Supporting of

Incorporating Recalcitrant Dissolved Organic Carbon and Microbial Carbon Pump Processes into the cGENIE Earth System Model (cGENIEv0.9.35-MCP)

Yuxian Lai¹, Wentao Ma^{2*}, Zihui Zhao³, Peng Xiu¹, Nianzhi Jiao^{1*}

¹State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China

²State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, MNR, Hangzhou, China

³Changshan Meteorological Bureau, Quzhou, China

Correspondence to: Wentao Ma (<u>wtma@sio.org.cn</u>), Nianzhi Jiao (<u>jiao@xmu.edu.cn</u>)

Table S1. Comparison of biogeochemical configuration between cGENIE-MCP and previous cGENIE models

cGENIE-MCP (This study) YES	cGENIE (Crichton et al., 2021) YES	
YES	YES	
	YES	
Dust source: ahowald et al., 1999)	Dust source: (Mahowald et al., 1999)	
TDFe and TL	TDFe and TL	
$F_{esol} = 0.5$	$F_{esol} = 0.5$	
$K_{\text{scav}} = 0.1$	$K_{\text{scav}} = 0.1$	
$E_a(POC1) = 54000$	$E_a(POC1) = 54000$	
$E_a(POC2) = 80000$	$E_a(POC2) = 80000$	
$E_a(LDOC) = 54000$	$E_a(LDOC) = 54000$	
$\beta_{LDOC} = 1.32 \times 10^{13}$	$\beta_{LDOC}=1.32\times10^{13}$	
$\tau_{\rm SL} = 5$	N/A	
	The and TL $F_{esol} = 0.5$ $K_{scav} = 0.1$ $E_a(POC1) = 54000$ $E_a(POC2) = 80000$ $E_a(LDOC) = 54000$ $\beta_{LDOC} = 1.32 \times 10^{13}$	

 $\tau_R = 16000$ a = 0.015

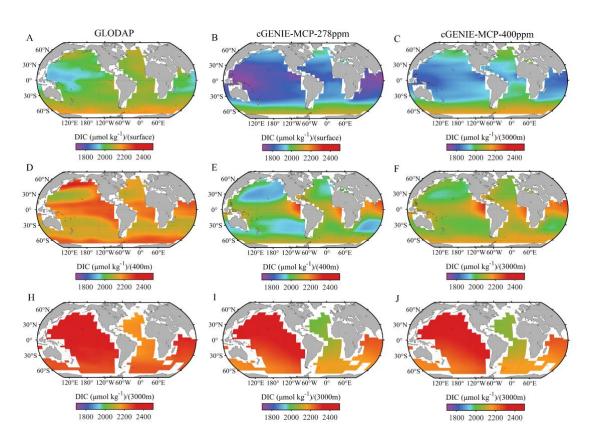


Figure S1. Ocean DIC distributions (μmol kg⁻¹) at three depth levels: (A-C) the surface, (D-F) 400 m, and (H-J) 3000 m. Panels show: (A, D, H) observational data from GLODAP; (B, E, I) simulated results from the cGENIE-MCP model at 278 ppm; and (C, F, J) outputs from the cGENIE-MCP model at 400 ppm.

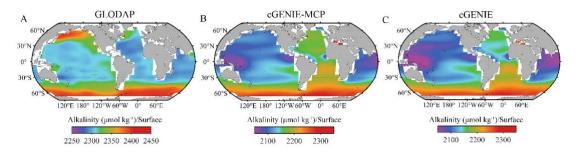


Figure S2. Ocean alkalinity distributions (µmol kg⁻¹) at surface: (A) observational data from GLODAP; (B) simulated results from the cGENIE-MCP; and (C) outputs from the cGENIE model.

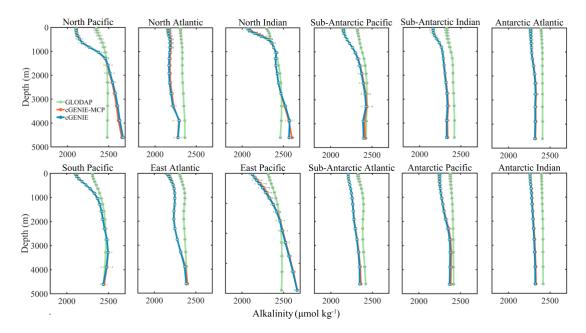


Figure S3. Vertical profiles of alkalinity (μmol kg⁻¹) in selected ocean regions, comparing among GLODAP data, cGENIE-MCP and standard cGENIE model outputs. Regions include the Atlantic Ocean, low-latitude tropics, South Pacific, and Northern Indian Ocean, as defined in the model evaluation.

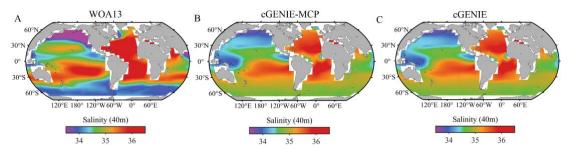


Figure S4. Ocean salinity distributions at surface: (A) observational data from WOA23; (B) simulated results from the cGENIE-MCP; and (C) outputs from the cGENIE model.

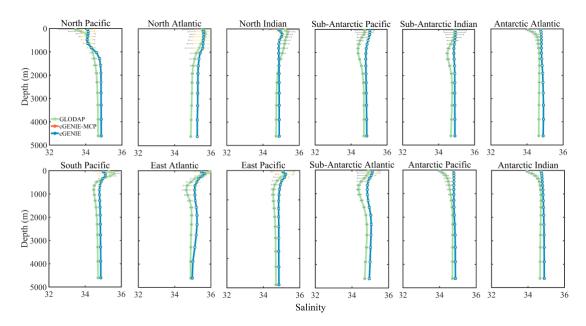


Figure S5. Vertical profiles of salinity in selected ocean regions, comparing among WOA23 data, cGENIE-MCP and standard cGENIE model outputs. Regions include the Atlantic Ocean, low-latitude tropics, South Pacific, and Northern Indian Ocean, as defined in the model evaluation.

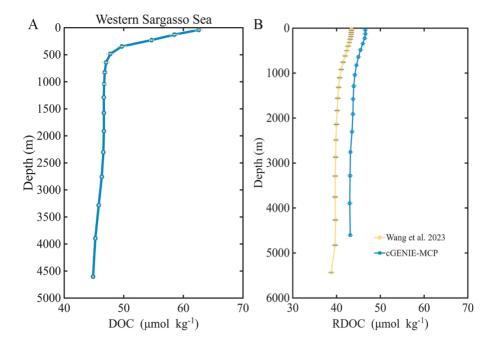


Figure S6. Vertical profiles of DOC and RDOC in selected ocean regions: (A) western Sargasso Sea, (B) the average concentration comparing the results of Wang et al. (2023).

Table S2 The LDOC, SLDOC, and RDOC concentrations from previous studies

Study Region	Water Layer	LDOC	SLDOC	RDOC	Reference
NW Pacific	Surface <200 m	20-40%	15-20%	Deep >1000 m: >90%	Ge et al. (2022)
NW Pacific	Surface <200 m	5-20%	15-30%	Deep >1000 m: >90%	This study

Table S3 The LDOC, SLDOC, and RDOC production rate from previous studies

Study Region	LDOC	SLDOC	RDOC	Reference
Global euphotic zone	25 Pg C yr ⁻¹	3.7 Pg C yr ⁻¹	0.04 Pg C yr ⁻¹	Legendre et al. (2015)
Global euphotic zone	26 Pg C yr ⁻¹	3.9 Pg C yr ⁻¹	$0.06 \; Pg \; C \; yr^{-1}$	This study

- Crichton, K.A., Wilson, J.D., Ridgwell, A. and Pearson, P.N. 2021. Calibration of temperature-dependent ocean microbial processes in the cGENIE. muffin (v0. 9.13) Earth system model. Geoscientific Model Development 14(1), 125-149.
- Ge, T., Luo, C., Ren, P., Zhang, H., Chen, H., Chen, Z., Zhang, J. and Wang, X. 2022. Dissolved organic carbon along a meridional transect in the western north pacific ocean: Distribution, variation and controlling processes. Frontiers in Marine Science 9, 909148.
- Legendre, L., Rivkin, R.B., Weinbauer, M.G., Guidi, L. and Uitz, J. 2015. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Progress in Oceanography 134, 432-450.
- Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S.P., Prentice, I.C., Schulz, M. and Rodhe, H. 1999. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research: Atmospheres 104(D13), 15895-15916.
- Wang, W.L., Fu, W., Le Moigne, F.A.C., Letscher, R.T., Liu, Y., Tang, J.M. and Primeau, F.W. 2023. Biological carbon pump estimate based on multidecadal hydrographic data. Nature 624(7992), 579-585.