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Abstract

To investigate optical properties, sources, and radiative effects of brown carbon (BrC), we
conducted synchronous field campaigns in the Qinghai-Tibet Plateau (Yangbajing) and urban
Guangzhou in July 2022, using multi-wavelength Aethalometer (AE33) and aerosol mass spectrometer
(AMS) measurements. Total aerosol and BrC light absorption coefficients at 370 nm (Absr: 1.6 = 1.6
M m™; BrC: 0.2 + 0.3 M m™') in Tibet were an order of magnitude lower than Guangzhou, attributed to
extremely low aerosol/organic acrosol (OA) mass concentrations. However, BrC fractions in Absowal (15 %
vs. 21 % at 370 nm) correlated with primary OA (POA) ratios, highlighting anthropogenic emission
impacts even in this clean background. Diurnal variations (morning/evening peaks) of source—specific
BrC absorption were regulated by local emissions (e.g., biomass burning, traffic emission) and regional
secondary formation. Source apportionment revealed primary sources (biomass burning OA (BBOA),
hydrocarbon-like OA (HOA)) dominated BrC absorption (> 75 %). The mass absorption cross—section
(MAC) of HOA (2.08 m? g ! in Tibet; 2.57 m? g in Guangzhou) was comparable to that of BBOA (1.11—
2.54 in Tibet; 1.91 m? g! in Guangzhou), indicating the high light absorption capacity of BrC from fossil
fuel. Integrated "simple forcing efficiency" (370-660 nm) showed primary emissions contributed > 98 %
of total radiative forcing at both sites. This study advances understanding of BrC dynamics and sources
in diverse environments, underscores primary sources’ critical role in BrC absorption, and emphasizes

the need for source—specific OA optical parameterization.
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1. Introduction

Light absorbing components of atmospheric aerosols comprise black carbon (BC) and light
absorbing organic aerosols, known as brown carbon (BrC). The BrC exhibits significant absorption in

the near-ultraviolet (300-400 nm) and visible ranges (Andreae and Gelencsér, 2006; Kirchstetter and

Thatcher, 2012; Laskin et al., 2015), but it remains largely overlooked in most climate models (Chung et
al., 2012). Feng et al. (2013) found that accounting for the strong absorption of BrC in model could shift
the global mean direct radiative forcing of OA at the top of the atmosphere from a cooling of —0.08 Wm™

2 to a warming of +0.025 Wm™2, emphasizing the significant role of BrC in global and regional direct

radiative forcing of carbonaceous aerosols. Wang et al. (2025) revealed that dark BrC, emitted by
wildfires and agricultural burning, strongly absorbs solar radiation, thereby generating a radiative effect

of +0.02 to +0.68 Wm™2, which contributed comparable warming as BC. Current global model simulation

studies have demonstrated that the impact of BrC can contribute 12—50 % of the total positive radiative
forcing from light-absorbing atmospheric aerosols and can be regionally different, which emphasizes the
spatially dynamic variation of BrC and its important role in atmospheric warming (Li et al., 2025; Brown

et al., 2018; Feng et al., 2013; Wang et al., 2018; Xu et al., 2024),.
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In general, the source of atmospheric BrC can be categorized by direct emission (primary BrC) and
secondary generation (secondary BrC) (Laskin et al., 2015). Over the past decade, primary BrC was
found to be dominated by biomass burning, and the absorption capacity of BrC from fossil fuel is often
neglected (Saleh, 2020). However, more and more recent studies have shown that fossil fuels (vehicle
emissions and coal combustions) are also important contributors to the BrC, which have been previously
underestimated (Du et al., 2014; Kasthuriarachchi et al., 2020a; Xie et al., 2017; Huang et al., 2022; Tang
et al., 2020). Wang et al. (2022b) conducted a comprehensive review of the relationship between the
source and light absorption characteristics of BrC based on the measurement results in China, positing
that the emission and light absorption capacity of BrC from fossil fuel combustion might be comparable
to or even exceed those induced by biomass burning. This finding raises the question of how much
primary fossil and non-fossil sources contribute to ambient BrC. Regarding secondary BrC, its formation
involves complex gaseous, particulate, and liquid-phase reactions from diverse precursors (Laskin et al.,
2015). E.g., the nitro compounds formed through NO; oxidation or OH oxidation under high NOy
chemistry can lead to a significant enhancement in light absorption within the ultraviolet—visible (UV—
Vis) range (Li et al., 2020; Jiang et al., 2019). Aqueous reactions of carbonyl groups with reduced
nitrogenous organic compounds, such as organic amines and ammonium, are also found to be important
BrC sources (Powelson et al., 2014; Tang et al., 2022).

The complex sources and multi—forming pathways of BrC make its global simulation a great
challenge, e.g., mass absorption cross—section (MAC), which serves as a crucial optical parameter in
simulating the BrC light absorption and further its radiative forcing, is still not clear due to the impact of
multiple factors. E.g., various studies have demonstrated that the BrC light absorption properties are
susceptible to the sources (Tang et al., 2020), photochemical aging (Yu et al., 2016; Wong et al., 2017,
Lee et al., 2014; Zhao et al., 2015), humidity (Kasthuriarachchi et al., 2020b), acidity of aerosols (Mo et
al., 2017; Phillips et al., 2017), and structure of chromophores (Laskin et al., 2014; Hems and Abbatt,
2018). In general, the MAC of secondary BrC was found to be generally lower than primary sources in
ambient BrC (Qin et al., 2018; Zhang et al., 2022b). Smog chamber experiments also show that the MAC
of aged coal combustion emission (0.14 + 0.08 m? g™') was much lower than that of primary emissions
(0.84 + 0.54 m? g!) (Ni et al., 2021). If the impact of the atmospheric aging on MAC is not considered
in the model, the simulated BrC light absorption may be overestimated by 45 % to 128 % (Li et al., 2025).
In addition, Li et al. (2025) pointed out that the uncertainty in the effective MAC of primary BrN (i.e.,
absorptive nitrogenous component of BrC) from anthropogenic and biomass burning has the greatest
impact (reaching 76 % uncertainty) on the simulated BrN light absorption, highlighting the key role of
source—specific MAC in the global simulation of BrC light absorption. Further clarification of the MAC
of BrC from different sources in the ambient air is imperative, which can greatly help to improve the
understanding of BrC light absorption and the model simulation. However, the total contribution to
ambient BrC from SOA and POA and their source—specific MAC values is still ambiguous due to varied
regions and circumstances, which warrants further study.

Due to the complexity and diversity of BrC, in conjunction with black carbon (BC), which share
similar combustion sources and complex mixture states (Bond and Bergstrom, 2006; Cappa et al., 2012;

Cappa et al., 2019), it remains challenging to measure the source—specific BrC light absorption in the

3
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ambient air directly. The field measurement on ambient BrC begins with filter—based offline methods
using solvent (water or organic solvent) extraction (Bond and Bergstrom, 2006). One of the limits of the
offline technique is the low time resolution (usually 12—-24 hours), which cannot reflect the dynamic
variation of BrC during a day. As measurement techniques have developed, online methods for aerosol
light absorption at different wavelengths have become available (Lack et al., 2014). The most widely
used instruments include multi-wavelength Aethalometers (AE31/AE33) (Drinovec et al., 2015) and
three—wavelength multi-pass Photo Acoustic Spectroscopy (PAS) (Lack et al., 2012). The online
measurements can provide dynamic variations in BrC light absorption at high time resolution (1 minute).
Together with source apportionment techniques, source contribution to BrC at high time resolution can
be obtained, which can greatly aid in understanding the dynamic characteristics of ambient BrC and its
sources.

Currently, most of the field studies focusing on ambient BrC and its sources are conducted in urban
areas (Qin et al., 2018; Sun et al., 2021; Wang et al., 2019b; Zhong et al., 2023), while the BrC
contribution in regional background areas is still limited. The Qinghai—Tibet Plateau (QTP) region,
spanning approximately 2.5 million square kilometers, is acknowledged as the world's highest plateau
(Yao et al., 2012). The atmosphere in QTP can substantially influence the climate in the world. E.g., the
light—-absorbing carbonaceous aerosols have been identified as one of the main factors causing the
accelerated glacier retreat across the QTP (Usha et al., 2022; Kang et al., 2019; Chelluboyina et al., 2024).
Compared to the southern and northern regions of the QTP, anthropogenic BC is the dominant driver of
glaciers melt in the central QTP, whose radiative forcing can be up to 17 times greater than that in the
southern QTP (Li et al., 2017; Ming et al., 2013). Moreover, a portion of the glaciers in central QTP are
situated in the headwaters of the Yangtze River, thus, the melting directly impacts the livelihoods of
millions of people downstream. The melt sensitivity of these glaciers to light-absorbing impurities (such
as OA, BC and mineral dust) is not only higher than that of their southern counterparts but also carries
greater regional ecological and social significance (Li et al., 2017). Although BrC is an important light-
absorbing OA, limited studies on its variation and sources have been conducted in the central QTP, and
most have focused on the edge of the southern region(Wang et al., 2019a; Zhang et al., 2021; Tian et al.,
2023). We found that cross-border transport of biomass burning from South Asia was responsible for a
significantly higher BrC light absorption contribution in the southern QTP than in the central and
northeastern regions. However, OA in the central QTP not only originated from long-range transport (Xu
et al., 2018), but anthropogenic activities also have a significant impact on the OA sources, such as local
biomass burning and fossil fuels (Xiang et al., 2024). Field measurements in the central QTP can improve
our understanding of how human activities in remote regions impact light-absorbing aerosols and,
consequently, glacial melting and radiative forcing. In central QTP, only one source apportionment of the
light absorption of offline water—soluble BrC was reported (Zhu et al., 2024), which showed a large
contribution of biomass burning (29 %), fossil fuel combustion (17 %) and secondary contribution (54 %)
to the total BrC light absorption. Further clarification is still needed. In addition, although the online BrC
data have been reported in the Tibet region, the dynamic variation of BrC and its source contribution is
seldom shown (Zhang et al., 2021; Wang et al., 2024; Chen et al., 2024; Wang et al., 2019a; Tian et al.,
2023; Zhu et al., 2021; Zhu et al., 2017). The investigation of the dynamic variation of BrC, e.g., diurnal
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variation, can greatly promote the understanding of BrC fate in the ambient air, which shall be further
studied.

In this study, the real-time measurement of OA and light absorption of aerosols was carried out in
the background site of central QTP. For comparison, a concurrent campaign was also carried out during
the same period in a typical megacity of China, Guangzhou. The comparison results from distinct two
environments at the same time can help better understand the light absorption capacity of BrC in QTP.
In both campaigns, an online multi-wavelength Aethalometer (AE33) was applied to characterize the
dynamic variation of BrC. The positive matrix factorization (PMF) method together with aerosol mass
spectrometer (AMS) data was used to apportion the sources of OA. The multiple linear regression (MLR)
was used to explore the possible dynamic source contribution to BrC in two representative regions.
Finally, source—specific BrC to light absorption and the radiative forcing in remote and urban areas was

shown.

2. Methodology

2.1. Sampling sites

The field campaigns were simultaneously conducted from July 3 to August 3, 2022 in Tibet, and
from July 16 to August 5, 2022 in urban Guangzhou, as depicted in Fig. 1. The Yangbajing site (YBIJ site;
30.2°N, 90.45°E; 4,300 m above sea level [a.s.1.]) serves as a background location situated in the central
QTP, approximately 90 km northwest of Lhasa City. With a permanent population of around 6,000, YBJ
was supposed to be influenced by mixed plumes of regional transportation, while local anthropogenic
emissions (e.g., light traffic flow and/or fuel combustion for domestic heating or cooking activities) were
also found (Liu et al., 2021; Xiang et al., 2024). The urban site (GIG site; 23.1 °N, 113.4°E; 53 m a.s.l.)
is set on the campus of the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS),
located in the downtown area of Guangzhou (permanent population: ~20 million). The GIG site is
surrounded by transportation, commercial, and residential areas (Chen et al., 2021). During the whole
campaigns, lower temperature and Relative Humidity (RH) were observed in the YBJ site (13.4 £4.6 °C,
52.1 £ 21.9 %) than those in the GIG site (29.5 + 2.8 °C, 82.9 + 12.7 %), which is expected due to the
high altitude of Yangbajing (4,300 m) compared to Guangzhou (53 m). Southeast and north winds were
dominant throughout the observation period at the YBJ site with an average wind speed of 2.3 + 1.6 m

1

s7!, while the GIG site was dominated by south and southwest winds at a speed of 2.2 + 0.9 m s7', as

shown in Fig. 1. The date and time used in this study are reported using Beijing Time (BJT: UTC +8h).
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Figure 1. (a) Map of the locations of Yangbajing (YBJ) and Guangzhou (GIG) sites (yellow triangles).
Solid colored lines represent the average back trajectory clusters during the whole campaign and the
corresponding contributions plotted using the Meteolnfo version 2.2.6 developed by Wang (2019)
(download from http.//www.meteothink.org, last access time: 23 June 2025). The orange dots on the map
indicate the location of the fire spot (download from Active Fire Data Earthdata (nasa.gov), last access
time: 14 December 2023). The pie charts represent the chemical compositions of submicron particulate
matter (PM;) along with their contributions at both sites during this campaign. The rose plots colored by
wind speed (WS) at (b) the YBJ site and (c) the GIG site are also shown.

2.2. Light absorption coefficient measurement

The aerosol light absorption coefficients at both sites were measured by multi-wavelength
Acthalometer (Model AE33, Magee Scientific Corp., Berkeley, CA, USA) at seven wavelengths (370,
470, 520, 590, 660, 880, 950 nm) with a high time resolution of 1 minute (Drinovec et al., 2015). Ambient
aerosols were introduced into AE33 through a PM,s cyclone at a flow rate of 5 L min~!. The AE33
collected aerosols via continuous pumping to a specific location on the filter belt. It then measured the
transmitted light that passed through this sample—containing spot and a corresponding blank filter film
spot. The instantaneous light-absorbing aerosols were determined by analyzing the variation in the
attenuation rate of the transmitted light across the particulate—loaded filter membrane. To accurately
reflect the real optical absorption coefficients of airborne aerosols, a real-time compensation parameter
(k value) and a fixed filter multiple scattering parameter (Cier= 1.57 for tetrafluoroethylene (TFE)—coated
glass filter) are required to correct the optical attenuation coefficient measured on the filter membrane.
For the k value, the "dual-point" measurement technique of AE33 avoids the "aerosol loading" effect
during single filter tape membrane sampling, enabling real-time calculation corrections for load
compensation parameters (Drinovec et al., 2015). Multiple studies have shown that the C value (2.8-7.8)
varies with different wavelengths and observation locations (Qin et al., 2018; Collaud Coen et al., 2010;
Tian et al., 2023; Zhang et al., 2021). In this study, the Cgina values of 3.34 (2.23* C.f) for the YBJ site
and 3.6 (2.3*1.57) for the GIG site were applied based on the previous studies in Tibet (Zhang et al.,
2021) and Guangzhou (Cai et al., 2024), also using the AE33 instrument.

2.3.  OA measurement and source apportionment

The main chemical compositions of submicron aerosols including OA, nitrate, sulfate, ammonium,
6
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and chloride were measured using a soot particle time—of—flight acrosol mass spectrometer (SP—AMS;
Aecrodyne Research Inc., Billerica, MA, USA) (Onasch et al., 2012) at YBJ site and a time—of—flight
aerosol chemical speciation monitor (ToOF-ACSM; Aerodyne Research Inc., Billerica, MA, USA)
(Frohlich et al., 2013) at GIG site. During this campaign, both the SP-AMS and ToF—ACSM shared the
same sampling inlet with co—located AE33. The setup diagram can be found in Fig. S1. The time
resolution of SP-AMS and ToF—ACSM was 1 min and 40 s, respectively. For SP-AMS, dual vaporization
mode and tungsten-only V mode were alternatively applied every 4 minutes. In this study, tungsten-only
mode, which resembled the traditional HR-ToF-AMS, was applied. The ionization efficiency (IE)
calibration was done using monodispersed NH4sNOs aerosols before and after campaigns. The relative
ionization efficiency (RIE) of sulfate and ammonium is 1.26 and 4.24 for SP-AMS and 1.22 and 3.39
for ACSM, while a default RIE of 1.4 was used for OA. A constant collection efficiency (CE) of 0.5 was
used for YBJ measurement due to the quite low mass fraction of ammonium nitrate (< 40 %), while the
composition-dependent collection efficiency (average CDCE = 0.52) (Middlebrook et al., 2012) was
applied in GIG measurement. The SP-AMS data were processed using SQUIRREL (v1.65) and PIKA
(v1.25A), embedded in Igor Pro (v6.37; WaveMetrics, Inc., Lake Oswego, OR, USA), while ToF—~ACSM
data were processed using Tofware 3.2.4 (Tofwerk AG, Thun, Switzerland).

The positive matrix factorization (PMF) (Ulbrich et al., 2009; Zhang et al., 2011) was applied to the
OA spectral matrix to resolve the sources of OA at both sites. More detailed information can be found in
Text S1 and Table S2. The final OA source apportionment at the YBJ site and GIG site are shown in Fig.
S4. At the YBIJ site, five OA factors were finally resolved using free PMF with PMF3.05 (Ulbrich et al.,
2009), including hydrocarbon—like OA (HOA, 11 %) mainly from traffic emissions, biomass burning OA
(BBOA, 9 %), biofuel-OA (13 %), less—oxidized oxygenated OA (LO-OOA, 42 %), and more—oxidized
oxygenated OA (MO-0O0A, 25 %). At the GIG site, OA was resolved based on Multilinear Engine 2
(ME=2; SoFi 6.8) (Canonaco et al., 2013), and the standard BBOA mass spectra (Hu et al., 2016; Hu et
al., 2013) were introduced as an external constraint to fully constrain (a value = 0) BBOA factor at the
GIG site. Finally, five factors were chosen with MO—OOA (49 %) and LO-OOA (22 %) dominating the
total OA, followed by cooking—related OA (COA, 13 %), BBOA (8 %), and HOA (8 %).

2.4. Calculation of BC and BrC light absorption coefficients

The Absorption Angstrom exponent (AAE) method was widely used to distinguish BC and BrC light
absorption coefficients measured by Aethalometer (Lack and Langridge, 2013). Previous studies
demonstrated that the aerosol light absorption at 880 nm was entirely dominated by BC (Kirchstetter et
al., 2004). The absorption coefficients of BrC at shorter wavelengths (370, 470, 520, 590, and 660 nm)
can be calculated by combining the AAE (Lack and Langridge, 2013) with BC light absorption at 880

nm, using the following Equations:

88O)AAEBC

Absgc(A) = Abs(880) x (T (1)

AbSBI‘C (}\) = Abs(}\) - AbSBC(}\) (2)
Here, Absgc(A) and Absg,c(A) (M m™") represent light absorption coefficients of BC and BrC at

wavelength A (nm), respectively. Abs(A) represents the total aerosol light—-absorbing coefficients at the

7
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wavelength A, which can be calculated by the mass concentration of BC (pg m™) multiplied by mass
absorption cross—section (MAC; m? g™!) at wavelength A, denoted as Abs(A) = BC(A) x MAC(}). In this
study, default MAC values for BC (18.47, 14.54, 13.14, 11.58, 10.35, and 7.77 m? g"! for 370, 470, 520,
590, 660, and 880 nm, respectively) were used (Drinovec et al., 2015). AAEg. denotes the wavelength
dependence of pure BC particles, which was usually assumed as 1 to calculate the light absorption
coefficient of BC (Tian et al., 2023; Zhang et al., 2022b). However, due to the multiple effects (e.g.,
lensing effect) caused by the mixing of non—BC/coating materials and BC during atmospheric evolution,
the light absorption of BC can be enhanced (Jacobson, 2001; Liu et al., 2017; Peng et al., 2016). Moreover,
AAEgc was also found to be varied as a function of absolute wavelength values (Luo et al., 2022), which
was suggested as 0.8—1.4 for BC particles (Lack and Langridge, 2013; Kasthuriarachchi et al., 2020a;
Zhai et al., 2022; Corr et al., 2012). We summarized the AAEgc values from the literatures in Table S3,

and found all the actually used values are between 1 — 1.18. E.g., within one campaign (Kasthuriarachchi

et al., 2020), 93% of directly measured AAE from ambient core BC in Singapore was found to be less
than 1.1. An AAEgc of 1.4 represents a typical high value, considering the mixing of non-absorbing
material with BC in the extreme case (Lack and Langridge, 2013). For our study, we found ~82% of data
was negative value when the AAEgc of 1.4 was applied, which is unrealistic to apply here. Thus, to
investigate the uncertainty of BrC estimated here, AAEg¢ of 0.8 to 1.2 was applied, which results in 2—
13 % and 4-14 % of BrC contribution to total light absorption from 370 to 660 nm for the YBJ site and
GIG site, respectively.

2.5. Sources contribution to BrC light absorption based on multiple linear regression (MLR)

To further understand the sources of BrC light absorption, a multiple linear regression (MLR) was
used to apportion the BrC light absorption to different components resolved by the source apportionment
of OA (Kasthuriarachchi et al., 2020a; Qin et al., 2018; Tian et al., 2023; Zhang et al., 2021), using the

following Equations:

Absg.c(Q) = XY.(a X Factor) + intercept  (3)
Here, Absg.c(A) (M m™") represents the BrC light absorption coefficient at a wavelength of A (370,
470, 520, 590 and 660 nm); a represent the regression coefficients of different OA components, which
can be regarded as MAC (m? g™") values (Kasthuriarachchi et al., 2020a); Factor (ug m~) represents the

mass concentration of OA from different sources (see Sect. 2.3).

2.5.1. Uncertainty analyses for the MLR method

Multicollinearity is an important factor leading to inaccurate estimation of regression coefficients
in the MLR model. To estimate the uncertainty of the MLR method, we tested different scenarios with
varied PMF factor combinations based on their correlation. To compare with other published results and
simplify the calculation process, the MLR uncertainty at 370 nm was estimated. In general, four cases
were chosen for the YBJ campaign, and three cases were chosen for the GIG campaign by combining or
excluding collinear factors. The detailed information can be found in Text S2 and Table S5. All the cases
yield similar low coefficients for the SOA factor and high coefficient values for the POA factors,
suggesting the validity of MLR analysis shown here.

8
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With each solution, the uncertainty of the regression coefficient (i.e., MAC) for the individual OA
components input into the MLR model was evaluated using Monte Carlo simulations. For the Monte
Carlo calculation input, the uncertainty of the PMF factor mass concentration needs to be evaluated. A
bootstrap analysis (100 iterations; (Ulbrich et al., 2009) was applied, which shows a 9-36 % uncertainty
for the PMF factors at the YBJ site and 3-9 % at the GIG site, as shown in Table S6. The uncertainty for
the coefficient of BrC at 370 nm was estimated to be 43 % for the YBJ site and 36 % for the GIG site
based on the lower (0.8) and upper limit of (1.2) previously reported AAEgc range. The total uncertainties
of each coefficient for each PMF factor were then calculated by Monte Carlo with 10,000 simulations.

Considering that biomass burning is widely reported as an important source of BrC light
absorption and regarded as a warming agent affecting global climate (Wang et al., 2025), we
consider all biomass burning related contributing sources when run the MLR model in the case of
eliminating the collinearity problem in this study. As previously reported in the literature
(Kasthuriarachchi et al., 2020a; Qin et al., 2018), the MAC of COA is nearly zero, thus, the light
absorption by COA at GIG site was not considered in this study. We finally combined the BBOA
factor and Biofuel-OA factor as BBOA (case 3) for the YBJ site and included BBOA, HOA as input
(case 3) for the GIG site (Table 1). The SOA (LO-OOA and MO-OOA) at GIG site were not inputted
here due to the collinearity with BBOA, the light absorption contribution and MAC values (case 3)
at GIG site will be lower limits for SOA. For its upper limits, Case 2 in the supporting information
(Text S2; Table S5) was also shown (Fig. S9). At the YBIJ site, the MAC uncertainty of BBOA
(26.4 %), HOA (20.8 %), LO-OOA (56.3 %), and MO-OOA (57.9%) was found, as shown in Table
S7. For the GIG site, the MAC uncertainty of HOA (5.8 %), BBOA (6.8 %), and intercept (21.6 %)
was estimated. With the final solution, the total light absorption calculated from the predicted
regression coefficients (i.e., MAC) showed strong agreement with the measured values, as indicated
by the slopes (YBJ: 0.9; GIG: 0.9) and Pearson correlation coefficients (YBJ: R = 0.8; GIG: R =
0.7). These results suggest the robustness of the regression analyses. However, a notable intercept
(0.37 M m™!, representing 13 % of the total light absorption) was observed in the MLR model at the
GIG site. This intercept indicates a portion of BrC light absorption that could not be explained by
the OA factors, potentially due to uncertainties associated with the MLR method. The detailed
discussion of MAC and BrC light absorption contributions is shown in Sect.3.2.

Table 1. Regression coefficients (MAC) of the final case of multiple linear regression (MLR) at 370, 470,
520, 590, and 660 nm at the YBJ site and GIG site. Note that the SD represents the Standard deviation
purely calculated from the MLR model.

YBJ site
Wavelength (nm)
MAC (Average + SD) 370nm 470nm 520nm 590nm 660nm
biofuel-OA 1.11+0.11 042+0.05 0.11+0.03 0.11+0.02 0+0.03
HOA 208+03 1.11+£0.14 0.18+0.10 0.16+0.06 0+0.07
LO-O0A 0.15+£0.08 0.14+0.03 0.07+0.02 0.04+0.02 0.01+0.02
MO-0O0A 0.18+0.18 0.19+0.08 0+0.06 0.02+0.04 0+0.04
Intercept 0+£0.02 0.02+0.01 0.04+0.01 0.02+0 0.03+0
GIG site
Wavelength (nm)
MAC (Average + SD) 370nm 470nm 520nm 590nm 660nm
BBOA 1.91+021 090+0.10 035+0.06 0.40+0.04 0.20 +£0.02
HOA 2.57+028 1.40+0.13 0.72+0.07 0.38+0.06 0.13+0.03
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2.6. Calculation of radiative forcing

The estimation of the direct radiative forcing caused by BrC was conducted using a model known
as the “simple forcing efficiency (SFE)”, which can provide a radiative forcing (W g!) based on a given
mass of aerosols. Although the resulting value of SFE is lower than that projected by climate models, it
still serves as a valuable tool for gauging the sensitivity of various input parameters (Bond et al., 2006;
Chylek and Wong, 1995). In this study, we used a modified version of the wavelength-dependent SFE
without considering mass scattering and expressed it as follows (Tian et al., 2023; Zhang et al., 2020a;

Zhang et al., 2022b):

SFEQZ) =B x 12, x (1 - E) X 4ag x MAC(A)  (4)

Here, S(A) (W g”'nm™) is the wavelength—dependent solar irradiance based on the ASTM G173~
03 Reference Spectra (https://www.nrel.gov/grid/solarresource/spectra—am1.5.html); 7,4, represents
atmospheric transmission (0.79); F; is the cloud fraction (0.6); a is the surface albedo (global average
0.19) (Chen and Bond, 2010). MAC(A) (m? g™!) is the mass absorption cross—section of different OA
components at wavelength A at a 1 nm resolution. The MAC(A) can be calculated according to the
power—law fitting results between the MAC from each OA component at different wavelengths (370 to
660 nm) in this study. Note that the SFE represents a straightforward calculation designed to ascertain
the relative significance of diverse optical properties of radiative forcing. However, to accurately
determine forcing efficiency, a comprehensive radiative transfer model is still necessary (Efremenko and

Kokhanovsky, 2021).

3. Results and discussion

3.1.  Overview of Aerosol light absorption

The summarized total aerosol light absorption coefficients (Abs;,tq;) as a function of wavelength at
two sites are shown in Fig. 2 and Table S8. The more detailed temporal evolutions of Abs;,tq; at two
sites are displayed in Fig. S7, In general, the average Abs,;,.,; ranged from 0.6 to 1.6 M m™' (370 to 950
nm) at the YBJ site, while the 7-8 times higher Abs;,¢q; (4.2-13.2 M m™") was observed at the GIG site
(Fig. 2a and Table S8). This discrepancy was primarily attributed to the much higher aerosol mass
concentration in urban Guangzhou (PM:: 12.5 + 8.8 pg m) compared to the background Tibetan region
(PM;: 1.0 +£ 0.6 pg m™) (Figs. 2a and 2b). The campaign-averaged BrC light absorption coefficients
(Absg,¢) and its contribution to total aerosol light absorption increased with decreasing wavelength at
both sites (AAE of BrC is 2.6 for YBJ and 3.2 for GIG; Figs. 2c¢, 3b, and 3d), indicating strong BrC light
absorption at shorter wavelengths. At 370 nm, where BrC contributes the most to the total light absorption,
Absg,. in Tibet (0.2 = 0.3 M m™') was found to be a factor of 13 lower than that in Guangzhou (2.9 + 2
M m™). This finding is consistent with the much lower OA mass concentrations (by a factor of ~10) at
the YBJ site (OA: 0.7 £ 0.4 pg m~ vs 6.9 = 5.8 pg m~ at GIG; Figs. 2b and 2c¢).. A positive correlation
between BrC light absorption and OA mass concentration was also observed across different field studies

(Fig.2d; Table S4). This relationship aligns with the findings of Wang et al. (2022a), who reported that
10
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BrC light absorption at 365 nm positively correlates with OA mass concentration across various sources.

To facilitate a visual comparison with previous studies, the literature—reported BrC light absorption
results at 365 or 370 nm are summarized in Fig. 3e and Table S4. This wavelength was chosen due to its
higher BrC abundance across different wavelengths, which leads to less uncertainty. At the YBJ site, the
campaign-averaged Absg,¢ at 370 nm (0.2 M m™'; 0.03-0.6 M m™! for 5-95 % range; Table S4) was
lower than the values reported across the Qinghai-Tibet Plateau (QTP) (0.6-14.9 M m™), e.g., the BrC
light absorption at YBJ site (central QTP) was much lower than those observed at the edges of the QTP,
such as Ngari (5.9-10.7 M m™), Qomolangma Station (QOMS, 4.4 M m™), and Gaomeigu (12.3 M m~
1), where elevated values are primarily influenced by the cross—border transport of biomass burning
plumes during pre—monsoon or post—-monsoon period (Zhang et al., 2021; Tian et al., 2023; Zhu et al.,
2017). The low BrC light absorption at YBJ can be attributed to the extremely low mass loading of OA
(0.7 £ 0.5 pg m~3), which is influenced by wet deposition from precipitation and specific atmospheric
circulation patterns during July, a monsoon period (Xu et al., 2018; Zhao et al., 2013). In addition, the
absolute BrC light absorption coefficient at YBJ was comparable to levels measured in certain remote
regions, such as the Arctic (0.04-0.2 M m™" at 365 nm) (Barrett and Sheesley, 2017; Yue et al., 2022; Yue
etal., 2019), highlighting the relatively clean atmospheric conditions at YBJ as a background site in Tibet.
In general, BrC light absorption in urban areas tends to be higher or comparable to that in QTP regions
due to typically higher OA mass concentrations (Fig. 2d).

Although a relatively large discrepancy in the absolute light absorption coefficient of BrC was
observed between the YBJ and GIG sites, the contribution of BrC to total acrosols (Fractiong,c) was
comparable at both sites (15 % vs. 21 %), highlighting the significant role of BrC in light absorption at
both locations. We summarized Fractiong.c across different studies and regions, as shown in Fig. 3e and
Table S4, which reveals that Fractiong,c values generally fall within a range of 858 %. Notably, the
Fractiong,c in the Qinghai—Tibet Plateau (QTP) is comparable to that in urban areas. Furthermore, a clear
trend shows that Fractiong.c at the edges of the northeastern (such as Qinghaihu Lake) and south QTP
(such as Ngari) tends to be higher than in the central QTP (such as Beiluhe, Namco, and YBJ site), and
the Fractiong,c in Northern China is generally higher than in Southern China. To better understand the
factors driving the Fractiong,c, we investigated the relationship between the contribution of primary
organic aerosol (POA) and secondary OA (SOA) to total OA and the Fractiong:c. As illustrated in the
inset plot of Fig. 3e, a positive correlation was observed, suggesting that the enhanced POA contribution
will increase the BrC light absorption contribution in carbonaceous aerosol. For sites at the edges of the
QTP and in northern Chinese cities, where the Fractiong.c is higher, OA is significantly influenced by the
combustion of solid fuels, including coal and biomass, particularly during winter. This finding signifies

the importance of POA in contributing to ambient BrC light absorption.
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Figure 3. The absolute light absorption coefficients of BC (4bsgc) and BrC (4bsg,c) at wavelengths from
370 to 880 nm at the (a) YBIJ site and (¢) GIG site, respectively. The BrC was calculated based on the
AAE of BC (AAEgc)=1. The contribution of BrC light absorption at wavelengths from 370 to 660 nm at
the (b) YBJ site and (d) GIG site, respectively. The grey—filled area represents variations in the BrC light
absorption fraction caused by the AAEgc from 0.8 (dashed line) to 1.2 (solid line). The circle makers are
the average value estimated based on AAEgc=1. () The summary of BrC light absorption coefficients
(the brown circles) and their contributions to total light absorption coefficients at 370 nm from the
literature results. The results were categorized according to the locations of their observation sites (Arctic
region, Qinghai-Tibet Plateau (QTP region), Southern China, and Northern China). The inset plot
represents the relationship between the BrC light absorption fraction and the contribution of primary OA
to total OA. The detailed information is provided in Table S4.

To further elucidate the dynamic evolution of BrC light absorption, the diurnal variations of
Absgc 370 and Absgc 379 Were displayed in Fig. 4 (4bsiora at different wavelengths was shown in Fig. S8).
Absgc 370 and Absg,c 370 at both sites peaked simultaneously, indicating combustion source for BC are
also important contributor to the BrC in both studies. At the YBJ site, the peaks at 08:00 and 22:00 align
with the NOx (NO + NO,) and CO, which were due to the local or regional anthropogenic emissions
(such as vehicle emissions and other combustion activities) in Tibet. In other periods, a background
Absgyc 370 value of 0.19 M m™' was found at YBJ site. The diurnal patterns of Absg 370 and Absg;c 370
at the GIG site, which showed an enhancement at 10:00 and a stronger peak at 21:00, were slightly
different from those at the YBIJ site. This difference suggests distinct source emissions or secondary
formation patterns between the two locations (Fig. 4b and Fig. S8b). Higher increase of NO,/NO and CO
at night in Guangzhou was also found, implying the potentially important contribution of vehicles and

other combustion sources, e.g., biomass burning, at this urban site.
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Figure 4. Diurnal variations of gas pollutants and BC/BrC light absorptions at 370 nm at (a) YBJ site and
(b) GIG site.

3.2.  Optical properties of source—specific BrC
To further identify the source of absorptive BrC in this study, we applied the multiple linear

regression (MLR) method to attribute BrC light absorption at different wavelengths to OA components

from various sources, based on the PMF analysis conducted at the YBJ and GIG sites. The detailed
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methodology is described in Sect.2.5.

At the YBJ site in Tibet, the MLR model identified BBOA (the sum of BBOA and Biofuel-OA, as
defined in Sect.2.5.1 and Text S1), HOA, LO-OOA, and MO-OOA as the main contributors to BrC light
absorption. As shown in Fig. 5a, secondary organic aerosol (SOA, comprising LO-OOA and MO-OOA)
dominated the total OA mass concentration (67 %), followed by BBOA (22 %) and HOA (11 %).
However, for BrC light absorption, POA (including BBOA and HOA) emerged as the most significant
contributor, with BBOA contributing the most (40 %), followed by HOA (38 %) and SOA (22 %),
signifying the key role played by biomass burning and vehicle emissions for BrC light absorption at the
YBIJ site. Indeed, both the BBOA (R =0.77) and HOA (R = 0.64) show better correlations with BrC light
absorption at 370 nm than other factors (Fig. S10). A similar trend was observed at the GIG site in urban
Guangzhou (Fig. 5d), where POA (including BBOA, HOA) represented only 29 % of the total OA mass
concentration but contributed disproportionately to BrC light absorption (89 %). These findings highlight
the critical role of primary BrC in light absorption during our measurement campaign. In the following,

we will discuss each source contribution to BrC in detail.
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Figure 5. (a) The contributions of different OA factors to total OA (left bars) and contributions of different
OA factors to BrC light absorption at 370 nm (right bars) at the YBJ site and GIG site. The diurnal
variations of OA factors mass loading and the light absorption of different OA components at 370 nm at
the YBJ site (b, e) and GIG site (c, d). The “x6” indicates the light absorption of LO-OOA and MO-OOA
at 370 nm expanded by 6 times to better guide the eyes for the trend of diurnal patterns.

3.2.1. Optical properties of BBOA

The diurnal variations of the biomass burning OA (BBOA) light—absorbing coefficients at 370 nm
for the YBIJ site exhibited strong correlation with BBOA mass concentration (Fig. 5b, 5e), characterized
by distinct peaks at 08:00 and 21:00 local time. This temporal pattern aligns with the observation reported
in urban Lhasa, which exhibits a peak at 9:00 and 22:00, respectively (Zhao et al., 2022). The BBOA
peaks at the YBJ site (central QTP) in the morning and night are primarily influenced by local
anthropogenic activities, i.e., the traditional Weisang ritual. The Weisang activity, prevalent throughout
Tibet, including the sparsely populated YBJ region, typically occurs twice daily in the morning and
evening. Wherever Tibetans are living, almost all have a Weisang furnace. This cultural practice involves

the combustion of specific organic materials, including wormwood, cypress branches, highland barley,
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ghee lamp, and zanba in dedicated stoves, generating characteristic mulberry smoke for religious
purposes (Zhang et al., 2020b; Zhang et al., 2022a). Additionally, traditional residential solid biofuel
combustion (primarily yak dung and wood) for cooking and space heating contributes significantly to
BBOA loading in the plumes (Shen et al., 2021). The AMS spectral similarity between ambient BBOA
and emissions from both Weisang activities and solid biofuel combustion (Zhang et al., 2022a), showing
the highest signals of m/z41, 43 and 55, and high abundance of hydrocarbon ions above m/z 60, provides
further evidence for their dominant contributions to regional BBOA in Tibet. The hourly wind roses show
that the wind direction at the YBJ site exhibits a regular diurnal pattern, with a gradual change from the
north wind in the morning to the stronger southeast wind in the afternoon (Fig. S11). Combining the
Bivariate polar plots, the higher morning peak (6:00 to 11:00) of BBOA was from the nearby residential
area under low wind speed condition (Figs. S12, 13), while the lower evening peak was due to the dilution
of stronger wind speed in the evening (17:00 to 24:00) (Figs. S12, 13).

Compared to Tibet, the urban Guangzhou exhibited fundamentally different diurnal patterns in both
BBOA mass concentration and BrC light absorption coefficients (Fig. 5c, 5f), where the BBOA peak
occurs around noon and nighttime, reflecting the different biomass burning activity between Tibet and
Guangzhou. Previous literature (Cai et al., 2023; Wang et al., 2017) reported that the agriculture burning
at the suburban areas likely dominated the BBOA mass concentration at Guangzhou areas.

The mass absorption coefficient (MAC, m? g '), a crucial optical parameter for BrC characterization,
quantifies the light absorption capacity per unit mass of OA. Our measured MAC values for BBOA
(1.11-2.54 m? g* at YBJ vs. 1.91 £ 0.21 m? g* at GIG; Table 1, S4) fall within the lower range of
previously reported values (0.6—-8 m? g™'; Fig. 6, Table S10). This variability in MAC values from similar
combustion sources, as documented in numerous studies (Budisulistiorini et al., 2017; Chen and Bond,
2010; Martinsson et al., 2015; Saleh et al., 2014), arises from multiple factors, including fuel composition,
combustion conditions, and efficiency. The relatively low MAC values observed at both sites in this study
can be attributed to several reasons: 1) Both studies were conducted in the summer time, which coincided
with intense solar radiation and elevated oxidant concentrations, promoting photobleaching of
chromophores in fresh BBOA (Sumlin et al., 2017). Recent experimental evidence (Hems et al., 2021)
demonstrates rapid (minutes to hours), nonlinear photobleaching kinetics of fresh BrC, highlighting the
complex nature of these atmospheric processes. Especially for the Guangzhou samples, BBOA from
regional transport was likely subjected to a longer oxidation process, which led to a lower MAC at the
GIG site. 2) Combustion conditions and fuel type significantly influence MAC values (Martinsson et al.,
2015). Zhang et al. (2022a) systematically characterized Tibetan biofuel emissions, revealing that
Weisang materials and yak dung produce abundant OA with relatively low light absorption efficiency
due to incomplete combustion. Similarly, Moschos et al. (2024) showed higher MAC values for
hardwoods (0.8—1.6 m? g™") versus animal dung (0.2-0.7 m? g'); 3) At YBJ site, the multiple linear
regression (MLR) model incorporates biofuel-OA, which contains cooking OA, typically characterized
by weak/no absorption (Kasthuriarachchi et al., 2020a; Qin et al., 2018). The spectral similarity between
COA and biofuel-OA prevents complete separation in PMF analyses. Sensitivity analyses (Sect.2.5.1
and Text S1; Table S5) demonstrate MACggoa variability (1.11-2.54 m? g') under different model

assumptions, with maximum values (2.54 m? g™') obtained when excluding biofuel-OA contributions.
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3.2.2. Optical properties of HOA

The light—absorbing coefficient of HOA at the YBJ site exhibited a pronounced peak at 08:00 and a
minor peak at 22:00 (Fig. 5b, Se), aligning with the diurnal variation of HOA mass concentration. In the
Tibetan Plateau region, heavy—duty diesel trucks, which are critical for transporting essential goods
across this remote area, constitute a significant emission source alongside gasoline vehicles (Liu et al.,
2021; Xiang et al., 2024). Our observation site is located less than 1 km (straight-line distance) from the
G6 Beijing—Tibet Expressway. The Bivariate polar plots also show that the HOA was affected by the
wind direction, with the morning peak affected by the north and northeast plumes, while the evening
peak was affected by the southeast and northeast plumes with stronger wind speed. The traffic emission
during the night is more regional than that in the morning, which was supported by the fact that the NO
mass concentration was only enhanced during the morning (2.3 ppb) but not during the night, while an
obvious NO; peak at both periods (10 ppb and 7.2 ppb) was observed (Fig. 4a). Combining the Rose
plots and Bivariate polar plots (Fig. S12), the evening peak of HOA was also affected by the
southeast and northeast traffic emissions plumes with stronger wind speed, which also supported
the regional nature of evening HOA peak. At the urban GIG site in Guangzhou, HOA light absorption
coefficients displayed a bimodal distribution with a moderate morning peak at 07:00 and a stronger
evening peak at 20:00 (Figs. Sc, 5f), consistent with typical urban traffic emissions for rush hours (Chen
et al., 2021). The much higher evening peak than the morning peak coincides with rush—hour traffic
congestion, suggesting intensified vehicular emissions during these periods, as well as the effects of
meteorological conditions (e.g., reduced boundary layer height). The different diurnal variation of light
absorption on both HOA and BBOA between Tibetan and Guangzhou observations highlights the
regionally specific emission drivers from different areas.

In our study, the MAC of HOA for Tibet (2.08 + 0.3 m?> g') and urban Guangzhou (2.57 + 0.28 m?
g) (Table 1) were in the higher ranges of HOA MAC values reported by other studies (0.4-2.04 m? g~
1) (Table S10). Note that since the OOA factors in Guangzhou were not considered in the BrC source
apportionment due to collinearity with BBOA, the HOA reported here shall be an upper limit. The results
of both observation sites show that the HOA MAC (2.08 m? g™! at YBJ site vs. 2.57 m? g! at GIG site)
is larger than the BBOA MAC (1.11-2.54 m? g ' at YBJ vs. 1.91 £ 0.21 m? g! at GIG). To investigate
whether the MAC from ambient BBOA or HOA is higher, we summarized the MAC results from different
field studies in Fig. 6, yet no clear conclusion can be drawn. E.g., Higher HOA MAC than BBOA was
observed for central Amazon study (De Sa et al., 2019) and Mexico study (Retama et al., 2022), while
much higher BBOA MAC than HOA was found for Xianghe, Athens, Paris studies (Kaskaoutis et al.,
2021; Wang et al., 2019b; Zhang et al., 2020c). For emission experiments, higher MAC for diesel exhaust
than crop and wood have also been observed (Cheng et al.,2011; Du et al., 2014). In addition, very strong
light absorption capacity (MAC; 5-6 m? g™") (Table S10) induced by coal combustion (Wang et al., 2019b;
Zhang et al., 2022b) was found, which is comparable to these extreme MAC values reported from
biomass burning (5-7.5 m? g™!) (Table S10) (Kaskaoutis et al., 2021; Zhang et al., 2020c). The diversity
of MAC from different combustion sources implies the complex influences on light absorption from

multiple factors, e.g., ambient oxidation, combustion efficiency and fuel types. The comparable and
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diverse MAC between HOA and BBOA (Cappa et al., 2019; Zhong and Jang, 2014) warrants reevaluation
of traffic aerosols' climate forcing and the necessity for clarifying MAC parameterizations for different

sources.

3.2.3. Optical properties of SOA

Compared with the diurnal variation characteristics of BBOA and HOA from local emissions at YBJ
site, light absorption coefficients of the less—oxidized oxygenated OA (LO-OOA) and more—oxidized
oxygenated factor (MO-OOA) were characterized by high values during the day and low values at night
(Fig. 5b, Se). This day—enhanced temporal variation aligns with that of MO—OOA reported at NamCo
(an observation station in central QTP) (Xu et al., 2018), which is influenced by the enhanced secondary
BrC from photochemical oxidation during the day. In this study, the contribution of LO-OOA factor
shows a broad increase to 4bsg:c 370nm during the day and peaks around 14:00 (20 %), while MO—OOA
contribution (16 %) peaks approximately two hours later (16:00). The different diurnal variation of MO—
OOA and LO-OOA suggests different formation pathways. In general, LO-OOA is characterized by
freshly formed SOA showing a higher light absorption contribution (13 %) than that of MO-OOA (9 %),
which more represents the regionally aging SOA (Figs. 5b, 5e). For the GIG site, the maximum direct
light absorption contribution from SOA incorporated into case 2 (see Sect.2.5.1 and Text S1; Tables S4
and S6) is 33 % (Fig. S9).

The MAC of SOA (LO-OOA and MO-OOA) showed much lower values (0.15 and 0.18 m? g'%;
Table 1, Fig. 6) than primary sources (e.g., BBOA and HOA), consistent with their higher degree of
oxidation leading to the weaker light absorptivity of OA (Lee et al., 2014; Lambe et al., 2013). Lower
MAC of SOA (04 m? g') (Table S10) than POA (0.4-8 m? g™') has also been observed in multiple other
ambient (De Sa et al., 2019; Retama et al., 2022; Tian et al., 2023; Washenfelder et al., 2015; Zhang et
al., 2021; Zhang et al., 2022b) and laboratory studies (Ni et al., 2021; Hems et al., 2021; Zhong and Jang,
2014).
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Figure 6. The literature summary of MAC from different BrC sources, which was obtained by the PMF—
MLR method in different environments. All the results were categorized based on the locations of their
observation sites (urban China, Qinghai—Tibet Plateau (QTP region), and other countries). Note the MO-
OOA in Paris study represents OOA. Shadows indicate adjacent results within each tinted background
from the same literature. The detailed information is provided in Table S10.

3.2.4. Summarized source contribution to BrC in the field studies

Figs. 7 (detailed data in Table S9) summarizes the light absorption contributions of OA from various
sources across different regions, based on PMF and MLR analyses. Offline filter results are denoted by
an asterisk in the pie chart. Based on this dataset, several features were found: 1) POA (primary organic
aerosol) significantly influence ambient BrC light absorption on a global scale, accounting for 30-95 %
of the BrC light absorption except the extremely low fraction (8.3 %) in Xi’an during summer (Lei et al.,
2019). In particular, 3 quarters of the summarized study (based on number, as shown in Fig. S14) show
that the POA contributes more than 50 % of BrC light absorption, signifying the important contribution
of primary emission to total BrC. In the recent global model, Li et al. (2025) also found the primary
emission dominated (77 %) the total light absorption from Nitrogen compounds. Note that the offline
studies may underestimate the light absorption contribution of POA due to the application of soluble BrC
(Bao et al., 2022; Chen et al., 2020; Lei et al., 2019; Zhong et al., 2023); 2) Key POA sources of BrC
light absorption include coal combustion, biomass burning, and traffic emissions, with their light
absorption contributions relative to total OA of 1-56 % (average: 33 %), 6—85 % (average: 38 %) and 4—
83 % (average: 27 % ), respectively (Fig. 7 and Table S9); 3) Coal combustion is especially evident in
northern China during winter, with light absorption contribution of 30-89 % relative to POA (Lei et al.,
2019; Sun et al., 2021; Wang et al., 2019b; Zhang et al., 2022b). In areas not subject to coal combustion,

the biomass burning and traffic emissions dominate primary BrC light absorption, which can contribute
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11-100 % (53 % for average) and 5-98 % (43 % for average) of primary BrC, respectively (Retama et
al., 2022; De Sa et al., 2019; Kaskaoutis et al., 2021; Kasthuriarachchi et al., 2020a; Singh et al., 2021;
Washenfelder et al., 2015; Zhang et al., 2020c). 4) The light absorption contribution from different
sources showed significant spatial and temporal differences, e.g., HOA shows extremely high light
absorption contribution in Singapore during summer (83 %), and in Mexico in both winter (54 %) and
summer (49 %), while biomass burning dominated in central Alabama (85 %) and Paris (74 %). Given
the pronounced spatial and temporal variations in source—specific light absorption, it is essential to
conduct region—specific and season—specific observational research for a better understanding of the BrC

sources and to better understand BrC sources and to better validate model simulations.
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Figure 7. The summary of the contribution to BrC light absorption at 370 nm from different sources using
the PMF-MLR method. The asterisks (*) represent the light absorption contributions of soluble BrC
from different sources at 365nm. The sources include POA: biomass burning OA (BBOA), hydrocarbon—
like OA (HOA), coal combustion OA(CCOA), cooking—related OA(COA), nitrogen-containing
OA(NOA); The total SOA from oxygenated OA was used here. In addition, the unidentified fraction
from the intercept of the MLR method was also shown. The detailed information on each pie is provided

in Table S9.
3.3. Radiative effect of BrC from different sources

The simple forcing efficiency (SFE) of different organic aerosol (OA) components at the YBJ and
GIG sites was estimated using Eq. (4) as described in Sect.2.6. This methodology has been widely applied
to evaluate the climate impact of brown carbon (BrC) (Tian et al., 2023; Wang et al., 2019b; Zhang et al.,
2022b; Zhong et al., 2023). As illustrated in Fig. 8, black carbon (BC) emerged as the dominant light—
absorbing component, exhibiting the highest integrated SFE values of 294.7 W g™' at the YBJ site and
286.3 W g at the GIG site. In contrast, the integrated total SFE (from total OA absorption) across the
370-660 nm wavelength range was 21.4 W g™' at the YBJ site and 33.8 W g! at the GIG site, representing
approximately 9-13 % of the BC values. This is consistent with the well-documented strong light—
absorbing properties of BC (Gustafsson and Ramanathan, 2016), while also highlighting the significant
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role of BrC in short—term climate effects.

The SFE values for POA at the YBJ (19.2 W g!) and GIG (33.8 W g™') sites were comparable to
those observed in other urban areas, such as Xi’an (approximately 33 W g for HOA + BBOA + CCOA)
during winter (Zhang et al., 2022b). POA, including BBOA and HOA, contributed significantly to the
total BrC light absorption, accounting for over 80 % of the BrC-specific SFE in this study. These findings
underscore the substantial influence of anthropogenic emissions on aerosol radiative forcing and their
implications for regional and global climate systems.

From an environmental and climatic perspective, these results emphasize the critical role of both
BC and BrC in modulating atmospheric radiative balance. The higher SFE of BC underscores its potent
warming effect, while the non—negligible contribution of BrC, particularly from POA, highlights the
importance of addressing anthropogenic sources. Further elucidating the fossil and non—fossil
contribution, i.e., vehicle emission, coal vs. biomass burning combustion to the BrC, is vital for refining
climate models, informing mitigation strategies, and developing policies aimed at reducing short—lived

climate pollutants to mitigate near—term climate change and its associated environmental impacts.
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Figure 8. The Simple forcing efficiency (SFE) of BrC from different sources and BC from 370 to 660
nm at (a) YBJ and (b) GIG site.

4. Conclusions

To explore the optical properties, source contributions, and radiative effects of BrC in Qinghai—
Tibet Plateau, the observations equipped with the AE33 and the SP-AMS were carried out in July 2022
in the Tibet background site (Yangbajing). For comparison, a simultaneous field observation was also
conducted at the same periods in Guangzhou, a megacity with significant anthropogenic emissions. Our
results reveal that the light absorption coefficient at 370nm from total aerosols (4bsiar, 1.6 = 1.6 M m™")
and BrC (4bsg.c, 0.2 £ 0.3 M m™) in Tibet were approximately an order of magnitude lower than those
in Guangzhou (A4bsiol, 13.2 £ 7 M m™'; Abspic, 2.9 £ 2 M m™), consistent with the extremely low mass
concentrations of total aerosols and organic aerosols (OA) observed at the Tibetan site. The minimal
aerosol loading and weak light absorption in Tibet underscore its pristine atmospheric background.

Despite a large discrepancy in absolute light absorption coefficient, the BrC light absorption
contribution to total aerosols (15 % and 21 %) is comparable between the two sites at 370 nm,
highlighting BrC's significant contribution to total aerosol light absorption in Tibet. The summarized

field studies demonstrate a positive correlation between BrC fraction in Absal as a function of POA/OA
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(R = 0.54), suggesting primary emissions contribute more effectively to BrC light absorption than BC,
and POA is a more important source of BrC light absorption than SOA at these two sites. Source
apportionment via the PMF-MLR method identified biomass—burning OA (BBOA) and hydrocarbon—
like OA (HOA) from vehicles as the major contributors (> 80 %) to the BrC light absorption in both sites.
The summarized field studies show that POA can account for 30-95 % of the BrC light absorption on a
global scale. All these finding signifies the critical role of primary emission in OA light absorption. The
main primary source for BrC includes biomass burning/biofuels, coal combustion, and vehicle emissions.

Diurnal variations of BrC and its sources exhibited distinct patterns with morning and nighttime
peaks. Weisang activity and traffic rush hours in Tibet significantly influenced BrC levels, underscoring
even remote regions' vulnerability to anthropogenic activities. Notably, traffic—related BrC contributions
remain substantial in Guangzhou and even in the Tibet background, which necessitates that explicit light
absorption parameters for fossil-derived BrC (e.g., from vehicle emissions) be considered in model
simulations. Current literature remains inconclusive regarding MAC differences between HOA and
BBOA, though fuel type, combustion efficiency, and aging effects critically influence BrC MAC,
emphasizing the need for enhanced field measurements and parameterization of source-specific MACs.

Based on this field study, the integrated total SFE of BrC across the 370—660 nm wavelength range
can account for approximately 7 % and 12 % of the BC (294.7 W g! in Tibet and 286.3 W g! in
Guangzhou). In total, primary emission contributes over 98 % of the total SFE at both sites. These
findings reinforce the urgency of controlling primary emissions and call for regional—specific
parameterizations in climate models to improve assessments of BrC’s radiative effects. In general, our
study promotes the understanding of BrC dynamic variation and its sources at clean background Tibet

and typical urban areas, emphasizing the strong influences of anthropogenic to radiative forcing.
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