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Abstract. High ice water content (HIWC) conditions are a
concern for aviation as the ingestion of ice particles in the jet
engines can induce ice crystal icing (ICI), which results in
performance loss and damage. To constantly monitor these
conditions, retrievals for the detection of ICI were recently
developed based on geostationary satellite imagery, but their
calibration is limited to targeted flight campaigns or scattered
samplings from ICI events databases. In this work, we close
this gap, using exclusively remote sensing data to develop
10 and assess a new retrieval for potential ICI conditions.
Cloud IWC measurements are provided from the synergy of
radar and lidar (DARDAR) on board the polar-orbiting satel-
lites CloudSat and CALIPSO. HIWC conditions (IWC > 0.5
g m~?) at typical cruise altitudes are used as the proxy for ar-
15 eas with potential ICI formation. The HIWC conditions pre-
dictors are taken from a combination of observations and re-
trievals of the geostationary satellite Meteosat Second Gen-
eration (MSG). A random forest is trained and tested based
on the collocated dataset of active and passive measurements
20 during the summer months of 2013 and 2015, covering the
European domain. The input predictors are the brightness
temperature difference between the MSG channels at 6.2 and
10.8 um wavelengths, the visible channel at 0.6 um wave-
length, the cloud optical thickness at 0.6 um wavelength,
s and four convection metrics related to the distance to the
closest convective cell, area extent of the convective cells,
and convection density in the pixel surroundings. Over Eu-
rope, 83 % of HIWC conditions measured in the DARDAR
dataset are correctly detected. The associated false alarm rate
2018 51 %. The retrieval is further tested with the ICI events
database reported by Lufthansa. Four out of seven events

3

are correctly detected. In conclusion, the retrieval achieves
performances comparable to previously developed retrievals.
An operational application would enable aircraft rerouting
around areas with high ICI probability.

1 Introduction

Ice Crystal Icing (ICI) is a phenomenon that aircraft may
encounter when flying through cloudy regions with high ice
crystal concentrations. These regions are mostly found close
to deep convection, in particular within tropical mesoscale
convective systems (MCSs). In such systems, pilots can eas-
ily avoid strong updrafts, as onboard radars can detect em-
bedded precipitation based on its high reflectivity signal,
or available satellite-based nowcasting of severe convection
(NCS-A, Miiller et al., 2022) can issue early warnings. How-
ever, regions outside the main updraft may not be affected
by nowcasting warnings and they can still contain high ice
concentrations despite having little to no radar reflectivity
due to the presence of non-precipitating ice particles (Gayet
et al., 2012); this is where ICI events can occur because ice
particles can build up inside the engine and lead to perfor-
mance loss and damage (Grzych, 2010, 2015; Bravin et al.,
2015; Haggerty et al., 2019), or they can clog the pitot tube
which in turns result into a wrongful transmission of infor-
mation to the autoflight system; this latter occurrence has
caused two fatal accidents in recent years (S. Ayra et al.,
2020). Because those failures can happen in high ice concen-
tration regions, on-board sensor anomalies, as for example
the total air temperature (TAT) anomalies, are often used as
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precursors for engine failures (Haggerty, 2016; Rodriguez-
Sanz et al., 2018). In contrast with convection patterns, no
clear diurnal trends are found globally; however, a seasonal
correlation is observed between local convective active sea-
sons and ICI events (Bravin et al., 2015).

High ice water content (HIWC) conditions are often used as
a proxy for potential ICI occurrence. For these conditions, a
threshold ranging between 0.5 and 1.0 g m—3 is chosen in
earlier studies, although a standard value is still under debate
because exposure times and engine types might also affect
ICI occurrence (de Laat et al., 2017; Yost et al., 2018; Hag-
gerty et al., 2019, 2020; Bedka et al., 2020).

Aircraft manufacturers and airlines have collected ICI events
in databases to analyze the importance of the phenomenon.
Bravin et al. (2015) present a Boeing database that included
162 events over 12 years. de Laat et al. (2017) construct a
database from Airbus containing 59 events, without specify-
ing their time frame. Here, a collection of 100 events from
Lufthansa flights during 2016 is considered (Sect. 2.4) to an-
alyze a subset of ICI events as case studies (Sect. 4.2). The
worldwide number of ICI events and their impact on engine
performance highlights the relevance of the issue to air traffic
safety.

The importance of this problem led to the execution of flight
campaigns to measure in situ cloud microphysical properties
during such events. A combination of specifically designed
probes, sensors, and radar instruments was deployed to mea-
sure high ice concentrations, particle size distributions, and
cloud vertical profiles, respectively. These campaigns are:

— the HAIC-HIWC flight campaign, Darwin, Australia
2014, where HAIC stands for "high altitude ice crystal";

— the HAIC-HIWC II flight campaign, Cayenne, French-
Guiana 2015;

— the HAIC-RADAR flight campaign, Fort Lauderdale,
Florida 2015;

— the HAIC-RADAR II flight campaign, Fort Lauderdale,
Florida 2018.

The problem’s relevance and the availability of new in
situ measurements triggered activities in the research area of
HIWC conditions detection products from satellites. Indeed,
the following retrievals were developed:

— Grzych et al. (2015) develop a 3D HIWC mask ex-
ploiting infrared (IR) channels from geostationary satel-
lite imagery combined with numerical weather pre-
diction (NWP) wind fields at different heights and
the tropopause level (ECMWEF-ERAS, Hersbach et al.,
2020). The algorithm is tested with the HAIC-HIWC
flight campaign case studies, which are used as ground
truth. While a clear correlation between the mask and
the in situ measured HIWC conditions is found, the al-
gorithm tends to overestimate the areas affected by this
phenomenon, but no performance metrics are reported;

— de Laat et al. (2017) approach the problem by manu-
ally setting thresholds on retrieved cloud microphysi-
cal variables from geostationary satellite imagery. These
thresholds are calibrated using case studies in the Air-
bus dataset and verified with the synergistic space-borne
lidar-radar dataset (DARDAR), derived from active re-
mote sensing measurements on polar-orbiting satel-
lites that include, among others, IWC. The algorithm
achieves a probability of detection (POD) of 0.59 but
with an associated false alarm rate (FAR) of 0.52;

— Yost et al. (2018) use a combination of geostationary
satellite imagery and retrieved cloud optical properties.
The considered input variables are associated with a
corresponding value of IWC according to a statistical
fit performed by collocating the satellite data with flight
campaign measurements. This information is translated
into a HIWC probability using fuzzy logic. The algo-
rithm is verified with the HAIC-HIWC, HAIC-HIWC
II, and HIWC-RADAR flight campaigns, achieving a
POD of 0.75 and a FAR of 0.35 during daytime. Re-
ported nighttime performances are inferior (POD: 0.62,
FAR: 0.35) because of the lack of cloud optical proper-
ties;

— Haggerty et al. (2020) integrate a multitude of data
sources, like satellites, on-ground radar, and NWP data.
Particle swarm optimization is used to select a subset
of variables of interest, which are then combined via
fuzzy logic to produce the HIWC probability. The re-
trieval is verified with the HAIC-HIWC, HAIC-HIWC
II, and HIWC-RADAR 1I flight campaigns, achieving a
POD of 0.86 and a FAR of 0.51.

When training potential ICI detection retrievals, a significant
amount of in situ HIWC measurements should be considered
for statistical significance. Dedicated research flight cam-
paigns are often geographically limited, and they specifically
target HIWC conditions. This may introduce a bias when ex-
trapolating from a local to a global context (Haggerty et al.,
2020).

While in situ HIWC measurements are the best data to as-
sess potential ICI conditions in convective clouds, alternative
approaches exploiting remote sensing measurements can be
implemented if one wants to increase the training samples.
For operational monitoring, geostationary satellites are used
due to their wide field of view and high temporal resolution.
Polar-orbiting satellites’ active observations cannot be di-
rectly applied in operational scenarios because of their small
field of view and low repetition time. This work demon-
strates the feasibility of a detection method for potential ICI
from geostationary satellite observations based on machine
learning techniques and trained with the DARDAR dataset
as ground truth.

The paper contains a description of the combination of data
used to train the ICI detection retrieval in Sect. 2. Next, we
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describe how the machine learning techniques are applied
for the ICI detection task in Sect. 3. In Sect. 4, we present
the results validated with active remote sensing data and
Lufthansa’s ICI database. Finally, in Sect. 5 we summarize
the results on the retrieval’s performance and discuss its main
limitations.

2 Datasets

The ICI retrieval developed in this study relies on physical
quantities measured and retrieved by passive instruments on
board geostationary satellites, called "predictors" hereafter.
The geostationary satellite and the corresponding retrievals
employed are presented in Sect. 2.1. The DARDAR dataset
is presented in Sect. 2.2 because this contained our ground
truth data for IWC measurements of cloud profiles. Lastly, it
is important to establish the spatial and temporal distribution
of selected in-service ICI events, analyzed in Sect. 2.4.

2.1 MSG and MSG-based retrievals

The predictors’ source for this work is the geostationary
satellite Meteosat Second Generation (MSG) because it guar-
antees a continuous spatial coverage of Europe. MSG is
equipped with the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) that measures reflectance and radiance in
the visible and infrared range, thanks to its 11 narrow-band
channels and one high-resolution visible (HRV) broadband
channel. SEVIRI provides a 3712 x 3712 pixels image of
the Earth disk with a 3 km x 3 km resolution at the nadir.
The temporal resolution is 15 minutes, with a rapid scan ser-
vice (RSS) available for a subset of the northern hemisphere,
where images are produced every 5 minutes (Schmetz et al.,
2002). Besides SEVIRI channels, we also use ice cloud prop-
erties retrievals based on SEVIRI. The considered retrievals
for this study are developed in-house, because of our exper-
tise in their strengths and limitations and because of their
availability to us. Nevertheless, in one example we have ap-
plied our algorithm using alternative products as input: op-
tical thickness from EUMETSAT and convective cloud in-
formation from TOOCAN. This is demonstrated in Sect. 4.4.
The ice cloud properties are used as predictors for our ICI
retrieval, so the corresponding geostationary-based retrievals
are briefly discussed below.

2.1.1 CGiPS

CiPS (Cirrus Properties from SEVIRI), developed and char-
acterized by Strandgren et al. (2017a, 2017b), detects thin
cirrus clouds from MSG and determines ice optical thick-
ness, ice water path, and cloud top height. The detec-
tion is based on Artificial Neural Networks trained with
CALIPSO lidar data as ground truth. The training and val-
idation datasets cover the entire SEVIRI disc and the period
between 2007 to 2013, containing close to 50 million data

points. The lidar signal experiences strong attenuation when
interacting with clouds; therefore, it is considered saturated
and thus unreliable whenever there is no backscattering from
the surface. This limited CiPS to thin cirrus cloud detection
with an optical thickness of approximately below 3. When
validated against CALIPSO, CiPS detects correctly 95 % of
all cirrus clouds with optical thickness of 1.0, while for thin-
ner cirrus clouds with optical thickness of 0.1, the proportion
of detected cirrus over all cirrus is 71 %. The best optical
thickness estimation is obtained in the range between 0.35
and 1.7 with a deviation of less than 50 % from CALIPSO’s
measurements. The detection exploits SEVIRI thermal chan-
nels, regional maximum and averaged brightness tempera-
tures in the infrared and water vapor channels, and surface
skin temperatures from NWP global reanalysis (Hersbach
et al., 2020).

2.1.2 APICS

APICS (Algorithm for the Physical Interpretation of Clouds
with SEVIRI Bugliaro et al., 2011) discriminates cloud phase
and microphysical properties from MSG. In particular, cloud
optical thickness and effective radius (ranging from 5 to 25
pm for water clouds and from 6 to 84 pm for ice clouds)
are retrieved using a look-up table approach based on radia-
tive transfer calculations, which exploits the visible channel
at 0.6 um wavelength, and the near-infrared channel at 1.6
pm.

CiPS and APICS thus analyze similar cloud optical and mi-
crophysical characteristics, but they perform best in different
situations. CiPS is better suited for thin cirrus clouds analy-
sis, both during day and nighttime. APICS has a wider scope,
covering both ice and water clouds of any thickness, but it
is limited to daytime due to its rule-based approach on vis-
ible and near-infrared channels. Both retrievals are used in
this study, because they may provide candidate precursors of
high ice water content conditions. The suitability of these re-
trievals for this task has been discussed in Sect. 3.2

2.1.3 Cb-TRAM

Cb-TRAM (Zinner et al., 2008; 2013) enables the detection
and tracking of convective cells from geostationary satellite
imagery. It relies on the HRV, infrared 10.8 pm, and wa-
ter vapor window 6.2 pum channels. Cloud motion and de-
velopment can be detected through the disparities between
two consecutive satellite images. The algorithm can also dis-
criminate different convection development stages: "Stage 1"
denotes convection initiation, "Stage 2" rapid vertical devel-
opment through cloud tops cooling, and "Stage 3" indicates
mature convective cells.
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Figure 1. Panel a) mapping from the DARDAR vertically-resolved IWC information to the HIWC flag associated with the geostationary
grid pixel. Panel b) SEVIRI brightness temperature at 10.8 m wavelength with the DARDAR trajectory associated with panel a).

2.2 DARDAR
2.2.1 DARDAR description

The DARDAR-CLOUD products (Delano€, 2023) devel-
oped by Delanoé€ and Hogan (2008, 2010) exploit the syn-
ergy of space-borne data from radar and lidar of the A-
train satellite constellation to retrieve ice cloud properties.
The A-Train constellation is a group of satellites that use
the sun-synchronous orbit at 705 km altitude. CloudSat was
equipped with a radar operating in the 94 GHz band, whose
aim was to characterize cloud vertical profiles of cloud wa-
ter and ice contents (Stephens et al., 2002). The lidar on
board CALIPSO operated at 532 and 1064 nm wavelengths.
CALIPSO provided cloud characterization as a function of
height and water and ice content (Winker et al., 2003). These
satellites were launched on April 28" 2006 (Delanoé and
Hogan, 2010).

The DARDAR-CLOUD products exploit the different sen-
sitivities of the instruments in a synergistic approach. The
radar is less sensitive to small particles, but it has a higher
penetration capability within thick clouds; the lidar is more

sensitive to optically thin clouds, but it is affected by rapid
attenuation, while the infrared radiometer can only estimate
bulk cloud properties (Delanoé and Hogan, 2010). For this
reason, IWC, effective radius, and particle size distributions
are retrieved with a variational method that efficiently com-
bines radar and lidar measurements (Delanoé and Hogan,
2008). The DARDAR products are collocated to the Cloud-
Sat horizontal resolution of 1.4 km (Stephens et al., 2002)
and CALIPSO vertical resolution of 60 m (Delanoé and
Hogan, 2010).

2.3 DARDAR-MSG collocation and ICI proxy selection

For our ICI retrieval, we consider DARDAR measurements
as ground truth. Therefore, in the first step, we need to
collocate the SEVIRI and DARDAR measurements. In the
following, we refer to "DARDAR profile" or simply "profile"
as the vertical cross-section of clouds as retrieved from the
DARDAR dataset. This corresponds to the atmospheric
column encompassed in the field of view of one radar-lidar
pixel. Instead, we refer to the "DARDAR trajectory" as the
DARDAR footprint on the surface in terms of longitude/lati-
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tude coordinates.

The DARDAR trajectories have a finer along-track res-
olution than the geostationary grid. MSG and DARDAR
data are combined following the approach described by
Mayer et al. (2023). Satellite observations are collocated
by exploiting longitude, latitude, cloud top height, and
observation times. Cloud top height allows us to correct the
parallax effect arising from the different observation geome-
try of geostationary and polar-orbiting satellites. DARDAR
profiles are coarsened to the MSG grid by averaging all
profiles within an MSG pixel at each DARDAR height level.
Then, in each averaged profile, we check for HIWC, i.e.,
IWC >05¢g m~3, in an altitude range that is relevant for
air traffic. We consider only cruise levels between 9000
m and 13000 m (defined in Sect. 2.4). Figure 1 illustrates
the mapping process. Panel a) showcases the DARDAR
IWC profiles coarsened to the MSG grid along the satellite
track. HIWC areas are represented with the blue shading.
If the maximum IWC value within the cruise levels in the
DARDAR IWC profile exceeds the HIWC threshold, the
HIWC flag is assigned to the corresponding pixel. Panel
b) depicts the brightness temperature from SEVIRI at
10.8 um with the corresponding DARDAR trajectory with
its longitude/latitude coordinates, the maximum IWC values
for each pixel, and the HIWC flag, if applicable. The HIWC
flag was used as the target variable to train the machine
learning algorithm (Sect. 3).

We consider June, July, August, and September 2013 and
June, July, and August 2015. Summer months were selected
because of the seasonal convective activity peak in Europe.
Years 2013 and 2015 are selected because they lie within the
time window where DARDAR and a single MSG platform
(MSG-3) overlap (from 2013 to 2017) to avoid differences
that may arise due to different instrument calibrations
(Strandgren et al., 2017a; Mayer et al., 2023; Piontek et al.,
2023). The collocated dataset results in 165139 collocations,
889 of them flagged as HIWC pixels (see Table 1).

2.3.1 Convection-related metrics from Cb-TRAM

DARDAR trajectories seldom overlap with convective cells
as detected by Cb-TRAM. Therefore, additional convection-
related metrics are used. The time spent by an aircraft within
a HIWC region seems to play a role in the onset of ICI events
(Bravin et al., 2015), thus, information about the areal extent
of convective cells may be useful during the learning process.
To this end, convection-related variables (shown in Fig. 2)
are derived from the Cb-TRAM scene:

— distance from the trajectory point to the closest convec-
tive cell;

— area size of the closest convective cell, in terms of pix-
els and km?. Since organized convective systems, such
as MCSs, are defined as cumulonimbus clouds able to

DARDAR trajectory and metrics related to convection
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Figure 2. Demonstration of the convection-related variables inte-
grated in the DARDAR dataset. The DARDAR trajectory is color-
coded according to the closest convective cell detected. For each
color portion in the trajectory, the closest pixel to the respective
closest convective cell is indicated by the starting points of the ar-
rows. The distance d3 is displayed along the arrow. p3 indicates the
areal extent in terms of pixels of the convective cell with the cor-
responding color. The complete list of convection-related metrics
with their definitions is presented in Table 2.

generate contiguous precipitation areas in the order of
100 km (Markowski and Richardson, 2010), this infor-
mation is useful to assess whether detected cells belong
to such organized systems, or if they are associated with
single and multi-cell convection, that are generally char-
acterized by a smaller area extent;

— number of convective cells within a 100 km radius. This
metric contains the density of convective clouds in the
surrounding area, which can be associated with a higher
chance of intercepting anvil cirrus;

— pixels within a radius of 10 km, 50 km, and 100 km
belong to detected convective cells. This gathers infor-
mation on cell extent and convection density in the area
close to the trajectory point.

The full list of convection-related metrics with their defini-
tions is presented in Table 2.

2.4 Lufthansa ICI database

The Lufthansa ICI database comprises 100 pilot-reported ICI
events selected manually based on in situ measured total air
temperature anomalies (Kalinka et al., 2023). Figure 3 dis-
plays the database’s geographical distribution. The database
is also important to get an indication of the seasonal occur-
rence of these events, with a special focus devoted to the
European continent. We focused on this region because the
products that we have used as high ice water content predic-
tors are limited to the upper part of the SEVIRI HRV channel,
which remains still over Europe and North Africa. The ICI
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ICI events, labelled by season
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Figure 3. Locations of the Lufthansa ICI events collected in 2016,
color-coded according to the season they were recorded.

FAA FAR 14 Part 33 Appendix D envelope
] FAA envelope

e ICl events world
.
-10

ICI events Europe
-20 \

N\

—40 —

—50 .. :'E\

Ambient temperature [°C]

—-60 .

10000 20000 30000

Altitude [ft]

40000

Figure 4. FAA 14 CFR Part 33 Appendix D (Federal Aviation Ad-
ministration, Department of Transportation, 2023) standard enve-
lope encloses typical air temperature and altitudes found for ICI
conditions. The points denote the temperature and altitude associ-
ated with the events in the Lufthansa ICI database.

events distribution agrees with expectations. The majority
of them occurred in the northern hemisphere summer (JJA).
In Europe, two events occurred in autumn (SON) and two
in spring (MAM). Therefore, we focus on processing DAR-
DAR trajectories during the summer months to maximize the
chance of sampling HIWC conditions in Europe.

In Fig. 4, we present the ICI events related to the standard
envelope FAA 14 CFR Part 33 Appendix D (Federal Aviation
Administration, Department of Transportation, 2023), which
10 depicts where ICI events occur in terms of altitude versus am-

bient temperature. Most of the events collected by Lufthansa

o

fall within the specified boundaries, except for three cases.
88% events occur between 9000 m (29527 ft) and 13000 m
(42650 ft). This altitude band, called "cruise levels" hereafter,
indicates the portion of the troposphere that is considered
when sampling IWC in the cloud profile from active satellite
instruments. Furthermore, while testing for multiple cruise
level limits (not shown), we observed that the correct detec-
tion of HIWC conditions was more likely when these condi-
tions occur at higher altitudes, as observed also by de Laat
et al. (2017). We speculate that this is due to passive sen-
sors measuring emitted and reflected radiation in proximity
to cloud tops, thus inherently limiting the in-cloud HIWC de-
tection.

3 ICIretrieval

The core idea behind the ICI retrieval is to combine a
broad range of predictors measured by passive instruments
on board geostationary satellites (Sect. 2.1) to detect poten-
tial ICI events, determined with DARDAR measurements of
HIWC conditions. The retrieval, based on a random forest
approach, estimates the probability of HIWC conditions. By
setting a threshold on the probability of HIWC conditions,
one can convert this information to the HIWC binary flag to
use it as a deterministic target output variable for the ICI re-
trieval training and validation. Finally, the ICI retrieval can
be applied to geostationary imagery to obtain a probability
mask of HIWC conditions.

Random forest classifiers are an ensemble method based on
single decision trees. Decision trees divide recursively the
predictor space into distinct non-overlapping regions, which
are the tree’s nodes. The split is aimed at minimizing the out-
put variance within each region. The output probability to
predict a certain class is the proportion of that class found in
the training dataset for the end nodes, or leaves. The main
disadvantage of single trees is that they are very sensitive
to the training dataset. Hence, the need for random forests,
which reduce the variance by averaging a set of single trees.
Because random forests have many hyperparameters that can
be tuned by the user, such as the number of trees, the tree
depth, and the number of samples allowed in the leaves, it is
often necessary to determine them through cross-validation.
Cross-validation is a method to estimate the statistical learn-
ing method’s test error by holding out a subset of the origi-
nal dataset. K-fold cross-validation consists of dividing the
dataset into k groups, or folds, of equal size. One fold is
treated as the validation set, while the others are used for
training. The procedure is repeated for all the k folds, each
time considering a different fold for validation. The dataset
where the k-fold cross-validation is performed is split into
training and validation sets. This step is used to tune the hy-
perparameters, to avoid overfitting and unnecessarily com-
plex models. The cross-validation dataset differs from the
test set of unseen observations. This is used to evaluate the
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actual performance of the model with the chosen hyperpa-
rameters.

3.1 Dataset imbalance

Many industry and science-related problems are inherently
characterized by data imbalance. Imbalanced datasets in clas-
sification problems are those datasets that have output quanti-
ties skewed toward a specific class. In the case of binary clas-
sification problems, the majority class is over-represented
compared to the minority class. (Chawla et al., 2004).

The classification of imbalanced datasets significantly chal-
lenges the algorithmic approach for several reasons. First,
one often wants to predict the minority class. However, the
imbalance exposes the classifier to the majority class more
frequently during training. For this reason, the minority class
can be confused with noise and can be challenging to pre-
dict in areas of the data space where both classes overlap
(Haixiang et al., 2017). Second, the use of conventional per-
formance metrics, such as accuracy, may reflect the structure
of the dataset rather than the classifier’s predictive skill. Per-
formance metrics more suitable for imbalanced problems are
the Receiver Operating Characteristics (ROC) curve (Chawla
et al., 2004) or the Critical Success Index (CSI) (e.g. de Laat
et al., 2017). When correcting for the majority and minority
class proportion, the ratio between the minority and majority
class can be set freely depending on the application, and it
is not necessary to exactly balance the two classes (Haixiang
etal., 2017).

Table 1 showcases the imbalance between HIWC and no-
HIWC sampled pixels by DARDAR. Given the large num-
ber of no-HIWC pixels, we undersample the original DAR-
DAR dataset. This has a two-fold effect: first, undersampling
a large training dataset is more computationally efficient
(Chawla et al., 2004). Second, carefully choosing the under-
sampling technique reduces the correlation between samples.
Indeed, samples of the same DARDAR trajectory correlate
in time and space. Correlated samples may induce a bias in
the training and validation procedure. This problem is also
mentioned by Haggerty et al. (2020) in the case of aircraft
measurements.

The undersampling is performed as follows:

— for the DARDAR trajectories with at least one HIWC
sample, all HIWC samples belonging to that trajectory
are taken, maintaining a buffer distance of 10 pixels if
multiple consecutive pixels are flagged with HIWC;

— for DARDAR trajectories with no HIWC samples, pix-
els are sampled randomly among binned ranges of
brightness temperature in the 10.8 pm channel, cloud
optical thickness, and distance to the closest convective
cells to cover a variety of HIWC-free conditions suffi-
ciently.

Undersampling produces a new proportion between the
classes depicted in Table 1. Although still imbalanced, a

Table 1. Proportion of HIWC events versus no-HIWC events for the
original and undersampled dataset. The MSG slot is a single MSG
scene containing one DARDAR trajectory. The MSG slot is flagged
with HIWC if the corresponding DARDAR trajectory contains at
least one HIWC sample; otherwise, it is flagged as no-HIWC. The
undersampled dataset excludes five DARDAR trajectories with at
least one HIWC pixel that are left out to test the model.

#pixels #MSGslots % pixels
Original HIWC 889 83 0.54
dataset No-HIWC | 165139 418 99.46
Undersampled HIWC 160 78 4.5
dataset No-HIWC 3424 418 95.5
Test HIWC 71 5 4.6
dataset No-HIWC 1477 0 95.4

more aggressive undersampling was tested but led to under-
mining the subsequent model learning due to a too strong
reduction of the variability of the majority class and, conse-
quently, its representativeness. Finally, the test dataset con-
tains five not undersampled DARDAR trajectories with at
least one HIWC pixel.

3.2 Feature selection and random forest algorithm

The full list of input features considered for the potential ICI
detection from SEVIRI is shown in Table 2.

The high-dimensional dataset produced when considering
all the input predictors induces the so-called "curse of dimen-
sionality" (James et al., 2021). In such cases, irrelevant or
redundant predictors may act as noise and may lead to ineffi-
cient and inaccurate learning (Chawla et al., 2004). Further-
more, a high number of features can affect the variance-bias
trade-off characterizing statistical learning methods: having a
large set of features, even if relevant, may lead to an increase
of variance that eventually outweighs the bias reduction pro-
duced by a more sophisticated model (James et al., 2021).
In our case, many features considered for the learning pro-
cess are correlated by design, e.g., the variables originating
from the same geostationary retrieval or the area of the con-
vective cells expressed in km? and in the number of pixels.
These redundant features may act as noisy features and exac-
erbate the curse of dimensionality. Therefore, a feature selec-
tion approach is chosen to reduce the dimensionality of the
input data. This approach selects a subset of input features
that optimizes the classifier’s performance.

First, to perform the feature selection, the input features’ cor-
relation coefficient is determined for all the possible permu-
tations of input predictor couples. This allows building a cor-
relation matrix converted into a correlation-based distance
(Ward’s distance linkage score on the vertical axis of Fig. 5),
which is considered a dissimilarity measure between the pre-
dictors. This distance creates a fictitious space within which
input predictors are represented as data points. Then, the in-
put feature subsets are obtained using hierarchical cluster-
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Table 2. Candidate input predictors for the potential ICI detection. Chosen input predictors for the random forest are highlighted in italics.

SEVIRI CiPS/APICS
VIS006 Reflectivity for channel 0.6 um wavelength cth_cips Cloud top height from CiPS
.. L Ice clouds optical
VIS008 Reflectivity for channel 0.8 ym wavelength iot_cips thickness from CiPS
IR_016 Reflectivity for channel 1.6 ym wavelength iwp_cips Ice water path from CiPS
. . Ice clouds optical
IR_039 Brightness temperature for channel 3.9 ;um wavelength ictau thickness from APICS
. . Ice clouds effective
WV_062 Brightness temperature for channel 6.2 ;sm wavelength icref radius from APICS
WV_073 Brightness temperature for channel 7.3 ;sm wavelength sza Solar zenith angle from APICS
. . Water cloud optical
IR_087 Brightness temperature for channel 8.7 ym wavelength | wctau_mie thickness from APICS
. . Water cloud optical
IR_097 Brightness temperature for channel 9.7 um wavelength | wcreff_mie thickness from APICS
IR_108 Brightness temperature for channel 10.8 ;m wavelength | phase_apics Cloud phase from APICS
IR_120 Brightness temperature for channel 12.0 ym wavelength
IR_134 Brightness temperature for channel 13.4 ym wavelength
Cb-TRAM stage 2 Cb-TRAM stage 3
Cbh2 Cb-TRAM stage 2 Cb3 Cb-TRAM stage 3
D2 Distance to the closest convective cell D 3 Distance to the closest convective cell
- of Cb-TRAM stage 2 - of Cb-TRAM stage 3
A2 Area size (km?) of the closest A3 Area size (km?) of the closest
- convective cell of Cb-TRAM stage 2 B convective cell of Cb-TRAM stage 3
) Area size (pixels) of the closest 3 Area size (pixels) of the closest
P convective cell of Cb-TRAM stage 2 P convective cell of Cb-TRAM stage 3
Number of pixels within convective cells Number of pixels within convective cells
Cpl0_2 as detected by Cb-TRAM stage 2 in Cpl0_3 as detected by Cb-TRAM stage 3 in
aradius of 10 km a radius of 10 km
NC10 2 Number of convective cells as detected NC10 3 Number of convective cells as detected
- by Cb-TRAM stage 2 in a radius of 10 km - by Cb-TRAM stage 3 in a radius of 10 km
Number of pixels within convective cells Number of pixels within convective cells
Cp50_2 as detected by Cb-TRAM stage 2 in Cp50_3 as detected by Cb-TRAM stage 3 in
a radius of 50 km a radius of 50 km
NC50 2 Number of convective cells as detected NC50 3 Number of convective cells as detected
- by Cb-TRAM stage 2 in a radius of 50 km - by Cb-TRAM stage 3 in a radius of 50 km
Number of pixels within convective cells Number of pixels within convective cells
Cp100_2 as detected by Cb-TRAM stage 2 in Cpl00_3 as detected by Cb-TRAM stage 3 in
aradius of 100 km a radius of 100 km
NC100 2 Number of convecti\./e cells as detected NC100 3 Number of convectiye cells as detected
- by Cb-TRAM stage 2 in a radius of 100 km - by Cb-TRAM stage 3 in a radius of 100 km
Features combinations
BTD_062_108 Brightness temperature difference between WV_062 and IR_108
BTD_062_073 Brightness temperature difference between WV_062 and WV_072
BTD_039_108 Brightness temperature difference between IR_039 and IR_108
RD_016_006 Reflectance difference between NIR_016 and VIS006
D _A-12 Ratio between distance and area of the closest convective cell from Cb-TRAM stage 2
D_A-1_3 Ratio between distance and area of the closest convective cell from Cb-TRAM stage 3
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ing, which is a bottom-up approach that assigns, as the first
step, one cluster to each sample in the dataset’s space. In our
case, the samples are the input predictors. Eventually, it pro-
gressively identifies affine clusters and merges them until all
sampled points end up in a single cluster, corresponding to
the full dataset (James et al., 2021).
The dendrogram depicts the bottom-up clustering, starting
with a cluster containing all the input features at the top and
then progressively splitting into multiple branches, each rep-
10 resenting one cluster. Feature selection can be implemented
by cutting the dendrogram at a certain level of the distance
score on the vertical axis. In our case, the cutting level
is initially determined through cross-validation to produce
16 clusters. The cutting level line crosses the dendrogram’s
15 branches multiple times. Features that can be reached from
the same cut point following the branches belong to the same
cluster. Features belonging to the same cluster are redundant
in the sense that they give access to similar information to
the statistical model through the learning process. Therefore,
one feature per cluster is selected to obtain a subset of fea-
tures suitable for learning with imbalanced data.
Furthermore, the permutation importance score allows the
estimation of the importance of the selected features by hi-
erarchical clustering. This evaluation requires setting a sta-
25 tistical model and a statistical performance metric that one
wishes to optimize, which, in our case, are a random forest
and the CSI, respectively. The method consists of shuffling
the values of each predictor in the dataset to produce a cor-
rupted dataset, which is fitted to the model chosen. The per-
2 formance score is then compared with the score of the orig-
inal dataset. The predictors may be correlated if the model
maintains an overall constant predictive skill, but no predic-
tor appears to be important according to the permutation im-
portance score estimation. In this case, applying the permu-
ss tation to one of them does not lead to a significant perfor-
mance decrease because the model can access the same in-
formation via the correlated feature. This behavior can be
seen in Fig. 6. In panel a), the initial choice of 16 input vari-
ables reveals that a few features are important according to
40 the permutation score achieved. This is denoted by the box-
plot collapsing into a single line, which indicates that all the
simulations carried out led to the same decrease in perfor-
mance score, thus producing no distributions. Few outliers
present for some variables, as for example D_A-1_2, D_A-
s 1_3, IR_016, and ictau, indicates that only a minority of sim-
ulations led to a change in performance score. In this case,
the model performs well during the training, which can be
an indication of correlated features. Shrinking to seven vari-
ables (panel b)) does not hinder the model’s performance,
but all input features become important. This further suggests
that panel a) contains correlated features. The input features
are selected manually based on the achieved permutation im-
portance score obtained in the cross-validation, commonly
used predictors in previous ICI detection retrievals, and the
ss physical knowledge of the ICI phenomenon. From the pre-
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Figure 5. Illustration of the dendrogram depicting the feature ex-
traction procedure through hierarchical clustering, based on the cor-
relation score among the considered input features. The more cor-
related the clusters, the shorter the vertical branch extent is. The
Ward’s distance linkage score represents the correlation-based dis-
tance between clusters in our dataset’s space. The black horizon-
tal line depicts the suggested level by cross-validation at which the
dendrogram should be cut to obtain an optimal number of clusters
from which input features can be selected. Different colors depict
the clusters obtained according to this cut level. The variables in
bold are selected for the final version of the model. The choice is
based on permutation importance estimation in Fig. 6.

dictors’ list in Table 2, BTD_062_108 is selected because it
is a proxy for updraft speeds (Bravin et al., 2015; Grzych
et al., 2015; Yost et al., 2018), VISO06 and ictau are cho-
sen for their ability to highlight optically thick and highly
reflective deep convective clouds, while the convection met-
rics Cpl00_3, D_A-1_3, Cp50_2, D_A-1_2 are selected to
account for convective cells density around each pixel and
how big and distant the convective cells are from each pixel
at different life-cycle stages. It must be noted that the VIS006
and ictau variable choices prevent the retrieval from working
in nighttime mode. The selected variables are denoted in ital-
ics in Table 2.

A random forest approach is selected to tackle this problem
because it is among the most popular approaches to deal with
imbalanced classification problems, guarantees interpretabil-
ity, and can handle large datasets (Haixiang et al., 2017). Fi-
nally, the 5-fold cross-validation procedure also led to the
random forest hyperparameters choice of 1000 trees inside
the forest, 5 minimum allowed samples that can be included
in each node at the end of the tree, and a probability threshold
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Permutation importance on the training dataset

a) b)
BTD_062_108 —L—
~ VIS006 o o BTD_062_108 —{ I~
D3 T
RD_016_006 oloo VIS006 oo [ H
Cp100_3 |
ggg D_A-1_3{oi— [}
Eg%g—g Cp100_3{ o} H[H
A2 )
Cp50_2 ictau H
D A12{ o
D A-13 ° D A-12 4‘ }—1
IR 0161 o - T
ictau{ ©°
cth_cips{ —} €p50_2 ‘ °
0.0 0.1 0.2 0.3 0.0 0.2 0.4

Decrease in CSl score Decrease in CSI score

Figure 6. The permutation importance of a variable represents the
decrease of the model’s performance score (CSI) achieved when
that variable is shuffled randomly with respect to the output target.
Panel a) shows the permutation importance of 16 input variables
achieved during training applied to four out of five folds in one in-
stance of cross-validation. Similarly, panel b) shows the permuta-
tion importance of the manually selected input features on an ex-
ample of a training instance during cross-validation. The box plots
depict the distribution obtained when shuffling the variable 50 times
randomly. In each box, the green line depicts the median of the dis-
tribution, the blue box depicts the interquartile range (IQR), delim-
ited by the 25th and 75th percentiles (first quartile, Q1, and third
quartile, Q3, respectively), and the whiskers spread to the last data
point within Q1 - 1.5 IQR and Q3 + 1.5 IQR. Any data point beyond
the whiskers is shown as an outlier with a white dot.

of 0.5 to convert from the probabilistic into the deterministic
forecast.

4 Retrieval application and validation

4.1 Retrieval performance test through DARDAR
profiles

3

The statistical metrics chosen to assess the retrieval’s perfor-
mance are well established in the atmospheric science liter-
ature (Wilks, 2019). Their definitions can be found in Sect.
Al.

10 The retrieval test dataset contains five randomly selected
DARDAR trajectories with at least one HIWC pixel. These
trajectories are left out of the training and cross-validation
procedure. In Fig. 7, we present an example of the DARDAR
trajectory used to test the potential ICI detection. Panel a)

15 shows the cloud’s IWC profile where one can see two areas
of HIWC conditions: the first, around 37°N, originating from
two adjacent deep clouds, and the second, in the proximity
of 47°N latitude, composed by a set of three vertically de-
veloped clouds that produce three nearby but distinct HIWC

20 areas. Clouds at 37° N are characterized by a notable vertical
extent of HIWC conditions with IWC reaching the maximum
value of 0.8 g m~3 within the cruise levels and by cloud tops
extending up to 10410 m. The clouds composing the system
at 47° N have more extended HIWC conditions. The central

25 cell is by far the most active in terms of HIWC, with a peak

IWC value of 1.1 g m~3 and the cloud top at 11940 m al-
titude. The corresponding MSG-based HIWC probability is
displayed in panel b). This is plotted only for icy cloud pixels
according to the CiPS mask and it is characterized by a sharp
transition from low to high HIWC probabilities. One can also
see that the clouds around 37° N have a lower HIWC prob-
ability when compared to clouds at 47°N, even though still
above the threshold of 0.5. This can be attributed to a rela-
tively higher density of stage 3 convective cells detected by
Cb-TRAM near the trajectory.

To assess the overall robustness of the presented approach,
the training and subsequent testing are repeated 100 times,
each time with another random selection of 5 DARDAR tra-
jectories as test data. The repeated tests generate the distri-
bution in the performance metrics shown in the box plots of
Fig. 8. The large variability may suggest the need for further
data, as the method seems very sensitive to the training and
test datasets used. The median values of POD = 0.83, FAR
=0.51, CSI = 0.45, and AUC = 0.61 are similar to previous
retrieval performances, depicted in Table 3. For our retrieval,
POD is the least spread metric with 75 % of the tests lying
above 0.79, denoting a high probability of detecting positive
events correctly. On the other hand, FAR spreads over a much
larger range, which is also reflected in the CSI and AUC vari-
ability. Focusing on the AUC, this metric lags behind when
compared to Yost et al. (2018) and Haggerty et al. (2020) re-
trievals. The model has been tested with HIWC = IWC >
1.0g-m~3. The original version is used, trained with samples
labeled as HIWC if IWC > 0.5g-m~2 and adapted with a
higher probability threshold of 0.7, to compensate the lower
occurrence of HIWC when those are defined with the higher
threshold of 1.0g- m 2. Table 3 shows that, in this case, FAR
is reduced significantly, at the expenses of a decreased POD.
CSI and AUC do not vary compared to the test settings con-
sistent with training settings.

Table 3. Performance metrics comparison of the random forest ICI
retrieval presented in this paper versus the previously developed
ICI retrievals. Although the training and verification techniques
differ, as well as the retrieval’s applicability, these results are re-
ported to place this work in the current research context. The met-
rics shown correspond to the median value of POD, FAR, CSI,
and AUC found in Fig. 8. Both HIWC = IWC > 0.5g -m™>
and HIWC =IWC > 1.0g-m™3 performance are referred to the
model trained as described in Sect. 3. The > 1.0g - m ™2 results in
a lower occurrence of HIWC, thus this version is adapted with a
HIWC probability threshold of 0.7. Yost et al. (2018) and Haggerty
et al. (2020) developed both daytime and nighttime retrievals, but
the metrics reported here refer to daytime only.

POD | FAR | CSI | AUC
(de Laat et al., 2017) 0.59 | 0.52 | 0.36 -
(Yost et al., 2018) 0.75 | 0.35 - 0.75
(Haggerty et al., 2020) 0.86 | 0.51 - 0.85
This paper (HIWC = IWC > 0.5g - m™3) | 0.83 | 0.51 | 045 | 0.61
This paper (HIWC = IWC >1.0g-m~%) | 0.71 | 0.40 | 044 | 0.61
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Figure 7. The HIWC conditions retrieval validation based on DARDAR trajectories. Panel a) shows the IWC cloud cross-section profile with
the associated HIWC flags assigned with the criteria described in Sect. 2. Panel b) depicts the corresponding HIWC probability predicted by
the random forest. Panel c) displays the DARDAR trajectory in the respective MSG image and the prediction of HIWC conditions converted

from the probabilistic prediction.

Performance metrics over different selections of training, validation, and test datasets.
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Figure 8. Performance metrics variability in the repeated training
and test procedure. The box plots represent the obtained perfor-
mance scores over 100 iterations. The main central box depicts the
interquartile range (IQR), which is the range between the 25th (first
quartile, Q1) and 75th percentiles (third quartile, Q3) of the distri-
bution. Whiskers are defined by the last data points lying within Q1
- 1.5IQR and Q3 + 1.5 IQR. Anything lying outside the whiskers is
considered an outlier.

The relatively low AUC in both test settings can be linked
to the sharp transition from low to high HIWC probability.
The sharp probability transition means that acceptable POD
can only be achieved if one allows a substantial FAR, sud-
denly leading the ROC curve to shift from below to above
the chance line and eventually producing a low AUC. This
sharp transition of predicted HIWC probability can also be
observed in Fig. 10, where the two-dimensional HIWC prob-
ability mask is shown.

To explain the high FAR incidence, one can observe Fig.
9. Focusing on the convective system between 33°N and
36°N latitude, HIWC conditions within the cruise levels are
present in the DARDAR dataset in the southern and north-
ernmost parts of the system. In contrast, the inner parts are
characterized by HIWC conditions only below the cruise lev-
els. However, the MSG-based HIWC probability stays above
the threshold throughout the horizontal extent of the cloud,
though with a small dip in the middle section. This is re-
flected in panel c), where HIWC conditions are predicted
for the entire cloud rather than just the two extremes, giv-
ing rise to a high FAR. de Laat et al. (2017) and Haggerty
et al. (2020) also observed a relatively high FAR. Haggerty
et al. (2020) concludes that most FAR pixels are associated
with HIWC conditions occurring at altitudes different than
the ones sampled by the aircraft. This is also the case for Fig.
9. However, in this instance, cruise levels are chosen accord-
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a) DARDAR profile 2015/08/08 12:00 UTC
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Figure 9. As in Fig. 7 for a different DARDAR trajectory example.

ing to the altitude at which ICI events occur in the Lufthansa
ICI database. Nonetheless, the best trade-off to retrieve cloud
properties remains challenging to find. Cloud properties vary
within the cloud structure, while passive sensors can only
detect cloud top characteristics or column-integrated quanti-
ties. The HIWC conditions detection presented is compared
with previously developed retrievals to put this work in the
current research context. However, these retrievals have dif-
ferent characteristics. Namely, this method differs by data
10 sources, input features, clouds’ microphysical characteris-
tics retrievals, and detection approaches. Furthermore, our
retrieval is tested and validated in the Europe domain, and
not globally as in e.g. de Laat et al. (2017).

o

4.2 Lufthansa case studies

15 The Lufthansa ICI database is presented in Sect. 2.4 and con-
tains 10 case studies in Europe out of the 100 cases available
globally. Three events are encountered at night, but night-
time scenes are discarded because of the absence of visible
channels and optical thickness data. ICI events are correctly
detected by the HIWC mask in four out of the seven remain-
ing daytime scenes.
The criterion for correct detection considers the last avail-
able aircraft position, labeled as ICI position, and whether
the predicted HIWC probability is larger than our threshold
25 of 0.5. This criterion is applied irrespective of the time dif-
ference between the aircraft measurements and the satellite
acquisition time, which could be up to 7 minutes and 30 sec-

2

=3

onds. The three scenes in Fig. 10 are a subset of the processed
scenes, selected according to the smallest time delta between
the aircraft measurement and the satellite acquisition time.
Appendix A contains the remaining Lufthansa case studies.
In Fig. 10, panels a) and c) have large areas of HIWC
high probability, often exceeding 0.7-0.8. The mask gener-
ally has a sharp transition from 0.5 to 0.7 HIWC probability
and seldom approaches 1.0 (a few small areas in panel c)).
The HIWC mask is almost completely absent in panel e),
with small patches of 0.5 HIWC probability around the Cb-
TRAM stage 3 convective cell seen in panel f). The HIWC bi-
nary mask shown in panels b), d), and f) is compared with the
detected Cb-TRAM convective cells and the ECMWF ERAS
reanalysis wind field at 300 hPa. The model data in panels b),
d), and f) have an hourly resolution; therefore, scenes b) and
f) have simultaneous satellite images and wind fields, while
for scene d), the wind field refers to 11 UTC.
The HIWC masks generally differ from the Cb-TRAM con-
vective cells and the ice optical thickness from APICS. The
HIWC masks often stay around detected convective cells
with high optical thickness and cold cloud tops, highlight-
ing the need for a dedicated HIWC detection product. In
particular, it is possible to observe that the masks propagate
downstream of the detected convective cells, even though the
wind is not used as an input feature. In panel b), the wind
field is relatively weak in correspondence with the biggest
HIWC mask patches. The HIWC mask tends to follow the
wind field for the convective cells between 45°N and 46.5°N
latitude, but this behavior is less evident for the big HIWC
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Figure 10. Panels a), ¢), and e) show the HIWC probability mask with the respective aircraft’s positions before and during the in-service ICI
events. The ICI event time is shown in the text box with its time delta compared to the actual satellite acquisition time. Panels b), d), and f)
show the respective HIWC binary masks, converted using the 0.5 HIWC probability threshold. The mask is combined with Cb-TRAM stage
3 convective cells and horizontal wind field at 300 hPa from ECMWF ERAS reanalysis data and ice cloud optical thickness from APICS.
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patch at 48°N latitude. Instead, panel d) depicts strong wind
fields and a large HIWC mask propagating downstream of
the main convective cores detected by Cb-TRAM.

From the correctly detected events, airplanes flew inside the
HIWC mask before the aircraft’s final location, where ICI
was reported. This might indicate that aircraft have to fly
within ICI conditions for some time to guarantee enough ex-
posure to such conditions for ice to accrete inside the en-
gines. This would also be consistent with one of the failed
detections presented in App. A, where the flight flew through
the HIWC mask before the final position that falls right out-
side the mask. For the failed detection in Fig. 10 panel e), we
speculate that the HIWC mask is missing due to the absence
of large convective cells in panel f). Although ICI events are
almost exclusively attributed to convection in the literature
(Grzych, 2010; Bravin et al., 2015), ICI events have also been
reported in different conditions, such as within extra-tropical
cyclones (Gayet et al., 2012). Panel f) could suggest that this
retrieval would fail when Cb-TRAM cannot detect deep con-
vective cells.

4.3 Nighttime performance

The retrieval is here tested during nighttime. In this scenario,
the random forest model does not have access to visible chan-
nel information and cloud optical thickness. Furthermore, it
has been trained exclusively with day-time samples. Never-
theless, it can access infrared channels and convection related
variables.

In night-time mode, we decided to use instrumental values
to fill the missing information required by the random forest
approach. In Fig. 11, the distribution in the training dataset of
VIS006 and ictau for HIWC and no-HIWC is shown. These
distributions allowed us to select a bias-free value with which
we filled the missing information in nighttime mode. In par-
ticular, this bias-free value is selected such that it favors nei-
ther HIWC prediction, nor non-HIWC, i.e. the instrumen-
tal value should be in a range where HIWC and no-HIWC
training samples distributions overlap. The values are set to
VIS006= 80% and ictau= 50.

The significance of this choice is shown in Fig. 12. The
mask in panel a), where we set VIS006= 0% and ictau= 0, is
absent because the HIWC probability never exceeds 0.5. In
panel b), the bias-free choice of VIS006= 80% and ictau= 50
leads to a smooth transition of HIWC probability bewteen
areas without detected HIWC and areas where HIWC is de-
tected. Panel c) displays instead a sharp transition to high
HIWC probabilities, as soon as this is detected by overcom-
ing the 0.5 probability threshold. We observe that the con-
stant instrumental values with which we fill missing informa-
tion modulate the HIWC probability mask significantly. The
choice made for panel b) is the best to achieve realistic re-
sults even with missing solar information. This demonstrates
the good performance of the model even during nighttime.

.: Machine learning retrieval for ice crystal icing detection
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Figure 11. a) VIS006 and d) ictau samples distributions in the train-
ing dataset, for HIWC (orange) and no-HIWC (blue). Negative val-
ues in both distributions arise because of the curve smoothing for
plot purposes. The real sample locations are visible in panels b),
and d).

4.4 Validation with in-situ measurements:
HAIC-HIWC II campaign

Finally, the algorithm was validated with a case study of the
HIWC-HAIC II flight campaign (Strapp, 2016). However,
Cb-TRAM is not available for the tropical regions covered
by this campaign (see Sect. 2.1.3. Therefore, to cover this
domain, alternative data are retrieved. Deep convective sys-
tems are provided by the TOOCAN database (Fiolleau and
Roca, 2013, 2019). To prove the adaptability of the method
to any equivalent product than the ones presented in the Sect.
2.1, cloud optical thickness was retrieved via the Optimal
Cloud Analysis data record (EUMETSAT, 2022). The afore-
mentioned data are displayed in Fig. 13.

Figure 14 shows the corresponding computed HIWC
mask. Although convection is widespread throughout the do-
main in panel b) of Fig. 13, the HIWC mask is relatively lim-
ited in extent in panel a) of Fig. 14. It features HIWC proba-
bilities higher than 0.9 for convective cells around 40°W and
9°N, and 40°W and 3°S, while HIWC probabilities closer to
the flight (52°W and 6°N) are relatively lower, peaking at
0.7. Panel b) shows a good agreement between the measured
HIWC and the HIWC probability mask. IWC > 0.5g-m ™3
sampled points mostly fall within the mask, whose values in-
crease together with the measured IWC. The retrieval shows
promising results even outside the domain where it was
trained, and using input data equivalent to the ones discussed

55

60

65

70

75



M. Arico et al.: Machine learning retrieval for ice crystal icing detection 15

2016/06/14 04:15 UTC. HIWC probability mask with Lufthansa ICI event
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Figure 12. ICI retrieval nighttime mode demonstration example for a Lufthansa ICI event. Panel a) shows the HIWC mask setting instru-
mental values that favor no-HIWC prediction (see Fig. 11). Panel b) depicts the HIWC mask with bias free instrumental values. Panel c)
shows the HIWC mask with instrumental values favoring HIWC predictions.
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HAIC-HIWC flight campaign scene.
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Figure 13. Satellite scene for the HAIC-HIWC II campaign case study. We considered flight 23, flying from French Guyana the 26" May
2015. Panel a) shows the SEVIRI visible channel at 0.6 m wavelength reflectivity. Panel b) depicts the cloud optical depth from Optimal
Cloud Analysis (EUMETSAT, 2022) and deep convective cells from the TOOCAN database (Fiolleau and Roca, 2019).
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2015/05/26 13:30 UTC
HIWC probability mask validation with HAIC-HIWC campaign flight.
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Figure 14. HTWC mask validation with flight 23 of the HAIC-HIWC II flight campaign. The flight crossed a HTIWC region IWC>0.5g-m %)
from 13:37 to 13:45 peaking at 13:41 with IWC=3.3g - m~3. HIWC measurements are depicted in blue shades, while no-HIWC are shown
in grey shades. Markers with red borders depict the flight position within the satellite scanning times. Flight waypoints are corrected for

parallax effect, shifted to the corresponding satellite grid coordinates.

in Fig. 2.1. Given the results obtained with this case study,
we speculate that only little calibration would be required to
adapt the retrieval to input parameters coming from different
data sources.

s 5 Conclusions & outlook

In this study, our goal is to assess the feasibility of a detection
retrieval for potential ICI conditions, based exclusively on re-
mote sensing data and a random forest approach as a machine
learning technique. A combination of passive remote sens-
10 ing measurements from geostationary satellites is used to de-
tect areas with HIWC conditions at passenger aircraft cruise
levels. These conditions are chosen as an indicator for po-
tential ICI formation. Cruise levels are considered because,
even if ICI events are possible during the ascent and descent
s of an aircraft, passive remote sensing platforms are more
sensitive to cloud tops and column-integrated quantities. For
the training phase, HIWC conditions are located from active
measurements of IWC from polar-orbiting satellites, i.e. the
DARDAR dataset, which is taken as ground truth. The results
20 obtained by testing this approach with DARDAR trajecto-
ries lead to median values of the performance metrics POD =
0.83, FAR =0.51, CSI = 0.45, and AUC = 0.61. This method
outperforms the approach presented by de Laat et al. (2017),
who validated their algorithm globally with DARDAR data,
25 and it achieved comparable results to Haggerty et al. (2020).
However, Haggerty et al. (2020) used multiple input sources,
such as ground-based weather radar and numerical weather

prediction, in addition to geostationary satellite images. In
this study, we used only the latter.

The validation of the retrieval is also supported by a database
of ICI case studies reported by Lufthansa during operational
conditions. The retrieval correctly detects four out of seven
events, assuming a correct detection whenever the aircraft’s
final position is within the HIWC mask. From the obser-
vation of the case study examples, the HIWC mask sur-
rounds convective cells in areas with optically thick clouds
and glaciated cloud tops. Moreover, the mask often follows
the wind field downstream of convective cells, which is phys-
ically reasonable but not necessarily expected, as the wind
field is not explicitly included as an input feature. The failed
HIWC conditions detection in the scene without convective
cells highlights the importance of convection signatures to
obtain a high probability HIWC conditions signal. This is
coherent with past literature, where deep convection and ICI
events are often found to be correlated. However, in differ-
ent conditions, such as in extra-tropical cyclones, the failed
detection example indicates that the retrieval could have less
chance to detect HIWC conditions when there is no deep con-
vection.

The retrieval demonstration use during nighttime and the
comparison with in-situ measurements from the HAIC-
HIWC campaign show the adaptability of this algorithm to
different conditions, accepting missing optical information
during nighttime, and different data sources for convection
and cloud microphysical properties.

Integrating the ICI retrieval with cloud microphysical proper-
ties retrievals would enable scientific studies about the pos-
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sible ice formation pathways during ICI events, especially
exploiting the temporal resolution of geostationary satellites,
as these are not yet understood (Leroy et al., 2017). For ex-
ample, one could correlate potential ICI areas with retrieved
ice particles’ effective radius and updraft speeds that can be
either taken from reanalysis data or satellite images. A fully
operational ICI detection product would require additional
development, as it uses visible channels and optical thick-
ness that prevent this retrieval from detecting HIWC con-
ditions at night. Future development would include a more
flexible way to select input predictors according to availabil-
ity. Furthermore, the training dataset could be enlarged, con-
sidering the overlap between MSG-3 and DARDAR between
2013 and 2017. To conclude, the retrieval shows promising
performance in detecting potential ICI conditions, using ex-
clusively geostationary satellite imagery as input. This would
allow a flexible extension to other geostationary satellite plat-
forms, and its operational implementation would enable air-
lines to avoid HIWC conditions to mitigate ICI effects on the
fleet.

Data availability. Archived DARDAR  data are  avail-
able at https://doi.org/10.25326/450, documentation
can be found at https://www.icare.univ-lille.fr/dardar/.
MSG data are available via EUMETSAT Data Store
at https://user.eumetsat.int/data/satellites/meteosat-
second-generation. TOOCAN  database is available at
https://doi.org/10.14768/20191112001.1. The authors acknowledge
the data center ESPRI/IPSL for providing access to the data.
HAIC-HIWC campaign data are provided by NSF NCAR EOL.
https://data.eol.ucar.edu/ Geostationary-based retrievals CiPS,
APICS, Cb-TRAM, and HIWC detection data are available on
request at DLR.

Appendix A

A1l Validation metrics

The metrics chosen to assess the retrieval’s performance fol-
low the ICI detection retrievals literature (de Laat et al., 2017;
Yost et al., 2018; Haggerty et al., 2020) to enable compari-
son:

— the probability of detection (POD) is defined as the
number of correctly predicted positive events (true pos-
itives, TP) over actual positive events (TP + FN, where
FN stands for false negatives)

TP

POD=—"
OD= TP FN

(AD)

— the false alarm rate (FAR) is defined as the ratio between
the falsely predicted positive events (false positive, FP)
to all predicted positive events (FP + TP):

FpP

FAR= —
R FP+TP

(A2)

— the critical success index (CSI) is an index that balances
POD and FAR. It is defined as:

TP

[=—
O = P FN T+ FP

(A3)

— the ROC curve is used to display the variation of two
performance metrics simultaneously. They are the POD
and the FAR. The ROC curve is useful for classifiers be-
cause it explores every possible probability threshold to
convert probabilistic into deterministic forecasts. In this
way, different classifiers can be compared, no matter the
chosen threshold. The chance line is depicted as a diag-
onal. The model lacks predictive skill if the ROC tends
to the chance line. Ideally, the ROC should be a step
function. The area under the curve, AUC, measures the
overall performance of a classifier across multiple prob-
ability thresholds. The chance line has an AUC of 0.5,
while an ideal ROC curve approaches 1.0 AUC (James
et al., 2021).

A2 Lufthansa case studies

The Lufthansa ICI cases not discussed in the paper are re-
ported here for completeness. Figures Al, A2, A3, A4 are
daytime cases. Figure A5 is a nighttime case.

A3 HIWC mask discontinuities

Some HIWC probability masks display a discontinuity, as
in Fig. A2, and A3. Those discontinuities may be explained
with the convection related metrics. Those metrics, such as
the distance to the closest convective cell and the areas of
the closest convective cell, present such discontinuities, as in
Fig. A6. Convective pixels in the surrounding radius of 100
km introduces rounded discontinuities, as in panel a), while
distance and area extent of the closest convective cells intro-
duce linear discontinuities, as in panel b) and c¢). Those dis-
continuities may be further emphasized by the random forest
approach, which does not enforce smooth outputs, but only
takes the majority vote from single decision trees. We specu-
late that the discontinuities might be more pronounced when
the other supporting input features, such as visible channels
and optical thickness, lie in a region where the split between
HIWC and no-HIWC is not clear (see Fig. 11). Thus, this
artifact might be more pronounced during nighttime, though
this evidence was not found in Lufthansa ICI cases in Fig.
12, and AS5. However, this statement is supported by Fig. A7,
where the nighttime demonstration approach (Fig. 12) was
applied to a daytime scene (panel a) of Fig. 10). There, the
rounded artifacts due to distance-related convection metrics
are emphasized by the artificial unavailability of solar chan-
nels information that we introduced as demonstration.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/05/23 17:15 UTC
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Figure A1. As in Fig. 10 panels a), and b) for additional Lufthansa ICI case studies.

HIWC mask validation with Lufthansa ICI events
Scene 2016/05/29 16:45 UTC

a)
6°E 7.5°E 9°E 10.5°E 12°E 13.5°E 6°E 7.5°E 9°E 10.5°E 12°E 13.5°E

N S1°N

49.5°N 49.5°N

49.5°N
48°N 48°N S 48°N
46.5°N 46.5°N 46.5°N 46.5°N
45°N 45°N S 45°N
I
43.5°N 43.5°N 43.5°N S=8 = °N
ICI event detected T
by retrieval
Previous aircraft positions
(1, 3, 5, 10 min)
42°N - 42°N B e 42°N
6°E 7.5°E 9°E 6
0.5 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30 35 40
Wind speed [m-s~1]

HIWC probability

25 50 75 100 125 150 175 200
Ice cloud optical thickness from APICS

200 220 240 260 280 300 320 340
IR 10.8 um brightness temperature [K]

Figure A2. As in Fig. 10 panels a), and b) for additional Lufthansa ICI case studies.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/06/01 13:45 UTC
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Figure A3. As in Fig. 10 panels a), and b) for additional Lufthansa ICI case studies.

HIWC mask validation with Lufthansa ICI events
Scene 2016/06/30 13:15 UTC

a) b)
13.5°E  15°E  16.5°E  18°E 19.5°E 21°E 13.5°E  15°E  16.5°E  18°E 19.5°E 21°E

54°N

ICI event detected

45°N by retrieval .
Previous aircraft positions Convective cell
(1, 3,5, 10 min) HIWC binary mask
13.5°E 15°E
0.5 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30 35 40
HIWC probability Wind speed [m-s71]
200 220 240 260 280 300 320 340 0 25 50 75 100 125 150 175 200
IR 10.8 um brightness temperature [K] Ice cloud optical thickness from APICS

Figure A4. As in Fig. 10 panels a), and b) for additional Lufthansa ICI case studies.
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2016/10/23 19:15 UTC. HIWC probability mask with Lufthansa ICI event

a) VIS 0.6 um: 0.0 %, T;: 0.0 b) VIS 0.6 um: 80.0 %, Tic: 50.0 c) VIS 0.6 um: 100.0 %, T;: 100.0
4.5°W3°W1. 5°W 0° 1.5°E 3°E 4.5°W3°W1.5°W 0° 1.5°E 3° E 4.5°W3°W1.5°W 0° 1.5°E 3°E
46.5°N 7 =] 46.5°N j 46.5°N 7 j =]
45°N | 45°N 45°N |
43.5°N 43.5°N 43.5°N
42°N 42°N 42°N
40.5°N 40.5°N ICI eventdetectedﬁ 40.5°N
/ | & by retrieval ¥
39°N ICI event not detected 39°N I Previous aircraft positions 39°N i

by retrieval (1,3, 5 10 min)

s e b 3 AN ..
1.5°W 0° 1.5°E 3°E 1.5°W 0° 1.5°E 3E 1.5°W 0° 1.5°E 3°E

0.5 0.6 0.7 0.8 0.9
HIWC probability

200 220 240 260 280 300 320 340
IR 10.8 um TOA brightness temperature [K]

Figure AS. As in Fig. 12 for additional Lufthansa ICI case studies.
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Figure A6. Convection related metrics for the Lufthansa ICI case of Fig. A2 associated with discontinuities.

A4 HAIC-HIWC II flight campaign additional case
study

Figure A8 and A9 shows an additional case study of the
HAIC-HIWC flight campaign. In this case, a HIWC prob-
s ability mask higher than 0.5 is close to the flight, and it over-
laps with its trajectory only where highest IWC is measured.
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2016/06/25 16:00 UTC. HIWC probability mask with Lufthansa ICI event
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Figure A7. As Fig. 12, where the nighttime instrumental value approach was applied to a daytime scene, to verify its effect where cloud
optical properties would be otherwise available.

2015/05/16 18:00 UTC
HAIC-HIWC flight campaign scene.
a) Visible channel 0.6 um b) Convection and cloud optical thickness
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Figure A8. As in Fig. 13 for flight 15 of the HAIC-HIWC II flight campaign. The flight
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2015/05/16 18:00 UTC
HIWC probability mask validation with HAIC-HIWC campaign flight.
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