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Abstract.Snow cover is a crucial factor influencing gross primary productivity (GPP), but the various

regulatory mechanisms across different geographical zones in Northeast China remain unclear. This

study comprehensively analyzed the dynamic changes in snow cover and GPP in Northeast China

from HY2001 to HY2020. Specifically, the study area was divided into six subregions to investigate15

the impact of snow cover on cropland GPP. The results revealed that the snow water equivalent (SWE)

decreased in 63% of the croplands in Northeast China, while the snow cover duration (SCD) increased

in 54% of the croplands. Additionally, delayed snow cover end dates (SCEDs) were observed in 61%

of the croplands, with 74% showing significant increases in cropland GPP. In terms of cropland types,

SCD showed the strongest positive correlation with dry lands, while paddy fields were more sensitive20

to SCED variations. Geographically, the Changbai Mountain, Sanjiang Plain, and Khingan Ranges

exhibited more pronounced GPP changes due to SCED. In contrast, the Liaohe Plain and Western Sand

Area were predominantly affected by SWE, while the Songnen Plain showed greater sensitivity to SCD.

These findings elucidate the critical role of snow cover in modulating cropland GPP variations across

different geographical zones, providing valuable insights into the influence of similar climatic25

conditions on cropland ecosystems.

https://doi.org/10.5194/egusphere-2025-2951
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



2

Key words: snow cover, gross primary productivity, cropland, Northeast China

1 Introduction

Croplands are critical natural resources for ensuring food security, ecological stability, and economic

sustainability. Under the pressure of intensifying soil erosion and climate change, understanding30

cropland gross primary productivity (GPP) variation trends and its environmental response mechanisms

has become imperative for sustainable development and enhanced cropland conservation. GPP

represents vegetation's photosynthetic carbon fixation capacity per unit time and serves as a key metric

of carbon assimilation through photosynthesis (Beer et al., 2010; Sjöström et al., 2013). Cropland

ecosystems play are pivotal role in terrestrial carbon cycling (Wang et al., 2022), where GPP directly35

governs crop growth dynamics, carbon sequestration potential, and agricultural productivity variations,

making it an essential indicator of agroecosystem productivity. (Wagle et al., 2015). As a key

component of terrestrial ecosystems, snow cover significantly affects the carbon cycle through

ecosystem functioning modification. Under the trend of global warming in recent decades, significant

changes in snow cover have been observed (Mudryk et al., 2020; Pulliainen et al., 2020), which40

subsequently influence vegetation dynamics and GPP through altered environmental conditions

(Meredith et al., 2019).

Previous studies demonstrated that snow cover and its phenological changes regulate surface energy

balance and hydrological cycles while directly affecting the growing season timing and photosynthetic

efficiency in croplands, thereby modulating GPP. Winter snow water equivalent (SWE) and snow cover45

duration (SCD) largely determine soil moisture availability and thermal regimes (Blankinship and Hart,

2012). These regulatory effects prove particularly crucial during spring sowing periods, with lasting

impacts on annual carbon uptake efficiency (Chen et al., 2019). However, the mechanisms underlying

snow cover's influences on GPP exhibit significant heterogeneity across vegetation types and

geographical contexts. Delayed snow cover end dates (SCEDs) could enhance early growing season50

GPP in dry land and grassland ecosystems while negatively affecting forest GPP (Wang et al., 2024). In

relatively arid regions, snow cover's stronger positive hydrological effects on soil enhance GPP more

significantly (Liu et al., 2023). Different snow cover indicators demonstrate varying modes of influence:

SWE affects GPP through soil moisture and nitrogen dynamics modification, while a thick snow cover

https://doi.org/10.5194/egusphere-2025-2951
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



3

protects root systems from winter mortality (Brooks et al., 2011; Knowles et al., 2017). Meanwhile,55

SCD decreases are linked to advanced vegetation phenology and subsequent productivity increases

(Pulliainen et al., 2017). These effects are further modulated by climate change drivers including

temperature rise and precipitation variability (Peng et al., 2010). GPP is a comprehensive indicator of

the complex interactions among climatic, topographic, edaphic, botanical, and anthropogenic factors.

Currently, few systematically investigated the snow cover-cropland GPP relationship across distinct60

geographical zones while considering these multifaceted interactions.

Northeast China hosts a vital grain production base that is crucial for national food security. Due to a

growing population and intensifying climate change, understanding regional GPP responses across

geographical conditions has become increasingly urgent. This study integrates multi-source data,

including long-term remote sensing observations (2001 to 2020), climate records, snow cover65

indicators, and agricultural statistics, to systematically analyze the spatiotemporal snow cover variation

patterns and their mechanistic impacts on cropland GPP in Northeast China. The objectives include (1)

examining the spatiotemporal snow cover variations (e.g., SWE, SCD, and SCED), (2) elucidating the

spatiotemporal heterogeneity of snow cover's effects on cropland GPP, and (3) exploring the

mechanisms underlying the regulatory roles of snow cover on cropland GPP.70

2 Materials and methods

2.1 Study area

Northeast China is a high-latitude region (38°72' to 53°56'N, 115°52' to 135°09'E) comprising

Heilongjiang, Jilin, and Liaoning provinces, along with the eastern four leagues of the Inner Mongolia

Autonomous Region. The region covers approximately 1.25 million km2 and hosts 358,700 km2 of75

cropland, accounting for 26.6% of China's total cultivated area (Wang et al., 2023a). The topography

exhibits distinct regional differentiation, with mountainous peripheries on three sides and extensive

plains in the interior. Six major geographical units exist in the region: the Songnen Plain, Sanjiang

Plain, Liaohe Plain, Khingan Range, Khingan Range, and Changbai Mountain (Figure 1). These

geographical variations led to distinct climatic characteristics across these six sub-regions (Table 1).80

https://doi.org/10.5194/egusphere-2025-2951
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



4

The region features a temperate monsoon climate characterized by winter snowfall (Xue et al., 2022),

low evaporation rates, and high humidity. The winters are cold and prolonged, particularly in higher

latitudes. The annual effective accumulated temperature ranges from 2320°C to 3654°C, while

annual precipitation varies between 238 mm and 1078 mm (Wang et al., 2023b). The average elevation

stands at approximately 200 meters above sea level. As one of the country's largest seasonal snow85

cover regions, Northeast China is a crucial agricultural zone with the highest grain production

nationwide (Ma et al., 2024). The predominant cropping systems allow a single annual harvest pattern.

Therefore, investigating cropland ecosystem responses to snow cover variations is of great significance

to regional agriculture.

90

Figure 1. The overview of study area: (a) elevation; (b) land use types; (c) six geographic divisions.

Table 1 The details of six geographic divisions in Northeast China

Geographical

region
Abbre

Area

(104×k

m2)

Elevation

range

(m)

Cultivated land

(thousand km2)

Accumulated

temperature ≥

10 ℃

Precipitation

(mm)
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2.2 Materials

2.2.1 Snow cover products

Three snow cover indicators were utilized in this study: SWE, SCD, and SCED. The SWE data were95

obtained from the National Cryosphere Desert Data Center, specifically the 0.25° daily SWE fusion

product for China (1980 to 2020) (Jiang et al., 2022). This dataset integrated the advantages of existing

SWE data products with topographic and temporal covariates and was validated using ground

observations from 647 monitoring stations. The validation results demonstrated correlation coefficients

(R2) of 0.77 and 0.70, with mean absolute errors (MAE) of 7.54 mm and 8.62 mm and root mean100

square errors (RMSE) of 12.29 mm and 13.73 mm, respectively.

The SCD and SCED data were derived from the MODIS-based Chinese Snow Phenology Dataset

(2000 to 2020) (Zhao et al., 2022). which provides a spatial resolution of 500 m around China. The

dataset has been rigorously validated against ground station observations, showing high accuracy. The

R2, RMSE, and MAE of SCD are 0.94, 12.09 days, and 7.60 days, respectively. The R2, RMSE, and105

MAE of SCED are 0.56, 19.89 days, and 7.74 days, respectively.

Songnen Plain SN 18.35 95~957 107.6 2706 400 ~ 650

Sanjing Plain SJ 10.18 0~1030 66.8 2402 600 ~ 800

Liaohe Plain LH 10.57 0~1215 35.3 3654 500 ~ 700

Changbai

Mount
CB 24.64 0~2658 64.6 2857 800 ~ 1200

Western Sand

Area
WS 26.14 115~2015 53.6 3262 200 ~ 400

Daxing'an and

Xiaoxing'an

Mountain

XAL 34.55 67~1079 30.4 2320 400 ~ 700
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2.2.2 GPP data

The MOD17A2H version 6 GPP data product (2001 to 2020) was adopted, (Running et al., 2021). This

product provides 8-day composite data at 500 m spatial resolution, offering cumulative measurements

of vegetation photosynthetic activity. MODIS products have been extensively validated and widely110

adopted in terrestrial carbon cycle research (Endsley et al., 2023; Wang et al., 2017), Existing studies

have validated the MOD17A2 GPP data product across various ecosystems in China, demonstrating a

strong agreement with in-situ eddy covariance flux tower observations (R2 = 0.76) (Zhu et al., 2016).

Version updates incorporate algorithm refinements and enhanced processing techniques, improving

accuracy and reliability across successive iterations. These validations warrant its suitability for115

scientific applications in quantifying terrestrial energy fluxes, carbon-water cycles, and vegetation

biogeochemical dynamics. Its robustness enables effective applications in modeling ecosystem

productivity and analyzing climate-vegetation interactions at regional scales.

2.2.3 Climate data

The precipitation, air temperature, and solar radiation data were employed to analyze the domain120

factors influencing snow cover. The monthly precipitation and temperature data were obtained from the

1 km-resolution monthly precipitation dataset (Peng, 2020) and the 1 km-resolution monthly mean

temperature dataset for China (Peng, 2019). These datasets provide monthly records from 1901 to 2021

across China at a spatial resolution of 1 km, comprehensively covering various climatic variables. Both

datasets have been validated against 496 independent meteorological stations, demonstrating their high125

reliability and accuracy in representing regional climate patterns.

The solar radiation data were acquired from the ERA5-LAND hourly reanalysis product comprising

continuous surface solar radiation estimates. The accuracy of the ERA5 solar radiation data has been

extensively validated in multiple studies (Mihalevich et al., 2022; Muñoz-Sabater et al., 2021).

Comprehensive evaluation under diverse environmental conditions demonstrated that the ERA5-LAND130

product accurately represents actual solar radiation patterns, with high suitability for various ecological
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and climatological applications. Integrating these high-quality climate datasets enables robust analysis

of climate-vegetation interactions and ecosystem dynamics at regional scales.

All remote sensing data used in this study were standardized to the temporal range of HY2001 to

HY2020 and resampled to a uniform spatial resolution of 0.05° × 0.05° using the nearest neighbor135

algorithm. This standardization enables consistent spatiotemporal comparisons across different datasets,

and the selected resolution balances computational efficiency and spatial detail. The resampling

approach preserves original data values and minimizes interpolation artifacts to facilitate subsequent

pixel-by-pixel analysis of raster data.

2.2.4 Soil data140

Soil temperature (ST) and soil moisture (SM) data were obtained from the Famine Early Warning

Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) (McNally, 2018). The

FLDAS data are generated using the Noah Land Surface Model (LSM) version 3.6.1, with a spatial

resolution of 0.1° × 0.1° and monthly temporal resolution, providing 28 surface variables from 1982 to

present. This comprehensive dataset includes the 0 to 10 cm SM and temperature data used in this study,145

which are particularly relevant for analyzing vegetation dynamics and ecosystem processes.

The FLDAS data have been validated against multiple in-situ soil observation networks and

demonstrated superior accuracy to the Global Land Data Assimilation System (GLDAS) (Li et al.,

2021). The validation involved extensive comparisons with ground-based measurements, confirming

the reliability of FLDAS outputs for soil parameter estimation. This high-quality dataset enables robust150

analysis of soil-vegetation-atmosphere interactions and supports various applications in ecological

modeling and climate studies.

2.2.5 Land use type

The land use data were obtained from the 1 km-resolution China Land Use Dataset (1980 to 2020) (Xu

et al., 2018). This dataset employs a two-level classification scheme, with the first comprising 6 major155

categories (forest, grassland, cropland, water bodies, built-up areas, and barren land) and the second

containing 23 subcategories. To better characterize the effects of snow cover on cropland GPP, we

https://doi.org/10.5194/egusphere-2025-2951
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



8

utilized the second-level classification, dividing cropland into dry land and paddy fields for separate

analyses of snow cover impacts.

Northeast China lost 6,694 km2 of croplands between 2000 and 2020, primarily due to urban expansion160

and the Grain for Green Program. To minimize potential confounding effects from land use changes

during the 2001 to 2020 period, our analysis focused on croplands with consistent land cover

throughout the study period. Pixel-wise screening of land use distribution data from 2001 to 2020

extracted the croplands that remained unchanged throughout the 20 years for analysis. This approach

ensures that observed GPP variations can be more reliably attributed to snow cover dynamics rather165

than land use changes, thereby enhancing the robustness of the findings on snow cover-cropland

interactions.

2.3 Methods

2.3.1 Trend analysis

The long-term snow cover-GPP relationship in Northeast China was investigated by first calculating170

the annual averages of snow cover indicators (SWE, SCED, and SCD) and GPP from 2001 to 2020.

Subsequently, we combined the Theil-Sen slope method (Sen, 1968) with the Mann-Kendall test

(Kendall, 1948; Mann, 1945) to estimate trends in the time series of SCD, SWE, and GPP. The

Mann-Kendall test is widely used to analyze trends in time series data as it addresses the serial

correlation issue and does not require a specific data distribution (Abebe et al., 2022; Xu et al., 2017).175

This method provided the trend magnitude and direction while helping to identify regions with

significant changes between GPP and snow cover.

2.3.2 Partial correlation

Partial correlation analysis statistically calculates the relationship between two variables while

controlling for the effects of one or more covariates (Gonzalez, 2003). It has recently been widely180

applied to study ecosystem response mechanisms and is particularly well-suited for disentangling

causal relationships among complex environmental variables (Kashyap and Kuttippurath, 2024; Wei et

al., 2022). Specifically, we applied pixel-by-pixel partial correlation to examine the impacts of SCD,
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SWE, and SCED on GPP across different land use types. Meanwhile, this analysis eliminated the

effects of concurrent temperature, precipitation, and solar shortwave radiation to ensure that the185

correlations between snow cover indicators and GPP reflected the direct impacts.

2.3.3 Ridge regression

This study identified the potential multicollinearity and interaction effects among snow cover indicators.

Multicollinearity can lead to unstable regression coefficients in ordinary least squares (OLS) regression,

potentially compromising the reliability of parameter estimates (Midi et al., 2010). This issue was190

addressed with ridge regression, which introduced an L2 regularization into OLS regression (Zhao et

al., 2023). This approach effectively reduced variance in parameter estimates while introducing

minimal bias, making it particularly suitable for analyzing correlated environmental variables.

We employed ridge regression to quantify the relative contributions of snow cover indicators across

different zones through pixel-wise calculations, enabling spatially explicit analysis of snow cover-GPP195

relationships. This method identified the dominant snow cover indicators influencing cropland GPP in

each zone, providing valuable insights into the spatial heterogeneity of snow cover's effects on

vegetation productivity. Ridge regression was implemented with careful consideration of regularization

parameters to ensure optimal model performance across various zones.

2.3.4 Savitzky-Golay filter200

Savitzky-Golay (SG) filter is a smoothing technique based on local polynomial fitting, which smoothes

signals while preserving high-order derivative information. The SG filter determines the smoothed

result within a local window by least squares fitting of the data points in it. It is particularly suitable for

processing data with significant noise, as it effectively reduces noise while maintaining the

fundamental characteristics of the signal(Ruffin and King, 1999). The advantage of the SG filter lies in205

its ability to smooth the data while preserving high-frequency information of the signal. such as the

slope and curvature. Consequently, it is widely used in signal processing, spectral analysis, and

chemical data analysis (Sa‐ing et al., 2018; Sadıkoglu and Kavalcıoğlu, 2016).
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Based on all valid cropland pixels in Northeast China, a scatter plot illustrating the relationship

between snow cover indicators and GPP was constructed. The 95th percentile of GPP was extracted210

within each snow cover indicator interval to reduce the influence of extreme values. An SG filter was

then applied to smooth the 95th-percentile response curve. Finally, the snow cover indicator

corresponding to the peak of the smoothed curve was defined as the optimal snow cover threshold for

GPP.

2.3.5 Partial least squares structural equation model215

The direct and indirect mechanisms by which snow cover affects GPP were thoroughly investigated by

constructing a partial least squares structural equation model (PLS-SEM) to estimate complex causal

relationships among multiple variables. This powerful SEM explores the interactions between observed

and latent variables and is suitable for non-normally distributed and small-sample data (Hair et al.,

2019; Luo et al., 2017). Two latent variables were created during model construction: "Snow" and220

"Climate." "Snow" included three snow cover indicators: SCD, SWE, and SCED, whereas "Climate"

included three meteorological indicators: precipitation, temperature, and solar radiation. The PLS-SEM

also included two soil parameter variables (ST and SM) and GPP data for different vegetation types.

PLS-SEM was applied to all six different regions in Northeast China. All variable data were normalized

before path analysis to eliminate scale differences among variables and enhance model stability.225

Ultimately, three paths were constructed to reflect the multiple impacts of snow cover on the GPP of

different vegetation types across the six regions in Northeast China.

The path coefficients in PLS-SEM analysis represent the magnitude and direction of direct effects

between two variables. Positive and negative path coefficients correspond to the positive and negative

impacts of the independent variable on the dependent variable, respectively, with their values230

quantifying the impact strength. The goodness-of-fit (GOF) index globally evaluates the quality of the

path models and determines their validity. A GOF above 0.36 indicates applicable model results

(Wetzels et al., 2009).
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3 Results

3.1 The spatiotemporal dynamics of snow cover235

Figure 2 displays the spatial distribution of mean SWE in Northeast China from HY2000 to HY2020.

Among the six sub-regions, the mean SWE of Sanjiang Plain was the highest at 9.66 mm. The high

SWE values were observed in the Khingan Range-Nenjiang conjunction and the Sanjiang Plain. The

Khingan Range had the second-highest mean value of 9.05 mm and the second-highest maximum value

of 20.10, followed by Songnen Plain. The Changbai Mountain also had a relatively high mean SWE of240

6.26 mm. The semi-arid Western Sand Area had the second-lowest mean SWE but the highest

maximum SWE. The mountainous areas (Changbai Mountain and Khingan Range) had greater

snowfall than the other five sub-regions, explaining the high SWE levels. The Liaohe Plain had the

lowest SWE among these six sub-regions due to its lower latitude. The negative slope of the SWE

fitting line in Figure 2(c) indicates a slight decreasing trend from HY2001 to HY2020. As shown in245

Figure 2(d), the area exhibits a decreasing trend that accounts for about 65% of the total area, with dry

land covering 60.21% and paddy fields covering 5.01%.

Figure 2 The spatial and temporal changes of SWE in Northeast China from HY2000 to HY2020: (a)

spatial distribution of mean SWE; (b) changing trend of SWE, the green areas represent positive250

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that were

significant at the p < 0.1 level; (c) annual changes of SWE; (d) the comparison of dry land and paddy

land.
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Figure 3 shows the spatial distribution of mean SCD in Northeast China from HY2000 to HY2020. The

SCD of the whole region ranged from 0 to 159.47 days, averaging 79.99 days, 58% of which exceeded255

80 days. High SCD values were primarily observed in the northeastern and mountainous areas, while

low SCD values were distributed in the southwest and low-altitude areas. Overall, a decreasing trend

was observed from the northeast to the southwest. Noticeable differences were observed in Changbai

Mountain. Its northeastern area was closer to the Sanjiang Plain and showed significantly higher SCD

than the southwestern area near the Liaohe Plain. The Khingan Range had the highest mean SCD of260

120.29 days and the highest maximum SCD of 159.47 days, higher than the Changbai Mountain. The

Sanjiang Plain had the second-highest mean SCD of 110.85 days, followed by the Songnen Plain. The

negative slope of the fitting line in Figure 3(c) indicates a decreasing trend in SCD, with significant

fluctuations between 2008 and 2014. Meanwhile, 54.1% of the croplands in the northeastern area

experienced extended SCD, which included 49.02% of dry land and 5.16% of paddy fields, primarily265

distributed in the Songnen Plain. Areas with shortened SCD accounted for 45.9% of the total area,

including 40.89% of dry land and 4.93% of paddy fields. Areas with significant SCD declines were

mainly concentrated in the Liaohe Plain, similar to the spatial distribution of interannual SWE variation

trends.

270
Figure 3 The spatial and temporal changes of SCD in Northeast China from HY2000 to HY2020: (a)

spatial distribution of mean SCD; (b) changing trend of SCD, the green areas represent positive

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that were

significant at the p < 0.1 level; (c) annual changes of SCD; (d) the comparison of dry land and paddy

land.275
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Figure 4 displays the spatial distribution of mean SCED in Northeast China from HY2000 to HY2020.

The SCED distribution pattern was similar to that of SWE and SCD. Higher SCEDs were still

primarily observed in the northeastern and mountainous areas, while lower SCEDs were distributed in

the southwest and low-altitude areas. Statistical results showed that SCED ranged from 0 to 222.74

days, averaging approximately 164.19 days. About 49% of the pixels had SCD ranging from 180 to 210280

days, while 49% of the pixels had SCEDs extending into March of the following year. Such pixels were

concentrated in the Changbai Mountain, Sanjiang Plain, and the northeastern Songnen Plain. Pixels

with SCEDs above 210 days accounted for only about 3% and were mainly distributed in the Khingan

Range. The average SCED in the Sanjiang Plain and Khingan Range were approximately 195.08 days

and 196.85 days, respectively. According to Figure 3-6(b), the slope of the SCED fitting line in Figure285

3(c) indicates a slight advancing trend. The SCED trend was relatively stable between 2005 and 2007,

while fluctuations ranging from 10 to 30 days were observed in other years. Delayed SCEDs were

observed in 61% of the areas, with 54.02% being dry land and 5.78% being paddy fields. Such areas

were primarily distributed in the Songnen Plain, Sanjiang Plain, and Changbai Mountain. Only 39% of

the areas exhibited earlier SCEDs, with 34.47% being dry land and 5.73% being paddy fields, mainly290

concentrated in the Liaohe Plain.

Figure 4 The spatial and temporal changes of SCED in Northeast China from HY2000 to HY2020: (a)

spatial distribution of mean SCED; (b) changing trend of SCED, the green areas represent positive

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that were295

significant at the p < 0.1 level; (c) annual changes of SCED; (d) the comparison of dry land and paddy
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land.

These spatiotemporal patterns of snow cover indicators provide crucial insights into the regional

variability of snow cover dynamics and their potential impacts on vegetation productivity in Northeast

China. The observed trends reflect the complex interactions between climate change and local300

geographical factors, thus requiring region-specific adaptation strategies in agricultural management

and ecosystem conservation practices.

Table 2 Statistics of SWE, SCD and SCED in six geographical regions in Northeast China

Geographic

region

SWE (mm) SCD (day) SCED (day)

Max Mean Mini Max Mean Mini Max Mean Mini

SN 13.51 5.64 2.19 152.95 94.99 25.97 215.30 180.59 23.63

SJ 19.40 9.66 2.72 135.64 110.85 17.15 211.86 195.08 20.72

LH 5.04 1.73 1.01 98.29 36.25 20.87 187.09 125.81 34.84

CB 13.97 6.26 2.66 135.48 87.69 31.25 212.55 176.09 38.27

WW 24.07 2.35 1.77 156.25 32.03 22.02 217.99 108.54 31.31

XAL 20.10 9.05 3.41 159.47 120.29 24.75 222.74 196.85 21.84

3.2 The relationship between snow cover and soil properties

Figure 5 illustrates the spatial distribution of correlation coefficients between winter SWE and soil305

parameters (ST and SM) of the subsequent year. As shown in Figure 5(a), the correlation coefficient

between SWE and ST ranges from –0.78 to 0.70, indicating predominantly negative influences of SWE

on the ST in the subsequent year. Areas with negative correlations accounted for approximately 85% of

the total croplands, and areas with significantly negative correlations concentrated in the Songnen Plain

and Sanjiang Plain. A small portion of areas with positive correlation was found in the Western Sand310

Area and northern of Changbai Mountain. According to Figure 5(b), the correlation coefficient between

SWE and SM ranges from –0.59 to 0.88, indicating a primarily positive impact of SWE on the SM in

the subsequent year. Areas with positive correlations accounted for about 61% of the total croplands,

whereas areas with significantly positive correlations mainly concentrated in the Sanjiang Plain and

Changbai Mountain. Areas with negative correlations between SWE and SM accounted for315
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approximately 39%, mainly concentrated in the Songnen Plain and Liaohe Plain.

Figure 5 The correlation coefficients between SWE and soil properties: (a) soil temperature; (b) soil

moisture. Blue and green pixels represent negative and positive correlations respectively. The shaded

regions denote pixels that were significant at the p < 0.1 level.320

Figure 6 illustrates the spatial distribution of correlation coefficients between winter SCD and soil

parameters (ST and SM) of the subsequent year. As shown in Figure 6(a), the correlation coefficient

between SCD and ST ranges from –0.85 to 0.57, indicating that the influence of SCD on the

subsequent year's ST is predominantly negative. Areas with negative correlations accounted for

approximately 90% of the total croplands, while areas with significantly negative correlations primarily325

concentrated in the Songnen Plain and Sanjiang Plain. These results suggest that a longer SCD results

in slower soil warming in the following spring. Only a small number of areas with positive correlations

were found in the northern part of Changbai Mountain and the Western Sand Area. Thus, a longer SCD

in these areas may, to some extent, promote ST recovery through insulating effects. According to

Figure 6(b), the correlation coefficient between SCD and SM ranges from –0.56 to 0.75, indicating a330

primarily positive impact of SCD on the subsequent year's SM. Areas with positive correlations

accounted for 78%, and areas with significantly positive correlations mainly concentrated in the

Songnen Plain and Changbai Mountain. Areas with negative correlations accounted for only 22%, and
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SCD's moderating effect on SM transitions from positive to negative from northeast to southwest. The

pixels with SCD negatively affecting SM were primarily concentrated in Liaohe Plain.335

Figure 6 The correlation coefficients between SCD and soil properties: (a) soil temperature; (b) soil

moisture. Blue and green pixels represent negative and positive correlations respectively. The shaded

regions denote pixels that were significant at the p < 0.1 level.

Figure 7 illustrates the spatial distribution of correlation coefficients between winter SCED and soil340

parameters (ST and SM) of the subsequent year. Figure 7(a) shows that the correlation coefficient

between SCED and SM ranges from –0.74 to 0.56, indicating a primarily negative impact of SCED on

ST. Areas with negative correlations accounted for approximately 87% of the total croplands, and areas

with significant negative correlations mainly concentrated in the Songnen Plain and Sanjiang Plain. A

small number of areas with positive correlations were primarily found in the northern of Changbai345

Mountain and the Western Sand Area. According to Figure 7(b), the correlation coefficient between

SCED and SM ranges from –0.62 to 0.68, indicating a mainly positive impact of SCED on the

subsequent year's SM. Areas with positive correlations accounted for approximately 61% of the total

croplands, while areas with negative correlations accounted for about 39%. The pixels with negative

SCED effects on SM were primarily concentrated in the Sanjiang Plain, Songnen Plain, and Liaohe350

Plain.
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Figure 7 Spatial pattern distribution results of the relationship between SCED and soil properties: (a)

soil temperature; (b) soil moisture. Blue and green pixels represent negative and positive correlations

respectively. The shaded regions denote pixels that were significant at the p < 0.1 level355

3.3 The relationship between GPP and snow cover

Figure 8 displays the spatial distribution of GPP in Northeast China from HY2000 to HY2020, and

Table 3 lists the statistical results of GPP in the six sub-regions. Cropland GPP generally shows a

relatively uniform distribution pattern, as shown in Figure 8(a). The Changbai Mountain, Sanjiang

Plain, and Khingan Range had relatively high GPP, followed by Songnen Plain and Liaohe Plain, while360

the Western Sand Area had the lowest GPP during the past 20 years. The interannual variation trends in

Figure 8(b) indicate that over the past 20 years, 98% of the cropland shows an increasing trend in GPP,

with significant GPP growth in 74% of the areas. Furthermore, the growth rates varied across different

regions, with the GPP in the Western Sand Area increasing the fastest at an average of approximately

9.04 g·C/m2 per year. According to Figure 8(d), 98% of the croplands show an increasing trend in GPP,365

with 89.1% being dry land and 9.44% being paddy fields. Moreover, 74% of the areas showed

significant GPP growth. Only 2% of the areas exhibited a declining trend in GPP, with 1.16% being dry

land and 0.30% being paddy fields. Such areas were primarily concentrated in the southern part of the

Liaohe Plain and the eastern part of the Sanjiang Plain.
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370
Figure 8 The spatial and temporal changes of GPP in Northeast China from HY2000 to HY2020: (a)

spatial distribution of mean GPP; (b) changing trend of GPP the green areas represent positive impacts,

while the blue areas indicate negative impacts; and the shaded regions denote pixels that were

significant at the p < 0.1 level; (c) annual changes of GPP; (d) the comparison of dry land and paddy

land.375

Table 3 GPP statistics of six geographic regions in Northeast China

Geographic regions Max. (g·C/m2) Mean. (g·C/m2) SD (g·C/m2)

SN 974.99 606.33 78.50

SJ 1111.97 701.92 82.34

LH 1034.13 612.78 76.29

CB 1350.56 799.75 125.95

WS 828.16 481.57 86.89

XAL 1048.16 690.71 108.01

Figure 9 displays the partial correlation between SWE and GPP. Approximately 56.79% of the dry land

and 6.27% of the paddy fields showed positive correlations between GPP and SWE, with significant

correlations in 8.3% of the dry land and 10.0% of the paddy fields. Areas with positive correlations380

were concentrated in the northern part of the Sanjiang Plain and the central-western part of the

Songnen Plain. In contrast, areas with negative correlations were mainly in the southern part of the

Liaohe Plain, accounting for 6.2% of the total dry lands. The effects of SWE on GPP are complex. For

one thing, snowmelt enhances SM and promotes early crop growth with adequate water (Li et al., 2025;
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Pan et al., 2022). For another, excessive SWE leads to saturated SM after snowmelt and denies oxygen385

to the roots, thereby affecting plant growth and health (Liu et al., 2023; Wang et al., 2024).

Figure 9 Spatial distribution and area statistics of the relationship between SWE and cropland GPP

from HY2001 to HY2020: (a) spatial distribution of partial correlation coefficients, where blue and

green represent pixels with negative and positive correlations, respectively; (b) area percentage390

statistics, with the range of error bars indicating the area with significant impact (p < 0.1).

Figure 10 shows the partial correlation between SCD and GPP. SCD is the main snow cover indicator

affecting GPP in dry lands. The dry lands with positive correlations between SCD and GPP accounted

for 66.27% of the total area, while the paddy fields with positive correlations accounted for 6.79% of

the total area. Areas with significant responses were mainly concentrated in the Songnen Plain,395

accounting for 11.0% of the total dry lands. The positive effect of SCD on cropland GPP exhibited a

latitudinal gradient, with gradually increasing response intensities as latitude increases. Long-term

snow accumulation effectively protects plants and soil from extreme weather conditions, providing a

relatively warm and stable growth environment. Noteworthy, the paddy fields exhibited relatively low

sensitivity to SCD, accounting for only 8.0% of the pixels with significant positive correlations,400

indicating a limited isolation effect of snow on paddy fields. Paddy field productivity relies more on

human irrigation management and other climatic factors.
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Figure 10 Spatial distribution and area statistics of the relationship between SCD and cropland GPP

from HY2001 to HY2020 (a)spatial distribution of partial correlation coefficients, where blue and405

green represent pixels with negative and positive correlations, respectively; (b) area percentage

statistics, with the range of error bars indicating the area with significant impact (p < 0.1).

Figure 11 displays the partial correlation between SCED and GPP. The regulatory effect of SCED on

GPP is more pronounced in paddy fields. Specifically, 14.0% of the paddy fields exhibited significant

positive correlations between SCED and GPP, notably higher than the 7.3% observed in dry lands.410

Further analysis reveals that areas with SCED negatively correlated with dry land GPP constituted

31.26% of the total area, while the corresponding proportion for paddy fields is 6.51%. Areas

exhibiting negative correlations were primarily concentrated in the Liaohe Plain and the eastern part of

the Sanjiang Plain. Early SCEDs may lead to unfavorable climatic conditions during the early growth

stage of plants, potentially impacting their growth and survival rates. Conversely, delayed SCED can415

mitigate the loss of spring runoff due to snowmelt and better align crop transplantation with the optimal

ST window for crop growth.
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Figure 11 Spatial distribution and area statistics of the relationship between SCED and cropland GPP

from HY2001 to HY2020: (a) spatial distribution of partial correlation coefficients, where blue and420

green represent pixels with negative and positive correlations, respectively; (b) area percentage

statistics, with the range of error bars indicating the area with significant impact (p < 0.1).

4 Discussion

4.1 Dominant snow cover indicators in the snow cover-GPP correlation

Figure 12 presents the spatial distribution and area proportions of the relative contributions of different425

snow cover indicators to cropland GPP in Northeast China. SWE predominantly drove cropland GPP

variations in the Western Sand Area and Liaohe Plain, which accounted for approximately 50% of the

GPP changes, significantly higher than the contributions of SCD and SCED. In contrast, SCED

emerged as the primary driver in the Changbai Mountain, Sanjiang Plain, and Khingan Ranges, with

contribution rates reaching 45.2%, 49.5%, and 38.6%, respectively. The Songnen Plain demonstrated a430

distinct pattern, with SCD dominating within 39.59% of the total area, substantially higher than SWE

(31.29%) and SCED (29.11%). This regional analysis elucidated spatial heterogeneity in the relative

contributions of snow cover indicators to cropland GPP variations across Northeast China. The findings

demonstrated distinct geographical zoning characteristics that provided a theoretical foundation for

understanding the differential impacts of snow cover changes on agricultural productivity across435

regions. SWE exerted more significant influences in relatively arid areas, while the impacts of SCED
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manifested more prominently in colder areas.

Notably, SWE dominates GPP variability in moisture-limited areas, like the Western Sand Area and the

Liaohe Plain, accounting for ~50% of the observed fluctuations. Its contribution was 1.6- to 1.7-fold

greater than those of SCD and SCED. These results aligned with hydrological theory positing that SWE440

is a critical drought-mitigating reservoir in arid ecosystems through delayed meltwater release (Barnett

et al., 2005). Conversely, SCED emerged as the principal driver in colder high-latitude areas (Changbai

Mountain, Sanjiang Plain, Khingan Range), explaining 38.6% to 49.5% of GPP variations. Such spatial

patterns likely reflect SCED's bidirectional effects in regulating growing season onset via albedo

modulation and frost protection through insulation effects (Pulliainen et al., 2020). Sanjiang Plain445

exhibited hybrid behavior, where the SCD predominance (39.59%) suggested intermediate sensitivity

to SCD and hydrologic inputs.

Figure 12 Spatial distribution and area percentage of snow-related indicators driving cropland GPP

variation in different regions of Northeast China from 2001 to 2020.450
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4.2 The thresholds of snow cover-GPP correlation

As depicted in Figure 13(a), GPP demonstrates phased responses to the increasing SWE. The initial

SWE accumulation (0 to 10.36 mm) induced substantial GPP enhancement through improved SM

availability, and the photosynthetic activity peaked at the SWE of 10.36 mm. Beyond this hydrological

optimum, the SWE-GPP correlation degraded into a stable plateau phase (SWE = 15 to 25 mm), where455

additional snow cover contributed minimally to productivity gains. Figure 13(b) reveals a parabolic

relationship between SCD and cropland GPP. Short SCD regimes (< 20 days) induced GPP suppression

due to inadequate frost protection and SM deficits. As SCD extended to the bioclimatic optimum

(132.79 days), GPP recovered gradually via extended vernalization and reduced freeze-thaw cycles.

However, excessive SCD (> 133 days) triggered a 0.7% daily GPP decline through photoperiod460

limitations and delayed phenological development. SCED exhibits threshold-mediated impacts, as

shown in Figure 13(c). Early SCEDs (DOY < 100) corresponded to 25% to 30% GPP reduction from

premature exposure to spring frost events. The critical transition at DOY 207.13 marked the onset of

positive SCED-GPP coupling, attributable to improved alignment between snowmelt timing and

vegetation green-up requirements. Post-DOY 207 stabilization reflected optimized thermal-moisture465

conditions sustaining peak photosynthetic rates.

Figure 13 The critical threshold for the influence of different snow-related indicators on cropland GPP

from HY2001 to 2020:(a) SWE; (b) SCD; (c)SCED. Gray represents the scatter plot of multi-year

averages of snow-related indicators and GPP; blue represents the fitting curve; the red vertical dashed470

line indicates the optimal threshold.

4.3 The mechanisms underlying snow cover impacts on GPP

Figure 14 systematically quantifies the influence of snow cover on GPP, and the snow cover-GPP

causal networks exhibit profound spatial heterogeneity across the six agroecological regions with dry
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land and paddy systems. Regarding dry land systems, Sanjiang Plain exhibited the strongest snow475

cover-GPP facilitation (β = 0.47), followed by the Khingan Range (β = 0.29) and Songnen Plain (β =

0.26). In contrast, significant suppression was observed in Liaohe Plain (β = –0.23), Western Sand Area

(β = –0.16), and Changbai Mountain (β = –0.10), attributable to snowmelt-induced nutrient leaching.

Universal snow cover-ST negative coupling (mean β = –0.58 ± 0.12) reduced growing-season thermal

advantages. In the Changbai Mountain agroecosystem, the snow cover-ST-GPP pathway exhibited a480

significant indirect effect (βsnow-ST × βST-GPP = –0.67 × 0.76 = –0.51), indicating that snow cover

suppressed photosynthetic efficiency through thermal limitation mechanisms during the growing

season. The snow cover-SM interaction exhibited marked spatial heterogeneity across the regions due

to divergent hydrological mechanisms. In the Liaohe Plain dry land systems, snow cover demonstrated

a negative coupling with SM (β = –0.16), subsequently amplifying GPP suppression through SM's485

strong positive linkage to productivity (β = 0.96). Similar snow-SM-GPP inhibition patterns were

observed in the Songnen Plain (βsnow-SM= –0.11).

In terms of paddy ecosystems, the Sanjiang Plain maintained the strongest direct snow cover-GPP

facilitation (β = 0.57), followed by the Khingan Range (β = 0.24) and Songnen Plain (β = 0.02).

Conversely, snow cover negatively correlated with GPP in the Liaohe Plain (β = –0.28), Changbai490

Mountain (β = –0.06), and Western Sand Area (β = –0.18). ST mediated contrasting effects. Positive

ST-GPP coupling dominated in the Songnen Plain (β = 0.83), Sanjiang Plain (β = 0.70), Khingan Range

(β = 0.63), and Changbai Mountain (β = 0.58). Negative ST-GPP relationships emerged in the Liaohe

Plain (β = –0.79) and Western Sand Area (β = –0.73), where elevated ST intensified evapotranspiration

losses (ET/PET ratio > 1.2), exacerbating soil desiccation and photosynthetic constraints (Bodner et al.,495

2015; Zambreski et al., 2018). This aridity amplification mechanism explained 68% of GPP variance in

water-limited paddies. Within paddy systems, SM maintained consistent positive correlations with GPP

(mean β = 0.91 ± 0.05). However, in the Songnen Plain and Liaohe Plain, the snow cover-SM-GPP

pathway exhibited significant indirect suppression effects, quantified as –0.097 (βsnow-SM = –0.11 ×

βSM-GPP = 0.88) and –0.281 (βsnow-SM = –0.30 × βSM-GPP = 0.94), respectively. These negative mediating500

effects indicate that snow cover reduces irrigation water availability through competitive consumption

of meltwater resources, thereby constraining rice photosynthetic capacity in these water-stressed

agroecosystems.
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Therefore, the impacts of snow cover on GPP exhibit pronounced spatial heterogeneity due to

geographic-climatic conditions and cultivation regimes. These effects manifest through direct505

(positive/negative) forcing and indirect hydrothermal mediation pathways, forming a

threshold-modulated regulatory framework where snow cover-derived hydrological subsidies and

thermal constraints interactively shape photosynthetic efficiency gradients across agroecological zones.

Figure 14 The standardized path coefficients between snow cover and GPP via soil properties. The510

Model fit was validated through goodness-of-fit (GOF), demonstrating acceptable parameter estimation

accuracy. The red and bule arrows represents the negative and positive influence. Arrowhead

orientation specifies causal pathways from exogenous to endogenous variables. Blue arrows denote

inhibitory effects, whereas red pathways indicate facilitative relationships. Arrowhead orientation

specifies causal pathways from exogenous to endogenous variables.515

5 Conclusion

Utilizing multi-source remote sensing data from 2001 to 2020, this study systematically investigated

the spatiotemporal patterns of snow cover dynamics (SWE, SCD, SCED) and GPP variations across
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Northeast China, revealing marked regional heterogeneity in snow cover-crop interactions. The Liaohe

Plain and Western Sand Area exhibited significant SWE declines (–3.2 mm/decade, p<0.05),520

contrasting with agricultural heartlands like the Songnen Plain and Sanjiang Plain with increased SCD

(+1.8 days/decade) and delayed SCED (+2.1 days/decade). Spatially, 65% of the croplands exhibited

SWE reduction (mean –12.7 ± 3.1 mm), while 54.1% and 61% showed SCD prolongation (+7.3±2.4

days) and SCED retardation (+4.6±1.8 days), respectively. Concurrently, GPP demonstrated robust

upward trends, particularly in core production zones (Songnen Plain: +18.7%, Sanjiang Plain: +22.3%),525

where intensified SCD-SCED synergism enhanced growing-season hydrothermal optimization.

The interference from climatic factors, such as temperature, precipitation, and solar radiation, was

excluded via partial correlation analysis to independently investigate the intrinsic snow cover-GPP

relationships. Results indicated that SCD played a particularly significant role in regulating dry land

GPP, while SCED had a more prominent impact on paddy GPP. The relative contributions of snow530

cover indicators across different sub-regions were quantified through ridge regression for pixel-wise

analysis of each metric's weight. The results revealed that SWE contributed most significantly to GPP

variations in the Western Sand Area and Liaohe Plain, whereas SCD changes dominated GPP variations

in the Songnen Plain and Sanjiang Plain. The Changbai Mountain and Khingan Range were primarily

influenced by SCED variations. Additionally, threshold analysis identified the optimal ranges of535

cropland GPP responses to snow cover indicators: peak positive GPP facilitation was observed at the

SWE of approximately 10.36 mm, the SCD of 132.79 days, and the SCED of 207.13 days (after

September 1st). Exceeding or falling below these thresholds weakened or even reversed the positive

effects.

The influence pathways of snow cover, climate, and soil factors on cropland GPP were540

comprehensively analyzed by constructing a PLS-SEM model to quantify the direct effects of snow

cover indicators on GPP and their indirect effects mediated by SM and ST. Results demonstrated that

SWE, SCD, and SCED directly affected GPP and indirectly influenced cropland productivity through

complex interactions with climatic factors, i.e., regulating soil hydrothermal conditions. The model

analysis further revealed regional variations in the pathways across geographical subregions. The545

PLS-SEM outcomes provided scientific evidence for elucidating the snow cover-soil-vegetation

coupling mechanisms in cold-region agroecosystems of Northeast China while offering theoretical

support for regional agricultural management and climate change adaptation strategies.
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550

555

560

565

570

In conclusion, this study focused on the GPP responses of dry lands and paddy fields in Northeast 

China to snow cover changes across different geographical partitions. However, inevitable human 

activities may interfere with the cropland analysis. Moreover, limitations in remote sensing data could 

omit potential pathways, such as the impact of snow cover on soil nutrients and plant photosynthetic 

efficiency. Additionally, this study did not consider different crops in croplands. A more comprehensive 

study in the future could investigate the impact of snow cover on cropland GPP in different 

geographical environments by establishing experimental zones to quantify human activities such as 

fertilization and irrigation. Meanwhile, field observations can be adopted to further understand the 

impact of snow cover on soil nutrients and fertilizer utilization efficiency. Additionally, more detailed 

analyses could be achieved through higher-precision crop classifications.
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