RS chlleaf product (Croft et al., 2020) to evaluate the chlleaf representation of the TBM

QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) (Thum et al., 2019; Caldararu

et al., 2020), which has fully prognostic coupled carbon and nitrogen cycles. QUINCY includes an explicit representation of

chlleaf and its impact on photosynthesis, and also the photosynthetic parameters Vc(max),25 and the maximum electron transport

rate at 25 ◦C reference temperature (Jmax,25) are directly determined from leaf nitrogen. We analysed model performance with70

respect to the temporal and spatial distribution of chlleaf and LAI in different ecosystems globally. We further compared

the simulated gross primary production (GPP) with the ground-based measurement from eddy-covariance network stations.

To understand model-data mismatch, we used a machine learning approach to analyze how different environmental drivers

affect both QUINCY and RS chlleaf . We further investigated whether the observed difference in chlleaf between QUINCY and

observations is related to modeled N limitation by examining QUINCY’s leaf C:N values. Here we use RS data as a reference75

for evaluation, though we acknowledge that RS data are also simulated product and have different characteristics than in-situ

data. In other words, our evaluation can be understood more as a comparison study between TBM and RS-derived data.

Initial results suggested that the modeled response of chlleaf to leaf N was not realistic, foremost because the original leaf

nitrogen scheme in QUINCY does not take into account of the observed relationship between chlleaf and Vc(max) (Evans

and Clarke, 2019). In order to have a more realistic representation, we formulated an alternative leaf N allocation scheme in80

QUINCY based on Onoda et al. (2017) and Evans and Clarke (2019), where the Vc(max) and chlleaf ratio is taken into account,

and compared the additional simulation results with the original leaf N allocation scheme.

The objectives of the study were to determine different methods for using RS chlleaf in model evaluation and how RS chlleaf

can benefit modeling of coupled C and N cycles. The research questions addressed in this work are as follows:

– Are the spatial and temporal patterns of global chlleaf in QUINCY and RS similar?85

– Is QUINCY’s performance in modeling chlleaf related to its ability to produce measured annual GPP?
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– What are the main environmental drivers that affect QUINCY chlleaf and RS chlleaf?

2 Materials and methods

In this section, we will first present the study sites and observational data, followed by QUINCY model description and

simulation setup. Finally, a machine learning approach to determine chlleaf environmental drivers is presented. In this study,90

chlleaf denotes both chlorophyll a and b (chla+b). All the datasets used in the study are presented in Table S1.

2.1 Description of the sites

We conducted the analysis using two different site sets. The first set was the Protocol for the Analysis of Land Surface Models

(PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER2) (Ukkola et al., 2022). The second site set,

GLOBAL, is based on the study by Caldararu et al. (2022).95

PLUMBER2 (Abramowitz et al., 2024) was designed for serving in a model intercomparison project for land surface models,

and provides CO2 eddy covariance measurements and meteorological data for various sites. The time interval of PLUMBER2

site data varies depending on the site, as some of the site data cover only one year, while others over a decade. The time span

of PLUMBER2 site data is between 1992–2018. Of the available sites, we included 143 PLUMBER sites that had RS chlleaf ,

RS LAI and QUINCY data available, and that were not reported by Abramowitz et al. (2024) to have anomalous precipitation100

input data. The GLOBAL site set represents all major climate zones and global biomes, and the site input data is for the years

1989–2018 based on the CRU JRA dataset (Harris, 2020). In our analysis, we used 279 GLOBAL sites for which QUINCY

simulated and RS chlleaf data were available and matched in land cover type (See Section 2.2.3).

In total, the combined PLUMBER2 and GLOBAL analysis included 422 sites. The locations of the PLUMBER2 and

GLOBAL sites are presented in Fig. S1. The sites are categorized based on the QUINCY plant functional types (PFTs), and105

the number of GLOBAL and PLUMBER2 sites in each PFT are listed in Table 1.

2.2 Remote sensing data

2.2.1 Remotely sensed chlleaf

We obtained chlleaf content from the global RS product by Croft et al. (2020). The RS chlleaf is derived from the ENVISAT

MERIS full-resolution reflectance data with a two-stage radiative transfer model. The spatial resolution of the global RS chlleaf110

is 300 m, and the data are processed to a 7-day temporal resolution for the years 2003–2011. The chlleaf has been retrieved by

first modeling the reflectance spectra at the leaf level using two separate models: the 4-Scale model (Chen and Leblanc, 1997)

for forested and spatially clumped ecosystems, and the SAIL model (Verhoef, 1984) for cropland and grassland ecosystems.

The chlleaf has been then derived from the leaf reflectance spectra by using the PROSPECT leaf optical model (Jacquemoud

and Baret, 1990). The influence of gaps has been partially minimized in the RS chlleaf by Croft et al. (2020) by gap-filling the115
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Table 1. List of QUINCY PFTs and the corresponding number of sites in the PLUMBER2 and GLOBAL site sets

Abbreviation Long name Nr of sites, PLUMBER2 Nr of sites, GLOBAL Nr of sites, all

BNE Boreal needle-leaved evergreen 20 50 70

TeNE Temperate needle-leaved evergreen 8 6 14

BNS Boreal needle-leaved deciduous 0 6 6

TeBE Temperate broad-leaved evergreen 4 4 8

TeBS Temperate broad-leaved deciduous 25 20 45

TrBR Tropical broad-leaved rain deciduous 2 2 4

TrBE Tropical broad-leaved evergreen 9 38 47

TeC C3 crops 21 0 21

TeH C3 grasslands 34 69 103

TrH C4 grasslands 20 84 104

all - 143 279 422

missing data with the year 2010 data and a smoothing algorithm. A detailed description of the RS chlleaf product is presented

in Croft et al. (2020).

In addition, we obtained chlorophyll content data based on the Sentinel-3 OLCI data (Reyes-Muñoz et al., 2022) for two

needle-leaved sites for which we also had in-situ chlleaf measurements (See Section 2.3.2). The RS chlleaf product by Reyes-

Muñoz et al. (2022) is generated by involving Gaussian process regression algorithms, and the training data for the algorithm120

consisted of simulated top of atmosphere radiance from coupled canopy radiative transfer model SCOPE and the atmospheric

radiative transfer model 6SV. The aim was to further evaluate the magnitude and the seasonality of chlleaf for the needle-leaved

evergreen boreal forests by using data from a different Earth observation instrument and also obtained with a different retrieval

algorithm than with RS chlleaf by Croft et al. (2020).

2.2.2 Remotely sensed LAI125

We used the GEOV1 remotely-sensed leaf area index (LAI) product from the Copernicus Global Land Service (Baret et al.,

2013), which is the same RS LAI product used to retrieve the RS chlleaf by Croft et al. (2020). GEOV1 LAI is derived from

the SPOT-VGT satellite data and has a temporal resolution of ten days and a spatial resolution of 1 km. We used data for the

years 2003–2011.

2.2.3 Post-processing of the RS data130

As RS chlleaf depends in part on the assumed land cover (LC) type for each grid cell, it was important to ensure that the

QUINCY chlleaf values for each site represented the same ecosystems as RS chlleaf . We compared the PFT values used in the

QUINCY simulations with the LC values from a European Space Agency Climate Change initiative (ESA-CCI-LC) LC map

(ESA, 2017), from which the LC types were also taken for the RS chlleaf retrieval modeling by Croft et al. (2020). A list of LC
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types is presented in Table S2, and the LCs associated with each PFT in our comparison are presented in Table S3. For each135

site, we first selected the site grid cell and the eight surrounding grid cells, i.e. the 3x3 cell area, from the ESA-CCI LC map.

We then checked whether the QUINCY PFT matched the LC type for each of the grid cells, and added to a list those grid cells

that had a matching land cover type to the QUINCY PFT. We then picked from the RS chlleaf grid data only those listed grid

cells that had a matching land cover type, and calculated an area average RS chlleaf based on the listed cells. This area average

was calculated separately for each time step. If there were no matching grid cells in the 3x3 surrounding cells, we extended the140

search to cover 5x5 surrounding cells, and looped through 25 grid cells. We then selected the matching cells from the 25 cells,

and calculated the area average RS chlleaf for each time step. There were eight PLUMBER2 sites and 80 GLOBAL sites for

which we did not find any matching grid cells, and these sites were excluded from the analysis. We only used the top-of-canopy

chlleaf values from QUINCY to ensure that the values were consistent with the RS-based values. In addition, the RS chlleaf

for the needle-leaved sites was multiplied by π
2 . This was done to account for the half-hemispherical needle geometry in the145

remote sensing retrieval (Stenberg et al., 1995).

The RS LAI data were only retrieved using the one grid cell where the site was located, i.e. the PFT classification of a site

did not affect the RS LAI post-processing. If no data were available in that particular grid cell, we extended the area to cover

±0.01◦ latitude and longitude degrees and used the average of the whole extended area.

2.3 In-situ observations150

2.3.1 Eddy covariance flux observations

Ground station GPP observations were available for the PLUMBER2 sites, and the data were taken from the eddy covari-

ance flux tower dataset provided by Ukkola et al. (2022). The dataset includes flux tower data from three data releases:

FLUXNET2015 (Pastorello et al., 2020), La Thuile (FLUXNET, 2024), and OzFlux (Isaac et al., 2017). The flux data were

gap-filled using statistical methods depending on the length of the gap. The short gaps up to four hours were gap-filled using155

linear interpolation methods. Gaps that were longer than four hours were gap-filled with linear regression against the incoming

shortwave (SW) radiation, air temperature and humidity, or only against the SW radiation if the other two variables were miss-

ing. Depending on the site, the flux time series ranged from one to 20 years, between the years 1992 and 2018 (See Ukkola

et al. (2022), Table S1). Data from all years were used, and therefore, the GPP time series are not necessarily from the same

time interval as RS chlleaf .160

2.3.2 chlleaf and leaf C:N in-situ measurements

To further investigate the chlleaf magnitude and seasonal cycle for boreal needle-leaved evergreen (BNE) forests, we performed

an additional comparison for RS and QUINCY output with in-situ observations for two PLUMBER2 sites: Sodankylä site (FI-

Sod) in Finland (67.4 ◦N, 26.6 ◦E) (Thum et al., 2007) and Niwot Ridge (US-NR1) in the United States (40.0 ◦N, -105.5◦E)

(Bowling and Logan, 2019). Both sites are characterized as needle-leaved forest sites with strong seasonal cycle and harsh165

winters. FI-Sod is classified as boreal forest, and US-NR1 as subalpine, and it is located in a mountainous terrain. The sites were
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selected as both sites had a time series of chlleaf observations. In addition, there were also fraction of absorbed photosynthetic

radiation (fAPAR) in-situ observations available at FI-Sod, which we used in our analysis. Further details about chlleaf data

collection and the use of in-situ observations is provided in Text S1.

We also used in-situ observations from the TRY database (Kattge et al., 2011) to compare the in-situ leaf C:N ratios with our170

model-derived values. The leaf C:N observations were retrieved from the TRY database for two sites: the boreal needle-leaved

forest station Hyytiälä in Finland (FI-Hyy, 61.8◦N, 24.3◦E) and the deciduous forest site, Morgan Monroe State Forest site in

the US (US-MMS, 39.3◦N, -86.4◦E). The FI-Hyy measurements are sampled from Scots pine tree. US-MMS is a secondary

successional broad-leaved forest, and the leaf C:N measurements cover various different deciduous trees: sugar maple (acer

saccharum), American beech (fagus grandifolia), American elm (Ulmus americana), Northern red oak (Quercus rubra), and175

other deciduous species. The sites were selected based on consistent measurement time with the QUINCY simulations, and to

expand the geographical gradient of in-situ measurements, and also to include an example of a TeBS site.

2.4 Terrestrial biosphere model QUINCY

We used the terrestrial biosphere model QUINCY (Thum et al., 2019), which includes fully coupled carbon, nitrogen and

phosphorus (P) cycles, as well as water and energy fluxes in ecosystems. Global vegetation ecosystems are classified into180

eight categories by PFTs. In addition, there are several acclimation mechanisms that allow a smooth transition of ecosystem

functioning in different climatic conditions. Vegetation is represented as an average individual, which is characterised by its

height and diameter as well as an average individual density, and which includes structural tissues (leaves, fine roots and fruits,

and for trees additionally coarse roots, sapwood and heart-wood) as well as two non-structural pools, labile and reserve. The

canopy is divided into ten layers. The canopy scheme incorporates photosynthesis and canopy conductance separately for sunlit185

and shaded leaves for each canopy layer.

Plants in QUINCY respond to soil N availability. This includes a response in leaf N content, which decreases if there is not

enough N is available. Leaf nitrogen is divided into structural and photosynthetically active components. The photosynthesis

scheme explicitly accounts for the role of chlleaf . Photosynthesis is calculated using the Kull and Kruijt (1998) model. Ac-

cording to this model, in the light-saturated part of the leaf, photosynthesis is the minimum of electron transport rate-limited190

photosynthesis (determined by the maximum electron transport rate parameter Jmax,25) and the carboxylation capacity-limited

photosynthesis (determined by the maximum carboxylation capacity parameter Vc(max),25). In the non-light-saturated part,

photosynthesis is determined by the electron transport-rate-limited photosynthesis. Chlorophyll partly determines the depth

of the light-saturated layer in the leaf. Thus, all the three photosynthetically active components of leaf nitrogen influence the

photosynthesis calculation in QUINCY, as described by Friend et al. (2009), Zaehle and Friend (2010), and Thum et al. (2019).195

The photosynthesis model by Kull and Kruijt (1998) is extended to cover C4 plants (Friend et al., 2009).

The C:N ratios of leaves and fine roots respond dynamically to the balance of C and N in the labile pool. When there is

shortage of N supply, the leaf C:N ratio increases and vice versa. The ratios are constrained to an empirically derived range

based on the TRY database (Kattge et al., 2011), and the lower and upper boundaries are presented in Table S4. Soil carbon
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and nitrogen pools are modeled on the basis of the CENTURY soil model (Parton et al., 1993) and the soil profile is divided200

into 15 vertical soil layers, extending to a depth of 9.5 m with increasing depth when moving deeper into the ground.

The seasonal development of leaf biomass and LAI depend on the plant’s ability to grow new tissues, given the availability of

C and N, as well as the fractional allocation to plant organs. This fractional allocation is constrained by allometric relationships

and the availability of nutrients and water. Meteorological conditions and soil moisture are used as phenological controls for

LAI development, and it is assumed that plant growth is zero outside the growing season. Both the beginning and the end of205

the growing season, which determine the LAI seasonal cycle, depend partly on the PFT. For cold and temperate deciduous and

herbaceous PFTs, the start of the season is described as a function of the accumulated growing degree days. The accumulated

growing degree days are calculated from the beginning of the last dormancy period. In addition, for these PFTs, the end of the

growing season is triggered when the weekly air temperature falls below a PFT-specific threshold. For PFTs of rain-deciduous

phenology, the start of the season is triggered when the soil moisture stress factor exceeds the PFT-specific threshold values.210

For these PFTs and also for the warm herbaceous PFTs, the trigger for the end of the season is again the soil moisture stress

factor. An additional condition for herbaceous PFTs to end their growing season is when the weekly carbon balance, i.e. the

residual between GPP and maintenance respiration, becomes negative. The evergreen needle-leaved trees are assumed to be in

a continuous growing season. A more detailed description of QUINCY is presented in Thum et al. (2019).

2.4.1 Original leaf nitrogen allocation in QUINCY215

QUINCY allocates the total canopy nitrogen to canopy layers with exponentially decreasing N content towards the bottom of

the canopy as in Niinemets et al. (1998). At the leaf level, nitrogen is partitioned into structural (fN,struct) and photosynthetic

fractions at each canopy layer (Friend et al., 1997). The photosynthetic fractions are associated with chlorophyll (fN,chl), Ru-

bisco (fN,rub), which is used directly to calculate Vc(max), and electron transport (fN,et), which is used to calculate the maximum

rate of electron transport (Jmax).220

The fraction of leaf N in the structural compartment for each layer, fN,struct, is calculated as a linear function of leaf N, as

presented in Zaehle and Friend (2010):

fN,struct = kstruct
0 − kstruct

1 ∗Nleaf (1)

where kstruct
0 is the PFT-specific maximum fraction of structural leaf N, and kstruct

1 = 7.143 (gN)
−1 is the slope of structural

leaf N with respect to total N (Nleaf) (Friend et al., 1997).225

The fraction of leaf N in the chlorophyll compartment, fN,chl, is calculated as an increasing function of cumulative LAI across

the canopy (LAIcum) (Kull and Kruijt, 1998; Friend et al., 2009; Zaehle and Friend, 2010):

fN,chl =
kchl
0 − kchl

1 e−kchl
fn ∗LAIcum

achl
n

(2)

where kchl
0 and kchl

1 are PFT-specific empirical parameters, kchl
fn is an empirical parameter describing the increasing fN,chl with

canopy depth, and LAIcum is the cumulative LAI. achl
n = 25.12 molmmol−1 describes the molecular N content of chlorophyll230
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(Evans, 1989). The kchl
0 and kchl

1 parameters are the same for trees and C3 grasslands, but different for C4 grasslands. The rest

of the leaf N is divided between the fN,rub and the fN,et with a fixed ratio of 1.97 (Wullschleger, 1993).

2.4.2 Alternative leaf N allocation

In the alternative leaf N allocation scheme, fN,rub is calculated based on a function of leaf mass per area (LMA) as described by

Onoda et al. (2017). The formulation using the QUINCY PFT-specific LMA values (Thum et al., 2019) is as follows:235

fN,rub =
−21.1 ∗ log10(LMA)+ 57.5

100
. (3)

The fraction in electron transport, fN,et, is derived from fN,rub using the fixed ratio of 1.97. fN,chl is then calculated as a function

of fN,et, based on the results by Evans and Clarke (2019) :

fN,chl =
37.3

8.85 ∗ 2.0
fN,ete

−kn LAIcum (4)

where kn =−0.11 describes the increase in chlleaf within the canopy depth. The fN,struct is then calculated as the remaining240

part of the leaf N, (fN,struct = 1− fN,chl - fN,et - fN,rub).

2.4.3 QUINCY simulation setup

We conducted individual site-level QUINCY simulations for the PLUMBER2 and GLOBAL sites. In QUINCY, C3 crops and

C3 grasslands are grouped as one PFT, i.e. they are simulated with the same parametrization. The current version of QUINCY

does not include management practices. Therefore, C3 crops do not differ from C3 grasslands in QUINCY simulations. Sim-245

ilarly, boreal and temperate needle-leaved evergreen forests are grouped into the same PFT. In this study, we labeled those as

the needle-leaved evergreen sites with a mean annual temperature below 10 ◦C as boreal and the rest as temperate.

We ran all the simulations with active C and N cycles, i.e. the CN version of the model. Soil P availability was kept at a level

that did not limit plant uptake or soil organic matter decomposition. The model input fields included half-hourly meteorological

data: SW and longwave radiation, air temperature, precipitation, surface air pressure, relative humidity and wind speed. In250

addition, atmospheric CO2, and N and P deposition rates are part of the input drivers. Model input parameters include PFT

classification and various soil properties such as soil texture, bulk density, soil depth, rooting depth and inorganic soil P content.

The specific leaf area (SLA), which is the inverse of LMA, is maintained as a PFT-specific constant. There is only one PFT

associated with each site. The list of PFTs and the corresponding PFT abbreviations are presented in Table 1.

For the PLUMBER2 sites, the meteorological fields were obtained from the PLUMBER2 dataset (Ukkola et al., 2022).255

Depending on the PLUMBER2 site, meteorological data was available from 1992 to 2018 (Ukkola et al. (2022), Table S1). For

the GLOBAL sites, the meteorological data were obtained from the CRU JRA dataset, and covered the years 1989–2018. Soil

physical and chemical parameters (bulk density, rooting and soil depth and soil texture) were retrieved from the SoilGrid dataset

(Hengl et al., 2017). Atmospheric CO2 concentrations were retrieved from the Global Carbon Budget 2019 data (Friedlingstein
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et al., 2019), and the N and P deposition data are based on the dataset presented by Lamarque et al. (2010) and Lamarque et al.260

(2011).

For each site, we ran a 1000-year model spin-up in order to bring the soil and vegetation biogeochemical pools into quasi-

equilibrium. During the spin-up, atmospheric CO2 concentration, N deposition and P deposition data were used by repeating

the values from the period between 1901 and 1930. Meteorological data were taken from a random year of observed meteoro-

logical data. After spin-up, the simulations were conducted as transient simulations, starting from the year 1901. The transient265

simulation was continued with data from a random year of observed meteorology until the start of the period for which ob-

served meteorological data were available. For the PLUMBER2 sites, the start of the period was site-dependent, while for the

GLOBAL sites, the meteorological data began in 1989. In the transient simulation, atmospheric CO2 concentrations and N

deposition were retrieved for the corresponding years from the data sources mentioned above.

In addition to the simulation with the default QUINCY setup for the PLUMBER2 and GLOBAL sites, we carried out four270

additional simulations for the PLUMBER2 sites to analyze how N limitation and changes in leaf nitrogen allocation affect the

results. First, we performed an additional simulation with the QUINCY C-only setup (QUINCY Conly), where only the C cycle

was active but the leaf stoichiometry was described with a fixed parametrization. This was done in order to compare the effect

of N limitation with the results of the default QUINCY CN-simulation. We then conducted a CN-simulation with the alternative

leaf N allocation scheme, as described in Section 2.4.2. After that, we ran a CN-simulation using the default QUINCY settings,275

but modified the source code by multiplying the fN,chl parameter by 1.3. This was done in order to see the effect of increasing

fraction of leaf N allocated to chlleaf . Finally, we carried out a simulation with the alternative leaf N allocation, but the fN,rub

was multiplied by 1.3, to represent a 30% increase in the Rubisco fraction, which leads to an increase in the chlleaf fraction. The

additional simulations with increased fN,chl and fN,rub were only performed for the temperate broad-leaved deciduous (TeBS)

sites in the PLUMBER2 site set. The list of different simulations is presented in Table S5.280

2.5 Feature importance analysis

The impact of different environmental drivers on the simulated and RS chlleaf magnitude was examined using the permutation

feature importance algorithm, based on random forest (RF) regression fitting (Breiman, 2001). RF is a regression tree-based

machine learning method that is able to capture non-linear correlations. Permutation importance indicates the contribution of

an individual input variable to the statistical performance of a model. In other words, permutation importance can be used to285

investigate the influence of an environmental driver on a target variable, which in our case is chlleaf . In addition, we analyzed

the importance of each selected environmental variable via the SHAP (SHapley Additive exPlanations, (Lundberg and Lee,

2017)) values. We used the SciKit Learn Python3 package for both RF and permutation importance (Pedregosa et al., 2011),

and the shap Python library by Lundberg and Lee (2017) (https://github.com/shap/shap; last access June 23, 2025) to compute

the SHAP values.290

The target data for the RF models were either QUINCY chlleaf or RS chlleaf . We trained 22 separate RF models. Of the 22,

the first ten RFs were dedicated to monthly QUINCY chlleaf and each individual PFT from PLUMBER2 and GLOBAL sites.

In addition, we trained one RF model with monthly data from all of the sites and QUINCY chlleaf , using both PLUMBER2

10
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and GLOBAL sites. The remaining RF models were used for monthly RS chlleaf and individual PFTs, and one model with

data from all of the sites.295

The input data consisted of monthly means of air temperature and PAR, and annual sums of precipitation and N deposition,

and annual means of Standardized Precipitation Evapotranspiration Index (SPEI) at each of the sites. The input variables for

the RF models were selected from the available environmental data that showed the least correlation between each other. Air

temperature, precipitation and N deposition were those used as input in the QUINCY simulations. The SPEI data were retrieved

from the global drought monitoring dataset by Vicente-Serrano et al. (2023). We used the SPEI with a two-week time scale300

(SPEI 0.5 months), which was then averaged as monthly mean data. The spatial resolution of the SPEI dataset was 0.5◦×0.5◦,

and we chose the same time steps as in the QUINCY data. The PAR radiation was taken from the QUINCY output, and it is

converted from SW radiation with the model (Howell et al., 1983).

The random forest hyperparameters were set to default values, but the maximum number of features per node was set to

three. A recommended value for the maximum number of features per node in RF regression is one-third of the input features305

(Hastie et al., 2009), but here we used a slightly higher value in order to maintain representative subset sizes.

First, we tested the performance of RF models by splitting the data using the train_test_split function in SciKit Learn. We

used 75 % of the data for preliminary training and 25 % for preliminary testing. The coefficient of determination (R2) scores for

the preliminary training and preliminary testing phases are reported in Table S6. Next, we used all the data (i.e., the preliminary

training and preliminary testing data) for the final training of the models.310

After the final RF model training, we calculated the corresponding permutation feature importance values for each model.

The permutation feature importance algorithm was used with 30 repeats (n_repeats = 30) and with a fixed random state.

Finally, the SHAP values were calculated using data averaged over three months. The higher positive SHAP values indicate a

stronger, increasing effect on chlleaf , and the lower negative SHAP values indicate a decreasing effect on chlleaf compared to

the average.315

2.6 Data-analysis

In this study, the QUINCY chlleaf is the top-of-canopy chlleaf , as mentioned in Section 2.2.3. For the PLUMBER2 sites, we

used all the available years from the QUINCY simulations, as well as from RS and eddy covariance observations. For the

GLOBAL sites, we used QUINCY simulation data for the years in which RS chlleaf data was available for each site.

We calculated the PFT mean chl, LAI 90th percentile for GLOBAL and PLUMBER2 sites for both QUINCY and RS. In320

addition, we calculated the PFT mean annual GPP for GLOBAL and PLUMBER2 sites for QUINCY, but only the PFT mean

for the GPP ground observations on the PLUMBER2 sites, as no GPP ground station measurements were available for the

GLOBAL (artificial) sites. We used the 90th percentile of LAI instead of the mean values. This was done to reduce the effect

of differences in seasonal amplitude and timing variation between QUINCY and RS and to focus on LAI values during the

growing season. We calculated the Pearson correlation coefficients (r) between QUINCY and RS site-level mean chlleaf , LAI325

90th percentile and GPP annual sum values, and the statistical significance of the correlation using Student’s t-test, with a

threshold value of 5 % for the statistical significance.
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We analyzed the seasonal cycle of chlleaf and LAI for the PLUMBER2 and GLOBAL Northern Hemisphere (NH) sites

separately for different PFTs. In addition, the analysis of the PLUMBER2 sites included GPP. First, we calculated the averaged

seasonal cycle over years for each site and variable. Then, using these averaged seasonal cycles, we calculated the mean330

seasonal cycle per PFT across sites and the standard deviation between sites for each day of year (DOY). This was done for

QUINCY simulated values and for RS and eddy covariance CO2 observations. Using the PFT-averaged seasonal cycles, we

calculated the Pearson correlation (r) and root mean squared error (RMSE) between QUINCY and the observations.

For the NH PLUMBER2 TeBS sites, we estimated the start of season (SOS), the end of season (EOS) and the length

of season (LOS) based on the PFT-averaged chlleaf , LAI and GPP. We calculated the seasonal metrics using the method335

as described by Thum et al. (2025). The SOS and EOS values from the PFT-averaged GPP were calculated using the first

and last pass of the threshold value. The threshold was set at 30 % of the 90th percentile value of the PFT-averaged mean

seasonal cycle of GPP. For LAI and chlleaf , the threshold was determined using the difference between the summer and winter

values. Winter values were calculated using the mean values from January and February, and summer values were calculated

using the mean values from June and July. The threshold was then set to 20 % of the difference, added to the winter mean,340

(i.e., ythres=xwinter+0.2*(xsummer-xwinter)). The earliest DOY for SOS was set to 50. LOS was calculated as the difference

between EOS and SOS.

We calculated the residuals between the QUINCY chlleaf mean and RS chlleaf for each site, and compared these to the

QUINCY leaf C:N ratios. Leaf C:N can be considered as an indicator of N availability for plants. The aim was to examine

whether the under- or overestimation of QUINCY chlleaf was related to nitrogen limitation in the model. The comparison was345

done for BNE, TeH and TeBS. These PFTs were assumed to represent different vegetation types: BNE represents evergreen

forests, TeH grasses and TeBS deciduous forests. In addition, we calculated the mean chlleaf interannual variability (IAV) for

the PLUMBER2 and GLOBAL sites. We first calculated the standard deviation of the annual mean chlleaf for each site, and

then the average of the standard deviations at the PFT level and over all sites.

We analyzed the seasonal cycle of chlleaf for two evergreen needle-leaved PLUMBER2 sites, FI-Sod and US-NR1 (see350

Section 2.3.2), by comparing the QUINCY simulations, in-situ observations and remote sensing observations. We calculated

the averaged seasonal cycles over years for QUINCY and for remote sensing chlleaf and compared them with in-situ observa-

tions. Furthermore, we analyzed the seasonal cycles of LAI, fAPAR and GPP for the FI-Sod site and compared the QUINCY

simulated values to the observations. We also compared briefly the simulated mean annual averaged leaf C:N values to in-situ

observations for two PLUMBER2 sites, FI-Hyy and US-MMS.355
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3 Results

3.1 Evaluation of simulated chlleaf , LAI and GPP against observations

3.1.1 Yearly values

At the PFT level, QUINCY estimates of the mean annual chlleaf and LAI agree relatively well with the RS-derived chlleaf and

LAI values (Figs. 1, S2, S3 and Tables S7 and S8) for all PLUMBER2 sites, with correlations of r = 0.61 for chlleaf and r360

= 0.51 for LAI (Table S7). QUINCY does overestimate both chlleaf and LAI for TeBE and TrBR sites, with TeNE and TeC

also overestimated for LAI on a mean PFT scale. Despite the variability in simulated chlleaf and LAI values in comparison

to RS-derived values, the overall simulated GPP for all PLUMBER2 sites correlates well between QUINCY estimates and

eddy-covariance data (r = 0.71; Table S7 and Figure S4).

As expected, the within PFT variability between sites reveals greater scatter, the nature of which differs for chlleaf and LAI365

(Figs. S2, S3). For chlleaf in all cases apart from TeBS, TrBE and TrH, there is a lack of variation in the QUINCY chlleaf ,

which present more constant values and smaller dynamic range compared to RS chlleaf values (Fig. S2 and Tables S7, S8).

This is particularly pronounced for TeC and TeH sites, which give a range of 10–17 µg cm-2 for TeC and 4-17 µg cm-2 for TeH,

for QUINCY and a range of 13–46 µg cm-2 and 2–47 µg cm-2 for RS, respectively. The site-level LAI estimates by contrast

generally present a larger dynamic range (with the exception of TeBs, TeNE, TeBE and TrBE). The TrH in particular show a370

large overestimation in QUINCY LAI compared to RS LAI at higher LAI values (LAI > 2.5) (Fig. S3).

The site-level GPP results show a good correlation between QUINCY estimates and eddy-covariance observations across

PFTs. Whilst the correlation is generally along the 1:1 line, in 58 % of the PLUMBER2 sites, QUINCY underestimates the GPP

on average by about 400 gCm-2 yr-1. The majority of these underestimations are for BNE and TeBS forests. The QUINCY

overestimation of GPP is mainly for crops and grasslands, with an average overestimation of 384 gCm-2 yr-1 across 42 %375

of the PLUMBER2 sites. For the PLUMBER2 sites, the slight LAI overestimation of the TrH sites does not seem to lead to

an overestimation of the mean GPP, but the QUINCY PFT mean GPP (756 gCm-2 yr-1) is lower than the PFT mean of the

observations (902 gCm-2 yr-1). Due to very high LAI values for the GLOBAL TrH sites, the QUINCY mean GPP for the

GLOBAL TrH sites was 1461 gCm-2 yr-1 (not shown), and QUINCY chlleaf mean was 50.2 µg cm-2.

The QUINCY over- or underestimation in chlleaf did not have a strong, detectable geographical pattern when assessed380

together and separately for all PFTs. The residual chlleaf , i.e. the difference between the mean QUINCY and RS values, is

shown in Fig. S5 on a map showing the geographical location of each site. For the C3 grassland sites, the QUINCY mean

chlleaf was rather small compared to the RS chlleaf . When analyzing the residuals for the C3 grasslands, the northernmost

sites seem to have less negative residuals in magnitude than for the sites around latitudes 30–60◦N. This was also the case

when the relative residual was analyzed (not shown). The greater QUINCY underestimation of chlleaf for the warmer, southern385

C3 grassland sites is not related to the GPP underestimation. Interestingly, for the GLOBAL C3 grassland sites the LAI

over/underestimation shows an opposite pattern to QUINCY chlleaf : the northern sites show more negative LAI residual, and
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Figure 1. The PFT mean (a) chlleaf , (b) LAI and (c) GPP for the PLUMBER2 sites. The standard deviation is represented by whisker lines.

A 1:1 line is marked with a gray line.

sites around latitudes 30–60◦N mostly QUINCY overestimation of LAI (not shown), which could be due to the fact that RS

chlleaf is calculated using RS LAI.

The mean IAV of RS chlleaf over all PFTs is 4.11±3.18 µg cm-2, which is much higher than the corresponding value for390

QUINCY (1.35±1.52 µg cm-2). The RS chlleaf IAV is higher for all other PFTs except for TrH, where the QUINCY chlleaf

IAV was 3.39±2.04 µg cm-2, and the RS chlleaf IAV was 3.37±2.35 µg cm-2. The largest differences in IAVs between RS and

QUINCY were seen for the evergreen sites. For example, the RS chlleaf IAV for the BNE sites is 5.95±3.51, and the QUINCY

chlleaf IAV is 0.5±0.4 µg cm-2.

3.1.2 Seasonal cycle395

The annual cycle of chlleaf for the PLUMBER2 NH TeBS sites (Fig. 2) is similar when comparing QUINCY and RS. However,

the start of the growing season is delayed in QUINCY. The SOS, EOS and LOS values for the PFT-averaged PLUMBER2 NH

TeBS sites are presented in Table S9. The QUINCY SOS for LAI is approximately 13 days later in spring compared to the RS

LAI. Similarly, the end of the growing season is delayed in QUINCY, and the EOS of QUINCY chlleaf occurs approximately

10 days later than in RS chlleaf . While the RS LAI shows a decrease throughout the autumn season, QUINCY LAI remains at400

a high value until day of year (DOY) 280, which corresponds to mid-October. The EOS for QUINCY LAI is approximately 30

days later than for RS LAI. However, senescence occurs more rapidly in QUINCY than in the observations.

Figure 2c shows that the GPP between DOY 90–150 for QUINCY is slightly lower than in the observations. The spring

development of GPP is slower in QUINCY than in the observations, though the QUINCY SOS of GPP occurs almost at the

same time as in the measurements. Although the simulated LAI remains at the summer level until DOY ∼280, the simulated405

GPP decreases due to the environmental conditions in autumn. However, the delay in autumn LAI senescence is reflected in
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Figure 2. The average annual cycle of (a) chlleaf , (b) LAI, and (c) GPP for the PLUMBER2 TeBS NH sites, as a function of the day of year

(DOY). The shaded regions represent the standard deviation between sites. The start of season (SOS) and end of season (EOS) are marked

with red (QUINCY) and grey (observations) vertical lines. The Pearson correlation (r) and root mean squared error (RMSE) are marked for

each variable.

the QUINCY GPP EOS, which is approximately 26 days later than for the GPP observations. The delay in the QUINCY spring

GPP is compensated partly for by the delayed end of the season where the QUINCY GPP is higher than the observed GPP

after DOY 275. The mean GPP 3-month sum for the PLUMBER2 NH TeBS sites for spring (March, April and May, MAM)

is 289 gCm-2 for the observations, while for QUINCY, the value is 196 gCm-2. The corresponding 3-month sum values for410

autumn (September, October, November, SON) for observations is 256 gCm-2, and 351 gCm-2 for QUINCY.

Figures S6 and S7 show the PFT-mean seasonal cycles of chlleaf and LAI for the PLUMBER2 and GLOBAL NH sites, and

S8 for GPP for the PLUMBER2 NH sites. The most visible difference between QUINCY and RS chlleaf and LAI seasonality

can be observed for the boreal and temperate evergreen sites (Fig. S6 a,c,f and Fig. S7 a,c,f): QUINCY shows very little

variation across seasons, while the RS indicates more variation throughout the year with a clear seasonal cycle. Nevertheless,415

the QUINCY GPP for these PFTs (Fig. S8a,b,e) shows a similar annual cycle as the eddy covariance observations, and the
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correlation r for the evergreen needle-leaved sites is high (r > 0.95). For the BNS sites (Fig. S6b and Fig. S7b), the biases in

seasonal cycle were similar to the TeBS results (Fig. S6d and Fig. S7d).

QUINCY chlleaf for TeH and TeC sites show a delay in spring compared to RS chlleaf , but this was not observed for

QUINCY LAI. In autumn, the decrease in QUINCY chlleaf and LAI occur later than in RS. For the TrH sites (Fig. S6j), the420

seasonal cycle of QUINCY chlleaf and LAI differ from the observed seasonal cycle. The lowest PFT mean chlleaf for QUINCY

is in April (DOY∼100). Of the 47 TrH sites in the NH, 74 % of the sites had a higher QUINCY winter (December, January,

February, DJF) chlleaf average compared to the QUINCY spring (March, April, May, MAM) chlleaf mean. Furthermore, 55 %

of the TrH NH sites were such that the QUINCY DJF means of both chlleaf and LAI were higher than the QUINCY MAM

means. RS chlleaf shows (Fig. S6j) the largest TrH averages for summer (JJA) and September, and a fairly clear seasonal cycle.425

3.1.3 In-situ comparison of chlleaf for two needle-leaved forests

The seasonal cycle of chlleaf , LAI, fAPAR and GPP for Sodankylä is shown in Fig. 3, and the chlleaf values of the US-NR1

site are presented in Fig. S9. The mean annual and seasonal chlleaf and GPP values are presented in Table S10.

Figure 3a highlights that the QUINCY chlleaf values are in a range comparable to the in-situ observations for FI-Sod, but

the QUINCY mean (Table S10) is lower than the annual mean of the in-situ measurements. On the contrary, the RS chlleaf by430

Croft et al. (2020) shows much lower values. In addition, the mean of the Sentinel-3 RS chlleaf is also lower than the in-situ or

QUINCY chlleaf but close to the mean RS chlleaf by Croft et al. (2020).

The RS LAI in Fig. 3b shows a clear seasonal pattern for FI-Sod, which has a small effect on the RS chlleaf . The summer

(JJA) average RS chlleaf is approximately 10% higher than the winter (DJF) average, which is a relatively small difference

compared to the interannual variability (∼ 4µg cm-2). In addition, the late spring RS chlleaf between DOY 100–151 show lower435

values than winter or summer. The late spring RS chlleaf averages 14.6 µg cm-2, approximately 27% less than the JJA average.

Similar spring decreases in RS chlleaf were also observed for other BNE sites. The Sentinel-3 chlleaf peaks in midsummer, and

also shows a clear seasonal pattern. The in-situ chlleaf is slightly higher in late summer (DOY 200–240) compared to spring

and fall.

QUINCY LAI shows a small seasonal variation, which is reflected in the simulated chlleaf . The winter (December–February,440

DJF) QUINCY average is slightly lower than the summer (June–August, JJA) QUINCY average chlleaf . The in-situ fAPAR

values are in agreement with the simulations during most of the year, but show a stronger seasonal variation than the QUINCY

fAPAR (Fig. 3c), with higher values during winter.

QUINCY GPP is in line with the observations until DOY 175, but then decreases until the end of the season (Fig. 3d).

However, the difference in annual GPP is not large, and annual QUINCY GPP is on average approximately 9 % lower than445

the in-situ GPP. The difference between observed and simulated GPP after DOY 175 could be due to missing late fall chlleaf

development or due to too strong response to a drought.

The mean in-situ chlleaf for the US-NR1 site was close to the QUINCY chlleaf mean (Fig. S9 and Table S10). The minimum

value of individual tree samples was 26.8 µg cm-2 and the maximum was 60.8 µg cm-2, i.e. there was variation between

individual samples that is partially minimized by the averaging. The in-situ observations show a slight increase during spring,450

16



50 100 150 200 250 300 350
0

25

50

75

100

ch
l le

a
f

(µ
g

cm
-2

) (a)

chlleaf

Sentinel-3, years
2016 2017 2018 2019 2020

Croft RS, yr 2003− 2011

in-situ, yr 2015

QUINCY, yr 2008− 2014

50 100 150 200 250 300 350
0

1

2

3

L
A

I
(m

2
m

-2
)

(b)

LAI

RS, yr 2003− 2011

QUINCY, yr 2008− 2014

50 100 150 200 250 300 350
0.0

0.5

1.0

fA
P

A
R

(−
) (c)

fAPAR

in-situ, yr 2021− 2024

QUINCY, yr 2008− 2014

50 100 150 200 250 300 350
DOY

0.0

2.5

5.0

7.5

10.0

G
P

P
(µ

m
o

lm
-2

s-
1
)

(d)

GPP

in-situ, yr 2008− 2014

QUINCY, yr 2008− 2014

Sodankylä (FI-Sod)
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Figure 4. QUINCY leaf C:N and chlleaf and the corresponding residual for (a,d) temperate broad-leaved deciduous (TeBS), (b,e) C3 grass-

land (TeH) and (c,f) boreal needle-leaved sites (BNE). The vertical lines show the QUINCY leaf C:N minimum and maximum limits.

but the variation is large due to the small number of samples. The mean in-situ chlleaf for DOY 1–150 is 37.1±6.1 µg cm-2,

while the mean for summertime (JJA) is 43.2±2.3 µg cm-2. The summer (JJA) QUINCY chlleaf was close to the annual mean,

i.e. there was no pronounced seasonal cycle. The RS chlleaf annual mean by Croft et al. (2020) was lower than the annual

mean chlleaf of in-situ measurements or QUINCY. Interestingly, the RS chlleaf shows a lower JJA mean than the annual mean.

Similarly to the FI-Sod RS chlleaf , there is a decrease in the spring chlleaf after DOY 100, and the decrease is more pronounced455

than for Sodankylä. The minimum value (∼16 µg cm-2) of RS chlleaf averaged annual cycle appears around DOY 155, with

an increase after that. For the Sentinel-3 chlleaf , the mean chlleaf was close to the QUINCY values, although the numerical

range was much wider. The JJA mean for Sentinel-3 is close to the in-situ observations, and approximately 32 % higher than

the QUINCY JJA chlleaf . The annual QUINCY GPP was 45 % lower than the observed GPP. In addition, the QUINCY JJA

LAI (not shown) was 2.2±0.1 m2 m-2, and was lower than the RS JJA LAI (2.5±0.2 m2 m-2, which may partially explain the460

underestimation of GPP. Bowling et al. (2018) report that the observed in-situ LAI at the site is 3.8–4.2 m2 m-2.
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3.2 Nitrogen limitations in QUINCY

Figures 4a-c show the QUINCY leaf C:N ratios and the corresponding QUINCY chlleaf values for three PFTs. The TeBS sites

show an almost linear relationship between chlleaf and leaf C:N with a correlation of r = -0.87 (p < 1× 10−13). Higher leaf

C:N values indicate lower leaf N levels relative to leaf C. This leads to lower chlleaf since chlleaf is a function of leaf N. The465

same nearly linear relationship between QUINCY leaf C:N and decreasing chlleaf is seen for the BNE sites (Fig. 4c) with a

correlation of r = -0.96 (p < 1×10−40). The TeH sites represent a more scattered pattern and the correlation is only r = -0.58 (p

< 1×10−9), indicating that chlleaf is more influenced by other factors, such as water availability, temperature and precipitation

than leaf C:N levels, compared to BNE and TeBS. However, for the TeH sites, both the QUINCY chlleaf and leaf C:N values

are in a narrower range compared to the other two PFTs, which partly affects the comparison.470

For the TeBS sites, the chlleaf residual is moderately connected to QUINCY leaf C:N values (Fig. 4d), but the same is not

true for the BNE and TeH sites. Especially for the PLUMBER2 TeBS sites, the chlleaf residual is more negative for the sites

with higher leaf C:N values. The TeH sites do not show much variation in the leaf C:N values, and the chlleaf residual does

not appear to be connected to the magnitude of leaf C:N. The 90th percentile of TeH leaf C:N is 35.0, which is 88 % of the

QUINCY maximum leaf C:N. The BNE 90th percentile leaf C:N is 51.1 (78 % of the maximum) and the TeBS 90th percentile475

leaf C:N is 28.1 (73 % of the maximum value).

The majority of the GLOBAL BNE sites are clustered in a region with mean QUINCY chlleaf around 35–40 µg cm-2 and

leaf C:N ratio around 50. The GLOBAL set contains more BNE sites at higher latitudes than the PLUMBER2 set (see Fig. S1).

In addition, most (over 83 %) of the PLUMBER2 and GLOBAL sites with leaf C:N ∼ 50 are in a region with a mean annual

temperature below 5 ◦C. The median chlleaf residual for the GLOBAL and PLUMBER2 sites is 9.9 µg cm-2 and 7.4 µg cm-2,480

respectively.

We analyzed whether the chlleaf residual is connected to the GPP residual, i.e. the difference between QUINCY annual

GPP and observed annual GPP (not shown). For the PLUMBER2 TeBS sites, the largest negative GPP residual, i.e. the model

underestimated GPP, was for those sites that are more N-limited in QUINCY and have a negative chlleaf residual. For the

PLUMBER2 TeH sites, the GPP residual was weakly negatively correlated with the chlleaf residual: the largest positive GPP485

residual is observed for the sites that have strong negative chlleaf residual. Similarly, the GPP residual for the PLUMBER2

BNE sites was not strongly connected with the chlleaf residual.

We also compared the QUINCY leaf C:N ratios with in-situ measured values for two sites (FI-Hyy and US-MMS) obtained

from the TRY database. This was done to assess whether the QUINCY leaf C:N values are at a realistic level for individual

sites. US-MMS is classified as a TeBS site and FI-Hyy is classified as a BNE site. For the US-MMS site, the QUINCY average490

leaf C:N was 17.3, and the TRY database average was 21.3. The US-MMS QUINCY leaf C:N is close to the lower leaf C:N

threshold, and the QUINCY chlleaf is underestimated by 27 % compared to RS chlleaf . For the FI-Hyy site, the values were

46.5 and 38.8, respectively. The QUINCY chlleaf was underestimated by 28 %, which indicates that for FI-Hyy, there is a

slightly too strong N-deficit modelled.
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Figure 5. GPP residual (QUINCY - observations) versus chlleaf residual (QUINCY - observations) for the PLUMBER2 TeBS sites. The

QUINCY default scheme results are marked with green circles, and QUINCY alternative N fraction results are marked with beige circles.

In order to study the effects of N limitation, we briefly analyzed the QUINCY Conly simulation results for the PLUMBER2495

BNE sites (not shown). The results revealed that at low chlleaf values, the difference between GPP from QUINCY default,

i.e. CN, and Conly simulations was greater than at higher chlleaf levels for the BNE. In addition, for the sites where the N

deposition was low, the chlleaf values were also small.

3.3 Leaf N allocation schemes

Figure 5 shows that the alternative, more realistic N allocation scheme leads, on average, to greater chlleaf and GPP underesti-500

mation for the TeBS sites compared to the QUINCY default. Furthermore, the alternative N allocation scheme produces lower

leaf chlleaf (14.9±4.4 µg cm-2) than the QUINCY default (17.9±5.6 µg cm-2) for the PLUMBER2 TeBS sites (Fig. S10 and

Table S11). The corresponding RS chlleaf mean is 22.1±6.1 µg cm-2. Similarly, the TeBS mean GPP is lower for the alter-

native N fraction scheme, 1044±311 gCm-2 yr-1, while the QUINCY default mean GPP is 1231±366 gCm-2 yr-1. For the

observations, the mean GPP is 1539±377 gCm-2 yr-1. The LAI 90th percentile values are in a similar range (∼4±1 m2 m-2)505

between the QUINCY default simulation and QUINCY alternative N allocation. The underestimation of GPP and chlleaf is

most likely due to lower fN,rub. While the summer (JJA) fN,rub for the QUINCY default is on average 0.20 for the PLUMBER2

TeBS sites, the corresponding average for the alternative N allocation scheme is 0.09.

The results for the other PFTs were similar to those for TeBS: the chlleaf and GPP magnitudes were lower with the alternative

N allocation scheme (Table S11). An exception is the TrH sites, where the annual GPP was higher with the alternative N510

allocation than with the default QUINCY scheme. This was due to increased proportions of leaf N in Rubisco and electron

transport, while fN,chl was decreased and the fN,struct slightly increased. The PFT mean values for fN,struct and other fractions
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were calculated over sites globally, i.e. including the Southern Hemisphere sites. This affects the comparison slightly, as the

seasonal cycles differ between the northern and southern hemispheres.

Increasing chlleaf affects more the QUINCY default chlleaf levels than QUINCY alternative N fraction output, but the515

difference is not large (Table S12). When fN,chl is increased in QUINCY default, the mean chlleaf increases by 37.4 %, while

the mean LAI 90th percentile decreases by 2.4 % and the mean annual GPP decreases by 6.3 %. This is due to the fact that

in the QUINCY default, increasing fN,chl decreases leaf N allocated in electron transport and Rubisco, since their fractions of

leaf N are calculated after fN,chl (see Section 2.4.1). For the alternative N fraction simulations, increasing fN,rub which leads to

increase in fN,chl results in different dynamics compared to the QUINCY default scheme. In the alternative N allocation scheme,520

increasing fN,rub resulted in an almost linear response in the chlleaf magnitude, with an 24.2 % increase. The increases in LAI

and GPP were more moderate: 5.3 % and 12.1 %, respectively. In the QUINCY default simulation, increasing fN,chl resulted

in decreased GPP, while in the alternative N allocation scheme, GPP increased. Furthermore, the fraction in the structural part

fN,struct decreases in the alternative N allocation scheme when the fN,rub and, consequently, fN,chl are increased. In the default

QUINCY simulation, increasing fN,chl does not directly affect fN,struct, but rather indirectly through its influence on leaf N,525

resulting in only a minor decrease of fN,struct.

3.4 The environmental drivers of chlleaf

Figures 6 and S11 show that when the RF fitting is done over all PFTs, the feature importances are very similar between

QUINCY and RS. Air temperature has the largest impact on the random forest fitting of both QUINCY chlleaf and RS chlleaf ,

when the fitting is done using data from all PFTs. The effect of air temperature is even larger for the TeH and TeBS sites530

compared to the importance calculated over all PFTs. This result is logical, since chlleaf is formed from leaf N, which is partly

dependent on temperature via soil N mineralisation and biological nitrogen fixation (BNF). The QUINCY BNE sites do not

show such a strong dependence on air temperature because the evergreen needle chlleaf does not vary as much throughout the

year as deciduous chlleaf . However, temperature shows a permutation importance of 0.26±0.003 for QUINCY BNE, which is

most likely a result of different sites being in different temperature regimes.535

Figure S11 shows that nitrogen deposition is the most dominant driver for evergreen ecosystems for QUINCY chlleaf . For the

BNE and TeNE sites, the permutation importance values are 0.95±0.007 and 1.78±0.054, respectively, and the contribution of

other environmental drivers is smaller. For the RS chlleaf of BNE sites, N deposition has the highest permutation importance

value (0.84±0.012), but the role of N deposition in the RS observations is not as pronounced compared to other variables as

in QUINCY. The RS chlleaf for the TeNE sites is largely driven by temperature (permutation importance = 0.63±0.043). The540

grasslands (TeH and TrH) show similar contributions from different variables for QUINCY and RS, although RS chlleaf is

less affected by temperature than QUINCY. There is a difference in the permutation importances for the TeC sites between

QUINCY and RS, as QUINCY chlleaf is more influenced by temperature and RS chlleaf indicates a slightly mixed effect of

different environmental drivers.

The results of the SHAP analysis (Fig. S12 and S13) are similar to the permutation importance calculations: air temperature545

is a dominant driver for both QUINCY and RS. In addition, the SHAP values indicate that warmer temperatures lead to higher
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Figure 6. Permutation importance values based on random forest regression fitting for (a) QUINCY chlleaf and (b) RS chlleaf , based on data

from all sites, and separately for BNE, TeH, and TeBS sites.

than average chlleaf values, and colder temperatures lead to lower than average chlleaf values. The SHAP analysis for QUINCY

chlleaf suggests that the higher PAR values lead to lower chlleaf values, although the majority of the data points are close to

SHAP values of zero, i.e. PAR is not a strong driver of chlleaf compared to, for example, temperature. For the RS chlleaf , a

similar pattern is not found, but the higher PAR would have an increasing effect on chlleaf .550

4 Discussion

4.1 QUINCY’s ability to reproduce chlleaf , LAI and GPP magnitudes

4.1.1 Magnitude of chlleaf

When analyzed across all sites, QUINCY chlleaf correlated well with RS observations and the PFT specific values were

generally in line with the observations, and the simulated PFT-mean values were similar to RS chlleaf . In particular, the PFT555
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mean chlleaf of the BNE and TeBS sites was close to the mean RS observations of these PFTs. However, QUINCY generally

produced lower variability in chlleaf between sites compared to RS. Particularly for C3 grasslands and crops, the QUINCY

chlleaf was restricted to too narrow a range compared to RS observations. This suggests that QUINCY lacks some processes

that cause variation in RS chlleaf values, and that the QUINCY dynamics for C3 grasses and crops require further in-depth

analysis to explain the missing variation. In addition, the chlleaf QUINCY parameterization for C3 grasslands is the same as560

for trees, which could affect chlleaf dynamics. Fertilization and other management practices are not included in the version

of QUINCY used in this study, which could explain the difference in the chlleaf numerical ranges between QUINCY and RS.

This may affect the comparison of magnitude and seasonality for C3 cropland sites. Lu et al. (2020) gathered a collection of

different chlleaf in-situ observations distributed globally. When comparing the QUINCY chlleaf values with those reported by

Lu et al. (2020), it was observed that C3 crops and C3 grasslands are most likely underestimated, similarly when compared565

to the RS chlleaf values. The correlation between QUINCY chlleaf and RS chlleaf was poor for C3 grasslands and C3 crops.

This also highlights the need for tuning the QUINCY parameterization for grasslands, and possibly other changes to the model

structure to capture the grassland chlleaf dynamics.

Some of the PLUMBER2 sites are located in fens and wetlands, and these are classified as C3 grasslands in QUINCY. The

model version of QUINCY used in this study does not include wetlands or fens, and therefore for some of the sites (e.g. FI-Lom570

in high latitude region) QUINCY does not model the relevant water table depth dynamics, which may influence the carbon and

water dynamics at the sites.

For C4 plants, the range for QUINCY values was similar to RS chlleaf for higher values, but lower chlleaf concentrations

were missing in QUINCY. Lu et al. (2020) reported 15–60 µg cm-2, while the QUINCY chlleaf range for C4 grasslands was

31–72 µg cm-2. The RS chlleaf range for C4 grasslands was 12–63 µg cm-2. However, it should be noted that QUINCY chlleaf575

values only represent the top of the canopy, while in-situ observations may have mixed results from different canopy heights,

which may affect the comparison.

For the BNE sites, the QUINCY chlleaf overestimation was higher for GLOBAL than PLUMBER sites, and relatively higher

portion of GLOBAL BNE sites were located in high latitudes. This suggests that the QUINCY chlleaf overestimation or RS

chlleaf underestimation, is more pronounced for the needle-leaved sites in cold regions, which could partly reflect the challenges580

of optical remote sensing in high latitudes.

Our machine learning-based analysis indicated that QUINCY is able to capture the influence of environmental drivers of the

chlleaf in a big picture. QUINCY chlleaf for evergreen sites was driven by N deposition, with other environmental variables

contributing less. The same was true for the RS chlleaf for BNE and TrBE but not for TeNE. Additional comparison of QUINCY

simulations with active C and N cycles with a Conly simulation also demonstrated a similar conclusion. Though, the RS585

chlleaf for BNE sites seemed to be more temperature-driven than for QUINCY. This could be explained by differences in the

seasonal cycle, as RS chlleaf shows a seasonal pattern for BNE sites, while QUINCY does not. In addition, it was observed

that QUINCY chlleaf for the TeC sites was mainly driven by temperature, while RS chlleaf had more equal contributions from

different variables. In addition, the footprint size of RS chlleaf may affect the comparison, as crops are typically located in

a heterogeneous landscape. The analysis with the SHAP values revealed that higher PAR values could produce lower chlleaf590
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in QUINCY simulations. The decreasing effect of higher PAR values on QUINCY chlleaf could be partly due to the tropical

regions, where the PAR radiation does not vary as much throughout the year. The decreasing effect could be also attributed to

differences between different sites.

4.1.2 Magnitudes of LAI and GPP

The QUINCY annual GPP showed a good correlation with PLUMBER2 observations, however, the values were underestimated595

at most of the sites. This could be partly due to a slightly delayed growing season for the deciduous forests (Fig. S8), which

hinders the early spring carbon sequestration. The delayed seasonal development calls for tuning the QUINCY phenology

parameters, which could benefit the simulations with a reasonable amount of work. However, for some of the PFTs (TeC,

TrBR, TeBE), QUINCY overestimated GPP.

The simulated LAI over all PFTs was generally in an agreement with RS LAI (Fig. S3d and Table S8). However, a clear600

future development point for QUINCY is the overestimation of LAI values, which was the case for most of the PFTs. The

overestimation of LAI in QUINCY could be due to, for instance, missing herbivores and management. These effects are

currently under development in QUINCY. The overestimation of LAI is pronounced for the C4 grasslands, for which the LAI

values in QUINCY were unrealistically high. The very high LAI values were observed for the GLOBAL sites located on the

African and South American continents, for which we did not have GPP ground station data. However, the QUINCY GPP for605

the PLUMBER2 C4 grassland sites was within a reasonable range, and the QUINCY PFT mean GPP was close to the observed

PFT mean GPP. This suggests that despite high LAI, QUINCY is able to account for environmental conditions affecting GPP

and maintain realistic GPP levels. However, for the GLOBAL C4 grassland (TrH) sites, it was observed that if the simulated

extremely high LAI values were coupled with high chlleaf , this resulted in high simulated GPP values. The RS observations

could potentially be used in model tuning to balance the overestimation of both LAI and chlleaf .610

Although QUINCY tended to overestimate LAI in general, for TeBS it was mostly underestimated. Similarly, the QUINCY

mean chlleaf is underestimated at the majority of the TeBS sites. However, when analyzing the residuals for individual sites,

the GPP under- or overestimation was not always related to the chlleaf or LAI residual. Less than half of the 25 PLUMBER2

TeBS sites showed an underestimation for all chlleaf , LAI, and GPP. Overestimation of LAI can potentially lead to too strong

shading, which could result in reduced GPP in lower canopy layers. The radiative transfer model might therefore play a role in615

the underestimated GPP.

4.2 QUINCY’s ability to reproduce the observed seasonal cycle

The seasonality of GPP for QUINCY was consistent with the observations for many of the PFTs. However, the seasonality for

chlleaf and LAI in QUINCY was found to have differences compared to RS values for some of the PFTs.

The annual cycle of QUINCY chlleaf for deciduous forest sites was similar when QUINCY and RS chlleaf were compared.620

However, the increase in spring chlleaf in QUINCY chlleaf occurred late compared to RS chlleaf , as well as decrease in au-

tumn chlleaf . The QUINCY LAI estimations showed similar biases when compared against RS results. However, this was not

reflected as prominently in the seasonality of GPP compared to the delay in LAI, most likely due to environmental drivers.
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This indicates that QUINCY is able to maintain reasonable GPP levels in autumn even when LAI is overestimated. For the

NH PLUMBER2 TeBS sites, the PFT-averaged seasonal cycle showed that the QUINCY underestimation of annual GPP is not625

too strongly affected by the delay in start of the growing season. The GPP sum for the spring (MAM) was underestimated by

QUINCY by ∼ 93 gCm-2, while the overestimation in the autumn (SON) was 95 gCm-2, i.e. they compensate each other.

The QUINCY chlleaf and LAI seasonality differed from RS observations for the boreal and temperate evergreen sites.

QUINCY chlleaf and LAI do not change as much from season to season at these evergreen sites, whereas RS chlleaf and LAI

show more variation during the year. The RS chlleaf for BNE forests implied a stronger seasonal cycle than what was seen630

from in-situ observations at two BNE sites, which was most likely driven by too strong LAI seasonality of the RS product. In

addition, the RS observations for the Sodankylä (FI-Sod) and Niwot Ridge (US-NR1) sites indicated a slight decrease in spring

chlleaf , and this was seen also for other BNE sites. The decrease in RS chlleaf in spring could be driven by resorption of N to

form new needles, or by the impact of the understory during the snow-melt season. A study by Zhang et al. (2019), conducted in

a laboratory environment, demonstrated a similar decrease for a boreal evergreen forest. The RS chlleaf retrieval algorithm does635

not consider variations in understory, and therefore the understory vegetation can cause artifacts to the retrieved needle-leaf

reflectance signal. For US-NR1, the mountainous landscape might affect the retrieval. In addition, the mountainous landscape

surrounding US-NR1 might affect RS retrieval, which also can create artifacts to the mean RS chlleaf . The Sentinel-3 chlleaf

shows the strongest seasonal cycle at the US-NR1 site compared to other products used in this study, which could be partly due

to assumptions made in the retrieval processing. For instance, the assumptions made for the LAI seasonality and the effect of640

snow cover can affect the RS chlleaf retrieval. For temperate broad-leaved evergreen sites, QUINCY did not simulate seasonal

variation in chlleaf , while RS chlleaf showed a clear increase in spring and decrease in fall. Site-level studies have indicated

contradicting results for chlleaf seasonal cycle for temperate evergreen forests (Joshi et al., 2024; Yasumura and Ishida, 2011),

therefore it is not straightforward judge whether the model behavior is erroneous.

The in-situ observations in the boreal Sodankylä forest (Fig. 3a) for the year 2015 showed that the chlleaf concentrations645

increased throughout the growing season in needle-leaved forests. Similar behavior at other evergreen needle-leaved forests

was reported by Laitinen et al. (2000) and Katahata et al. (2007). The increase in chlleaf could indicate that the Sodankylä

forest may be N-limited, and requires strong N uptake throughout the summer. The observations from the Niwot Ridge forest

did not show such a strong pattern (Fig. S9), as also shown by Bowling et al. (2018), potentially reflecting a different N status

of the ecosystem.650

For TeC and TeH sites, the seasonal cycle of QUINCY chlleaf was delayed compared to RS, but the bias was not large. The

lower QUINCY spring chlleaf for NH TrH sites suggests that the phenological cycle for these sites needs further tuning in

QUINCY, and is most likely linked to simulated LAI biases. In QUINCY, the start of senescence is controlled by soil moisture

and temperature thresholds. Given the high species diversity in herbaceous systems, both within and between sites, ecosystem-

level models such as QUINCY often struggle to capture phenological variation. This is partially due to PFT-level parameters655

not reflecting diversity at the site level, and partially due to the difficulty of capturing an average response of diverse species.
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4.3 Modeling the N cycle and N limitation

QUINCY is one of the state-of-the art TBMs that include an advanced representation of chlleaf in the canopy, and also the

connection between chlleaf and N limitation. This allows the intercomparison to remote sensing chlleaf products, which can be

further extended to cover analysing the N limitation on photosynthesis and the implications on carbon sequestration efficiency.660

In addition, our analysis demonstrated how to use chlleaf as a metric to support analysing the N limitation in simulations.

However, one needs to keep in mind that the modelled and remotely sensed chlleaf are not completely equivalent, but there are

conceptual differences in spatial coverage, for instance.

The strongest QUINCY GPP underestimation for the PLUMBER2 TeBS sites was connected to stronger N-limitation and

QUINCY chlleaf underestimation, suggesting a too strong modeled N limitation for these sites. However, the leaf C:N values665

were not close to the maximum leaf C:N values for the TeBS sites, suggesting that the QUINCY maximum threshold value of

leaf C:N may be slightly too high (Fig. 4d). Though, we compared QUINCY leaf C:N values to the TRY database observation

leaf C:N values for two sites, and the QUINCY values were in line with the observations.

Some of the QUINCY chlleaf underestimation for the TeBS sites could be due to lower N availability or allocation to leaves

(Fig. 4d). Both the QUINCY underestimation of chlleaf and also GPP could be partly related to modeling deficiencies in the670

N cycle. The QUINCY mean symbiotic BNF was ∼0.3 gNm−2yr−1 for the TeBS sites. Davies-Barnard and Friedlingstein

(2020) report that for deciduous broad-leaved forests, including both tropical and temperate forests, the mean symbiotic BNF

is approximately 0.8 gNm−2yr−1, suggesting that QUINCY symbiotic BNF is underestimated for the TeBS sites. Though,

the negative residual of chlleaf between model and observations was higher with the higher leaf C:N values, indicating that

QUINCY’s modeled N deficit for the TeBS sites is too strong. The analysis shows that for the TeBS forests, the chlleaf residual675

between simulated and RS chlleaf brings additional information in pinpointing that the N-deficit influence is overestimated at

certain sites and contributing to too low GPP.

For the BNE sites, QUINCY overestimated chlleaf compared to RS chlleaf , and the BNE chlleaf and GPP residuals were

not correlating, which may be partly be due to RS chlleaf magnitude issues as presented in Section 3.1.3. The observed GPP

increased as a function of observed chlleaf (not shown), and this was also evident in the simulations. A comparison of QUINCY680

CN- and C-only simulations for the BNE sites indicated that QUINCY simulates an N deficit at low chlleaf values, as GPP was

lower with the CN-simulation. Including the N cycle in the simulations improved the model behavior and led to a decrease in

simulated chlleaf values at the lower end of the observations and improved model behavior in terms of chlleaf and GPP. This

shows a realistic behavior of the QUINCY N cycle. Furthermore, the low chlleaf values coincided with the low N deposition

values, indicating that N deposition plays a significant role in the N deficit of these ecosystems, as also shown in the feature685

importance analysis results.

In addition, the TeH leaf C:N values (Fig. 4e) were closer to the upper bound and covering only approximately half of the

leaf C:N range derived from the TRY database, even when we had sites globally distributed across different climatological

regions. This suggests that many of the TeH sites are more N-limited in QUINCY compared to BNE and TeBS sites, and that

QUINCY has difficulty capturing TeH sites with high leaf N values. This may be a partial cause of the too low and also too690
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static chlleaf values for the TeH sites. For the TeH sites, QUINCY had the largest overestimation of GPP when the modeled

chlleaf is the most underestimated. This indicates that the leaf N allocation in QUINCY for TeH sites requires further parameter

tuning. The QUINCY dynamics related to N cycling may require further analysis to estimate the contributions of N deposition

and BNF to leaf N content, and to determine whether they are in the range of estimates presented in the reference literature.

Our analysis using the more advanced N allocation routine shows that the chlleaf and GPP magnitudes for the TeBS sites695

were not improved compared to the observation data. This was partly due to lower fN,rub. In the alternative N scheme, fN,chl

is a function of fN,et and therefore a function of fN,rub, and therefore the lower fN,rub affects both GPP and chlleaf . The un-

derestimation of fN,rub could be partly due to the LMA representation in QUINCY. LMA is the inverse of SLA, and thus it

is the same fixed value per PFT, which may be too general a representation with respect to the N allocation scheme. On the

other hand, the advanced N allocation scheme provided a more realistic mechanism when fN,rub was increased by resulting in700

simultaneous increases in fN,chl and GPP. This indicates that what the alternative N allocation scheme produces is more in line

with the current ecophysiological understanding from the literature (Onoda et al., 2017; Evans and Clarke, 2019) regarding

the relationship between Vc(max) and chlleaf : increasing leaf N in chlleaf does not decrease other photosynthetic fractions, but

rather the structural part (fN,struct).

4.4 Limitations of the analysis705

4.4.1 Limitations due to remote sensing products

Although the satellite product by Croft et al. (2020) agrees well with the in-situ observations (Croft et al., 2020), the satellite

retrieval products contain a certain degree of uncertainty. As Boegh et al. (2013) conclude, satellite inversions are often ill-

posed inversion problems, which can complicate the retrieval of chlleaf and LAI from remote sensing data. Furthermore, the

coverage of the MERIS satellite data is not optimal for certain regions such as South America, the tropics, western Australia,710

and parts of the boreal zone. This is partly due to gaps in the original data caused by clouds, sensor errors, or light conditions

(Tum et al., 2016), though the RS chlleaf product by Croft et al. (2020) is gap-filled with a smoothing algorithm. In addition,

in this study, the impact of gaps has been partially reduced by using the average of all years.

Our analysis relied primarily on one RS chlleaf product. For example, RS observations from the Sentinel-3 satellite could

be included as they were tested for two sites in this study, although the time periods of the modeled values did not match715

these observations. The challenge with Sentinel-3 is that the in-situ observations are often provided years back in time, and

Sentinel-3 has only been operational since 2016. A potential candidate for combination with Sentinel-based chlleaf products

could be ICOS observations. The European ICOS research infrastructure provides up-to-date flux measurements that are also

harmonized in terms of measurement and post-processing techniques.

The remote sensing products of LAI are known to have an overly pronounced seasonal cycle in the boreal needle-leaved720

forests, with LAI values being underestimated in winter, early spring and late fall (Heiskanen et al., 2012; Wang et al., 2019).

This is caused by snow and cloud contamination, the understory effects, seasonal variation in needle greenness, low solar

zenith angle and poor illumination (Heiskanen et al., 2012; Fang et al., 2013; Wang et al., 2019). In our study, we observed that
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for the Sodankylä BNE forest, RS LAI showed a clear seasonal pattern, while QUINCY LAI was almost constant throughout

the season. We also compared QUINCY fAPAR with in-situ measurements, and this comparison revealed that QUINCY725

fAPAR followed the in-situ measurements outside the winter season. The in-situ measurements during the winter season were

influenced by the low elevation angles of the sun, which limit the reliability of the measurements throughout the winter months

and, in mid-winter, result in polar night. Additionally, in spring, ground-level sensors may be covered by snow, compromising

data quality even when light conditions would otherwise be sufficient. In addition, as Wang et al. (2024) show, RS-based data

often contain inaccuracies in autumn phenology. In our analysis, we used ground-based flux tower observations, which helped730

to form a comprehensive view of model performance. Croft et al. (2020) report that the RS chlleaf for the needle-leaved forests

could benefit from intra-PFT variability in the structural parameters (e.g. canopy height, stem density), which would improve

the spatial variability in chlleaf . The contemporary RS products are advancing in this front, providing opportunities to improve

other RS products. However, the Sentinel-3 product used in this study was not yet free of these problems.

4.4.2 Limitations due to ground based observations735

The flux tower measurements used in this study were not evenly distributed geographically, but rather concentrated in central

Europe and the United States. For example, the number of sites in Central and South America was small, limiting the compre-

hensiveness of the analysis of the GPP magnitudes relative to ground observations. TBMs and RS products cover larger spatial

areas, allowing a global assessment even in areas where the in-situ observations are sparse. In this study, we were able to

first analyze data at sites where we had ground station measurements (PLUMBER2), and then extend to other regions without740

in-situ observations (GLOBAL).

In addition, our analysis does not take into account the potential footprint mismatch between RS chlleaf and the flux towers at

the ground stations. Furthermore, the flux tower footprints are not always homogeneous, but represent a mixture of e.g. shrubs

and trees. Our QUINCY modeling scheme assumed only one PFT for each of the sites, which may lead to differences in the

GPP if the flux tower is surrounded by heterogeneous plant cover. For some sites, we increased the footprint area of the RS745

chlleaf to include pixels with the same land cover classification. This increase may have resulted in greater differences in the

footprint compared to the flux tower footprint. Site location, topography, and landscape heterogeneity influence the measured

CO2 fluxes (Giannico et al., 2018; Griebel et al., 2016).

4.4.3 Limitations of QUINCY and data-analysis

QUINCY simulations are based on the assumption of an average individual plant or a tree, and do not consider plants of750

different ages. Similarly, RS inversion algorithms do not consider variations in, for instance, tree height or crown width. As

previous studies have shown, chlleaf and nitrogen concentrations in leaves can vary between trees of different ages and also

between individuals (Laitinen et al., 2000; Sallas et al., 2003; Warren and Adams, 2001; Thurner et al., 2025). In addition,

a PFT can be a very broad category and different tree species may have different characteristics, which is not taken into

account in our PFT-based modeling scheme and parameterization. Furthermore, the modeling framework does not account for755

competition among plants.
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Land cover classification can introduce an additional source of uncertainty in this study. There are two sources of uncertainty

in the use of land cover maps, as they can be caused by the classification into land cover classes based on spectral reflectance

or by the conversion of these land cover classes into the PFT classes that we used (Georgievski and Hagemann, 2019). We have

partially accounted for this uncertainty by increasing the number of points that we used for each of the study sites.760

The SHAP value analysis with RF fitting resulted in differing results between QUINCY and RS chlleaf and the impact of

PAR values on chlleaf . Since the SHAP values only describe the machine learning interpretation of the variable relationships,

further investigation of the effect of high PAR values on QUINCY chlleaf would require additional QUINCY simulations where

the radiation input fields are increased, but keeping the rest of the input variables the same.

Our analysis could also benefit from including local measurements of in-situ greenness indices (Linkosalmi et al., 2016)765

to further validate the seasonal cycle of chlleaf for different PFTs, or up-scaled leaf trait maps (Dechant et al., 2024). For

instance, the up-scaled maps could provide regional, PFT-specific SLA values that could improve the results of the alternative

N allocation scheme.

4.5 Future directions

One objective of this study was to estimate the gain of using RS chlleaf to improve the modeled carbon and nitrogen cycle.770

However, the approach in this study is based on only one TBM. Though, our analysis included a comparison of two different

chlleaf formulations within a model, which has the advantage that the comparison is not masked out by differences in dynamics

between the two models. As recommended by Meyerholt et al. (2020), a model ensemble would provide more robust results,

as there is some uncertainty in a single process model approach. However, this would be possible only if other TBMs were to

provide chlleaf as a diagnostic, which would also allow that chlleaf could potentially be incorporated into TBM benchmarking775

platforms, such as ILAMB (Collier et al., 2018).

Another future prospect could be to integrate QUINCY into a digital framework that integrates RS observational time series,

TBMs and a radiative transfer model. Based on a comprehensive literature review, Kooistra et al. (2024) propose that such a

digital twin combination with data assimilation could enable an almost near-real-time representation of ecosystems and help

to overcome the current modeling limitations.780

5 Conclusions

The evaluation revealed that the magnitudes of QUINCY chlleaf correlate well with RS chlleaf when analyzed across all plant

functional types. However, for some of the PFTs, the QUINCY chlleaf values showed less site-to-site variation compared to the

observations. This suggests that the QUINCY parameterization requires further adjustments. RS chlleaf for needle-leaved sites

was clearly lower than for QUINCY. The comparison to in-situ chlleaf measurements indicated that RS chlleaf is underestimated785

for the boreal coniferous forests, while QUINCY chlleaf was in a reasonable magnitude. The inter-comparison of QUINCY and

RS chlleaf and LAI seasonal cycles showed that QUINCY produced delayed seasonal pattern for deciduous tress. This suggests

that the phenological parameters of QUINCY need further adjustment. In addition, for evergreen needle-leaved forests, there

29



was a clear seasonal pattern in RS chlleaf and LAI, while QUINCY LAI and chlleaf did not vary much throughout the annual

cycle. However, the comparison to in-situ chlleaf demonstrated that the RS chlleaf overestimates seasonality of chlleaf for790

needle-leaved evergreen forests in cold environments, which is likely caused by the RS LAI biases (Heiskanen et al., 2012;

Wang et al., 2019) known to happen in these regions. Our analysis highlighted that while QUINCY was able to produce chlleaf

magnitudes in the big picture, the representation of chlleaf in QUINCY calls for further improvement. In addition, the results

from machine learning-based regression indicated that QUINCY and RS chlleaf have similar contributions from different

environmental drivers when the analysis was performed over all sites and PFTs.795

We also tested an alternative leaf N allocation scheme, which resulted in more realistic ecophysiological behaviour. A

follow-up study with adjusting the parameterization to have a better match with observations, and a larger sample of sites

would provide valuable insights into the benefits of using the alternative N allocation scheme.

Our results reveal that adding chlleaf to the model evaluation provides additional information on photosynthetic processes

and leaf N distribution compared to using LAI alone. While LAI provides information about seasonality, information based on800

chlleaf complements this by enabling us to address the N status of the leaves and identify the main drivers of the chlleaf content.

In this paper, we have demonstrated the applicability of using remotely sensed chlleaf as an evaluation point for TBMs. Our

study highlights the potential of the use of RS chlleaf as a model evaluation tool for analysing the C and N cycles.

Code and data availability. The QUINCY model codes are available under a GPL v3 license. The scientific code of QUINCY relies on

software infrastructure from the MPI-ESM environment, which is subject to the MPI-M License Agreement in its most recent form (https:805

//www.bgc-jena.mpg.de/en/bsi/projects/quincy/software), last access: 3 June, 2025). The source code is available online https://doi.org/10.

17871/quincy-model-2019, release 76b2549 (last access: 3 June, 2025), but access is limited to registered users. Readers interested in

running the model should request a username and password via the Git repository. Model users are strongly encouraged to follow the fair-use

policy (https://www.bgc-jena.mpg.de/en/bsi/projects/quincy/software, last access: 3 June, 2025). The QUINCY simulated data used in this

study are available at https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen et al., 2025) (Last access: 6810

October, 2025). The forcing data to run the QUINCY model are stored in the model repository.

The global drought monitoring SPEI data is available in https://global-drought-crops.csic.es/#map_name=all_spei_0.5#map_position=

2211 (Last access 3 June, 2025).

The post-processed RS chlleaf (Croft et al., 2020) for the PLUMBER2 and GLOBAL sites is available at815

https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen et al., 2025) (Last access: 6 October, 2025).

The Sodankylä chlleaf in-situ measurement data is available in https://zenodo.org/records/17192030 (Peltoniemi et al., 2025) (Last access:

24 September, 2025).

The Sodankylä fAPAR measurement data is available at https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Mi-

inalainen et al., 2025) (Last access: 6 October, 2025).820

The Sentinel3 RS chlleaf can be retrieved using the scripts available from here: https://github.com/psreyes/S3_TOA_GPR_1.git (Last

access: 3 June, 2025)
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