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Abstract. Accurate estimates of future land carbon sinks and thus the remaining carbon budget to achieve the Paris climate
goals requires rigorous modelling of the carbon sequestration potential of the terrestrial biosphere. Estimating the terrestrial
carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles, yet coupled
carbon-nitrogen cycle models exhibit large uncertainties. Leaf chlorophyll, chlje,¢, is an indicator of the leaf nitrogen content
stored within photosynthetic nitrogen pools and is central to the exchange of carbon, water and energy between the biosphere
and the atmosphere. In this work, we harness an advanced remote sensing (RS) chlje,¢ product to evaluate a terrestrial biosphere
model, QUantifying Interactions between terrestrial Nutrient CYcles and the climate system (QUINCY), which explicitly
models chlj,¢. We focus on comparing the spatial and seasonal patterns of modelled and observed chlj.,¢, and then further
assessing if modelled leaf area and productivity agree with a RS leaf area index product and in-situ eddy covariance-based
gross primary production, respectively. In addition, we conduct additional simulations to test two alternative formulations
of leaf-internal nitrogen allocation within QUINCY. Our analysis over a globally representative set of locations reveals that
QUINCY chlje,s magnitudes are mostly in line with the RS chlje,t values. However, QUINCY chlje,¢ tends to show a narrower
numerical range compared to RS for specific ecosystem types, such as grasslands. While the seasonal cycle of QUINCY
chlje,s mostly corresponds well to the observations, for many deciduous forests, the increase in QUINCY’s chlje,¢ predictions
in spring and the decrease in autumn were delayed compared to observations. Our results also show that compared to the
original leaf nitrogen allocation scheme of QUINCY, the revised scheme produced a more reasonable sensitivity of gross
primary production to increases in chlje,r. However, the revised scheme did not directly lead to improvement in simulating
chljeas and gross primary production. Our study shows the value of RS products linked to N cycle that will be useful in both

carbon and nitrogen modelling, and paves way for closer linking of RS and TBMs.
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1 Introduction

The terrestrial biosphere currently takes up approximately one-third of the anthropogenic fossil fuel carbon emissions (Friedling-
stein et al., 2023), and thereby playing pivotal role in slowing global climate warming (Nabuurs et al., 2022). The carbon (C)
cycle is closely linked to the terrestrial nitrogen (N) cycle, as photosynthesis and plant growth require sufficient nutrient supply.
Land carbon uptake is limited by nitrogen in many ecosystems (LeBauer and Treseder, 2008; Fisher et al., 2012; Tamm, 1991;
Vitousek and Howarth, 1991; Ziehn et al., 2021), however, the magnitude of this limitation remains unclear. This highlights
the need to better understand the coupled C and N cycles (Seiler et al., 2024), as future changes in climate will also affect these
cycles (Arora et al., 2020).

Terrestrial biosphere models (TBMs) can be used to simulate coupled C and nutrient cycles and land-atmosphere interactions
under a changing climate. In recent decades, TBMs have taken in an increasing number of factors affecting plant photosyn-
thesis, such as nutrient limitation (Blyth et al., 2021). Whilst Kou-Giesbrecht et al. (2023) reported that TBMs are capable of
reproducing the historical terrestrial C sink with a sufficient level of performance, uncertainties persist. TBMs use different
modeling approaches to represent N limitation of photosynthesis and the effect of N availability on leaf N, which can lead to
varying results regarding plant productivity (Medlyn et al., 2015). Leaf N can be obtained directly from soil N availability by
using a fixed parameter or with flexible parametrization using leaf C:N ratios (Thomas et al., 2015). Increasing model com-
plexity regarding modeling the N limitation can thereby also introduce further uncertainties into the estimates of the carbon
sink (Fisher and Koven, 2020; Famiglietti et al., 2021), through both process and parameter uncertainty, given the inclusion of
new process equations. These uncertainties are also reflected in significant divergence of N pools and fluxes modelled by the
current generation of TBMs (Kou-Giesbrecht et al., 2023). In addition, the modelled responses of photosynthesis to elevated
atmospheric carbon dioxide (CO3) or to N deposition vary between different TBMs, requiring a better understanding of the N
cycle (Davies-Barnard et al., 2020; Arora et al., 2020; Meyerholt et al., 2020; Zaehle et al., 2014). It is therefore important to
better constrain the nitrogen dynamics in these models.

One of the major sources of uncertainty in modeling the land carbon sink with TBMs is the uncertainty in estimating the leaf
photosynthetic capacity and photosynthetic rate (Bonan et al., 2011; Rogers et al., 2017). Leaf chlorophyll (chljeat) is intrinsi-
cally related to plant photosynthesis, due to its role in generating biochemical energy for the carboxylation reactions within the
Calvin-Benson cycle, through the harvesting of solar radiation. Previous work has demonstrated that leaf chlorophyll content
is a strong proxy for photosynthetic capacity (Croft et al., 2017; Lu et al., 2020; Luo et al., 2021). The maximum carboxylation
rate at the 25 °C reference temperature (V. (max),25) Tepresents the limitation of photosynthesis by the Rubisco enzyme, which
is the main regulator in light-saturated photosynthesis (Houborg et al., 2013). Due to the investment of N in chlje,¢ molecules
and an optimal N investment strategy to ensure close co-ordination between light-harvesting and carboxylation reactions, there
is a close relationship between leaf N and chlje.s (Sage et al., 1987; Evans, 1989). In-sifu observations of chlje,s can there-

fore be used to improve the parametrization of physiological schemes within TBMs to improve GPP estimates (Luo et al.,
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2018, 2019; Lu et al., 2022; Thum et al., 2025). However, many of the contemporary TBMs do not represent chlje,¢, and the
widely used version of the FvCB model (Farquhar et al., 1980) for photosynthesis description does not explicitly take into
account the role of chlje,¢ in photosynthesis. In addition, the majority of TBMs only consider total canopy N and its vertical
distribution (Vuichard et al., 2019; Best et al., 2011; Clark et al., 2011).

In addition to in-situ observations, remote sensing (RS) of the Earth’s vegetation provides comprehensive data for evaluating
TBMs. Leaf nitrogen is difficult to retrieve directly from RS observations (Farella et al., 2022), in comparison to chlj,s which
is more feasible to derive remotely (Croft and Chen, 2018), due to the presence of large chlorophyll absorption features in
visible wavelengths. The advantage of using remotely sensed chlje,s is its global and seasonal coverage and relatively long
time span, compared to in-situ observations. Similarly as in-situ observations, RS chlje,¢ can be harnessed to improve the
modeled photosynthetic processes which include V(pax) (Houborg et al., 2013). For example, Liu et al. (2023) retrieved
global daily V(max) for C3 biomes by using RS chljear and RS solar-induced chlorophyll fluorescence. Another advantage of
RS chlyey¢ is that they are linked to space-borne observations of leaf area index (LAI), both retrievable remotely (Croft et al.,
2020). This allows the modeled leaf surface area to be evaluated simultaneously with chlje,g.

In this study, we utilized a spatial RS chlje,+ product (Croft et al., 2020) to evaluate the chlj.,¢ representation of the TBM
QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) (Thum et al., 2019; Caldararu
et al., 2020), which has fully prognostic coupled carbon and nitrogen cycles. QUINCY includes an explicit representation of
chljear and its impact on photosynthesis, and also the photosynthetic parameters V. (max),25 and the maximum electron transport
rate at 25 °C reference temperature (Jiax,25) are directly determined from leaf nitrogen. We analysed model performance with
respect to the temporal and spatial distribution of chljeas and LAI in different ecosystems globally. We further compared
the simulated gross primary production (GPP) with the ground-based measurement from eddy-covariance network stations.
To understand model-data mismatch, we used a machine learning approach to analyze how different environmental drivers
affect both QUINCY and RS chlje,¢. We further investigated whether the observed difference in chlje,s between QUINCY and
observations is related to modeled N limitation by examining QUINCY’s leaf C:N values. Here we use RS data as a reference
for evaluation, though we acknowledge that RS data are also simulated product and have different characteristics than in-situ
data. In other words, our evaluation can be understood more as a comparison study between TBM and RS-derived data.

Initial results suggested that the modeled response of chlje,¢ to leaf N was not realistic, foremost because the original leaf
nitrogen scheme in QUINCY does not take into account of the observed relationship between chliar and Ve(mayx) (Evans
and Clarke, 2019). In order to have a more realistic representation, we formulated an alternative leaf N allocation scheme in
QUINCY based on Onoda et al. (2017) and Evans and Clarke (2019), where the V(iax) and chlje,y ratio is taken into account,
and compared the additional simulation results with the original leaf N allocation scheme.

The objectives of the study were to determine different methods for using RS chlje,¢ in model evaluation and how RS chlje,¢

can benefit modeling of coupled C and N cycles. The research questions addressed in this work are as follows:
— Are the spatial and temporal patterns of global chljc,¢ in QUINCY and RS similar?

— Is QUINCY’s performance in modeling chlj.,¢ related to its ability to produce measured annual GPP?
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— What are the main environmental drivers that affect QUINCY chljcar and RS chljg,f?

2 Materials and methods

In this section, we will first present the study sites and observational data, followed by QUINCY model description and
simulation setup. Finally, a machine learning approach to determine chlje,s environmental drivers is presented. In this study,

chljeo¢ denotes both chlorophyll a and b (chl,1,). All the datasets used in the study are presented in Table S1.
2.1 Description of the sites

We conducted the analysis using two different site sets. The first set was the Protocol for the Analysis of Land Surface Models
(PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER?2) (Ukkola et al., 2022). The second site set,
GLOBAL, is based on the study by Caldararu et al. (2022).

PLUMBER?2 (Abramowitz et al., 2024) was designed for serving in a model intercomparison project for land surface models,
and provides CO eddy covariance measurements and meteorological data for various sites. The time interval of PLUMBER?2
site data varies depending on the site, as some of the site data cover only one year, while others over a decade. The time span
of PLUMBER?2 site data is between 1992-2018. Of the available sites, we included 143 PLUMBER sites that had RS chlje,y,
RS LATI and QUINCY data available, and that were not reported by Abramowitz et al. (2024) to have anomalous precipitation
input data. The GLOBAL site set represents all major climate zones and global biomes, and the site input data is for the years
19892018 based on the CRU JRA dataset (Harris, 2020). In our analysis, we used 279 GLOBAL sites for which QUINCY
simulated and RS chlj.,¢ data were available and matched in land cover type (See Section 2.2.3).

In total, the combined PLUMBER?2 and GLOBAL analysis included 422 sites. The locations of the PLUMBER2 and
GLOBAL sites are presented in Fig. S1. The sites are categorized based on the QUINCY plant functional types (PFTs), and
the number of GLOBAL and PLUMBER? sites in each PFT are listed in Table 1.

2.2 Remote sensing data
2.2.1 Remotely sensed chljc.¢

We obtained chlje,¢ content from the global RS product by Croft et al. (2020). The RS chlje,s is derived from the ENVISAT
MERIS full-resolution reflectance data with a two-stage radiative transfer model. The spatial resolution of the global RS chljc,¢
is 300 m, and the data are processed to a 7-day temporal resolution for the years 2003—2011. The chljc,¢ has been retrieved by
first modeling the reflectance spectra at the leaf level using two separate models: the 4-Scale model (Chen and Leblanc, 1997)
for forested and spatially clumped ecosystems, and the SAIL model (Verhoef, 1984) for cropland and grassland ecosystems.
The chljear has been then derived from the leaf reflectance spectra by using the PROSPECT leaf optical model (Jacquemoud
and Baret, 1990). The influence of gaps has been partially minimized in the RS chlje,¢ by Croft et al. (2020) by gap-filling the
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Table 1. List of QUINCY PFTs and the corresponding number of sites in the PLUMBER?2 and GLOBAL site sets

Abbreviation Long name Nr of sites, PLUMBER?2 | Nr of sites, GLOBAL | Nr of sites, all
BNE Boreal needle-leaved evergreen 20 50 70
TeNE Temperate needle-leaved evergreen 8 6 14
BNS Boreal needle-leaved deciduous 0 6 6
TeBE Temperate broad-leaved evergreen 4 4 8
TeBS Temperate broad-leaved deciduous 25 20 45
TrBR | Tropical broad-leaved rain deciduous 2 2 4
TrBE Tropical broad-leaved evergreen 9 38 47
TeC C3 crops 21 0 21
TeH C3 grasslands 34 69 103
TrH C4 grasslands 20 84 104
all - 143 279 422

missing data with the year 2010 data and a smoothing algorithm. A detailed description of the RS chlje,s product is presented
in Croft et al. (2020).

In addition, we obtained chlorophyll content data based on the Sentinel-3 OLCI data (Reyes-Mufioz et al., 2022) for two
needle-leaved sites for which we also had in-sifu chlj.,s measurements (See Section 2.3.2). The RS chlje,s product by Reyes-
Muiioz et al. (2022) is generated by involving Gaussian process regression algorithms, and the training data for the algorithm
consisted of simulated top of atmosphere radiance from coupled canopy radiative transfer model SCOPE and the atmospheric
radiative transfer model 6SV. The aim was to further evaluate the magnitude and the seasonality of chlj.,¢ for the needle-leaved
evergreen boreal forests by using data from a different Earth observation instrument and also obtained with a different retrieval

algorithm than with RS chlje,¢ by Croft et al. (2020).
2.2.2 Remotely sensed LAI

We used the GEOV1 remotely-sensed leaf area index (LAI) product from the Copernicus Global Land Service (Baret et al.,
2013), which is the same RS LAI product used to retrieve the RS chlje,r by Croft et al. (2020). GEOV1 LAI is derived from
the SPOT-VGT satellite data and has a temporal resolution of ten days and a spatial resolution of 1 km. We used data for the
years 2003-2011.

2.2.3 Post-processing of the RS data

As RS chlje,¢ depends in part on the assumed land cover (LC) type for each grid cell, it was important to ensure that the
QUINCY chlje,s values for each site represented the same ecosystems as RS chlje,s. We compared the PFT values used in the
QUINCY simulations with the LC values from a European Space Agency Climate Change initiative (ESA-CCI-LC) LC map
(ESA, 2017), from which the LC types were also taken for the RS chlje,¢ retrieval modeling by Croft et al. (2020). A list of LC
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types is presented in Table S2, and the LCs associated with each PFT in our comparison are presented in Table S3. For each
site, we first selected the site grid cell and the eight surrounding grid cells, i.e. the 3x3 cell area, from the ESA-CCI LC map.
We then checked whether the QUINCY PFT matched the LC type for each of the grid cells, and added to a list those grid cells
that had a matching land cover type to the QUINCY PFT. We then picked from the RS chlje,s grid data only those listed grid
cells that had a matching land cover type, and calculated an area average RS chlje, based on the listed cells. This area average
was calculated separately for each time step. If there were no matching grid cells in the 3x3 surrounding cells, we extended the
search to cover 5x5 surrounding cells, and looped through 25 grid cells. We then selected the matching cells from the 25 cells,
and calculated the area average RS chlj.,s for each time step. There were eight PLUMBER? sites and 80 GLOBAL sites for
which we did not find any matching grid cells, and these sites were excluded from the analysis. We only used the top-of-canopy
chljear values from QUINCY to ensure that the values were consistent with the RS-based values. In addition, the RS chljca¢
for the needle-leaved sites was multiplied by 7. This was done to account for the half-hemispherical needle geometry in the
remote sensing retrieval (Stenberg et al., 1995).

The RS LAI data were only retrieved using the one grid cell where the site was located, i.e. the PFT classification of a site
did not affect the RS LAI post-processing. If no data were available in that particular grid cell, we extended the area to cover

£0.01° latitude and longitude degrees and used the average of the whole extended area.
2.3 In-situ observations
2.3.1 Eddy covariance flux observations

Ground station GPP observations were available for the PLUMBER?2 sites, and the data were taken from the eddy covari-
ance flux tower dataset provided by Ukkola et al. (2022). The dataset includes flux tower data from three data releases:
FLUXNET2015 (Pastorello et al., 2020), La Thuile (FLUXNET, 2024), and OzFlux (Isaac et al., 2017). The flux data were
gap-filled using statistical methods depending on the length of the gap. The short gaps up to four hours were gap-filled using
linear interpolation methods. Gaps that were longer than four hours were gap-filled with linear regression against the incoming
shortwave (SW) radiation, air temperature and humidity, or only against the SW radiation if the other two variables were miss-
ing. Depending on the site, the flux time series ranged from one to 20 years, between the years 1992 and 2018 (See Ukkola
et al. (2022), Table S1). Data from all years were used, and therefore, the GPP time series are not necessarily from the same

time interval as RS chljq.s.
2.3.2 chljcar and leaf C:N in-situ measurements

To further investigate the chlj.,s magnitude and seasonal cycle for boreal needle-leaved evergreen (BNE) forests, we performed
an additional comparison for RS and QUINCY output with in-situ observations for two PLUMBER? sites: Sodankyli site (FI-
Sod) in Finland (67.4 °N, 26.6 °E) (Thum et al., 2007) and Niwot Ridge (US-NR1) in the United States (40.0 °N, -105.5°E)
(Bowling and Logan, 2019). Both sites are characterized as needle-leaved forest sites with strong seasonal cycle and harsh

winters. FI-Sod is classified as boreal forest, and US-NR1 as subalpine, and it is located in a mountainous terrain. The sites were
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selected as both sites had a time series of chlj,¢ Observations. In addition, there were also fraction of absorbed photosynthetic
radiation (fAPAR) in-situ observations available at FI-Sod, which we used in our analysis. Further details about chlje,¢ data
collection and the use of in-sifu observations is provided in Text S1.

We also used in-situ observations from the TRY database (Kattge et al., 2011) to compare the in-situ leaf C:N ratios with our
model-derived values. The leaf C:N observations were retrieved from the TRY database for two sites: the boreal needle-leaved
forest station Hyytidld in Finland (FI-Hyy, 61.8°N, 24.3°E) and the deciduous forest site, Morgan Monroe State Forest site in
the US (US-MMS, 39.3°N, -86.4°E). The FI-Hyy measurements are sampled from Scots pine tree. US-MMS is a secondary
successional broad-leaved forest, and the leaf C:N measurements cover various different deciduous trees: sugar maple (acer
saccharum), American beech (fagus grandifolia), American elm (Ulmus americana), Northern red oak (Quercus rubra), and
other deciduous species. The sites were selected based on consistent measurement time with the QUINCY simulations, and to

expand the geographical gradient of in-sifu measurements, and also to include an example of a TeBS site.
2.4 Terrestrial biosphere model QUINCY

We used the terrestrial biosphere model QUINCY (Thum et al., 2019), which includes fully coupled carbon, nitrogen and
phosphorus (P) cycles, as well as water and energy fluxes in ecosystems. Global vegetation ecosystems are classified into
eight categories by PFTs. In addition, there are several acclimation mechanisms that allow a smooth transition of ecosystem
functioning in different climatic conditions. Vegetation is represented as an average individual, which is characterised by its
height and diameter as well as an average individual density, and which includes structural tissues (leaves, fine roots and fruits,
and for trees additionally coarse roots, sapwood and heart-wood) as well as two non-structural pools, labile and reserve. The
canopy is divided into ten layers. The canopy scheme incorporates photosynthesis and canopy conductance separately for sunlit
and shaded leaves for each canopy layer.

Plants in QUINCY respond to soil N availability. This includes a response in leaf N content, which decreases if there is not
enough N is available. Leaf nitrogen is divided into structural and photosynthetically active components. The photosynthesis
scheme explicitly accounts for the role of chlje,s. Photosynthesis is calculated using the Kull and Kruijt (1998) model. Ac-
cording to this model, in the light-saturated part of the leaf, photosynthesis is the minimum of electron transport rate-limited
photosynthesis (determined by the maximum electron transport rate parameter J;,,ax 25) and the carboxylation capacity-limited
photosynthesis (determined by the maximum carboxylation capacity parameter V(max),25)- In the non-light-saturated part,
photosynthesis is determined by the electron transport-rate-limited photosynthesis. Chlorophyll partly determines the depth
of the light-saturated layer in the leaf. Thus, all the three photosynthetically active components of leaf nitrogen influence the
photosynthesis calculation in QUINCY, as described by Friend et al. (2009), Zaehle and Friend (2010), and Thum et al. (2019).
The photosynthesis model by Kull and Kruijt (1998) is extended to cover C4 plants (Friend et al., 2009).

The C:N ratios of leaves and fine roots respond dynamically to the balance of C and N in the labile pool. When there is
shortage of N supply, the leaf C:N ratio increases and vice versa. The ratios are constrained to an empirically derived range

based on the TRY database (Kattge et al., 2011), and the lower and upper boundaries are presented in Table S4. Soil carbon
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and nitrogen pools are modeled on the basis of the CENTURY soil model (Parton et al., 1993) and the soil profile is divided
into 15 vertical soil layers, extending to a depth of 9.5 m with increasing depth when moving deeper into the ground.

The seasonal development of leaf biomass and LAI depend on the plant’s ability to grow new tissues, given the availability of
C and N, as well as the fractional allocation to plant organs. This fractional allocation is constrained by allometric relationships
and the availability of nutrients and water. Meteorological conditions and soil moisture are used as phenological controls for
LAI development, and it is assumed that plant growth is zero outside the growing season. Both the beginning and the end of
the growing season, which determine the LAI seasonal cycle, depend partly on the PFT. For cold and temperate deciduous and
herbaceous PFTs, the start of the season is described as a function of the accumulated growing degree days. The accumulated
growing degree days are calculated from the beginning of the last dormancy period. In addition, for these PFTs, the end of the
growing season is triggered when the weekly air temperature falls below a PFT-specific threshold. For PFTs of rain-deciduous
phenology, the start of the season is triggered when the soil moisture stress factor exceeds the PFT-specific threshold values.
For these PFTs and also for the warm herbaceous PFTs, the trigger for the end of the season is again the soil moisture stress
factor. An additional condition for herbaceous PFTs to end their growing season is when the weekly carbon balance, i.e. the
residual between GPP and maintenance respiration, becomes negative. The evergreen needle-leaved trees are assumed to be in

a continuous growing season. A more detailed description of QUINCY is presented in Thum et al. (2019).
2.4.1 Original leaf nitrogen allocation in QUINCY

QUINCY allocates the total canopy nitrogen to canopy layers with exponentially decreasing N content towards the bottom of
the canopy as in Niinemets et al. (1998). At the leaf level, nitrogen is partitioned into structural (fx swuct) and photosynthetic
fractions at each canopy layer (Friend et al., 1997). The photosynthetic fractions are associated with chlorophyll (fy cn1), Ru-
bisco (fnrub), which is used directly to calculate V. (yay), and electron transport (fyet), which is used to calculate the maximum
rate of electron transport (J,ax)-

The fraction of leaf N in the structural compartment for each layer, fx g, 1S calculated as a linear function of leaf N, as

presented in Zaehle and Friend (2010):

struct struct
fN,slruct = /4}0 - k'1 * ]Vleaf (1)

where k™! is the PFT-specific maximum fraction of structural leaf N, and k{™¢ = 7.143 (gN) ™"

leaf N with respect to total N (/Viesr) (Friend et al., 1997).

is the slope of structural

The fraction of leaf N in the chlorophyll compartment, fx_cni, is calculated as an increasing function of cumulative LAI across

the canopy (LAlLy,) (Kull and Kruijt, 1998; Friend et al., 2009; Zaehle and Friend, 2010):

k.(c)hl _ kihleka:I*LAlcum

2

fN,chl =
’ chl
a/n

where kg™ and k" are PFT-specific empirical parameters, k{7, is an empirical parameter describing the increasing fy e with

chl

n

canopy depth, and LAl is the cumulative LAIL ¢ = 25.12 molmmol ! describes the molecular N content of chlorophyll
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(Evans, 1989). The kg and kS parameters are the same for trees and C3 grasslands, but different for C4 grasslands. The rest

of the leaf N is divided between the fx b and the fy ¢ with a fixed ratio of 1.97 (Wullschleger, 1993).
2.4.2 Alternative leaf N allocation

In the alternative leaf N allocation scheme, fy b is calculated based on a function of leaf mass per area (LMA) as described by

Onoda et al. (2017). The formulation using the QUINCY PFT-specific LMA values (Thum et al., 2019) is as follows:

—21.1xlog;o(LMA) 4 57.5
100 '

3)

fN,rub ==

The fraction in electron transport, fy e, is derived from fy ryp using the fixed ratio of 1.97. fx opy is then calculated as a function

of fn.et, based on the results by Evans and Clarke (2019) :

37.3
f ol = f . —kp LAy 4
Nehl = 8 855 2.0 Ve @
where k, = —0.11 describes the increase in chljeas Within the canopy depth. The fy s 18 then calculated as the remaining

part of the leaf N’ (fN,slrucl =1- fN,chl - fN,et - fN,rub)o
2.4.3 QUINCY simulation setup

We conducted individual site-level QUINCY simulations for the PLUMBER?2 and GLOBAL sites. In QUINCY, C3 crops and
C3 grasslands are grouped as one PFT, i.e. they are simulated with the same parametrization. The current version of QUINCY
does not include management practices. Therefore, C3 crops do not differ from C3 grasslands in QUINCY simulations. Sim-
ilarly, boreal and temperate needle-leaved evergreen forests are grouped into the same PFT. In this study, we labeled those as
the needle-leaved evergreen sites with a mean annual temperature below 10 °C as boreal and the rest as temperate.

We ran all the simulations with active C and N cycles, i.e. the CN version of the model. Soil P availability was kept at a level
that did not limit plant uptake or soil organic matter decomposition. The model input fields included half-hourly meteorological
data: SW and longwave radiation, air temperature, precipitation, surface air pressure, relative humidity and wind speed. In
addition, atmospheric CO,, and N and P deposition rates are part of the input drivers. Model input parameters include PFT
classification and various soil properties such as soil texture, bulk density, soil depth, rooting depth and inorganic soil P content.
The specific leaf area (SLA), which is the inverse of LMA, is maintained as a PFT-specific constant. There is only one PFT
associated with each site. The list of PFTs and the corresponding PFT abbreviations are presented in Table 1.

For the PLUMBER? sites, the meteorological fields were obtained from the PLUMBER?2 dataset (Ukkola et al., 2022).
Depending on the PLUMBER? site, meteorological data was available from 1992 to 2018 (Ukkola et al. (2022), Table S1). For
the GLOBAL sites, the meteorological data were obtained from the CRU JRA dataset, and covered the years 1989-2018. Soil
physical and chemical parameters (bulk density, rooting and soil depth and soil texture) were retrieved from the SoilGrid dataset

(Hengl et al., 2017). Atmospheric CO5 concentrations were retrieved from the Global Carbon Budget 2019 data (Friedlingstein
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et al., 2019), and the N and P deposition data are based on the dataset presented by Lamarque et al. (2010) and Lamarque et al.
(2011).

For each site, we ran a 1000-year model spin-up in order to bring the soil and vegetation biogeochemical pools into quasi-
equilibrium. During the spin-up, atmospheric CO2 concentration, N deposition and P deposition data were used by repeating
the values from the period between 1901 and 1930. Meteorological data were taken from a random year of observed meteoro-
logical data. After spin-up, the simulations were conducted as transient simulations, starting from the year 1901. The transient
simulation was continued with data from a random year of observed meteorology until the start of the period for which ob-
served meteorological data were available. For the PLUMBER? sites, the start of the period was site-dependent, while for the
GLOBAL sites, the meteorological data began in 1989. In the transient simulation, atmospheric CO, concentrations and N
deposition were retrieved for the corresponding years from the data sources mentioned above.

In addition to the simulation with the default QUINCY setup for the PLUMBER?2 and GLOBAL sites, we carried out four
additional simulations for the PLUMBER? sites to analyze how N limitation and changes in leaf nitrogen allocation affect the
results. First, we performed an additional simulation with the QUINCY C-only setup (QUINCY C,y1y), where only the C cycle
was active but the leaf stoichiometry was described with a fixed parametrization. This was done in order to compare the effect
of N limitation with the results of the default QUINCY CN-simulation. We then conducted a CN-simulation with the alternative
leaf N allocation scheme, as described in Section 2.4.2. After that, we ran a CN-simulation using the default QUINCY settings,
but modified the source code by multiplying the fxn parameter by 1.3. This was done in order to see the effect of increasing
fraction of leaf N allocated to chlje,¢. Finally, we carried out a simulation with the alternative leaf N allocation, but the fx
was multiplied by 1.3, to represent a 30% increase in the Rubisco fraction, which leads to an increase in the chlje,¢ fraction. The
additional simulations with increased fncn and fnup Were only performed for the temperate broad-leaved deciduous (TeBS)

sites in the PLUMBER? site set. The list of different simulations is presented in Table S5.
2.5 Feature importance analysis

The impact of different environmental drivers on the simulated and RS chle,r magnitude was examined using the permutation
feature importance algorithm, based on random forest (RF) regression fitting (Breiman, 2001). RF is a regression tree-based
machine learning method that is able to capture non-linear correlations. Permutation importance indicates the contribution of
an individual input variable to the statistical performance of a model. In other words, permutation importance can be used to
investigate the influence of an environmental driver on a target variable, which in our case is chlje,¢. In addition, we analyzed
the importance of each selected environmental variable via the SHAP (SHapley Additive exPlanations, (Lundberg and Lee,
2017)) values. We used the SciKit Learn Python3 package for both RF and permutation importance (Pedregosa et al., 2011),
and the shap Python library by Lundberg and Lee (2017) (https://github.com/shap/shap; last access June 23, 2025) to compute
the SHAP values.

The target data for the RF models were either QUINCY chljcar or RS chlje,s. We trained 22 separate RF models. Of the 22,
the first ten RFs were dedicated to monthly QUINCY chlye,s and each individual PFT from PLUMBER?2 and GLOBAL sites.
In addition, we trained one RF model with monthly data from all of the sites and QUINCY chlje,¢, using both PLUMBER2
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and GLOBAL sites. The remaining RF models were used for monthly RS chlje,¢ and individual PFTs, and one model with
data from all of the sites.

The input data consisted of monthly means of air temperature and PAR, and annual sums of precipitation and N deposition,
and annual means of Standardized Precipitation Evapotranspiration Index (SPEI) at each of the sites. The input variables for
the RF models were selected from the available environmental data that showed the least correlation between each other. Air
temperature, precipitation and N deposition were those used as input in the QUINCY simulations. The SPEI data were retrieved
from the global drought monitoring dataset by Vicente-Serrano et al. (2023). We used the SPEI with a two-week time scale
(SPEI 0.5 months), which was then averaged as monthly mean data. The spatial resolution of the SPEI dataset was 0.5° x0.5°,
and we chose the same time steps as in the QUINCY data. The PAR radiation was taken from the QUINCY output, and it is
converted from SW radiation with the model (Howell et al., 1983).

The random forest hyperparameters were set to default values, but the maximum number of features per node was set to
three. A recommended value for the maximum number of features per node in RF regression is one-third of the input features
(Hastie et al., 2009), but here we used a slightly higher value in order to maintain representative subset sizes.

First, we tested the performance of RF models by splitting the data using the train_test_split function in SciKit Learn. We
used 75 % of the data for preliminary training and 25 % for preliminary testing. The coefficient of determination (R?) scores for
the preliminary training and preliminary testing phases are reported in Table S6. Next, we used all the data (i.e., the preliminary
training and preliminary testing data) for the final training of the models.

After the final RF model training, we calculated the corresponding permutation feature importance values for each model.
The permutation feature importance algorithm was used with 30 repeats (n_repeats = 30) and with a fixed random state.
Finally, the SHAP values were calculated using data averaged over three months. The higher positive SHAP values indicate a
stronger, increasing effect on chlje,¢, and the lower negative SHAP values indicate a decreasing effect on chlje,s compared to

the average.
2.6 Data-analysis

In this study, the QUINCY chlje,s is the top-of-canopy chlje,f, as mentioned in Section 2.2.3. For the PLUMBER? sites, we
used all the available years from the QUINCY simulations, as well as from RS and eddy covariance observations. For the
GLOBAL sites, we used QUINCY simulation data for the years in which RS chlj,s data was available for each site.

We calculated the PFT mean chl, LAI 90th percentile for GLOBAL and PLUMBER? sites for both QUINCY and RS. In
addition, we calculated the PFT mean annual GPP for GLOBAL and PLUMBER?2 sites for QUINCY, but only the PFT mean
for the GPP ground observations on the PLUMBER?2 sites, as no GPP ground station measurements were available for the
GLOBAL (artificial) sites. We used the 90th percentile of LAI instead of the mean values. This was done to reduce the effect
of differences in seasonal amplitude and timing variation between QUINCY and RS and to focus on LAI values during the
growing season. We calculated the Pearson correlation coefficients (r) between QUINCY and RS site-level mean chlje,¢, LAI
90th percentile and GPP annual sum values, and the statistical significance of the correlation using Student’s t-test, with a

threshold value of 5 % for the statistical significance.
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We analyzed the seasonal cycle of chlje,s and LAI for the PLUMBER?2 and GLOBAL Northern Hemisphere (NH) sites
separately for different PFTs. In addition, the analysis of the PLUMBER?2 sites included GPP. First, we calculated the averaged
seasonal cycle over years for each site and variable. Then, using these averaged seasonal cycles, we calculated the mean
seasonal cycle per PFT across sites and the standard deviation between sites for each day of year (DOY). This was done for
QUINCY simulated values and for RS and eddy covariance CO5 observations. Using the PFT-averaged seasonal cycles, we
calculated the Pearson correlation (r) and root mean squared error (RMSE) between QUINCY and the observations.

For the NH PLUMBER?2 TeBS sites, we estimated the start of season (SOS), the end of season (EOS) and the length
of season (LOS) based on the PFT-averaged chlj,¢, LAl and GPP. We calculated the seasonal metrics using the method
as described by Thum et al. (2025). The SOS and EOS values from the PFT-averaged GPP were calculated using the first
and last pass of the threshold value. The threshold was set at 30 % of the 90th percentile value of the PFT-averaged mean
seasonal cycle of GPP. For LAI and chlye,¢, the threshold was determined using the difference between the summer and winter
values. Winter values were calculated using the mean values from January and February, and summer values were calculated
using the mean values from June and July. The threshold was then set to 20 % of the difference, added to the winter mean,
(i-e., Ythres=Xwinter +0.2 (X summer-Xwinter)). The earliest DOY for SOS was set to 50. LOS was calculated as the difference
between EOS and SOS.

We calculated the residuals between the QUINCY chlj,s mean and RS chlje,s for each site, and compared these to the
QUINCY leaf C:N ratios. Leaf C:N can be considered as an indicator of N availability for plants. The aim was to examine
whether the under- or overestimation of QUINCY chlje,s was related to nitrogen limitation in the model. The comparison was
done for BNE, TeH and TeBS. These PFTs were assumed to represent different vegetation types: BNE represents evergreen
forests, TeH grasses and TeBS deciduous forests. In addition, we calculated the mean chlje,¢ interannual variability (IAV) for
the PLUMBER?2 and GLOBAL sites. We first calculated the standard deviation of the annual mean chlj.,¢ for each site, and
then the average of the standard deviations at the PFT level and over all sites.

We analyzed the seasonal cycle of chlje,s for two evergreen needle-leaved PLUMBER?2 sites, FI-Sod and US-NRI1 (see
Section 2.3.2), by comparing the QUINCY simulations, in-sifu observations and remote sensing observations. We calculated
the averaged seasonal cycles over years for QUINCY and for remote sensing chlje,+ and compared them with in-situ observa-
tions. Furthermore, we analyzed the seasonal cycles of LAI, fAPAR and GPP for the FI-Sod site and compared the QUINCY
simulated values to the observations. We also compared briefly the simulated mean annual averaged leaf C:N values to in-situ

observations for two PLUMBER?2 sites, FI-Hyy and US-MMS.
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3 Results
3.1 Evaluation of simulated chli..¢r, LAI and GPP against observations
3.1.1 Yearly values

At the PFT level, QUINCY estimates of the mean annual chlj.,¢+ and LAI agree relatively well with the RS-derived chljc,¢ and
LAI values (Figs. 1, S2, S3 and Tables S7 and S8) for all PLUMBER? sites, with correlations of r = 0.61 for chlje,s and r
= 0.51 for LAI (Table S7). QUINCY does overestimate both chlj.,s and LAI for TeBE and TrBR sites, with TeNE and TeC
also overestimated for LAI on a mean PFT scale. Despite the variability in simulated chlje,s and LAI values in comparison
to RS-derived values, the overall simulated GPP for all PLUMBER?2 sites correlates well between QUINCY estimates and
eddy-covariance data (r = 0.71; Table S7 and Figure S4).

As expected, the within PFT variability between sites reveals greater scatter, the nature of which differs for chlje,s and LAI
(Figs. S2, S3). For chlje,s in all cases apart from TeBS, TrBE and TrH, there is a lack of variation in the QUINCY chlje,¢,
which present more constant values and smaller dynamic range compared to RS chlje,s values (Fig. S2 and Tables S7, S8).
This is particularly pronounced for TeC and TeH sites, which give a range of 10-17 pg cm™2 for TeC and 4-17 pg cm™? for TeH,
for QUINCY and a range of 1346 ugcm™ and 2-47 pg cm™2 for RS, respectively. The site-level LAI estimates by contrast
generally present a larger dynamic range (with the exception of TeBs, TeNE, TeBE and TrBE). The TrH in particular show a
large overestimation in QUINCY LAI compared to RS LAI at higher LAI values (LAI > 2.5) (Fig. S3).

The site-level GPP results show a good correlation between QUINCY estimates and eddy-covariance observations across
PFTs. Whilst the correlation is generally along the 1:1 line, in 58 % of the PLUMBER?2 sites, QUINCY underestimates the GPP
on average by about 400 gCm™ yr™. The majority of these underestimations are for BNE and TeBS forests. The QUINCY
overestimation of GPP is mainly for crops and grasslands, with an average overestimation of 384 gCm™ yr™! across 42 %
of the PLUMBER? sites. For the PLUMBER?2 sites, the slight LAI overestimation of the TrH sites does not seem to lead to
an overestimation of the mean GPP, but the QUINCY PFT mean GPP (756 gCm™ yr™!) is lower than the PFT mean of the
observations (902 gCm™2 yr™!). Due to very high LAI values for the GLOBAL TrH sites, the QUINCY mean GPP for the
GLOBAL TrH sites was 1461 gCm™ yr™! (not shown), and QUINCY chl.,; mean was 50.2 ug cm™2.

The QUINCY over- or underestimation in chljea¢ did not have a strong, detectable geographical pattern when assessed
together and separately for all PFTs. The residual chlje,, i.e. the difference between the mean QUINCY and RS values, is
shown in Fig. S5 on a map showing the geographical location of each site. For the C3 grassland sites, the QUINCY mean
chljear was rather small compared to the RS chlje,s. When analyzing the residuals for the C3 grasslands, the northernmost
sites seem to have less negative residuals in magnitude than for the sites around latitudes 30-60°N. This was also the case
when the relative residual was analyzed (not shown). The greater QUINCY underestimation of chlje,s for the warmer, southern
C3 grassland sites is not related to the GPP underestimation. Interestingly, for the GLOBAL C3 grassland sites the LAI

over/underestimation shows an opposite pattern to QUINCY chlje,¢: the northern sites show more negative LAI residual, and
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Figure 1. The PFT mean (a) chljear, (b) LAI and (¢) GPP for the PLUMBER?2 sites. The standard deviation is represented by whisker lines.

A 1:1 line is marked with a gray line.

sites around latitudes 30-60°N mostly QUINCY overestimation of LAI (not shown), which could be due to the fact that RS
chlje,s is calculated using RS LAL

The mean IAV of RS chljc,s over all PFTs is 4.1143.18 pg cm™, which is much higher than the corresponding value for
QUINCY (1.3541.52 ug cm™2). The RS chljeas IAV is higher for all other PFTs except for TrH, where the QUINCY chljc,¢
IAV was 3.3942.04 pg cm™2, and the RS chlje.s IAV was 3.374+2.35 ug cm™2. The largest differences in IAVs between RS and
QUINCY were seen for the evergreen sites. For example, the RS chlje,r IAV for the BNE sites is 5.9543.51, and the QUINCY
chljgar IAV is 0.5+0.4 pg cm™2,

3.1.2 Seasonal cycle

The annual cycle of chlje,¢ for the PLUMBER2 NH TeBS sites (Fig. 2) is similar when comparing QUINCY and RS. However,
the start of the growing season is delayed in QUINCY. The SOS, EOS and LOS values for the PFT-averaged PLUMBER2 NH
TeBS sites are presented in Table S9. The QUINCY SOS for LAI is approximately 13 days later in spring compared to the RS
LALI Similarly, the end of the growing season is delayed in QUINCY, and the EOS of QUINCY chlye,s occurs approximately
10 days later than in RS chlje,¢. While the RS LAI shows a decrease throughout the autumn season, QUINCY LAI remains at
a high value until day of year (DOY) 280, which corresponds to mid-October. The EOS for QUINCY LAI is approximately 30
days later than for RS LAI. However, senescence occurs more rapidly in QUINCY than in the observations.

Figure 2c shows that the GPP between DOY 90-150 for QUINCY is slightly lower than in the observations. The spring
development of GPP is slower in QUINCY than in the observations, though the QUINCY SOS of GPP occurs almost at the
same time as in the measurements. Although the simulated LAI remains at the summer level until DOY ~280, the simulated

GPP decreases due to the environmental conditions in autumn. However, the delay in autumn LAI senescence is reflected in
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Figure 2. The average annual cycle of (a) chlicat, (b) LAL and (c) GPP for the PLUMBER?2 TeBS NH sites, as a function of the day of year
(DOY). The shaded regions represent the standard deviation between sites. The start of season (SOS) and end of season (EOS) are marked
with red (QUINCY) and grey (observations) vertical lines. The Pearson correlation (r) and root mean squared error (RMSE) are marked for

each variable.

the QUINCY GPP EOS, which is approximately 26 days later than for the GPP observations. The delay in the QUINCY spring
GPP is compensated partly for by the delayed end of the season where the QUINCY GPP is higher than the observed GPP
after DOY 275. The mean GPP 3-month sum for the PLUMBER2 NH TeBS sites for spring (March, April and May, MAM)
is 289 gC m™2 for the observations, while for QUINCY, the value is 196 gC m™2. The corresponding 3-month sum values for
autumn (September, October, November, SON) for observations is 256 gC m™2, and 351 gC m™2 for QUINCY.

Figures S6 and S7 show the PFT-mean seasonal cycles of chlje,s and LAI for the PLUMBER?2 and GLOBAL NH sites, and
S8 for GPP for the PLUMBER2 NH sites. The most visible difference between QUINCY and RS chlje,s and LAI seasonality
can be observed for the boreal and temperate evergreen sites (Fig. S6 a,c,f and Fig. S7 a,c,f): QUINCY shows very little
variation across seasons, while the RS indicates more variation throughout the year with a clear seasonal cycle. Nevertheless,

the QUINCY GPP for these PFTs (Fig. S8a,b,e) shows a similar annual cycle as the eddy covariance observations, and the
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correlation r for the evergreen needle-leaved sites is high (r > 0.95). For the BNS sites (Fig. S6b and Fig. S7b), the biases in
seasonal cycle were similar to the TeBS results (Fig. S6d and Fig. S7d).

QUINCY chlje,s for TeH and TeC sites show a delay in spring compared to RS chlje,s, but this was not observed for
QUINCY LAL In autumn, the decrease in QUINCY chlj,s and LAI occur later than in RS. For the TrH sites (Fig. S6j), the
seasonal cycle of QUINCY chlje,s and LAI differ from the observed seasonal cycle. The lowest PFT mean chlje,s for QUINCY
is in April (DOY~100). Of the 47 TrH sites in the NH, 74 % of the sites had a higher QUINCY winter (December, January,
February, DJF) chlye,¢ average compared to the QUINCY spring (March, April, May, MAM) chl.,; mean. Furthermore, 55 %
of the TrH NH sites were such that the QUINCY DJF means of both chlje,s and LAI were higher than the QUINCY MAM

means. RS chlje,r shows (Fig. S6j) the largest TrH averages for summer (JJA) and September, and a fairly clear seasonal cycle.
3.1.3 In-situ comparison of chljc,¢ for two needle-leaved forests

The seasonal cycle of chljeas, LAI, fAPAR and GPP for Sodankyli is shown in Fig. 3, and the chlj,¢ values of the US-NR1
site are presented in Fig. S9. The mean annual and seasonal chlje,s and GPP values are presented in Table S10.

Figure 3a highlights that the QUINCY chlj.,¢ values are in a range comparable to the in-sifu observations for FI-Sod, but
the QUINCY mean (Table S10) is lower than the annual mean of the in-sifu measurements. On the contrary, the RS chljc,¢ by
Croft et al. (2020) shows much lower values. In addition, the mean of the Sentinel-3 RS chlje,¢ is also lower than the in-situ or
QUINCY chlje,s but close to the mean RS chlje,s by Croft et al. (2020).

The RS LAI in Fig. 3b shows a clear seasonal pattern for FI-Sod, which has a small effect on the RS chlje,¢. The summer
(JJA) average RS chlj, is approximately 10% higher than the winter (DJF) average, which is a relatively small difference
compared to the interannual variability (~ 4ug cm™2). In addition, the late spring RS chlje,t between DOY 100-151 show lower
values than winter or summer. The late spring RS chlj..r averages 14.6 ug cm™2, approximately 27% less than the JJA average.
Similar spring decreases in RS chlj.,+ were also observed for other BNE sites. The Sentinel-3 chlje,¢ peaks in midsummer, and
also shows a clear seasonal pattern. The in-situ chlje,s is slightly higher in late summer (DOY 200-240) compared to spring
and fall.

QUINCY LAI shows a small seasonal variation, which is reflected in the simulated chlje,¢. The winter (December—February,
DIJF) QUINCY average is slightly lower than the summer (June—August, JJA) QUINCY average chljc,¢. The in-situ fAPAR
values are in agreement with the simulations during most of the year, but show a stronger seasonal variation than the QUINCY
fAPAR (Fig. 3c), with higher values during winter.

QUINCY GPP is in line with the observations until DOY 175, but then decreases until the end of the season (Fig. 3d).
However, the difference in annual GPP is not large, and annual QUINCY GPP is on average approximately 9 % lower than
the in-situ GPP. The difference between observed and simulated GPP after DOY 175 could be due to missing late fall chlje,¢
development or due to too strong response to a drought.

The mean in-situ chlje,r for the US-NRI1 site was close to the QUINCY chlje,s mean (Fig. S9 and Table S10). The minimum

2

value of individual tree samples was 26.8 ugcm™ and the maximum was 60.8 pgcm™2, i.e. there was variation between

individual samples that is partially minimized by the averaging. The in-situ observations show a slight increase during spring,
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Figure 4. QUINCY leaf C:N and chljear and the corresponding residual for (a,d) temperate broad-leaved deciduous (TeBS), (b,e) C3 grass-
land (TeH) and (c,f) boreal needle-leaved sites (BNE). The vertical lines show the QUINCY leaf C:N minimum and maximum limits.

but the variation is large due to the small number of samples. The mean in-sifu chl,r for DOY 1-150 is 37.146.1 ugcm™2,
while the mean for summertime (JJA) is 43.24+2.3 g cm™2. The summer (JJA) QUINCY chljens Was close to the annual mean,
i.e. there was no pronounced seasonal cycle. The RS chlje,s annual mean by Croft et al. (2020) was lower than the annual
mean chlje,s of in-situ measurements or QUINCY. Interestingly, the RS chlj,s shows a lower JJA mean than the annual mean.
Similarly to the FI-Sod RS chlje.¢, there is a decrease in the spring chlje,¢ after DOY 100, and the decrease is more pronounced
than for Sodankyli. The minimum value (~16 ug cm™?) of RS chl,; averaged annual cycle appears around DOY 155, with
an increase after that. For the Sentinel-3 chlje,r, the mean chlj,r was close to the QUINCY values, although the numerical
range was much wider. The JJA mean for Sentinel-3 is close to the in-situ observations, and approximately 32 % higher than
the QUINCY JJA chljeas. The annual QUINCY GPP was 45 % lower than the observed GPP. In addition, the QUINCY JJA
LAI (not shown) was 2.240.1 m? m™2, and was lower than the RS JJA LAI (2.540.2 m? m™2, which may partially explain the
underestimation of GPP. Bowling et al. (2018) report that the observed in-situ LAI at the site is 3.8-4.2 m? m™.
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3.2 Nitrogen limitations in QUINCY

Figures 4a-c show the QUINCY leaf C:N ratios and the corresponding QUINCY chlje,¢ values for three PFTs. The TeBS sites
show an almost linear relationship between chlje,¢ and leaf C:N with a correlation of r = -0.87 (p < 1 X 10~ 13). Higher leaf
C:N values indicate lower leaf N levels relative to leaf C. This leads to lower chlje,s since chlje,s is a function of leaf N. The
same nearly linear relationship between QUINCY leaf C:N and decreasing chlj.,¢ is seen for the BNE sites (Fig. 4c) with a
correlation of r = -0.96 (p < 1 x 10~4°). The TeH sites represent a more scattered pattern and the correlation is only r = -0.58 (p
< 1x1077), indicating that chly.,¢ is more influenced by other factors, such as water availability, temperature and precipitation
than leaf C:N levels, compared to BNE and TeBS. However, for the TeH sites, both the QUINCY chle,¢ and leaf C:N values
are in a narrower range compared to the other two PFTs, which partly affects the comparison.

For the TeBS sites, the chlje,¢ residual is moderately connected to QUINCY leaf C:N values (Fig. 4d), but the same is not
true for the BNE and TeH sites. Especially for the PLUMBER?2 TeBS sites, the chlje,¢ residual is more negative for the sites
with higher leaf C:N values. The TeH sites do not show much variation in the leaf C:N values, and the chlje,¢ residual does
not appear to be connected to the magnitude of leaf C:N. The 90th percentile of TeH leaf C:N is 35.0, which is 88 % of the
QUINCY maximum leaf C:N. The BNE 90th percentile leaf C:N is 51.1 (78 % of the maximum) and the TeBS 90th percentile
leaf C:N is 28.1 (73 % of the maximum value).

The majority of the GLOBAL BNE sites are clustered in a region with mean QUINCY chlye,¢ around 35-40 pg cm™ and
leaf C:N ratio around 50. The GLOBAL set contains more BNE sites at higher latitudes than the PLUMBER? set (see Fig. S1).
In addition, most (over 83 %) of the PLUMBER?2 and GLOBAL sites with leaf C:N ~ 50 are in a region with a mean annual
temperature below 5 °C. The median chlje.s residual for the GLOBAL and PLUMBER? sites is 9.9 ug cm™ and 7.4 ug cm™2,
respectively.

We analyzed whether the chlj,s residual is connected to the GPP residual, i.e. the difference between QUINCY annual
GPP and observed annual GPP (not shown). For the PLUMBER?2 TeBS sites, the largest negative GPP residual, i.e. the model
underestimated GPP, was for those sites that are more N-limited in QUINCY and have a negative chlje,s residual. For the
PLUMBER?2 TeH sites, the GPP residual was weakly negatively correlated with the chlj.,s residual: the largest positive GPP
residual is observed for the sites that have strong negative chlj,r residual. Similarly, the GPP residual for the PLUMBER2
BNE sites was not strongly connected with the chlje,s residual.

We also compared the QUINCY leaf C:N ratios with in-situ measured values for two sites (FI-Hyy and US-MMS) obtained
from the TRY database. This was done to assess whether the QUINCY leaf C:N values are at a realistic level for individual
sites. US-MMS is classified as a TeBS site and FI-Hyy is classified as a BNE site. For the US-MMS site, the QUINCY average
leaf C:N was 17.3, and the TRY database average was 21.3. The US-MMS QUINCY leaf C:N is close to the lower leaf C:N
threshold, and the QUINCY chly.,¢ is underestimated by 27 % compared to RS chlj,s. For the FI-Hyy site, the values were
46.5 and 38.8, respectively. The QUINCY chlj.,; was underestimated by 28 %, which indicates that for FI-Hyy, there is a
slightly too strong N-deficit modelled.

19



495

500

505

510

2000 ;
® QUINCY default

1500 1 QUINCY alternative N frac
1000 1

500

— 500 Y S .
~1000 o

—1500 -

GPP residual, QUINCY-Observations (gC m~2yr!)
=
°
»
Q@
°
°

—2000 T .
—-20 —10 0 10 20

chlieat residual, QUINCY-RS (ug cm2)

Figure 5. GPP residual (QUINCY - observations) versus chlieas residual (QUINCY - observations) for the PLUMBER?2 TeBS sites. The

QUINCY default scheme results are marked with green circles, and QUINCY alternative N fraction results are marked with beige circles.

In order to study the effects of N limitation, we briefly analyzed the QUINCY C,y, simulation results for the PLUMBER?2
BNE sites (not shown). The results revealed that at low chlj.,s values, the difference between GPP from QUINCY default,
i.e. CN, and C,,), simulations was greater than at higher chljc,¢ levels for the BNE. In addition, for the sites where the N

deposition was low, the chlje,¢ values were also small.
3.3 Leaf N allocation schemes

Figure 5 shows that the alternative, more realistic N allocation scheme leads, on average, to greater chlj.,s and GPP underesti-
mation for the TeBS sites compared to the QUINCY default. Furthermore, the alternative N allocation scheme produces lower
leaf chljeus (14.944.4 ug cm™2) than the QUINCY default (17.9£5.6 ug cm™2) for the PLUMBER?2 TeBS sites (Fig. S10 and
Table S11). The corresponding RS chljear mean is 22.146.1 pg cm™2. Similarly, the TeBS mean GPP is lower for the alter-
native N fraction scheme, 10444311 gCm™2 yr™!, while the QUINCY default mean GPP is 12314366 gCm™2 yr™!. For the
observations, the mean GPP is 15394377 gC m™2 yr™!. The LAI 90th percentile values are in a similar range (~4+1 m? m™2)
between the QUINCY default simulation and QUINCY alternative N allocation. The underestimation of GPP and chlj.,s is
most likely due to lower fx ;. While the summer (JJA) fy b for the QUINCY default is on average 0.20 for the PLUMBER?2
TeBS sites, the corresponding average for the alternative N allocation scheme is 0.09.

The results for the other PFTs were similar to those for TeBS: the chlj,s and GPP magnitudes were lower with the alternative
N allocation scheme (Table S11). An exception is the TrH sites, where the annual GPP was higher with the alternative N
allocation than with the default QUINCY scheme. This was due to increased proportions of leaf N in Rubisco and electron

transport, while fy . was decreased and the fy gyt Slightly increased. The PFT mean values for fx et and other fractions
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were calculated over sites globally, i.e. including the Southern Hemisphere sites. This affects the comparison slightly, as the
seasonal cycles differ between the northern and southern hemispheres.

Increasing chlje,s affects more the QUINCY default chlje,s levels than QUINCY alternative N fraction output, but the
difference is not large (Table S12). When fy o is increased in QUINCY default, the mean chlje,¢ increases by 37.4 %, while
the mean LAI 90th percentile decreases by 2.4 % and the mean annual GPP decreases by 6.3 %. This is due to the fact that
in the QUINCY default, increasing fy cn decreases leaf N allocated in electron transport and Rubisco, since their fractions of
leaf N are calculated after fy . (see Section 2.4.1). For the alternative N fraction simulations, increasing fy ,, Which leads to
increase in fy ¢ results in different dynamics compared to the QUINCY default scheme. In the alternative N allocation scheme,
increasing fy b resulted in an almost linear response in the chlje,¢ magnitude, with an 24.2 % increase. The increases in LAI
and GPP were more moderate: 5.3 % and 12.1 %, respectively. In the QUINCY default simulation, increasing fy cp resulted
in decreased GPP, while in the alternative N allocation scheme, GPP increased. Furthermore, the fraction in the structural part
fnstruet decreases in the alternative N allocation scheme when the fy b, and, consequently, fycn are increased. In the default
QUINCY simulation, increasing fycn does not directly affect fy guct, but rather indirectly through its influence on leaf N,

resulting in only a minor decrease of fx syuct-
3.4 The environmental drivers of chljc.r

Figures 6 and S11 show that when the RF fitting is done over all PFTs, the feature importances are very similar between
QUINCY and RS. Air temperature has the largest impact on the random forest fitting of both QUINCY chljeas and RS chljeat,
when the fitting is done using data from all PFTs. The effect of air temperature is even larger for the TeH and TeBS sites
compared to the importance calculated over all PFTs. This result is logical, since chlje,f is formed from leaf N, which is partly
dependent on temperature via soil N mineralisation and biological nitrogen fixation (BNF). The QUINCY BNE sites do not
show such a strong dependence on air temperature because the evergreen needle chlj,s does not vary as much throughout the
year as deciduous chlj,¢. However, temperature shows a permutation importance of 0.264-0.003 for QUINCY BNE, which is
most likely a result of different sites being in different temperature regimes.

Figure S11 shows that nitrogen deposition is the most dominant driver for evergreen ecosystems for QUINCY chlje,s. For the
BNE and TeNE sites, the permutation importance values are 0.9540.007 and 1.784-0.054, respectively, and the contribution of
other environmental drivers is smaller. For the RS chlj.,s of BNE sites, N deposition has the highest permutation importance
value (0.8440.012), but the role of N deposition in the RS observations is not as pronounced compared to other variables as
in QUINCY. The RS chlje,s for the TeNE sites is largely driven by temperature (permutation importance = 0.63+£0.043). The
grasslands (TeH and TrH) show similar contributions from different variables for QUINCY and RS, although RS chlje,s is
less affected by temperature than QUINCY. There is a difference in the permutation importances for the TeC sites between
QUINCY and RS, as QUINCY chlye,¢ is more influenced by temperature and RS chlje,s indicates a slightly mixed effect of
different environmental drivers.

The results of the SHAP analysis (Fig. S12 and S13) are similar to the permutation importance calculations: air temperature

is a dominant driver for both QUINCY and RS. In addition, the SHAP values indicate that warmer temperatures lead to higher
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Figure 6. Permutation importance values based on random forest regression fitting for (a) QUINCY chljea and (b) RS chljeaf, based on data

from all sites, and separately for BNE, TeH, and TeBS sites.

than average chlj,r values, and colder temperatures lead to lower than average chlje,s values. The SHAP analysis for QUINCY

chljcor suggests that the higher PAR values lead to lower chlje,s values, although the majority of the data points are close to

SHAP values of zero, i.e. PAR is not a strong driver of chlj,s compared to, for example, temperature. For the RS chlje.¢, a
550 similar pattern is not found, but the higher PAR would have an increasing effect on chlje,g.

4 Discussion

4.1 QUINCY’s ability to reproduce chljc,r, LAI and GPP magnitudes

4.1.1 Magnitude of chlje,r

When analyzed across all sites, QUINCY chlj,s correlated well with RS observations and the PFT specific values were

555 generally in line with the observations, and the simulated PFT-mean values were similar to RS chlje,¢. In particular, the PFT
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mean chlj,s of the BNE and TeBS sites was close to the mean RS observations of these PFTs. However, QUINCY generally
produced lower variability in chlj.,s between sites compared to RS. Particularly for C3 grasslands and crops, the QUINCY
chlje,r was restricted to too narrow a range compared to RS observations. This suggests that QUINCY lacks some processes
that cause variation in RS chlje,s values, and that the QUINCY dynamics for C3 grasses and crops require further in-depth
analysis to explain the missing variation. In addition, the chljc, QUINCY parameterization for C3 grasslands is the same as
for trees, which could affect chlj.,s dynamics. Fertilization and other management practices are not included in the version
of QUINCY used in this study, which could explain the difference in the chlje,s numerical ranges between QUINCY and RS.
This may affect the comparison of magnitude and seasonality for C3 cropland sites. Lu et al. (2020) gathered a collection of
different chlje,¢ in-situ observations distributed globally. When comparing the QUINCY chlje,¢ values with those reported by
Lu et al. (2020), it was observed that C3 crops and C3 grasslands are most likely underestimated, similarly when compared
to the RS chljea¢ values. The correlation between QUINCY chlje,s and RS chljeas was poor for C3 grasslands and C3 crops.
This also highlights the need for tuning the QUINCY parameterization for grasslands, and possibly other changes to the model
structure to capture the grassland chlje,s dynamics.

Some of the PLUMBERR? sites are located in fens and wetlands, and these are classified as C3 grasslands in QUINCY. The
model version of QUINCY used in this study does not include wetlands or fens, and therefore for some of the sites (e.g. FI-Lom
in high latitude region) QUINCY does not model the relevant water table depth dynamics, which may influence the carbon and
water dynamics at the sites.

For C4 plants, the range for QUINCY values was similar to RS chlje,¢ for higher values, but lower chlje,¢ concentrations
were missing in QUINCY. Lu et al. (2020) reported 15-60 pg cm™2, while the QUINCY chlje,¢ range for C4 grasslands was
31-72 ug cm™2. The RS chljgas range for C4 grasslands was 12-63 pg cm™2. However, it should be noted that QUINCY chljeq¢
values only represent the top of the canopy, while in-situ observations may have mixed results from different canopy heights,
which may affect the comparison.

For the BNE sites, the QUINCY chlje,¢ overestimation was higher for GLOBAL than PLUMBER sites, and relatively higher
portion of GLOBAL BNE sites were located in high latitudes. This suggests that the QUINCY chlje,s overestimation or RS
chlje,r underestimation, is more pronounced for the needle-leaved sites in cold regions, which could partly reflect the challenges
of optical remote sensing in high latitudes.

Our machine learning-based analysis indicated that QUINCY is able to capture the influence of environmental drivers of the
chljea in a big picture. QUINCY chlje,¢ for evergreen sites was driven by N deposition, with other environmental variables
contributing less. The same was true for the RS chle,+ for BNE and TrBE but not for TeNE. Additional comparison of QUINCY
simulations with active C and N cycles with a C,y,j, simulation also demonstrated a similar conclusion. Though, the RS
chlje,¢ for BNE sites seemed to be more temperature-driven than for QUINCY. This could be explained by differences in the
seasonal cycle, as RS chlje,r shows a seasonal pattern for BNE sites, while QUINCY does not. In addition, it was observed
that QUINCY chlje,t for the TeC sites was mainly driven by temperature, while RS chlj,s had more equal contributions from
different variables. In addition, the footprint size of RS chlj.,s may affect the comparison, as crops are typically located in

a heterogeneous landscape. The analysis with the SHAP values revealed that higher PAR values could produce lower chlje,¢
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in QUINCY simulations. The decreasing effect of higher PAR values on QUINCY chle,s could be partly due to the tropical
regions, where the PAR radiation does not vary as much throughout the year. The decreasing effect could be also attributed to

differences between different sites.
4.1.2 Magnitudes of LAI and GPP

The QUINCY annual GPP showed a good correlation with PLUMBER? observations, however, the values were underestimated
at most of the sites. This could be partly due to a slightly delayed growing season for the deciduous forests (Fig. S8), which
hinders the early spring carbon sequestration. The delayed seasonal development calls for tuning the QUINCY phenology
parameters, which could benefit the simulations with a reasonable amount of work. However, for some of the PFTs (TeC,
TrBR, TeBE), QUINCY overestimated GPP.

The simulated LAI over all PFTs was generally in an agreement with RS LAI (Fig. S3d and Table S8). However, a clear
future development point for QUINCY is the overestimation of LAI values, which was the case for most of the PFTs. The
overestimation of LAI in QUINCY could be due to, for instance, missing herbivores and management. These effects are
currently under development in QUINCY. The overestimation of LAI is pronounced for the C4 grasslands, for which the LAI
values in QUINCY were unrealistically high. The very high LAI values were observed for the GLOBAL sites located on the
African and South American continents, for which we did not have GPP ground station data. However, the QUINCY GPP for
the PLUMBER?2 C4 grassland sites was within a reasonable range, and the QUINCY PFT mean GPP was close to the observed
PFT mean GPP. This suggests that despite high LAI, QUINCY is able to account for environmental conditions affecting GPP
and maintain realistic GPP levels. However, for the GLOBAL C4 grassland (TrH) sites, it was observed that if the simulated
extremely high LAI values were coupled with high chlje,¢, this resulted in high simulated GPP values. The RS observations
could potentially be used in model tuning to balance the overestimation of both LAI and chlje,¢.

Although QUINCY tended to overestimate LAI in general, for TeBS it was mostly underestimated. Similarly, the QUINCY
mean chlje,¢ is underestimated at the majority of the TeBS sites. However, when analyzing the residuals for individual sites,
the GPP under- or overestimation was not always related to the chlje,s or LAI residual. Less than half of the 25 PLUMBER2
TeBS sites showed an underestimation for all chlje,¢, LAIL, and GPP. Overestimation of LAI can potentially lead to too strong
shading, which could result in reduced GPP in lower canopy layers. The radiative transfer model might therefore play a role in

the underestimated GPP.
4.2 QUINCY’s ability to reproduce the observed seasonal cycle

The seasonality of GPP for QUINCY was consistent with the observations for many of the PFTs. However, the seasonality for
chljeor and LAI in QUINCY was found to have differences compared to RS values for some of the PFTs.

The annual cycle of QUINCY chly.,s for deciduous forest sites was similar when QUINCY and RS chlje,¢+ were compared.
However, the increase in spring chlje,r in QUINCY chljear occurred late compared to RS chljea, as well as decrease in au-
tumn chlje,¢. The QUINCY LAI estimations showed similar biases when compared against RS results. However, this was not

reflected as prominently in the seasonality of GPP compared to the delay in LAI, most likely due to environmental drivers.
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This indicates that QUINCY is able to maintain reasonable GPP levels in autumn even when LAI is overestimated. For the
NH PLUMBER?2 TeBS sites, the PFT-averaged seasonal cycle showed that the QUINCY underestimation of annual GPP is not
too strongly affected by the delay in start of the growing season. The GPP sum for the spring (MAM) was underestimated by
QUINCY by ~ 93 gCm™2, while the overestimation in the autumn (SON) was 95 gCm™2, i.e. they compensate each other.

The QUINCY chlje,r and LAI seasonality differed from RS observations for the boreal and temperate evergreen sites.
QUINCY chlje,s and LAI do not change as much from season to season at these evergreen sites, whereas RS chlj,s and LAI
show more variation during the year. The RS chlj.,; for BNE forests implied a stronger seasonal cycle than what was seen
from in-situ observations at two BNE sites, which was most likely driven by too strong LAI seasonality of the RS product. In
addition, the RS observations for the Sodankyla (FI-Sod) and Niwot Ridge (US-NR1) sites indicated a slight decrease in spring
chljeat, and this was seen also for other BNE sites. The decrease in RS chlje,¢ in spring could be driven by resorption of N to
form new needles, or by the impact of the understory during the snow-melt season. A study by Zhang et al. (2019), conducted in
a laboratory environment, demonstrated a similar decrease for a boreal evergreen forest. The RS chlje,f retrieval algorithm does
not consider variations in understory, and therefore the understory vegetation can cause artifacts to the retrieved needle-leaf
reflectance signal. For US-NR1, the mountainous landscape might affect the retrieval. In addition, the mountainous landscape
surrounding US-NR1 might affect RS retrieval, which also can create artifacts to the mean RS chlje,¢. The Sentinel-3 chljeas
shows the strongest seasonal cycle at the US-NRI site compared to other products used in this study, which could be partly due
to assumptions made in the retrieval processing. For instance, the assumptions made for the LAI seasonality and the effect of
snow cover can affect the RS chlje,¢ retrieval. For temperate broad-leaved evergreen sites, QUINCY did not simulate seasonal
variation in chljea¢, while RS chlje,¢ showed a clear increase in spring and decrease in fall. Site-level studies have indicated
contradicting results for chlj.,r seasonal cycle for temperate evergreen forests (Joshi et al., 2024; Yasumura and Ishida, 2011),
therefore it is not straightforward judge whether the model behavior is erroneous.

The in-situ observations in the boreal Sodankyld forest (Fig. 3a) for the year 2015 showed that the chlj.,+ concentrations
increased throughout the growing season in needle-leaved forests. Similar behavior at other evergreen needle-leaved forests
was reported by Laitinen et al. (2000) and Katahata et al. (2007). The increase in chlje,s could indicate that the Sodankyld
forest may be N-limited, and requires strong N uptake throughout the summer. The observations from the Niwot Ridge forest
did not show such a strong pattern (Fig. S9), as also shown by Bowling et al. (2018), potentially reflecting a different N status
of the ecosystem.

For TeC and TeH sites, the seasonal cycle of QUINCY chlj,s was delayed compared to RS, but the bias was not large. The
lower QUINCY spring chlj,s for NH TrH sites suggests that the phenological cycle for these sites needs further tuning in
QUINCY, and is most likely linked to simulated LAI biases. In QUINCY, the start of senescence is controlled by soil moisture
and temperature thresholds. Given the high species diversity in herbaceous systems, both within and between sites, ecosystem-
level models such as QUINCY often struggle to capture phenological variation. This is partially due to PFT-level parameters

not reflecting diversity at the site level, and partially due to the difficulty of capturing an average response of diverse species.
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4.3 Modeling the N cycle and N limitation

QUINCY is one of the state-of-the art TBMs that include an advanced representation of chlje,¢ in the canopy, and also the
connection between chlje,s and N limitation. This allows the intercomparison to remote sensing chlje,s products, which can be
further extended to cover analysing the N limitation on photosynthesis and the implications on carbon sequestration efficiency.
In addition, our analysis demonstrated how to use chljeas as a metric to support analysing the N limitation in simulations.
However, one needs to keep in mind that the modelled and remotely sensed chlje,s are not completely equivalent, but there are
conceptual differences in spatial coverage, for instance.

The strongest QUINCY GPP underestimation for the PLUMBER?2 TeBS sites was connected to stronger N-limitation and
QUINCY chlje,¢ underestimation, suggesting a too strong modeled N limitation for these sites. However, the leaf C:N values
were not close to the maximum leaf C:N values for the TeBS sites, suggesting that the QUINCY maximum threshold value of
leaf C:N may be slightly too high (Fig. 4d). Though, we compared QUINCY leaf C:N values to the TRY database observation
leaf C:N values for two sites, and the QUINCY values were in line with the observations.

Some of the QUINCY chlj.,¢ underestimation for the TeBS sites could be due to lower N availability or allocation to leaves
(Fig. 4d). Both the QUINCY underestimation of chlj,¢ and also GPP could be partly related to modeling deficiencies in the
N cycle. The QUINCY mean symbiotic BNF was ~0.3 gNm~2yr~! for the TeBS sites. Davies-Barnard and Friedlingstein
(2020) report that for deciduous broad-leaved forests, including both tropical and temperate forests, the mean symbiotic BNF
is approximately 0.8 gNm~2yr—!, suggesting that QUINCY symbiotic BNF is underestimated for the TeBS sites. Though,
the negative residual of chlje,s between model and observations was higher with the higher leaf C:N values, indicating that
QUINCY’s modeled N deficit for the TeBS sites is too strong. The analysis shows that for the TeBS forests, the chljc,¢ residual
between simulated and RS chlj.,s brings additional information in pinpointing that the N-deficit influence is overestimated at
certain sites and contributing to too low GPP.

For the BNE sites, QUINCY overestimated chlje,s compared to RS chlje,s, and the BNE chlje,s and GPP residuals were
not correlating, which may be partly be due to RS chlj..s magnitude issues as presented in Section 3.1.3. The observed GPP
increased as a function of observed chlje,¢ (not shown), and this was also evident in the simulations. A comparison of QUINCY
CN- and C-only simulations for the BNE sites indicated that QUINCY simulates an N deficit at low chlje,s values, as GPP was
lower with the CN-simulation. Including the N cycle in the simulations improved the model behavior and led to a decrease in
simulated chlje,¢ values at the lower end of the observations and improved model behavior in terms of chlj.,¢ and GPP. This
shows a realistic behavior of the QUINCY N cycle. Furthermore, the low chlj,¢ values coincided with the low N deposition
values, indicating that N deposition plays a significant role in the N deficit of these ecosystems, as also shown in the feature
importance analysis results.

In addition, the TeH leaf C:N values (Fig. 4e) were closer to the upper bound and covering only approximately half of the
leaf C:N range derived from the TRY database, even when we had sites globally distributed across different climatological
regions. This suggests that many of the TeH sites are more N-limited in QUINCY compared to BNE and TeBS sites, and that
QUINCY has difficulty capturing TeH sites with high leaf N values. This may be a partial cause of the too low and also too
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static chlje,¢ values for the TeH sites. For the TeH sites, QUINCY had the largest overestimation of GPP when the modeled
chlje,r is the most underestimated. This indicates that the leaf N allocation in QUINCY for TeH sites requires further parameter
tuning. The QUINCY dynamics related to N cycling may require further analysis to estimate the contributions of N deposition
and BNF to leaf N content, and to determine whether they are in the range of estimates presented in the reference literature.
Our analysis using the more advanced N allocation routine shows that the chlje,s and GPP magnitudes for the TeBS sites
were not improved compared to the observation data. This was partly due to lower fy . In the alternative N scheme, fx ch
is a function of fy, and therefore a function of fx ., and therefore the lower fy . affects both GPP and chlje,¢. The un-
derestimation of fy b, could be partly due to the LMA representation in QUINCY. LMA is the inverse of SLA, and thus it
is the same fixed value per PFT, which may be too general a representation with respect to the N allocation scheme. On the
other hand, the advanced N allocation scheme provided a more realistic mechanism when fy y», Was increased by resulting in
simultaneous increases in fy ¢ and GPP. This indicates that what the alternative N allocation scheme produces is more in line
with the current ecophysiological understanding from the literature (Onoda et al., 2017; Evans and Clarke, 2019) regarding
the relationship between V(yax) and chlje,s: increasing leaf N in chljear does not decrease other photosynthetic fractions, but

rather the structural part (fn siruct)-
4.4 Limitations of the analysis
4.4.1 Limitations due to remote sensing products

Although the satellite product by Croft et al. (2020) agrees well with the in-situ observations (Croft et al., 2020), the satellite
retrieval products contain a certain degree of uncertainty. As Boegh et al. (2013) conclude, satellite inversions are often ill-
posed inversion problems, which can complicate the retrieval of chlj,s and LAI from remote sensing data. Furthermore, the
coverage of the MERIS satellite data is not optimal for certain regions such as South America, the tropics, western Australia,
and parts of the boreal zone. This is partly due to gaps in the original data caused by clouds, sensor errors, or light conditions
(Tum et al., 2016), though the RS chlj,¢ product by Croft et al. (2020) is gap-filled with a smoothing algorithm. In addition,
in this study, the impact of gaps has been partially reduced by using the average of all years.

Our analysis relied primarily on one RS chlje,s product. For example, RS observations from the Sentinel-3 satellite could
be included as they were tested for two sites in this study, although the time periods of the modeled values did not match
these observations. The challenge with Sentinel-3 is that the in-situ observations are often provided years back in time, and
Sentinel-3 has only been operational since 2016. A potential candidate for combination with Sentinel-based chlje,¢ products
could be ICOS observations. The European ICOS research infrastructure provides up-to-date flux measurements that are also
harmonized in terms of measurement and post-processing techniques.

The remote sensing products of LAI are known to have an overly pronounced seasonal cycle in the boreal needle-leaved
forests, with LAI values being underestimated in winter, early spring and late fall (Heiskanen et al., 2012; Wang et al., 2019).
This is caused by snow and cloud contamination, the understory effects, seasonal variation in needle greenness, low solar

zenith angle and poor illumination (Heiskanen et al., 2012; Fang et al., 2013; Wang et al., 2019). In our study, we observed that
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for the Sodankyld BNE forest, RS LAI showed a clear seasonal pattern, while QUINCY LAI was almost constant throughout
the season. We also compared QUINCY fAPAR with in-situ measurements, and this comparison revealed that QUINCY
fAPAR followed the in-situ measurements outside the winter season. The in-situ measurements during the winter season were
influenced by the low elevation angles of the sun, which limit the reliability of the measurements throughout the winter months
and, in mid-winter, result in polar night. Additionally, in spring, ground-level sensors may be covered by snow, compromising
data quality even when light conditions would otherwise be sufficient. In addition, as Wang et al. (2024) show, RS-based data
often contain inaccuracies in autumn phenology. In our analysis, we used ground-based flux tower observations, which helped
to form a comprehensive view of model performance. Croft et al. (2020) report that the RS chlje,¢ for the needle-leaved forests
could benefit from intra-PFT variability in the structural parameters (e.g. canopy height, stem density), which would improve
the spatial variability in chlje,¢. The contemporary RS products are advancing in this front, providing opportunities to improve

other RS products. However, the Sentinel-3 product used in this study was not yet free of these problems.
4.4.2 Limitations due to ground based observations

The flux tower measurements used in this study were not evenly distributed geographically, but rather concentrated in central
Europe and the United States. For example, the number of sites in Central and South America was small, limiting the compre-
hensiveness of the analysis of the GPP magnitudes relative to ground observations. TBMs and RS products cover larger spatial
areas, allowing a global assessment even in areas where the in-sifu observations are sparse. In this study, we were able to
first analyze data at sites where we had ground station measurements (PLUMBER?2), and then extend to other regions without
in-situ observations (GLOBAL).

In addition, our analysis does not take into account the potential footprint mismatch between RS chlje,¢ and the flux towers at
the ground stations. Furthermore, the flux tower footprints are not always homogeneous, but represent a mixture of e.g. shrubs
and trees. Our QUINCY modeling scheme assumed only one PFT for each of the sites, which may lead to differences in the
GPP if the flux tower is surrounded by heterogeneous plant cover. For some sites, we increased the footprint area of the RS
chljear to include pixels with the same land cover classification. This increase may have resulted in greater differences in the
footprint compared to the flux tower footprint. Site location, topography, and landscape heterogeneity influence the measured

CO,, fluxes (Giannico et al., 2018; Griebel et al., 2016).
4.4.3 Limitations of QUINCY and data-analysis

QUINCY simulations are based on the assumption of an average individual plant or a tree, and do not consider plants of
different ages. Similarly, RS inversion algorithms do not consider variations in, for instance, tree height or crown width. As
previous studies have shown, chlje,s and nitrogen concentrations in leaves can vary between trees of different ages and also
between individuals (Laitinen et al., 2000; Sallas et al., 2003; Warren and Adams, 2001; Thurner et al., 2025). In addition,
a PFT can be a very broad category and different tree species may have different characteristics, which is not taken into
account in our PFT-based modeling scheme and parameterization. Furthermore, the modeling framework does not account for

competition among plants.
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Land cover classification can introduce an additional source of uncertainty in this study. There are two sources of uncertainty
in the use of land cover maps, as they can be caused by the classification into land cover classes based on spectral reflectance
or by the conversion of these land cover classes into the PFT classes that we used (Georgievski and Hagemann, 2019). We have
partially accounted for this uncertainty by increasing the number of points that we used for each of the study sites.

The SHAP value analysis with RF fitting resulted in differing results between QUINCY and RS chlje,s and the impact of
PAR values on chlje,¢. Since the SHAP values only describe the machine learning interpretation of the variable relationships,
further investigation of the effect of high PAR values on QUINCY chlje,s would require additional QUINCY simulations where
the radiation input fields are increased, but keeping the rest of the input variables the same.

Our analysis could also benefit from including local measurements of in-situ greenness indices (Linkosalmi et al., 2016)
to further validate the seasonal cycle of chlje,s for different PFTs, or up-scaled leaf trait maps (Dechant et al., 2024). For
instance, the up-scaled maps could provide regional, PFT-specific SLA values that could improve the results of the alternative

N allocation scheme.
4.5 Future directions

One objective of this study was to estimate the gain of using RS chlje,¢ to improve the modeled carbon and nitrogen cycle.
However, the approach in this study is based on only one TBM. Though, our analysis included a comparison of two different
chlje,¢ formulations within a model, which has the advantage that the comparison is not masked out by differences in dynamics
between the two models. As recommended by Meyerholt et al. (2020), a model ensemble would provide more robust results,
as there is some uncertainty in a single process model approach. However, this would be possible only if other TBMs were to
provide chlje,s as a diagnostic, which would also allow that chlje,¢ could potentially be incorporated into TBM benchmarking
platforms, such as ILAMB (Collier et al., 2018).

Another future prospect could be to integrate QUINCY into a digital framework that integrates RS observational time series,
TBMs and a radiative transfer model. Based on a comprehensive literature review, Kooistra et al. (2024) propose that such a
digital twin combination with data assimilation could enable an almost near-real-time representation of ecosystems and help

to overcome the current modeling limitations.

5 Conclusions

The evaluation revealed that the magnitudes of QUINCY chlje,s correlate well with RS chljeos when analyzed across all plant
functional types. However, for some of the PFTs, the QUINCY chlj.,¢ values showed less site-to-site variation compared to the
observations. This suggests that the QUINCY parameterization requires further adjustments. RS chlje,¢ for needle-leaved sites
was clearly lower than for QUINCY. The comparison to in-sifu chlj.,s measurements indicated that RS chlje,¢ is underestimated
for the boreal coniferous forests, while QUINCY chlje,r Was in a reasonable magnitude. The inter-comparison of QUINCY and
RS chlje,r and LAI seasonal cycles showed that QUINCY produced delayed seasonal pattern for deciduous tress. This suggests

that the phenological parameters of QUINCY need further adjustment. In addition, for evergreen needle-leaved forests, there
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was a clear seasonal pattern in RS chlje,¢ and LAI, while QUINCY LAI and chlje,s did not vary much throughout the annual
cycle. However, the comparison to in-sifu chlje,s demonstrated that the RS chlj.,s overestimates seasonality of chlje.s for
needle-leaved evergreen forests in cold environments, which is likely caused by the RS LAI biases (Heiskanen et al., 2012;
Wang et al., 2019) known to happen in these regions. Our analysis highlighted that while QUINCY was able to produce chljeas
magnitudes in the big picture, the representation of chljc,¢ in QUINCY calls for further improvement. In addition, the results
from machine learning-based regression indicated that QUINCY and RS chlj,¢+ have similar contributions from different
environmental drivers when the analysis was performed over all sites and PFTs.

We also tested an alternative leaf N allocation scheme, which resulted in more realistic ecophysiological behaviour. A
follow-up study with adjusting the parameterization to have a better match with observations, and a larger sample of sites
would provide valuable insights into the benefits of using the alternative N allocation scheme.

Our results reveal that adding chlje,¢ to the model evaluation provides additional information on photosynthetic processes
and leaf N distribution compared to using LAI alone. While LAI provides information about seasonality, information based on
chljcor complements this by enabling us to address the N status of the leaves and identify the main drivers of the chlje,¢ content.
In this paper, we have demonstrated the applicability of using remotely sensed chlj,¢ as an evaluation point for TBMs. Our

study highlights the potential of the use of RS chlj.,¢ as a model evaluation tool for analysing the C and N cycles.

Code and data availability. The QUINCY model codes are available under a GPL v3 license. The scientific code of QUINCY relies on
software infrastructure from the MPI-ESM environment, which is subject to the MPI-M License Agreement in its most recent form (https:
/Iwww.bgc-jena.mpg.de/en/bsi/projects/quincy/software), last access: 3 June, 2025). The source code is available online https://doi.org/10.
17871/quincy-model-2019, release 76b2549 (last access: 3 June, 2025), but access is limited to registered users. Readers interested in
running the model should request a username and password via the Git repository. Model users are strongly encouraged to follow the fair-use
policy (https://www.bgc-jena.mpg.de/en/bsi/projects/quincy/software, last access: 3 June, 2025). The QUINCY simulated data used in this
study are available at https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen et al., 2025) (Last access: 6
October, 2025). The forcing data to run the QUINCY model are stored in the model repository.

The global drought monitoring SPEI data is available in https://global-drought-crops.csic.es/#map_name=all_spei_0.5#map_position=
2211 (Last access 3 June, 2025).

The post-processed RS chliear (Croft et al., 2020) for the PLUMBER?2 and GLOBAL sites is available at
https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen et al., 2025) (Last access: 6 October, 2025).

The Sodankylé chlieas in-situ measurement data is available in https://zenodo.org/records/17192030 (Peltoniemi et al., 2025) (Last access:
24 September, 2025).

The Sodankyld fAPAR measurement data is available at https://doi.org/10.57707/fmi-b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Mi-
inalainen et al., 2025) (Last access: 6 October, 2025).

The Sentinel3 RS chliear can be retrieved using the scripts available from here: https:/github.com/psreyes/S3_TOA_GPR_1.git (Last
access: 3 June, 2025)
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