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Abstract. High ice water content (HIWC) conditions are a concern for aviation as the ingestion of ice particles in the jet engines
can induce ice crystal icing (ICI), which results in performance loss and damage. To constantly monitor these conditions,
retrievals for the detection of ICI were recently developed based on geostationary satellite imagery, but their calibration is
limited to targeted flight campaigns or scattered samplings from ICI events databases. In this work, we close this gap, using
exclusively remote sensing data to develop and assess a new retrieval for potential ICI conditions.

Cloud IWC measurements are provided from the synergy of radar and lidar (DARDAR) on board the polar-orbiting satellites
CloudSat and CALIPSO. HIWC conditions IWC > 0.5 ¢ m™3) at typical cruise altitudes are used as the proxy for areas
with potential ICI formation. The HIWC conditions predictors are taken from a combination of observations and retrievals of
the geostationary satellite Meteosat Second Generation (MSG). A random forest is trained and tested based on the collocated
dataset of active and passive measurements during the summer months of 2013 and 2015, covering the European domain. The
input predictors are the brightness temperature difference between the MSG channels at 6.2 and 10.8 ym wavelengths, the
visible channel at 0.6 ym wavelength, the cloud optical thickness at 0.6 um wavelength, and four convection metrics related to
the distance to the closest convective cell, area extent of the convective cells, and convection density in the pixel surroundings.
Over Europe, 83 % of HIWC conditions measured in the DARDAR dataset are correctly detected. The associated false alarm
rate is 51 %. The retrieval is further tested with the ICI events database reported by Lufthansa. Four out of seven events
are correctly detected. In conclusion, the retrieval achieves performances comparable to previously developed retrievals. An

operational application would enable aircraft rerouting around areas with high ICI probability.

1 Introduction

Ice Crystal Icing (ICI) is a phenomenon that aircraft may encounter when flying through cloudy regions with high ice crystal
concentrations. These regions are mostly found close to deep convection, in particular within tropical mesoscale convective
systems (MCSs). In such systems, pilots can easily avoid strong updrafts, as onboard radars can detect embedded precipitation

based on its high reflectivity signal, or available satellite-based nowcasting of severe convection (NCS-A, Miiller et al., 2022)
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can issue early warnings. However, regions outside the main updraft may not be affected by nowcasting warnings and they can
still contain high ice concentrations despite having little to no radar reflectivity due to the presence of non-precipitating ice
particles (Gayet et al., 2012); this is where ICI events can occur because ice particles can build up inside the engine and lead to
performance loss and damage (Grzych, 2010, 2015; Bravin et al., 2015; Haggerty et al., 2019), or they can clog the pitot tube

which in turns result into a wrongful transmission of information to the autoflight system; this latter occurrence has caused

two fatal accidents in recent years (S. Ayra et al., 2020). Because those failures can happen in high ice concentration regions
on-board sensor anomalies, as for example the total air temperature (TAT) anomalies, are often used as precursors for engine
failures (Haggerty, 2016; Rodriguez-Sanz et al., 2018). In contrast with convection patterns, no clear diurnal trends are found

globally; however, a seasonal correlation is observed between local convective active seasons and ICI events (Bravin et al.,
2015).

High ice water content (HIWC) conditions are often used as a proxy for potential ICI occurrence. For these conditions, a
threshold ranging between 0.5 and 1.0 g m—2 is chosen in earlier studies, although a standard value is still under debate
because exposure times and engine types might also affect ICI occurrence (de Laat et al., 2017; Yost et al., 2018; Haggerty
et al., 2019, 2020; Bedka et al., 2020).

Aircraft manufacturers and airlines have collected ICI events in databases to analyze the importance of the phenomenon. Bravin
et al. (2015) present a Boeing database that included 162 events over 12 years. de Laat et al. (2017) construct a database from
Airbus containing 59 events, without specifying their time frame. Here, a collection of 100 events from Lufthansa flights during
2016 is considered (Sect. 2.4) to analyze a subset of ICI events as case studies (Sect. 4.2). The worldwide number of ICI events
and their impact on engine performance highlights the relevance of the issue to air traffic safety.

The importance of this problem led to the execution of flight campaigns to measure in situ cloud microphysical properties
during such events. A combination of specifically designed probes, sensors, and radar instruments was deployed to measure

high ice concentrations, particle size distributions, and cloud vertical profiles, respectively. These campaigns are:

the HAIC-HIWC flight campaign, Darwin, Australia 2014, where HAIC stands for "high altitude ice crystal";

the HAIC-HIWC II flight campaign, Cayenne, French-Guiana 2015;

the HAIC-RADAR flight campaign, Fort Lauderdale, Florida 2015;

the HAIC-RADAR 1I flight campaign, Fort Lauderdale, Florida 2018.

The problem’s relevance and the availability of new in situ measurements triggered activities in the research area of HIWC

conditions detection products from satellites. Indeed, the following retrievals were developed:

— Grzych et al. (2015) develop a 3D HIWC mask exploiting infrared (IR) channels from geostationary satellite imagery
combined with numerical weather prediction (NWP) wind fields at different heights and the tropopause level (ECMWF-
ERAS, Hersbach et al., 2020). The algorithm is tested with the HAIC-HIWC flight campaign case studies, which are
used as ground truth. While a clear correlation between the mask and the in situ measured HIWC conditions is found,

the algorithm tends to overestimate the areas affected by this phenomenon, but no performance metrics are reported,;
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— de Laat et al. (2017) approach the problem by manually setting thresholds on retrieved cloud microphysical variables
from geostationary satellite imagery. These thresholds are calibrated using case studies in the Airbus dataset and verified
with the synergistic space-borne lidar-radar dataset (DARDAR), derived from active remote sensing measurements on
polar-orbiting satellites that include, among others, IWC. The algorithm achieves a probability of detection (POD) of
0.59 but with an associated false alarm rate (FAR) of 0.52;

— Yost et al. (2018) use a combination of geostationary satellite imagery and retrieved cloud optical properties. The con-
sidered input variables are associated with a corresponding value of IWC according to a statistical fit performed by
collocating the satellite data with flight campaign measurements. This information is translated into a HIWC proba-
bility using fuzzy logic. The algorithm is verified with the HAIC-HIWC, HAIC-HIWC II, and HIWC-RADAR flight
campaigns, achieving a POD of 0.75 and a FAR of 0.35 during daytime. Reported nighttime performances are inferior
(POD: 0.62, FAR: 0.35) because of the lack of cloud optical properties;

— Haggerty et al. (2020) integrate a multitude of data sources, like satellites, on-ground radar, and NWP data. Particle
swarm optimization is used to select a subset of variables of interest, which are then combined via fuzzy logic to produce
the HIWC probability. The retrieval is verified with the HAIC-HIWC, HAIC-HIWC II, and HIWC-RADAR 1I flight
campaigns, achieving a POD of 0.86 and a FAR of 0.51.

When training potential ICI detection retrievals, a significant amount of in situ HIWC measurements should be considered
for statistical significance. Dedicated research flight campaigns are often geographically limited, and they specifically target
HIWC conditions. This may introduce a bias when extrapolating from a local to a global context (Haggerty et al., 2020).
While in situ HIWC measurements are the best data to assess potential ICI conditions in convective clouds, alternative ap-
proaches exploiting remote sensing measurements can be implemented if one wants to increase the training samples. For
operational monitoring, geostationary satellites are used due to their wide field of view and high temporal resolution. Polar-
orbiting satellites’ active observations cannot be directly applied in operational scenarios because of their small field of view
and low repetition time. This work demonstrates the feasibility of a detection method for potential ICI from geostationary
satellite observations based on machine learning techniques and trained with the DARDAR dataset as ground truth.

The paper contains a description of the combination of data used to train the ICI detection retrieval in Sect. 2. Next, we describe
how the machine learning techniques are applied for the ICI detection task in Sect. 3. In Sect. 4, we present the results validated
with active remote sensing data and Lufthansa’s ICI database. Finally, in Sect. 5 we summarize the results on the retrieval’s

performance and discuss its main limitations.

2 Datasets

The ICI retrieval developed in this study relies on physical quantities measured and retrieved by passive instruments on board
geostationary satellites, called "predictors" hereafter. The geostationary satellite and the corresponding retrievals employed are

presented in Sect. 2.1. The DARDAR dataset is presented in Sect. 2.2 because this contained our ground truth data for IWC
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measurements of cloud profiles. Lastly, it is important to establish the spatial and temporal distribution of selected in-service

ICI events, analyzed in Sect. 2.4.
2.1 MSG and MSG-based retrievals

The predictors’ source for this work is the geostationary satellite Meteosat Second Generation (MSG) because it guarantees a
continuous spatial coverage of Europe. MSG is equipped with the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
that measures reflectance and radiance in the visible and infrared range, thanks to its 11 narrow-band channels and one high-
resolution visible (HRV) broadband channel. SEVIRI provides a 3712 x 3712 pixels image of the Earth disk with a 3 km x 3
km resolution at the nadir. The temporal resolution is 15 minutes, with a rapid scan service (RSS) available for a subset of the
northern hemisphere, where images are produced every 5 minutes (Schmetz et al., 2002). Besides SEVIRI channels, we also

use ice cloud properties retrievals based on SEVIRI. Fhese-The considered retrievals for this study are developed in-house

because of our expertise in their strengths and limitations and because of their availability to us. Nevertheless, in one example

we have applied our algorithm using alternative products as input: optical thickness from EUMETSAT and convective cloud
information from TOOCAN. This is demonstrated in Sect. 4.4. The ice cloud properties are used as predictors for our ICI

retrieval, so the corresponding geostationary-based retrievals are briefly discussed below.
2.1.1 CiPS

CiPS (Cirrus Properties from SEVIRI), developed and characterized by Strandgren et al. (2017a, 2017b), detects thin cirrus
clouds from MSG and determines ice optical thickness, ice water path, and cloud top height. The detection is based on Artificial
Neural Networks trained with CALIPSO lidar data as ground truth. The training and validation datasets cover the entire
SEVIRI disc and the period between 2007 to 2013, containing close to 50 million data points. The lidar signal experiences
strong attenuation when interacting with clouds; therefore, it is considered saturated and thus unreliable whenever there is no
backscattering from the surface. This limited CiPS to thin cirrus cloud detection with an optical thickness of approximately
below 3. When validated against CALIPSO, CiPS detects correctly 95 % of all cirrus clouds with optical thickness of 1.0,
while for thinner cirrus clouds with optical thickness of 0.1, the proportion of detected cirrus over all cirrus is 71 %. The best
optical thickness estimation is obtained in the range between 0.35 and 1.7 with a deviation of less than 50 % from CALIPSO’s
measurements. The detection exploits SEVIRI thermal channels, regional maximum and averaged brightness temperatures in

the infrared and water vapor channels, and surface skin temperatures from NWP global reanalysis (Hersbach et al., 2020).
2.1.2 APICS

APICS (Algorithm for the Physical Interpretation of Clouds with SEVIRI Bugliaro et al., 2011) discriminates cloud phase
and microphysical properties from MSG. In particular, cloud optical thickness and effective radius (ranging from 5 to 25 um
for water clouds and from 6 to 84 um for ice clouds) are retrieved using a look-up table approach based on radiative transfer

calculations, which exploits the visible channel at 0.6 ;m wavelength, and the near-infrared channel at 1.6 pm.
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CiPS and APICS thus analyze similar cloud optical and microphysical characteristics, but they perform best in different
situations. CiPS is better suited for thin cirrus clouds analysis, both during day and nighttime. APICS has a wider scope,
covering both ice and water clouds of any thickness, but it is limited to daytime due to its rule-based approach on visible and
near-infrared channels. Both retrievals are used in this study, because they may provide candidate precursors of high ice water
content conditions. The suitability of these retrievals for this task has been discussed in Sect. 3.2

2.1.3 Cb-TRAM

Cb-TRAM (Zinner et al., 2008; 2013) enables the detection and tracking of convective cells from geostationary satellite im-
agery. It relies on the HRYV, infrared 10.8 pum, and water vapor window 6.2 pm channels. Cloud motion and development can
be detected through the disparities between two consecutive satellite images. The algorithm can also discriminate different
convection development stages: "Stage 1" denotes convection initiation, "Stage 2" rapid vertical development through cloud

tops cooling, and "Stage 3" indicates mature convective cells.
2.2 DARDAR
2.2.1 DARDAR description

The DARDAR-CLOUD products (Delanog, 2023) developed by Delanoé and Hogan (2008, 2010) exploit the synergy of space-
borne data from radar and lidar of the A-train satellite constellation to retrieve ice cloud properties. The A-Train constellation
is a group of satellites that use the sun-synchronous orbit at 705 km altitude. CloudSat was equipped with a radar operating
in the 94 GHz band, whose aim was to characterize cloud vertical profiles of cloud water and ice contents (Stephens et al.,
2002). The lidar on board CALIPSO operated at 532 and 1064 nm wavelengths. CALIPSO provided cloud characterization
as a function of height and water and ice content (Winker et al., 2003). These satellites were launched on April 28" 2006
(Delanoé and Hogan, 2010).

The DARDAR-CLOUD products exploit the different sensitivities of the instruments in a synergistic approach. The radar
is less sensitive to small particles, but it has a higher penetration capability within thick clouds; the lidar is more sensitive
to optically thin clouds, but it is affected by rapid attenuation, while the infrared radiometer can only estimate bulk cloud
properties (Delanoé and Hogan, 2010). For this reason, IWC, effective radius, and particle size distributions are retrieved
with a variational method that efficiently combines radar and lidar measurements (Delano€ and Hogan, 2008). The DARDAR
products are collocated to the CloudSat horizontal resolution of 1.4 km (Stephens et al., 2002) and CALIPSO vertical resolution
of 60 m (Delano€ and Hogan, 2010).

2.3 DARDAR-MSG collocation and ICI proxy selection

For our ICI retrieval, we consider DARDAR measurements as ground truth. Therefore, in the first step, we need to collocate
the SEVIRI and DARDAR measurements. In the following, we refer to "DARDAR profile" or simply "profile" as the vertical

cross-section of clouds as retrieved from the DARDAR dataset. This corresponds to the atmospheric column encompassed
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Figure 1. Panel a) mapping from the DARDAR vertically-resolved IWC information to the HIWC flag associated with the geostationary
grid pixel. Panel b) SEVIRI brightness temperature at 10.8 m wavelength with the DARDAR trajectory associated with panel a).

in the field of view of one radar-lidar pixel. Instead, we refer to the "DARDAR trajectory” as the DARDAR footprint on the
surface in terms of longitude/latitude coordinates.

The DARDAR trajectories have a finer along-track resolution than the geostationary grid. MSG and DARDAR data are com-
bined following the approach described by Mayer et al. (2023). Satellite observations are collocated by exploiting longitude,
latitude, cloud top height, and observation times. Cloud top height allows us to correct the parallax effect arising from the
different observation geometry of geostationary and polar-orbiting satellites. DARDAR profiles are coarsened to the MSG grid
by averaging all profiles within an MSG pixel at each DARDAR height level.

Then, in each averaged profile, we check for HIWC, i.e., IWC > 0.5 g m~3, in an altitude range that is relevant for air traffic.
We consider only cruise levels between 9000 m and 13000 m (defined in Sect. 2.4). Figure 1 illustrates the mapping pro-
cess. Panel a) showcases the DARDAR IWC profiles coarsened to the MSG grid along the satellite track. HIWC areas are
represented with the blue shading. If the maximum IWC value within the cruise levels in the DARDAR IWC profile exceeds
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the HIWC threshold, the HIWC flag is assigned to the corresponding pixel. Panel b) depicts the brightness temperature from
SEVIRI at 10.8 ym with the corresponding DARDAR trajectory with its longitude/latitude coordinates, the maximum IWC
values for each pixel, and the HIWC flag, if applicable. The HIWC flag was used as the target variable to train the machine
learning algorithm (Sect. 3).

We consider June, July, August, and September 2013 and June, July, and August 2015. Summer months were selected because
of the seasonal convective activity peak in Europe. Years 2013 and 2015 are selected because they lie within the time window
where DARDAR and a single MSG platform (MSG-3) overlap (from 2013 to 2017) to avoid differences that may arise due
to different instrument calibrations (Strandgren et al., 2017a; Mayer et al., 2023; Piontek et al., 2023). The collocated dataset
results in 165139 collocations, 889 of them flagged as HIWC pixels (see Table 1).

2.3.1 Convection-related metrics from Cb-TRAM

DARDAR trajectories seldom overlap with convective cells as detected by Cb-TRAM. Therefore, additional convection-related
metrics are used. The time spent by an aircraft within a HIWC region seems to play a role in the onset of ICI events (Bravin
et al., 2015), thus, information about the areal extent of convective cells may be useful during the learning process. To this end,

convection-related variables (shown in Fig. 2) are derived from the Cb-TRAM scene:
— distance from the trajectory point to the closest convective cell;

— area size of the closest convective cell, in terms of pixels and km?2. Since organized convective systems, such as MCSs,
are defined as cumulonimbus clouds able to generate contiguous precipitation areas in the order of 100 km (Markowski
and Richardson, 2010), this information is useful to assess whether detected cells belong to such organized systems, or

if they are associated with single and multi-cell convection, that are generally characterized by a smaller area extent;

— number of convective cells within a 100 km radius. This metric contains the density of convective clouds in the surround-

ing area, which can be associated with a higher chance of intercepting anvil cirrus;

— pixels within a radius of 10 km, 50 km, and 100 km belong to detected convective cells. This gathers information on cell

extent and convection density in the area close to the trajectory point.

The full list of convection-related metrics with their definitions is presented in Table 2.
2.4 Lufthansa ICI database

The Lufthansa ICI database comprises 100 pilot-reported ICI events selected manually based on in situ measured total air
temperature anomalies (Kalinka et al., 2023). Figure 3 displays the database’s geographical distribution. The database is also

important to get an indication of the seasonal occurrence of these events, with a special focus devoted to the European conti-

nent. We focused on this region because the products that we have used as high ice water content predictors are limited to the
upper part of the SEVIRI HRV channel, which remains still over Europe and North Africa. The ICI events distribution agrees
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Figure 2. Demonstration of the convection-related variables integrated in the DARDAR dataset. The DARDAR trajectory is color-coded
according to the closest convective cell detected. For each color portion in the trajectory, the closest pixel to the respective closest convective
cell is indicated by the starting points of the arrows. The distance d3 is displayed along the arrow. ps indicates the areal extent in terms of
pixels of the convective cell with the corresponding color. The complete list of convection-related metrics with their definitions is presented

in Table 2.
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Figure 3. Locations of the Lufthansa ICI events collected in 2016, color-coded according to the season they were recorded.

with expectations. The majority of them occurred in the northern hemisphere summer (JJA). In Europe, two events occurred in
autumn (SON) and two in spring (MAM). Therefore, we focus on processing DARDAR trajectories during the summer months
to maximize the chance of sampling HIWC conditions in Europe.

In Fig. 4, we present the ICI events related to the standard envelope FAA 14 CFR Part 33 Appendix D (Federal Aviation Ad-
ministration, Department of Transportation, 2023), which depicts where ICI events occur in terms of altitude versus ambient
temperature. Most of the events collected by Lufthansa fall within the specified boundaries, except for three cases. 88% events
occur between 9000 m (29527 ft) and 13000 m (42650 ft). This altitude band, called "cruise levels" hereafter, indicates the
portion of the troposphere that is considered when sampling IWC in the cloud profile from active satellite instruments. Further-
more, while testing for multiple cruise level limits (not shown), we observed that the correct detection of HIWC conditions was
more likely when these conditions occur at higher altitudes, as observed also by de Laat et al. (2017). We speculate that this
is due to passive sensors mainty-measuring emitted and reflected radiation in proximity to cloud tops, thus inherently limiting
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3 ICI retrieval

The core idea behind the ICI retrieval is to combine a broad range of predictors measured by passive instruments on board geo-
stationary satellites (Sect. 2.1) to detect potential ICI events, determined with DARDAR measurements of HIWC conditions.
The retrieval, based on a random forest approach, estimates the probability of HIWC conditions. By setting a threshold on the
probability of HIWC conditions, one can convert this information to the HIWC binary flag to use it as a deterministic target
output variable for the ICI retrieval training and validation. Finally, the ICI retrieval can be applied to geostationary imagery to
obtain a probability mask of HIWC conditions.

Random forest classifiers are an ensemble method based on single decision trees. Decision trees divide recursively the predictor
space into distinct non-overlapping regions, which are the tree’s nodes. The split is aimed at minimizing the output variance
within each region. The output probability to predict a certain class is the proportion of that class found in the training dataset
for the end nodes, or leaves. The main disadvantage of single trees is that they are very sensitive to the training dataset. Hence,
the need for random forests, which reduce the variance by averaging a set of single trees. Because random forests have many
hyperparameters that can be tuned by the user, such as the number of trees, the tree depth, and the number of samples allowed
in the leaves, it is often necessary to determine them through cross-validation. Cross-validation is a method to estimate the sta-
tistical learning method’s test error by holding out a subset of the original dataset. K-fold cross-validation consists of dividing
the dataset into k groups, or folds, of equal size. One fold is treated as the validation set, while the others are used for training.
The procedure is repeated for all the k folds, each time considering a different fold for validation. The dataset where the k-fold
cross-validation is performed is split into training and validation sets. This step is used to tune the hyperparameters, to avoid
overfitting and unnecessarily complex models. The cross-validation dataset differs from the test set of unseen observations.

This is used to evaluate the actual performance of the model with the chosen hyperparameters.
3.1 Dataset imbalance

Many industry and science-related problems are inherently characterized by data imbalance. Imbalanced datasets in classifica-
tion problems are those datasets that have output quantities skewed toward a specific class. In the case of binary classification
problems, the majority class is over-represented compared to the minority class. (Chawla et al., 2004).

The classification of imbalanced datasets significantly challenges the algorithmic approach for several reasons. First, one often
wants to predict the minority class. However, the imbalance exposes the classifier to the majority class more frequently dur-
ing training. For this reason, the minority class can be confused with noise and can be challenging to predict in areas of the
data space where both classes overlap (Haixiang et al., 2017). Second, the use of conventional performance metrics, such as
accuracy, may reflect the structure of the dataset rather than the classifier’s predictive skill. Performance metrics more suitable
for imbalanced problems are the Receiver Operating Characteristics (ROC) curve (Chawla et al., 2004) or the Critical Success
Index (CSI) (e.g. de Laat et al., 2017). When correcting for the majority and minority class proportion, the ratio between the
minority and majority class can be set freely depending on the application, and it is not necessary to exactly balance the two

classes (Haixiang et al., 2017).
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Table 1 showcases the imbalance between HIWC and no-HIWC sampled pixels by DARDAR. Given the large number of
no-HIWC pixels, we undersample the original DARDAR dataset. This has a two-fold effect: first, undersampling a large train-
ing dataset is more computationally efficient (Chawla et al., 2004). Second, carefully choosing the undersampling technique
reduces the correlation between samples. Indeed, samples of the same DARDAR trajectory correlate in time and space. Cor-
related samples may induce a bias in the training and validation procedure. This problem is also mentioned by Haggerty et al.
(2020) in the case of aircraft measurements.

The undersampling is performed as follows:

— for the DARDAR trajectories with at least one HIWC sample, all HIWC samples belonging to that trajectory are taken,

maintaining a buffer distance of 10 pixels if multiple consecutive pixels are flagged with HIWC;

— for DARDAR trajectories with no HIWC samples, pixels are sampled randomly among binned ranges of brightness
temperature in the 10.8 um channel, cloud optical thickness, and distance to the closest convective cells to cover a

variety of HIWC-free conditions sufficiently.

Undersampling produces a new proportion between the classes depicted in Table 1. Although still imbalanced, a more ag-
gressive undersampling was tested but led to undermining the subsequent model learning due to a too strong reduction of the
variability of the majority class and, consequently, its representativeness. Finally, the test dataset contains five not undersampled

DARDAR trajectories with at least one HIWC pixel.
3.2 Feature selection and random forest algorithm

The full list of input features considered for the potential ICI detection from SEVIRI is shown in Table 2.

The high-dimensional dataset produced when considering all the input predictors induces the so-called "curse of dimen-
sionality” (James et al., 2021). In such cases, irrelevant or redundant predictors may act as noise and may lead to inefficient
and inaccurate learning (Chawla et al., 2004). Furthermore, a high number of features can affect the variance-bias trade-off
characterizing statistical learning methods: having a large set of features, even if relevant, may lead to an increase of variance
that eventually outweighs the bias reduction produced by a more sophisticated model (James et al., 2021).

In our case, many features considered for the learning process are correlated by design, e.g., the variables originating from the
same geostationary retrieval or the area of the convective cells expressed in km? and in the number of pixels. These redundant
features may act as noisy features and exacerbate the curse of dimensionality. Therefore, a feature selection approach is chosen
to reduce the dimensionality of the input data. This approach selects a subset of input features that optimizes the classifier’s
performance.

First, to perform the feature selection, the input features’ correlation coefficient is determined for all the possible permutations
of input predictor couples. This allows building a correlation matrix converted into a correlation-based distance (Ward’s dis-
tance linkage score on the vertical axis of Fig. 5), which is considered a dissimilarity measure between the predictors. This
distance creates a fictitious space within which input predictors are represented as data points. Then, the input feature subsets

are obtained using hierarchical clustering, which is a bottom-up approach that assigns, as the first step, one cluster to each
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Table 1. Proportion of HIWC events versus no-HIWC events for the original and undersampled dataset. The MSG slot is a single MSG scene
containing one DARDAR trajectory. The MSG slot is flagged with HIWC if the corresponding DARDAR trajectory contains at least one
HIWC sample; otherwise, it is flagged as no-HIWC. The undersampled dataset excludes five DARDAR trajectories with at least one HIWC

pixel that are left out to test the model.

# pixels

# MSG slots

% pixels

Original

dataset

HIWC
No-HIWC

889
165139

83
418

0.54
99.46

Undersampled

dataset

HIWC
No-HIWC

160
3424

78
418

4.5
95.5

Test

dataset

HIWC
No-HIWC

71
1477

5
0

4.6
95.4

sample in the dataset’s space. In our case, the samples are the input predictors. Eventually, it progressively identifies affine
clusters and merges them until all sampled points end up in a single cluster, corresponding to the full dataset (James et al.,
2021).

The dendrogram depicts the bottom-up clustering, starting with a cluster containing all the input features at the top and then
progressively splitting into multiple branches, each representing one cluster. Feature selection can be implemented by cutting
the dendrogram at a certain level of the distance score on the vertical axis. In our case, the cutting level is initially determined
through cross-validation to produce 16 clusters. The cutting level line crosses the dendrogram’s branches multiple times. Fea-
tures that can be reached from the same cut point following the branches belong to the same cluster. Features belonging to the
same cluster are redundant in the sense that they give access to similar information to the statistical model through the learning
process. Therefore, one feature per cluster is selected to obtain a subset of features suitable for learning with imbalanced data.
Furthermore, the permutation importance score allows the estimation of the importance of the selected features by hierarchical
clustering. This evaluation requires setting a statistical model and a statistical performance metric that one wishes to optimize,
which, in our case, are a random forest and the CSI, respectively. The method consists of shuffling the values of each predictor
in the dataset to produce a corrupted dataset, which is fitted to the model chosen. The performance score is then compared
with the score of the original dataset. The predictors may be correlated if the model maintains an overall constant predictive
skill, but no predictor appears to be important according to the permutation importance score estimation. In this case, applying

the permutation to one of them does not lead to a significant performance decrease because the model can access the same
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Table 2. Candidate input predictors for the potential ICI detection. Chosen input predictors for the random forest are highlighted in italics.

SEVIRI CiPS/APICS
VIS006 Reflectivity for channel 0.6 pm wavelength cth_cips Cloud top height from CiPS
o N . . Ice clouds optical
VIS008 Reflectivity for channel 0.8 m wavelength iot_cips
thickness from CiPS
IR_O16 Reflectivity for channel 1.6 um wavelength iwp_cips Ice water path from CiPS
. X Ice clouds optical
IR_039 Brightness temperature for channel 3.9 y©m wavelength ictau
thickness from APICS
. . N Ice clouds effective
WV_062 Brightness temperature for channel 6.2 um wavelength icref
radius from APICS
WV_073 Brightness temperature for channel 7.3 ©m wavelength sza Solar zenith angle from APICS
. . ‘Water cloud optical
IR_087 Brightness temperature for channel 8.7 um wavelength wctau_mie
thickness from APICS
. . ‘Water cloud optical
IR_097 Brightness temperature for channel 9.7 ym wavelength wcreff_mie
thickness from APICS
TIR_108 Brightness temperature for channel 10.8 um wavelength | phase_apics Cloud phase from APICS
IR_120 Brightness temperature for channel 12.0 um wavelength
IR_134 Brightness temperature for channel 13.4 xm wavelength
Cb-TRAM stage 2 Cb-TRAM stage 3
Cb2 Cb-TRAM stage 2 Cb3 Cb-TRAM stage 3
b 2 Distance to the closest convective cell b 3 Distance to the closest convective cell
N of Cb-TRAM stage 2 - of Cb-TRAM stage 3
A2 Area size (km?) of the closest A3 Area size (km?) of the closest
- convective cell of Cb-TRAM stage 2 - convective cell of Cb-TRAM stage 3
5 Area size (pixels) of the closest 3 Area size (pixels) of the closest
| o pP_
convective cell of Cb-TRAM stage 2 convective cell of Cb-TRAM stage 3
Number of pixels within convective cells Number of pixels within convective cells
Cpl0_2 as detected by Cb-TRAM stage 2 in Cpl0_3 as detected by Cb-TRAM stage 3 in
a radius of 10 km aradius of 10 km
Number of convective cells as detected Number of convective cells as detected
NC10_2 NC10_3
by Cb-TRAM stage 2 in a radius of 10 km by Cb-TRAM stage 3 in a radius of 10 km
Number of pixels within convective cells Number of pixels within convective cells
Cp50_2 as detected by Cb-TRAM stage 2 in Cp50_3 as detected by Cb-TRAM stage 3 in
a radius of 50 km a radius of 50 km
Number of convective cells as detected Number of convective cells as detected
NC50_2 NC50_3
by Cb-TRAM stage 2 in a radius of 50 km by Cb-TRAM stage 3 in a radius of 50 km
Number of pixels within convective cells Number of pixels within convective cells
Cp100_2 as detected by Cb-TRAM stage 2 in Cpl00_3 as detected by Cb-TRAM stage 3 in
a radius of 100 km a radius of 100 km
Number of convective cells as detected Number of convective cells as detected
NC100_2 NC100_3

by Cb-TRAM stage 2 in a radius of 100 km

by Cb-TRAM stage 3 in a radius of 100 km

Features combinations

BTD_062_108
BTD_062_073
BTD_039_108
RD_016_006
D_A-1_2
D_A-1_3

Brightness temperature difference between WV_062 and IR_108

Brightness temperature difference between WV_062 and WV_072

Brightness temperature difference between IR_039 and IR_108

Reflectance difference between NIR_016 and VIS006

Ratio between distance and area of the closest convective cell from Cb-TRAM stage 2

Ratio between distance and area of the closest convective cell from Cb-TRAM stage 3
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Figure 5. Ilustration of the dendrogram depicting the feature extraction procedure through hierarchical clustering, based on the correlation
score among the considered input features. The more correlated the clusters, the shorter the vertical branch extent is. The Ward’s distance
linkage score represents the correlation-based distance between clusters in our dataset’s space. The black horizontal line depicts the suggested
level by cross-validation at which the dendrogram should be cut to obtain an optimal number of clusters from which input features can be

selected. Different colors depict the clusters obtained according to this cut level. The variables in bold are selected for the final version of the

model. The choice is based on permutation importance estimation in Fig. 6.
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Permutation importance on the training dataset
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Figure 6. The permutation importance of a variable represents the decrease of the model’s performance score (CSI) achieved when that
variable is shuffled randomly with respect to the output target. Panel a) shows the permutation importance of 16 input variables achieved
during training applied to four out of five folds in one instance of cross-validation. Similarly, panel b) shows the permutation importance
of the manually selected input features on an example of a training instance during cross-validation. The box plots depict the distribution
obtained when shuffling the variable 50 times randomly. In each box, the green line depicts the median of the distribution, the blue box
depicts the interquartile range (IQR), delimited by the 25th and 75th percentiles (first quartile, Q1, and third quartile, Q3, respectively), and
the whiskers spread to the last data point within Q1 - 1.5 IQR and Q3 + 1.5 IQR. Any data point beyond the whiskers is shown as an outlier

with a white dot.

information via the correlated feature. This behavior can be seen in Fig. 6. In panel a), the initial choice of 16 input variables

reveals that a few features are important according to the permutation score achieved. StiH;-the-This is denoted by the boxplot

collapsing into a single line, which indicates that all the simulations carried out led to the same decrease in performance score
thus producing no distributions. Few outliers present for some variables, as for example D_A-1 2, D_A-1 3, IR 016, and ictau

indicates that only a minority of simulations led to a change in performance score. In this case, the model performs well during
the training, which can be an indication of correlated features. Shrinking to seven variables (panel b)) does not hinder the

model’s performance, but all input features become important. This further suggests that panel a) contains correlated features.
The input features are selected manually based on the achieved permutation importance score obtained in the cross-validation,
commonly used predictors in previous ICI detection retrievals, and the physical knowledge of the ICI phenomenon. From the
predictors’ list in Table 2, BTD_062_108 is selected because it is a proxy for updraft speeds (Bravin et al., 2015; Grzych et al.,
2015; Yost et al., 2018), VIS006 and ictau are chosen for their ability to highlight optically thick and highly reflective deep
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convective clouds, while the convection metrics Cpl00_3, D_A-1_3, Cp50_2, D_A-1_2 are selected to account for convective
cells density around each pixel and how big and distant the convective cells are from each pixel at different life-cycle stages. It
must be noted that the VISO06 and ictau variable choices prevent the retrieval from working in nighttime mode. The selected
variables are denoted in italics in Table 2.

A random forest approach is selected to tackle this problem because it is among the most popular approaches to deal with
imbalanced classification problems, guarantees interpretability, and can handle large datasets (Haixiang et al., 2017). Finally,
the 5-fold cross-validation procedure also led to the random forest hyperparameters choice of 1000 trees inside the forest, 5
minimum allowed samples that can be included in each node at the end of the tree, and a probability threshold of 0.5 to convert

from the probabilistic into the deterministic forecast.

4 Retrieval application and validation

4.1 Retrieval performance test through DARDAR profiles

The statistical metrics chosen to assess the retrieval’s performance foHowed-the IChHdetectionretrievalstiterature (de Laatet-ak

aore—compa o> Y oha ORS—+€ evar—vataatio DasSea—o

osr— P

17



325

330

335

a) DARDAR profile 2015/06/11 11:15 UTC

14000 c) Predicted HIWC mask on DARDAR trajectory
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Figure 7. The HIWC conditions retrieval validation based on DARDAR trajectories. Panel a) shows the IWC cloud cross-section profile with

the random forest. Panel ¢) displays the DARDAR trajectory in the respective MSG image and the prediction of HIWC conditions converted
from the probabilistic prediction.

The-are well established in the atmospheric science literature (Wilks, 2019). Their definitions can be found in Sect. Al.

The retrieval test dataset contains five randomly selected DARDAR trajectories with at least one HIWC pixel. These trajectories
are left out of the training and cross-validation procedure. In Fig. 7, we present an example of the DARDAR trajectory used to
test the potential ICI detection. Panel a) shows the cloud’s IWC profile where one can see two areas of HIWC conditions: the
first, around 37°N, originating from two adjacent deep clouds, and the second, in the proximity of 47°N latitude, composed by
a set of three vertically developed clouds that produce three nearby but distinct HIWC areas. Clouds at 37° N are characterized
by a notable vertical extent of HTWC conditions with IWC reaching the maximum value of 0.8 g m~2 within the cruise levels

and by cloud tops extending up to 10410 m. The clouds composing the system at 47° N have more extended HIWC conditions.
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Performance metrics over different selections of training, validation, and test datasets.
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Figure 8. Performance metrics variability in the repeated training and test procedure. The box plots represent the obtained performance
scores over 100 iterations. The main central box depicts the interquartile range (IQR), which is the range between the 25th (first quartile, Q1)
and 75th percentiles (third quartile, Q3) of the distribution. Whiskers are defined by the last data points lying within Q1 - 1.5 IQR and Q3 +
1.5 IQR. Anything lying outside the whiskers is considered an outlier.

The central cell is by far the most active in terms of HIWC, with a peak IWC value of 1.1 g m~—3 and the cloud top at 11940
m altitude. The corresponding MSG-based HIWC probability is displayed in panel b). This is plotted only for icy cloud pixels
according to the CiPS mask and it is characterized by a sharp transition from low to high HIWC probabilities. One can also
see that the clouds around 37° N have a lower HIWC probability when compared to clouds at 47°N, even though still above
the threshold of 0.5. This can be attributed to a relatively higher density of stage 3 convective cells detected by Cb-TRAM near
the trajectory.

To assess the overall robustness of the presented approach, the training and subsequent testing are repeated 100 times, each

time with another random selection of 5 DARDAR trajectories as test data. The repeated tests generate the distribution in the
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a) DARDAR profile 2015/08/08 12:00 UTC

14000 c) Predicted HIWC mask on DARDAR trajectory
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Figure 9. As in Fig. 7 for a different DARDAR trajectory example.

performance metrics shown in the box plots of Fig. 8. The large variability may suggest the need for further data, as the method
seems very sensitive to the training and test datasets used. The median values of POD = 0.83, FAR = 0.51, CSI = 0.45, and
AUC =0.61 are similar to previous retrieval performances, depicted in Table 3. For our retrieval, POD is the least spread metric
with 75 % of the tests lying above 0.79, denoting a high probability of detecting positive events correctly. On the other hand,
FAR spreads over a much larger range, which is also reflected in the CSI and AUC variability. Focusing on the AUC, this
metric lags behind when compared to Yost et al. (2018) and Haggerty et al. (2020) retrievals. The model has been tested with

HIWC =I1IWC >1.0g-m 3, The original version is used, trained with samples labeled as HIWC if IW C > 0.5g - m ™2 and
adapted with a higher probability threshold of 0.7, to compensate the lower occurrence of HIWC when those are defined with
the higher threshold of 1.0¢g - m 2. Table 3 shows that, in this case, FAR is reduced significantly, at the expenses of a decreased

POD. CSI and AUC do not vary compared to the test settings consistent with training settings.
Fhis-The relatively low AUC in both test settings can be linked to the sharp transition from low to high HIWC probability.

The sharp probability transition means that acceptable POD can only be achieved if one allows a substantial FAR, suddenly
leading the ROC curve to shift from below to above the chance line and eventually producing a low AUC. This sharp transition
of predicted HIWC probability can also be observed in Fig. 10, where the two-dimensional HIWC probability mask is shown.
To explain the high FAR incidence, one can observe Fig. 9. Focusing on the convective system between 33°N and 36°N

latitude, HIWC conditions within the cruise levels are present in the DARDAR dataset in the southern and northernmost parts
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Table 3. Performance metrics comparison of the random forest ICI retrieval presented in this paper versus the previously developed ICI
retrievals. Although the training and verification techniques differ, as well as the retrieval’s applicability, these results are reported to place
this work in the current research context. The metrics shown correspond to the median value of POD, FAR, CSI, and AUC found in Fig.

8. Both HIWC = IWC > 0.5g-m ™2 and HIWC = IWC > 1.0g - m~* performance are referred to the model trained as described in
Sect. 3. The > 1.0g - m 2 results in a lower occurrence of HIWC, thus this version is adapted with a HIWC probability threshold of 0.7.

Yost et al. (2018) and Haggerty et al. (2020) developed both daytime and nighttime retrievals, but the metrics reported here refer to daytime
only.

POD | FAR | CSI | AUC

(de Laat et al., 2017) 0.59 | 0.52 | 0.36 -
(Yost et al., 2018) 0.75 | 0.35 - 0.75
(Haggerty et al., 2020) 0.86 | 0.51 - 0.85

This paper (HIWC = IWC >0.5g-m %) | 0.83 | 0.51 | 045 | 0.61
This paper (HIWC = IWC >1.0g-m~%) | 071 | 040 | 044 | 0.61

of the system. In contrast, the inner parts are characterized by HIWC conditions only below the cruise levels. However, the
MSG-based HIWC probability stays above the threshold throughout the horizontal extent of the cloud, though with a small
dip in the middle section. This is reflected in panel c), where HIWC conditions are predicted for the entire cloud rather than
just the two extremes, giving rise to a high FAR. de Laat et al. (2017) and Haggerty et al. (2020) also observed a relatively
high FAR. Haggerty et al. (2020) concludes that most FAR pixels are associated with HIWC conditions occurring at altitudes
different than the ones sampled by the aircraft. This is also the case for Fig. 9. However, in this instance, cruise levels are
chosen according to the altitude at which ICI events occur in the Lufthansa ICI database. Nonetheless, the best trade-off to
retrieve cloud properties remains challenging to find. Cloud properties vary within the cloud structure, while passive sensors can
only detect cloud top characteristics or column-integrated quantities. The HIWC conditions detection presented is compared
with previously developed retrievals to put this work in the current research context. However, these retrievals have different
characteristics. Namely, this method differs by data sources, input features, clouds’ microphysical characteristics retrievals,
and detection approaches. Furthermore, our retrieval is tested and validated in the Europe domain, and not globally as in e.g.
de Laat et al. (2017).

4.2 Lufthansa case studies

The Lufthansa ICI database is presented in Sect. 2.4 and contains 10 case studies in Europe out of the 100 cases available
globally. Three events are encountered at night, but nighttime scenes are discarded because of the absence of visible channels
and optical thickness data. ICI events are correctly detected by the HIWC mask in four out of the seven remaining daytime
scenes.

The criterion for correct detection considers the last available aircraft position, labeled as ICI position, and whether the pre-

21



HIWC mask validation with Lufthansa ICI events
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Figure 10. Panels a), ¢), and e) show the HIWC probability mask with the respective aircraft’s positions before and during the in-service ICI

events. The ICI event time is shown in the text box with its time delta compared to the actual satellite acquisition time. Panels b), d), and f)

show the respective HIWC binary masks, converted using the 0.5 HIWC probability threshold. The mask is combined with Cb-TRAM stage

3 convective cells and horizontal wind field at 300 hPa from ECMWF ERAS reanalysis data and ice cloud optical thickness from APICS.
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dicted HIWC probability is larger than our threshold of 0.5. This criterion is applied irrespective of the time difference between
the aircraft measurements and the satellite acquisition time, which could be up to 7 minutes and 30 seconds. The three scenes
in Fig. 10 are a subset of the processed scenes, selected according to the smallest time delta between the aircraft measurement
and the satellite acquisition time. Appendix A contains the remaining Lufthansa case studies.

In Fig. 10, panels a) and c) have large areas of HIWC high probability, often exceeding 0.7-0.8. The mask generally has a
sharp transition from 0.5 to 0.7 HIWC probability and seldom approaches 1.0 (a few small areas in panel c)). The HIWC mask
is almost completely absent in panel e), with small patches of 0.5 HIWC probability around the Cb-TRAM stage 3 convective
cell seen in panel f). The HIWC binary mask shown in panels b), d), and f) is compared with the detected Cb-TRAM convective
cells and the ECMWF ERAS reanalysis wind field at 300 hPa. The model data in panels b), d), and f) have an hourly resolution;
therefore, scenes b) and f) have simultaneous satellite images and wind fields, while for scene d), the wind field refers to 11
UTC.

The HIWC masks generally differ from the Cb-TRAM convective cells and the ice optical thickness from APICS. The HIWC
masks often stay around detected convective cells with high optical thickness and cold cloud tops, highlighting the need
for a dedicated HIWC detection product. In particular, it is possible to observe that the masks propagate downstream of the
detected convective cells, even though the wind is not used as an input feature. In panel b), the wind field is relatively weak
in correspondence with the biggest HIWC mask patches. The HIWC mask tends to follow the wind field for the convective
cells between 45°N and 46.5°N latitude, but this behavior is less evident for the big HIWC patch at 48°N latitude. Instead,
panel d) depicts strong wind fields and a large HIWC mask propagating downstream of the main convective cores detected by
Cb-TRAM.

From the correctly detected events, airplanes flew inside the HIWC mask before the aircraft’s final location, where ICI was
reported. This might indicate that aircraft have to fly within ICI conditions for some time to guarantee enough exposure to such
conditions for ice to accrete inside the engines. This would also be consistent with one of the failed detections presented in
App. A, where the flight flew through the HIWC mask before the final position that falls right outside the mask. For the failed
detection in Fig. 10 panel e), we speculate that the HTWC mask is missing due to the absence of large convective cells in panel
f). Although ICI events are almost exclusively attributed to convection in the literature (Grzych, 2010; Bravin et al., 2015),
ICI events have also been reported in different conditions, such as within extra-tropical cyclones (Gayet et al., 2012). Panel f)

could suggest that this retrieval would fail when Cb-TRAM cannot detect deep convective cells.

4.3 Nighttime performance

The retrieval is here tested during nighttime. In this scenario, the random forest model does not have access to visible channel
information and cloud optical thickness. Furthermore, it has been trained exclusively with day-time samples. Nevertheless, it
can access infrared channels and convection related variables.

In night-time mode, we decided to use instrumental values to fill the missing information required by the random forest
approach. In Fig. 11, the distribution in the training dataset of VIS006 and ictau for HIWC and no-HIWC is shown. These
distributions allowed us to select a bias-free value with which we filled the missing information in nighttime mode. In particular,
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Figure 11. a) VIS006 and d) ictau
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2016/06/14 04:15 UTC. HIWC probability mask with Lufthansa ICI event
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Figure 12. ICI retrieval nighttime mode demonstration example for a Lufthansa ICI event. Panel a) shows the HIWC mask settin
instrumental values that favor no-HIWC prediction (see Fig. 11). Panel b) depicts the HIWC mask with bias free instrumental values.
Panel ¢) shows the HIWC mask with instrumental values favoring HIWC predictions.

this bias-free value is selected such that it favors neither HIWC prediction, nor non-HIWC, i.e. the instrumental value should
be in a range where HIWC and no-HIWC training samples distributions overlap. The values are set to VIS006= 80% and

ictau=50._

The significance of this choice is shown in Fig. 12. The mask in panel a), where we set VIS006= 0% and ictau= 0, is

absent because the HIWC probability never exceeds 0.5. In panel b), the bias-free choice of VIS006= 80% and ictau= 50
leads to a smooth transition of HIWC probability bewteen areas without detected HIWC and areas where HIWC is detected.

Panel ¢) displays instead a sh transition to high HIWC probabilities, as soon as this is detected by overcoming the 0.5

robability threshold. We observe that the constant instrumental values with which we fill missing information modulate the
HIWC probability mask significantl

solar information. This demonstrates the good performance of the model even during nighttime.

. The choice made for panel b) is the best to achieve realistic results even with missin

4.4 Validation with in-situ measurements: HAIC-HIWC II campaign

Finally, the algorithm was validated with a case study of the HIWC-HAIC II flight campaign (Strapp, 2016). However.

Cb-TRAM is not available for the tropical regions covered by this campaign (see Sect. 2.1.3. Therefore, to cover this domain

alternative data are retrieved. Deep convective systems are provided by the TOOCAN database (Fiolleau and Roca, 2013
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HAIC-HIWC flight campaign scene.
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Figure 13. Satellite scene for the HAIC-HIWC II campaign case study. We considered flight 23, flying from French Guyana the 26‘" Ma
2015. Panel a) shows the SEVIRI visible channel at 0.6 ym wavelength reflectivity. Panel b) depicts the cloud optical depth from Optimal
Cloud Analysis (EUMETSAT, 2022) and deep convective cells from the TOOCAN database (Fiolleau and Roca, 2019).

».2019). To prove the adaptability of the method to any equivalent product than the ones presented in the Sect. 2.1, cloud
optical thickness was retrieved via the Optimal Cloud Analysis data record (EUMETSAT, 2022). The aforementioned data are
displayed in Fig. 13.

Figure 14 shows the corresponding computed HIWC mask. Although convection is widespread throughout the domain in
anel b) of Fig. 14. It features HIWC probabilities
higher than 0.9 for convective cells around 40°W and 9°N, and 40°W and 3°S, while HIWC probabilities closer to the flight
(52°W and 6°N) are relatively lower, peaking at 0.7. Panel b) shows a good agreement between the measured HIWC and
the HIWC probability mask, IWC > 0.5 m " sampled points mostly fall within the mask, whose values increase together
with the measured IWC. The retrieval shows promising results even outside the domain where it was trained, and using input
data equivalent to the ones discussed in Fig. 2.1. Given the results obtained with this case study, we speculate that only little
calibration would be required to adapt the retrieval to input parameters coming from different data sources.

13, the HIWC mask is relatively limited in extent in panel a) of Fig.

5 Conclusions & outlook

In this study, our goal is to assess the feasibility of a detection retrieval for potential ICI conditions, based exclusively on
remote sensing data and a random forest approach as a machine learning technique. A combination of passive remote sensing

measurements from geostationary satellites is used to detect areas with HIWC conditions at passenger aircraft cruise levels.
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HIWC probability mask validation with HAIC-HIWC campaign flight.
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Figure 14. HIWC mask validation with flight 23 of the HAIC-HIWC II flight campaign. The flight crossed a HIWC region
IWC>0.5¢ - m~>) from 13:37 to 13:45 peaking at 13:41 with IWC=3.3¢ - m 3. HIWC measurements are depicted in blue shades, while

no-HIWC are shown in grey shades. Markers with red borders depict the flight position within the satellite scanning times. Flight waypoints

are corrected for parallax effect, shifted to the corresponding satellite grid coordinates.

These conditions are chosen as an indicator for potential ICI formation. Cruise levels are considered because, even if ICI events
are possible during the ascent and descent of an aircraft, passive remote sensing platforms are more sensitive to cloud tops and
column-integrated quantities. For the training phase, HIWC conditions are located from active measurements of IWC from
polar-orbiting satellites, i.e. the DARDAR dataset, which is taken as ground truth. The results obtained by testing this approach
with DARDAR trajectories lead to median values of the performance metrics POD = 0.83, FAR = 0.51, CSI = 0.45, and AUC
= 0.61. This method outperforms the approach presented by de Laat et al. (2017), who validated their algorithm globally with
DARDAR data, and it achieved comparable results to Haggerty et al. (2020). However, Haggerty et al. (2020) used multiple
input sources, such as ground-based weather radar and numerical weather prediction, in addition to geostationary satellite im-
ages. In this study, we used only the latterand-we-achieved-comparable-performanee.

The validation of the retrieval is also supported by a database of ICI case studies reported by Lufthansa during operational
conditions. The retrieval correctly detects four out of seven events, assuming a correct detection whenever the aircraft’s final
position is within the HIWC mask. From the observation of the case study examples, the HIWC mask surrounds convective
cells in areas with optically thick clouds and glaciated cloud tops. Moreover, the mask often follows the wind field downstream
of convective cells, which is physically reasonable but not necessarily expected, as the wind field is not explicitly included
as an input feature. The failed HIWC conditions detection in the scene without convective cells highlights the importance of

convection signatures to obtain a high probability HIWC conditions signal. This is coherent with past literature, where deep
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460 convection and ICI events are often found to be correlated. However, in different conditions, such as in extra-tropical cyclones,
the failed detection example indicates that the retrieval could have less chance to detect HTWC conditions when there is no

deep convection.

The retrieval demonstration use during nighttime and the comparison with in-situ measurements from the HAIC-HIWC
campaign show the adaptability of this algorithm to different conditions, accepting missing optical information during nighttime,
465 and different data sources for convection and cloud microphysical properties.

Integrating the ICI retrieval with cloud microphysical properties retrievals would enable scientific studies about the possible ice
formation pathways during ICI events, especially exploiting the temporal resolution of geostationary satellites, as these are not
yet understood (Leroy et al., 2017). For example, one could correlate potential ICI areas with retrieved ice particles’ effective
radius and updraft speeds that can be either taken from reanalysis data or satellite images. A fully operational ICI detection
470 product would require additional development, as it uses visible channels and optical thickness that prevent this retrieval from
detecting HIWC conditions at night. Future development would include a more flexible way to select input predictors accord-
ing to availability. Furthermore, the training dataset could be enlarged, considering the overlap between MSG-3 and DARDAR
between 2013 and 2017. To conclude, the retrieval shows promising performance in detecting potential ICI conditions, us-
ing exclusively geostationary satellite imagery as input. This would allow a flexible extension to other geostationary satellite
475 platforms, and its operational implementation would enable airlines to avoid HIWC conditions to mitigate ICI effects on the

fleet.

Data availability. Archived DARDAR data are available at https://doi.org/10.25326/450, documentation can be found at https://www.icare.univ-
lille.fr/dardar/. MSG data are available via EUMETSAT Data Store at https://user.eumetsat.int/data/satellites/meteosat-second-generation.
TOOCAN database is available at https://doi.org/10.14768/20191112001.1. The authors acknowledge the data center ESPRI/IPSL for pro-

480 viding access to the data. HAIC-HIWC campaign data are provided by NSF NCAR EOL. https://data.eol.ucar.edu/ Geostationary-based
retrievals CiPS, APICS, Cb-TRAM, and HIWC detection data are available on request at DLR.

Appendix A: Lufthansa-easestudies

Al Validation metrics

The metrics chosen to assess the retrieval’s performance follow the ICI detection retrievals literature (de Laat et al., 2017;
485 Yost et al., 2018; Haggerty et al., 2020) to enable comparison:

— the probability of detection (POD) is defined as the number of correctly predicted positive events (true positives, TP
over actual positive events (TP + FN, where FN stands for false negatives)

TP
POD = ———— Al
TP TP RN A
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— the false alarm rate (FAR) is defined as the ratio between the falsely predicted positive events (false positive, FP) to all
490 redicted positive events (FP + TP):

FP
FAR= ———— A2
A FpLTP (A2

— the critical success index (CSI) is an index that balances POD and FAR. It is defined as:

TP
TP ENTFP (A

— the ROC curve is used to display the variation of two performance metrics simultaneously. They are the POD and

495 the FAR. The ROC curve is useful for classifiers because it explores every possible probability threshold to convert
probabilistic into deterministic forecasts. In this way, different classifiers can be compared, no matter the chosen threshold.

The chance line is depicted as a diagonal. The model lacks predictive skill if the ROC tends to the chance line. Ideally,

the ROC should be a step function. The area under the curve, AUC, measures the overall performance of a classifier

across multiple probability thresholds. The chance line has an AUC of 0.5, while an ideal ROC curve approaches 1.0
500 AUC (James et al., 2021).

A2 Lufthansa case studies

The Lufthansa ICI cases not discussed in the paper are reported here for completeness. Figures A1, A2, A3, A4 are daytime
cases. Figure A5 is a nighttime case.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/05/23 17:15 UTC
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Figure Al. As in Fig. 10 panels a), €);-and eb) for additional Lufthansa ICI case studies.

HIWC mask validation with Lufthansa ICI events
Scene 2016/05/29 16:45 UTC
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Figure A2. As in Fig. 10 panels ba), é)-and fb) for additional Lufthansa ICI case studies.
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HIWC mask validation with Lufthansa ICI events
Scene 2016/06/01 13:45 UTC
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Figure A3. As in Fig. 10 panels a), €);-and eb) for additional Lufthansa ICI case studies.

HIWC mask validation with Lufthansa ICI events
Scene 2016/06/30 13:15 UTC
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Figure A4. As in Fig. 10 panels ba), ¢)-and fb) for additional Lufthansa ICI case studies.
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2016/10/23 19:15 UTC. HIWC probability mask with Lufthansa ICl event
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Figure AS. As in Fig. +0-panels-a)¢);-and-e)-12 for additional Lufthansa ICI case studies.

A3 HIWC mask discontinuities

505 Some HIWC probability masks display a discontinuity, as in Fig. A2, and A3. Those discontinuities may be explained
with the convection related metrics. Those metrics, such as the distance to the closest convective cell and the areas of the
closest convective cell, present such discontinuities, as in Fig. A6. Convective pixels in the surrounding radius of 100 km
introduces rounded discontinuities, as in panel a), while distance and area extent of the closest convective cells introduce
linear discontinuities, as in panel b) and ¢). Those discontinuities may be further emphasized by the random forest approach,

510  which does not enforce smooth outputs, but only takes the majority vote from single decision trees. We speculate that the
discontinuities might be more pronounced when the other supporting input features, such as visible channels and optical

thickness, lie in a region where the split between HIWC and no-HIWC is not clear (see Fig. 11). Thus, this artifact might be
more pronounced during nighttime, though this evidence was not found in Lufthansa ICI cases in Fig. 12, and AS. However,
this statement is supported by Fig. A7, where the nighttime demonstration approach (Fig. 12) was applied to a daytime scene

515 (panel a) of Fig. 10). There, the rounded artifacts due to distance-related convection metrics are emphasized by the artificial
unavailability of solar channels information that we introduced as demonstration.

A4 HAIC-HIWC II flight campaign additional case stud
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Scene 2016/05/29 16:45 UTC
Discontinuities in convection-related properties

Convective pixels amount Distance to the closest
in surrounding radius of 100 km convective cell Area size closest convective cell

6E75E9E105E 13.5°E 6°E 7.5°E 9°E10.5°E  13.5°E 6E75E9E105E 13.5°E

49.5°N 495N495N 88 /9 5°N 49.5°N 49.5°N
4g°N SR8 48N 48° N48N 48° N — | PEUN
465N 465N465N 465N465N 46.5°N

- ____FpHN| e 42°N
6°E 7.5°E 9°E 10.5°E 12°E 6°E 7.5°E 9°E 10.5°E 12°E 6°E 7.5°E 9°E 10.5°E 12°E
EEE—— 00 N 000 [
0 200 400 600 0 100 200 300 2000 4000 6000 8000
# convective pixels Distance [km] Area [km?]

Figure A6. As-inFig—+0-panels-b)-d)-and--Convection related metrics for additionat-the Lufthansa ICI case stadiesof Fig. A2 associated

with discontinuities.

2016/06/25 16:00 UTC. HIWC probability mask with Lufthansa ICI event
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Figure A7. As inFig. +0-panets-12, where the nighttime instrumental value approach was applied to a ydaytime scene, e)-and-e)foradditionat
Lufthansa1Cleasestadiesto verify its effect where cloud optical properties would be otherwise available.
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2015/05/16 18:00 UTC
HAIC-HIWC flight campaign scene.

a) Visible channel 0.6 um b) Convection and cloud optical thickness
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Figure A8. As in Fig. +0-panels-b)h-and$)-13 for additional-bufthansatCleasestudiesflight 15 of the HAIC-HIWC II flight campaign.
The flight

Figure A8 and A9 shows an additional case study of the HAIC-HIWC flight campaign. In this case, a HIWC probability mask
higher than 0.5 is close to the flight, and it overlaps with its trajectory only where highest IWC is measured.
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2015/05/16 18:00 UTC
HIWC probability mask validation with HAIC-HIWC campaign flight.
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Figure A9. As in Fig. 14 for flight 15 of the HAIC-HIWC II flight campaign. The flight stayed in a HIWC region during the satellite scan

nominal times (18:00 to 18:15 UTC), with a IWC maximum value of 2.93 ¢ - m > and a median of 1.10 g - m 3.
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