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Abstract 17 

Snow cover is a critical regulator of hydrological cycles and vegetation productivity in 18 

temperate ecosystems, yet its multifaceted impact on cultivated lands remains poorly 19 

quantified, especially across diverse geographical regions. This study elucidates the 20 

spatially heterogeneous mechanisms by which snow cover dynamics regulate Gross 21 

Primary Productivity (GPP) on cultivated land in Northeast China, a vital grain 22 



production base. By integrating 20 years of remote sensing observations, climate 23 

records, and soil data, we employed partial correlation, ridge regression, and Partial 24 

Least Squares Structural Equation Model (PLS-SEM) to isolate the effects of snow 25 

cover parameters, including Snow Water Equivalent (SWE), Snow Cover Duration 26 

(SCD), and Snow Cover End Date (SCED). Our results reveal a distinct geographical 27 

zoning of snow cover influences: SWE dominated GPP variability in the arid Western 28 

Sand Area and Liaohe Plain, whereas SCD was the primary driver in the Songnen Plain, 29 

and SCED exerted the strongest control in the colder Changbai Mountain and Xing'an 30 

Mountain regions. The PLS-SEM further quantified that these impacts are mediated 31 

primarily through snow-induced modifications to spring soil moisture and temperature, 32 

with the dominant pathway shifting from hydrological benefits in water-limited plains 33 

to thermal limitations in colder high-latitude areas. These findings suggest a significant 34 

correlation between changes in snow cover and cultivated land GPP, providing insights 35 

into the potential role of snow cover in modulating GPP dynamics. 36 

Keywords: snow cover, gross primary productivity, cultivated land, Northeast China 37 

1 Introduction 38 

Cultivated land is a critical natural resource for ensuring food security, ecological 39 

stability, and economic sustainability. Under the pressure of intensifying soil erosion 40 

and climate change, understanding trends in gross primary productivity (GPP) variation 41 

on cultivated land and the associated environmental response mechanisms has become 42 

imperative for sustainable development and enhanced cropland conservation. GPP 43 



represents vegetation's photosynthetic carbon fixation capacity per unit time and serves 44 

as a critical metric of carbon assimilation through photosynthesis (Beer et al., 2010; 45 

Sjöström et al., 2013). Cropland ecosystems play a pivotal role in terrestrial carbon 46 

cycling (Wang et al., 2022), where GPP directly governs crop growth dynamics, carbon 47 

sequestration potential, and agricultural productivity variations, making it an essential 48 

indicator of agroecosystem productivity (Wagle et al., 2015). As an important 49 

component of terrestrial ecosystems, snow cover significantly affects the carbon cycle 50 

by altering ecosystem functioning. In recent decades, amid global warming, significant 51 

changes in snow cover have been observed (Mudryk et al., 2020; Pulliainen et al., 2020), 52 

which subsequently influence vegetation dynamics and GPP through altered 53 

environmental conditions (Meredith et al., 2019). 54 

Previous studies demonstrated that snow cover and its phenological changes regulate 55 

the surface energy balance and hydrological cycles, while directly affecting the timing 56 

of the growing season and photosynthetic efficiency on cultivated land, thereby 57 

modulating GPP. GPP is a comprehensive indicator of the complex interactions among 58 

climatic, topographic, edaphic, botanical, and anthropogenic factors. Winter snow 59 

water equivalent (SWE) and snow cover duration (SCD) largely determine soil 60 

moisture (SM) availability and thermal regimes (Blankinship and Hart, 2012). These 61 

regulatory effects prove particularly crucial during spring sowing periods, with lasting 62 

impacts on annual carbon uptake efficiency (Chen et al., 2019). Meanwhile, SCD 63 

decreases are associated with advanced vegetation phenology and subsequent increases 64 

in productivity (Pulliainen et al., 2017). SWE primarily affects GPP by altering SM and 65 



nitrogen dynamics, with a thick snow layer additionally protecting root systems from 66 

winter freeze injury (Brooks et al., 2011; Knowles et al., 2017). A delayed Snow Cover 67 

End Date (SCED) can enhance early-growing-season GPP in arid lands and grassland 68 

ecosystems, while often exerting a suppressive effect on forest GPP (Wang et al., 2024). 69 

These effects are further modulated by climate change drivers, including temperature 70 

rise and precipitation variability (Peng et al., 2010). In summary, snow cover and its 71 

phenological changes significantly influence the GPP of ecosystems by regulating 72 

hydrothermal conditions and vegetation growth. 73 

The mechanisms by which snow cover influences GPP, however, exhibit significant 74 

heterogeneity across vegetation types and geographic contexts. Li et al. (2022) revealed 75 

that the influence of snow cover parameters on spring soil moisture is most pronounced 76 

in farmland among different land-use types. The positive hydrological effect of snow 77 

cover on SM is more pronounced in relatively arid regions, resulting in a greater 78 

enhancement of GPP. In contrast, in energy-limited or humid systems where water is 79 

not the primary limiting factor, the contribution of snowmelt to GPP becomes marginal. 80 

Previous work by Wang et al. (2024) shows that the relationship between snow cover 81 

and vegetation productivity in Northeast China varies by underlying surface type and 82 

is further modulated by local environmental conditions. A knowledge gap exists in 83 

previous work regarding how multi-metric snow characteristics interact with snow-84 

vegetation productivity relationships simultaneously across agricultural regions in 85 

Northeast China. This limited understanding hinders our ability to accurately predict 86 

how ongoing climate-driven changes in snow cover will affect the regional carbon 87 



budgets and the ecosystem functioning of cultivated land, particularly in snow-88 

dependent regions. 89 

Northeast China hosts a vital grain production base, crucial to national food security. 90 

Due to a growing population and intensifying climate change, understanding regional 91 

GPP responses across geographical conditions has become increasingly urgent. This 92 

study integrates multi-source data, including 20 years of remote sensing observations, 93 

climate records, and agricultural statistics, to systematically analyze spatiotemporal 94 

patterns of snow cover variation and their mechanistic impacts on GPP of cultivated 95 

land in Northeast China. The objectives include (1) examining the spatiotemporal 96 

variations in snow cover (e.g., SWE, SCD, and SCED); (2) elucidating the 97 

spatiotemporal heterogeneity of snow cover's effects on GPP of cultivated land; and (3) 98 

exploring the mechanisms underlying the regulatory roles of snow cover on GPP. 99 

2 Materials and methods 100 

2.1 Study area 101 

Northeast China is a high-latitude region (38°72' to 53°56'N, 115°52' to 135°09'E) 102 

comprising Heilongjiang, Jilin, and Liaoning provinces, as well as the eastern four 103 

leagues of the Inner Mongolia Autonomous Region. The region covers approximately 104 

1.25 million km2 and hosts 358,700 km2 of cultivated land, accounting for 26.6% of 105 

China's total cultivated area (Wang et al., 2023a). The topography exhibits distinct 106 

regional differentiation, with mountainous peripheries on three sides and extensive 107 



plains in the interior. Six major geographical regions exist in the region: the Songnen 108 

Plain, Sanjiang Plain, Liaohe Plain, Xing’an Mountain, and Changbai Mountain as 109 

shown in Figure 1.  110 

Table 1 compares the climatic characteristics across the six sub-regions. The region 111 

features a temperate monsoon climate characterized by winter snowfall (Xue et al., 112 

2022), low evaporation rates, and high humidity. However, as shown in Table 1, there 113 

are pronounced climatic gradients across the six sub-regions. The effective accumulated 114 

temperature (≥10°C) ranges from 2320°C in the cooler Xing'an Mountain area to 115 

3654°C in the warmer Liaohe Plain (Xu et al., 2023). Similarly, annual precipitation 116 

exhibits stark contrasts, from a mere 200-400 mm in the arid Western Sand Area to 800-117 

1200 mm in the humid Changbai Mountain. These geographic and climatic 118 

differentiations are crucial for understanding regional ecosystem responses. 119 

 120 

Figure 1 The overview of the study area: (a) cultivated land in Northeast China; (b) digital elevation 121 

model (DEM) provided by SRTM; (c) land use cover provided by LUCC.  122 

 123 

 124 



Table 1 The details of six geographic divisions in Northeast China 125 

2.2 Materials 126 

2.2.1 Snow cover products 127 

Three snow cover parameters were utilized in this study: SWE, SCD, and SCED from 128 

hydrological year (HY) 2001 to HY 2000. The hydrological year is defined as the 129 

duration from September to August. Daily SWE data were sourced from the National 130 

Cryosphere Desert Data Center's fusion product with the spatial resolution of 131 

0.25°across China for the period 1980-2020 (Jiang et al., 2022). This dataset integrated 132 

the advantages of existing SWE data products with topographic and temporal covariates 133 

and was validated using ground observations from 647 monitoring stations. The 134 

validation results demonstrated correlation coefficients (R2) of 0.77 and 0.70, with 135 

mean absolute errors (MAE) of 7.54 mm and 8.62 mm and root mean square errors 136 

(RMSE) of 12.29 mm and 13.73 mm, respectively. 137 

Geographical 

region 

Area 

(104×k

m2) 

Elevation 

range 

(m) 

Cultivated land 

(thousand km2) 

Accumulated 

temperature ≥ 

10 ℃ 

Precipitation 

(mm) 

Songnen Plain 18.35 95~957 107.6 2706 400 ~ 650 

Sanjing Plain 10.18 0~1030 66.8 2402 600 ~ 800 

Liaohe Plain 10.57 0~1215 35.3 3654 500 ~ 700 

Changbai Mount 24.64 0~2658 64.6 2857 800 ~ 1200 

Western Sand 

Area 
26.14 115~2015 53.6 3262 200 ~ 400 

Xing’ an 

Mountain 
34.55 67~1079 30.4 2320 400 ~ 700 



The SCD and SCED data were obtained from the MODIS-based Chinese Snow 138 

Phenology Dataset (Zhao et al., 2022). This China-wide dataset (2000-2020) has a 500 139 

m spatial resolution, and its accuracy has been rigorously validated against ground 140 

stations. The dataset demonstrates high accuracy, with R², RMSE, and MAE values of 141 

0.94, 12.09 days, and 7.60 days for SCD, and 0.56, 19.89 days, and 7.74 days for SCED, 142 

respectively. 143 

2.2.2 GPP data 144 

This study utilized the MOD17A2H Version 6 GPP product (Running et al., 2021). The 145 

data encompassed the growing seasons (April-September) from HY2001 to HY2020. 146 

This product provides 8-day composite data at 500 m spatial resolution, offering 147 

cumulative measurements of vegetation photosynthetic activity. MODIS products have 148 

been extensively validated and widely adopted in terrestrial carbon cycle research 149 

(Endsley et al., 2023; Wang et al., 2017). Existing studies have validated the MOD17A2 150 

GPP data product across various ecosystems in China, demonstrating a strong 151 

agreement with in-situ eddy covariance flux tower observations (R2 = 0.76) (Zhu et al., 152 

2016). 153 

2.2.3 Climate data 154 

Precipitation, air temperature, and solar radiation data were used to analyze the domain 155 

factors influencing snow cover. The monthly precipitation and temperature data were 156 

obtained from the 1 km-resolution monthly precipitation dataset (Peng, 2020) and the 157 



1 km-resolution monthly mean temperature dataset for China (Peng, 2019). These 158 

datasets provide monthly records from 1901 to 2021 across China at a spatial resolution 159 

of 1 km, comprehensively covering various climatic variables. A comprehensive 160 

evaluation under diverse environmental conditions demonstrated that the ERA5-LAND 161 

product accurately represents actual solar radiation patterns, making it highly suitable 162 

for various ecological and climatological applications (Mihalevich et al., 2022; Muñoz-163 

Sabater et al., 2021).  164 

2.2.4 Soil data 165 

Soil temperature (ST) and soil moisture (SM) data were obtained from the Famine Early 166 

Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 167 

(McNally, 2018). The FLDAS data are generated using the Noah Land Surface Model 168 

(LSM) version 3.6.1, with a spatial resolution of 0.1° × 0.1° and monthly temporal 169 

resolution, providing 28 surface variables from 1982 to the present. This comprehensive 170 

dataset includes the 0-10 cm SM and ST used in this study, which are particularly 171 

relevant for analyzing vegetation dynamics and ecosystem processes. 172 

The FLDAS data have been validated against multiple in-situ soil observation networks 173 

and demonstrated superior accuracy to the Global Land Data Assimilation System 174 

(GLDAS) (Li et al., 2021). The validation involved extensive comparisons with 175 

ground-based measurements, confirming the reliability of FLDAS outputs for 176 

estimating soil parameters. This high-quality dataset enables robust analysis of soil-177 



vegetation-atmosphere interactions, supporting various applications in ecological 178 

modeling and climate studies. 179 

2.2.5 Land use type 180 

Northeast China lost 6,694 km2 of cultivated land between 2000 and 2020, primarily 181 

due to urban expansion and the Grain for Green Program. The land use data were 182 

obtained from the 1 km-resolution China Land Use Dataset (1980-2020) (Xu et al., 183 

2018). Pixel-wise screening of land-use distribution data from 2001 to 2020 identified 184 

cultivated land that remained unchanged over the 20 years for analysis. Figure 1(a) 185 

shows the spatial distribution of unchanged cultivated land, including 87.83% dryland 186 

and 12.63% paddy land.  187 

2.3 Methods 188 

2.3.1 Trend analysis 189 

The long-term trends in the annual time series of SCD, SWE, and GPP (2001-2020) 190 

were analyzed using the Theil-Sen slope method (Sen,1968). The statistical 191 

significance of these trends was evaluated with the Mann-Kendall test (Kendall, 1948; 192 

Mann, 1945). In the Mann-Kendall test, a monotonic trend is considered statistically 193 

significant at the 90%, 95%, and 99% confidence levels if the absolute value of the 194 

computed Z statistic exceeds 1.65, 1.96, and 2.58, respectively.  195 



2.3.2 Partial correlation 196 

All datasets were resampled to a consistent spatial resolution of 0.05°×0.05° using the 197 

nearest neighbor method to facilitate subsequent pixel-by-pixel analysis. Then, a partial 198 

correlation analysis was employed to statistically quantify the relationship between two 199 

variables while controlling for the effects of one or more covariates (Gonzalez, 2003; 200 

Kashyap and Kuttippurath, 2024; Wei et al., 2022). Specifically, we applied pixel-wise 201 

partial correlation to examine the impacts of SCD, SWE, and SCED on GPP across 202 

various land-use types, while controlling for concurrent temperature, precipitation, and 203 

solar radiation to isolate the direct effects of snow cover. 204 

2.3.3 Ridge regression 205 

Given the potential multicollinearity among snow cover indicators, we used ridge 206 

regression rather than ordinary least squares to ensure stable coefficient estimates (Zhao 207 

et al., 2023). This approach was applied pixel-wise to quantify the relative contributions 208 

of SCD, SWE, and SCED to GPP across the study area. This method identified the 209 

dominant snow-cover indicators influencing GPP on cultivated land in each zone, 210 

providing valuable insights into the spatial heterogeneity of snow cover's effects on 211 

vegetation productivity.  212 

2.3.4 Partial least squares structural equation model 213 

To decipher the complex causal pathways through which snow affects GPP, we 214 

employed a Partial Least Squares Structural Equation Model (PLS-SEM). Two latent 215 



variables were created during model construction, including Snow and Climate. Snow 216 

included SCD, SWE, and SCED, whereas Climate included precipitation, air 217 

temperature, and solar radiation. The PLS-SEM also included SM, ST and GPP data for 218 

different vegetation types. All variables were normalized before the analysis to facilitate 219 

comparison of path coefficients.  220 

The path coefficients in PLS-SEM analysis represent the magnitude and direction of 221 

direct effects between two variables. Positive and negative path coefficients correspond 222 

to the positive and negative impacts of the independent variable on the dependent 223 

variable, respectively, with their values quantifying the impact strength. The goodness-224 

of-fit (GOF) index globally evaluates the quality of the path models and determines 225 

their validity. A GOF above 0.36 indicates applicable model results (Wetzels et al., 226 

2009). 227 

3 Results 228 

3.1 The spatiotemporal distribution of snow cover 229 

Figure 2 displays the spatial distribution of mean SWE in Northeast China from 230 

HY2001 to HY2020. Among the six sub-regions, the mean SWE of Sanjiang Plain was 231 

the highest at 9.66 mm. The high SWE values were observed in the Xing’an Mountain 232 

-Nenjiang conjunction and the Sanjiang Plain. The Xing’an Mountain had the second-233 

highest mean value of 9.05 mm and the second-highest maximum value of 20.10, 234 

followed by Songnen Plain. The Changbai Mountain also had a relatively high mean 235 



SWE of 6.26 mm. The semi-arid Western Sand Area had the second-lowest mean SWE 236 

but the highest maximum SWE. The mountainous areas (Changbai Mountain an 237 

Xing’an Mountains) had greater snowfall than the other five sub-regions, explaining 238 

the high SWE levels. The Liaohe Plain had the lowest SWE among these six sub-239 

regions due to its lower latitude. The negative slope of the SWE fitting line in Figure 240 

2(c) indicates a slight decreasing trend from HY2001 to HY2020.  241 



 242 

Figure 2 The spatial and temporal changes of SWE in Northeast China from HY2001 to HY2020: 243 

(a) spatial distribution of mean SWE; (b) changing trend of SWE, the green areas represent positive 244 

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that 245 

were significant at the 90% confidence level; (c) annual changes of SWE. 246 

 247 



Table 2 Statistics of SWE, SCD and SCED in six geographical regions in Northeast China 248 

Geographic 

region 

SWE (mm) SCD (day) SCED (day) 

Max Mean Max Mean Max Mean 

Songnen Plain 13.51 5.64 152.95 94.56 215.30 180.14 

Sanjiang Plain 19.40 9.66 135.64 110.85 211.86 195.08 

Liaohe Plain 5.04 1.73 98.29 36.52 187.09 125.81 

Changbai 

Mountain 
18.88 6.23 135.48 87.18 213.42 176.38 

Western Sand 

Area 
24.07 2.35 154.63 32.38 217.99 108.74 

Xing’an 

Mountain 
20.10 8.97 162.44 119.57 222.74 196.11 

 249 

Figure 3 shows the spatial distribution of mean SCD in Northeast China from HY2001 250 

to HY2020, Table 2 lists the corresponding statistical results. The SCD had average 251 

value of 80.79 days. High SCD values were primarily observed in the northeastern and 252 

mountainous areas, while low SCD values were distributed in the southwest and low-253 

altitude areas. Overall, a decreasing trend was observed from the northeast to the 254 

southwest. Noticeable differences were observed in Changbai Mountain. Its 255 

northeastern area, closer to the Sanjiang Plain, showed significantly higher SCD than 256 

the southwestern area near the Liaohe Plain. The Xing’an Mountain had the highest 257 

mean SCD of 1119.57 days and the highest maximum SCD of 162.44 days, higher than 258 

the Changbai Mountain. The Sanjiang Plain had the second-highest mean SCD of 259 

110.85 days, followed by the Songnen Plain. The negative slope of the fitting line in 260 

Figure 3(c) indicates a decreasing trend in SCD, with significant fluctuations between 261 

2008 and 2014. Meanwhile, 54.1% of the cultivated land in the northeastern area 262 

experienced extended SCD, primarily distributed in the Songnen Plain. Areas with 263 

shortened SCD accounted for 45.9% of the total area. Areas with significant SCD 264 



declines were mainly concentrated in the Liaohe Plain, similar to the spatial distribution 265 

of interannual SWE variation. 266 

 267 

Figure 3 The spatial and temporal changes of SCD in Northeast China from HY2001 to HY2020: 268 

(a) spatial distribution of mean SCD; (b) changing trend of SCD, the green areas represent positive 269 

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that 270 

were significant at the 90% confidence level; (c) annual changes of SCD.  271 



Figure 4 displays the spatial distribution of mean SCED in Northeast China from 272 

HY2001 to HY2020. The SCED distribution pattern was similar to that of SWE and 273 

SCD. Higher SCEDs were still primarily observed in the northeastern and mountainous 274 

areas, while lower SCEDs were distributed in the southwest and low-altitude regions. 275 

The statistical results showed that the SCE had an average of approximately 163.99 276 

days. About 49% of the pixels had SCEDs ranging from 180 to 210 days, while 49% 277 

had SCEDs extending into March of the following year. Such pixels were concentrated 278 

in the Changbai Mountain, Sanjiang Plain, and the northeastern Songnen Plain. Pixels 279 

with SCEDs above 210 days accounted for only about 3% and were mainly distributed 280 

in the Xing’an Mountain. The average SCED in the Sanjiang Plain and Xing’an 281 

Mountain were approximately 195.08 days and 196.11 days, respectively. According to 282 

Figure 4, the slope of the SCED fitting line in Figure 4(c) indicates a slight advancing 283 

trend. The SCED trend was relatively stable between 2005 and 2007, while fluctuations 284 

ranging from 10 to 30 days were observed in other years. Delayed SCEDs were 285 

observed in 56.15% of the areas. Such regions were primarily distributed in the 286 

Songnen Plain, Sanjiang Plain, and Changbai Mountain. Only 43.85% of the regions 287 

exhibited earlier SCEDs, mainly concentrated in the Liaohe Plain. 288 



 289 

Figure 4 The spatial and temporal changes of SCED in Northeast China from HY2001 to HY2020: 290 

(a) spatial distribution of mean SCED; (b) changing trend of SCED, the green areas represent 291 

positive impacts, while the blue areas indicate negative impacts; and the shaded regions denote 292 

pixels that were significant at the 90% confidence level; (c) annual changes of SCED.  293 

3.2 Effects of Snow Cover on Soil Properties 294 

Figure 5 illustrates the spatial distribution of correlation coefficients between winter 295 

SWE and the subsequent year's ST and SM. As shown in Figure 5(a), the correlation 296 



coefficient between SWE and ST ranges from -0.6 to 0.72. Areas with negative 297 

correlations accounted for approximately 62.97% of the total cultivated land, which 298 

indicate predominantly negative influences of SWE on the ST in the subsequent year. 299 

The regions with significantly negative correlations concentrated in the Songnen Plain 300 

and Sanjiang Plain. A small portion of areas with positive correlation was found in the 301 

Western Sand Area and the northern part of Changbai Mountain. According to Figure 302 

5(b), the correlation coefficient between SWE and SM ranges from -0.74 to 0.86. Areas 303 

with positive correlations accounted for about 70.45% of the total cultivated land, 304 

indicating a primarily positive impact of SWE on the SM in the subsequent year. The 305 

areas with significantly positive correlations mainly concentrated in the Sanjiang Plain 306 

and Changbai Mountain. Areas with negative correlations between SWE and SM 307 

accounted for approximately 29.55%, mainly concentrated in the Songnen Plain and 308 

Liaohe Plain. 309 



 310 

Figure 5 The correlation coefficients between SWE and soil properties: (a) soil temperature; (b) soil 311 

moisture. Blue and green pixels represent negative and positive correlations respectively. The 312 

shaded regions denote pixels that were significant at the 90% confidence level. 313 

Figure 6 illustrates the spatial distribution of correlation coefficients between winter 314 

SCD and soil parameters of the subsequent year. As shown in Figure 6(a), 315 

the correlation coefficient between SCD and ST ranges from -0.64 to 0.72. Areas with 316 

negative correlations accounted for approximately 54.8% of the total cultivated land, 317 

indicating that the influence of SCD on the subsequent year's ST is predominantly 318 

negative. The areas with significantly negative correlations primarily concentrated in 319 

the Songnen Plain and Sanjiang Plain. These results suggest that a longer SCD is 320 

associated with slower soil warming the following spring. Only a small number of areas 321 

with positive correlations were found in the northern part of Changbai Mountain and 322 

the Western Sand Area. Thus, a longer SCD in these areas may, to some extent, promote 323 

ST recovery through insulating effects. According to Figure 6(b), the correlation 324 



coefficient between SCD and SM ranges from -0.66 to 0.61. Areas with positive 325 

correlations accounted for 64.36%, indicating a primarily positive impact of SCD on 326 

the subsequent year's SM. The areas with significantly positive correlations mainly 327 

concentrated in the Songnen Plain and Changbai Mountain. Areas with negative 328 

correlations accounted for only 35.64%, and SCD's moderating effect on SM transitions 329 

from positive to negative from northeast to southwest. The pixels with SCD negatively 330 

affecting SM were primarily concentrated in Liaohe Plain. 331 

 332 

Figure 6 The correlation coefficients between SCD and soil properties: (a) soil temperature; (b) soil 333 

moisture. Blue and green pixels represent negative and positive correlations, respectively. The 334 

shaded regions denote pixels that were significant at the 90% confidence level.  335 

Figure 7 illustrates the spatial distribution of correlation coefficients between winter 336 

SCED and soil parameters of the subsequent year. Figure 7(a) shows that the correlation 337 

coefficient between SCED and SM ranges from -0.64 to 0.72. The areas with negative 338 



correlations accounted for approximately 62.97% of the total cultivated land, indicating 339 

a primarily negative impact of SCED on ST. The areas with significant negative 340 

correlations mainly concentrated in the Songnen Plain and Sanjiang Plain. A small 341 

number of areas with positive correlations were primarily found in the northern of 342 

Changbai Mountain and the Western Sand Area. According to Figure 7(b), the 343 

correlation coefficient between SCED and SM ranges from -0.66 to 0.61. Areas with 344 

positive correlations accounted for approximately 70.45% of the total cultivated land, 345 

indicating a mainly positive impact of SCED on the subsequent year's SM. The pixels 346 

with negative SCED effects on SM were primarily concentrated in the Sanjiang, 347 

Songnen, and Liaohe Plains. 348 

 349 

Figure 7 Spatial pattern distribution results of the relationship between SCED and soil properties: 350 

(a) soil temperature; (b) soil moisture. Blue and green pixels represent negative and positive 351 



correlations respectively. The shaded regions denote pixels that were significant at the 90% 352 

confidence level. 353 

3.3 The influence of Snow Cover on GPP  354 

Figure 8 displays the spatial distribution of GPP in Northeast China from HY2001 to 355 

HY2020, and Table 3 presents the statistical results for GPP across the six sub-regions. 356 

The GPP of cultivated land generally shows a relatively uniform distribution pattern, as 357 

shown in Figure 8(a). The Changbai Mountain, Sanjiang Plain, and Xing’an Mountain 358 

had relatively high GPP, followed by Songnen Plain and Liaohe Plain, while the 359 

Western Sand Area had the lowest GPP during the past 20 years. The interannual 360 

variation trends in Figure 8(b) indicate that over the past 20 years, 98% of the cultivated 361 

land shows an increasing trend in GPP, with significant GPP growth in 74% of the areas. 362 

Furthermore, the growth rates varied across different regions, with the GPP in the 363 

Western Sand Area increasing the fastest at an average of approximately 9.04 g·C/m2 364 

per year. 365 



 366 

Figure 8 The spatial and temporal changes of GPP in Northeast China from HY2001 to HY2020: 367 

(a) spatial distribution of mean GPP; (b) changing trend of GPP the green areas represent positive 368 

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that 369 

were significant at the 90% confidence level; (c) annual changes of GPP 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 



Table 3 GPP statistics of six geographic regions in Northeast China. Max. and SD represent the 378 

maximum value and standard deviation, respectively.  379 

Geographic regions Max. (g·C/m2) Mean. (g·C/m2) SD (g·C/m2) 

Songnen Plain 1077.70 607.34 86.22 

Sanjiang Plain 1286.26 697.08 99.44 

Liaohe Plain 1141.74 611.99 89.59 

Changbai Mountain 1332.11 781.48 145.15 

Western Sand Area 854.5 484.89 95.09 

Xing’an Mountain 1219.43 674.64 116.66 

 380 

Figure 9 reveals distinct spatial patterns in the partial correlations between snow cover 381 

and GPP over cultivated land in Northeast China, and Table 4 lists the corresponding 382 

statistical results. The correlation between SWE and GPP was nearly balanced, with 383 

67.01% of the area showing positive and 32.99% negative correlations for the whole 384 

Northeast China; however, only 13.2% of the total area passed the significance test (p 385 

< 0.1). The correlation coefficients ranged widely from -0.77 to 0.83. Significant 386 

positive correlations were predominantly located in the northern Sanjiang Plain and the 387 

central-western Songnen Plain, where snowmelt likely acts as a critical hydrological 388 

subsidy for early crop growth (Li et al., 2025; Pan et al., 2022). In contrast, significant 389 

negative correlations clustered in the southern Liaohe Plain, suggesting that excessive 390 

SWE may lead to spring soil saturation and root zone anoxia. For SCD, 67.02% of the 391 

cultivated area exhibited a positive correlation with 11.02% significant at 90% level. 392 



And the values ranged from -0.73 to 0.75, showing a clear latitudinal gradient in the 393 

Songnen Plain where the protective insulating effect of long-lasting snowpack is most 394 

beneficial. A smaller area (32.68%) showed a non-significant negative correlation. The 395 

56.18% of SCED is negatively coefficients with 10.75% being significant, and reveal 396 

that SCED was predominantly positively correlated with GPP, particularly in the 397 

Sanjiang and Songnen Plains, indicating that a delayed melt can favorably align water 398 

availability with the crop growth calendar (Si et al., 2023; Wang et al., 2024). 399 

Collectively, the impact of snow on agricultural productivity is a function of its dual 400 

role as a source of water and as insulation, versus its potential to cause waterlogging 401 

and phenological misalignment. 402 



 403 

Figure 9 Spatial distribution of partial correlation between snow parameters and GPP of cultivated 404 

land from HY2001 to HY2020: (a)SWE; (b) SCD; (c)SCED 405 

 406 

 407 

 408 

 409 



Table 4 The summary of partial correlation coefficients between snow cover and GPP in the six sub-410 

regions. * indicate significance at the 90% confidence level.  411 

Snow 

cover 

Correlation 

Coefficients 

Songnen 

Plain 

Sanjiang 

Plain 

Liaohe 

Plain 

Changbai 

Mountain 

Western 

Sand 

Area 

Xing’an 

Mountain 

SWE 

>0  70.49% 87.27% 43.98% 64.65% 64.73% 68.73% 

<0 29.51% 12.73% 56.02% 35.35% 35.27% 31.27% 

>0* 8.82% 22.55% 3.48% 17.31% 4.39% 10.26% 

<0* 0.397% 0.68% 10.13% 3.41% 0.89% 0.48% 

SCD 

>0  83.96% 77.46% 42.46% 66.45% 49.44% 65.33% 

<0 16.04% 22.54% 57.54% 33.55% 50.56% 34.67% 

>0* 11.13% 9.29% 1.34% 7.87% 0.73% 10.95% 

<0* 1.72% 0.27% 15.08% 3.29% 1.99% 3.24% 

SCED 

>0  72.23% 66.24% 50.4% 51.96% 26.71% 54.1% 

<0 22.77% 32.76% 49.6% 48.04% 73.29% 45.9% 

>0* 7.42% 10.28% 7.35% 5.24% 0.61% 4.29% 

<0* 0.66% 3.85% 7.45% 6.35% 10.32% 2.29% 

3.4 Dominant Controls of Snow Cover on Cropland GPP  412 

Figure 10 presents the spatial distribution and area proportions of the relative 413 

contributions of different snow cover indicators to GPP of cultivated land in Northeast 414 

China. SWE predominantly drove GPP variations in the Western Sand Area and Liaohe 415 

Plain, which accounted for approximately 50% of the GPP changes, significantly higher 416 

than the contributions of SCD and SCED. In contrast, SCED emerged as the primary 417 

driver in the Changbai Mountain, Sanjiang Plain, and Xing’an Mountain, with 418 

contribution rates reaching 45.2%, 49.5%, and 38.6%, respectively. The Songnen Plain 419 

demonstrated a distinct pattern, with SCD dominating within 39.59% of the total area, 420 

substantially higher than SWE (31.29%) and SCED (29.11%). This regional analysis 421 

elucidated spatial heterogeneity in the relative contributions of snow cover indicators 422 

to GPP variations across Northeast China. The findings demonstrated distinct 423 

geographical zoning characteristics that provided a theoretical foundation for 424 



understanding the differential impacts of snow cover changes on agricultural 425 

productivity across regions. SWE exerted greater influence in relatively arid areas, 426 

while SCED had a stronger impact in colder areas.  427 

 428 

Notably, SWE dominates GPP variability in moisture-limited areas, like the Western 429 

Sand Area and the Liaohe Plain, accounting for ~50% of the observed fluctuations. Its 430 

contribution was 1.6- to 1.7-fold greater than those of SCD and SCED. These results 431 

aligned with hydrological theory positing that SWE is a critical drought-mitigating 432 

reservoir in arid ecosystems through delayed meltwater release (Barnett et al., 2005). 433 

Conversely, SCED emerged as the principal driver in colder high-latitude areas 434 

(Changbai Mountain, Sanjiang Plain, Xing’an Mountain), explaining 38.6% to 49.5% 435 

of GPP variations. Such spatial patterns likely reflect SCED's bidirectional effects in 436 

regulating growing season onset via albedo modulation and frost protection through 437 

insulation effects (Pulliainen et al., 2020). Sanjiang Plain exhibited hybrid behavior, 438 

where the SCD predominance (39.59%) suggested intermediate sensitivity to SCD and 439 

hydrologic inputs. 440 

 441 



 442 

Figure 10 Spatial distribution and area percentage of snow-related indicators driving GPP variation 443 

of cultivated land in different regions of Northeast China from 2001 to 2020.  444 

3.5 Mechanisms of Snow Cover Impacts on GPP 445 

Figure 11 systematically quantifies the influence of snow cover on GPP across six 446 

agroecological regions, revealing pronounced spatial heterogeneity in snow cover-GPP 447 

causal networks. The influence of snow cover on GPP is characterized by spatially 448 

contrasting effects, ranging from promotive to inhibitory across different regions. In 449 

regions such as the Sanjiang Plain, the Xing'an Mountains, and the Songnen Plain, snow 450 

cover demonstrates a promotional effect (β = 0.47, 0.29, 0.26). The spring soil moisture 451 

is effectively replenished by snowmelt, alleviating water stress during the early growing 452 



season in arid areas. In contrast, in the Liaohe Plain, the Western Sandy Area, and the 453 

Changbai Mountain region, snow cover shows an inhibitory effect (β = -0.23, -0.16, -454 

0.10). This is primarily attributed to the nutrient leaching effect driven by snowmelt 455 

runoff, especially in areas with lighter soil texture or greater slope, where the runoff 456 

leads to the loss of key nutrients such as nitrogen and phosphorus, thereby weakening 457 

vegetation productivity. 458 

A widespread finding is that snow cover exerts a consistent negative effect on soil 459 

temperature (ST) (mean β = −0.58). This indicates that although snow cover provides 460 

an insulating effect during winter, its persistence or melting process in the early growing 461 

season significantly lowers soil temperature, delays phenology, and thereby creates a 462 

thermal limitation. This pathway is particularly pronounced in the Changbai Mountain 463 

ecosystem, where the indirect inhibitory effect of snow cover on GPP through reducing 464 

ST reaches β = −0.51. This suggests that in certain regions, thermal limitation may 465 

dominate over hydrological effects in determining the ultimate impact of snow cover 466 

on productivity. 467 

The relationship between snow cover and soil moisture (SM) exhibits complex 468 

geographical divergence, which in turn triggers different cascading effects. In the 469 

Songnen Plain and the Liaohe Plain, snow cover shows a negative correlation with SM 470 

(β = -0.50, -0.16). Combined with the strong positive effect of SM on GPP (β = 0.96, 471 

0.92), this forms an inhibitory pathway that begins with reduced snow cover, leading to 472 

soil moisture deficit, and ultimately results in decreased ecosystem productivity by 473 

limiting vegetation growth. In contrast, in other regions such as the Sanjiang Plain (β = 474 



0.13), snow cover may replenish SM through meltwater, creating a positive feedback 475 

loop. This divergence profoundly reflects the regulatory role of region-specific 476 

hydrological mechanisms, such as groundwater levels, soil water retention capacity, 477 

and snowmelt timing. 478 

 479 
Figure 11 The standardized path coefficients between snow cover and GPP via soil properties. The 480 

Model fit was validated through goodness-of-fit (GOF), demonstrating acceptable parameter 481 

estimation accuracy. Blue arrows denote inhibitory effects, whereas red pathways indicate 482 

facilitative relationships. Arrowhead orientation specifies causal pathways from exogenous to 483 

endogenous variables. ST and SM stand for soil temperature and soil moisture. SN, SJ, LH, XAL, 484 

CB and WS stands for Songnen Plain, Sanjiang Plain, Liaohe Plain, Xing’an Mountains, Changbai 485 

Mountains and West Sand Area.   486 

4 Discussion 487 

This study aimed to elucidate the spatiotemporal variations in snow cover parameters 488 

(SWE, SCD, and SCED) and their heterogeneous impacts on GPP of cultivated land 489 

across six subregions in Northeast China, while uncovering the underlying regulatory 490 

mechanisms through soil properties. By integrating long-term satellite and reanalysis 491 

products with partial correlation analyses and a PLS-SEM framework, we show that 492 

snow cover exerts strong but spatially heterogeneous controls on cropland GPP via its 493 

effects on spring ST and SM, with distinct response patterns among major agricultural 494 



plains. These findings demonstrate that snow is not merely a passive climatic 495 

background factor but an active regulator of agricultural carbon uptake in a region that 496 

is both snow-dominated and critical for national food security. 497 

4.1 Changes in snow cover and GPP 498 

The principal findings demonstrate a 63% decrease in SWE across cultivated lands, 499 

contrasted by a 54% increase in SCD and delayed SCED in 61% of areas, which 500 

collectively correlated with significant GPP enhancements in 74% of regions, 501 

underscoring snow cover's pivotal role in modulating agricultural carbon assimilation 502 

under climatic shifts. Our results are broadly consistent with recent large-scale 503 

assessments showing that snow cover changes exert strong and spatially heterogeneous 504 

influences on vegetation productivity across the Northern Hemisphere (Liu et al., 2023; 505 

Mudryk et al., 2020). Similar to Liu et al. (2023), we find that both the direction and 506 

magnitude of snow–GPP relationships depend on background climate, and that failing 507 

to consider lagged hydrothermal pathways can underestimate the true influence of snow 508 

on growing-season productivity. However, whereas Liu et al. (2023) emphasized lagged 509 

snow effects in natural ecosystems, our study focuses specifically on cultivated land, 510 

where management practices and soil manipulation modulate snow–soil–GPP linkages. 511 

Within Northeast China, our findings complement and extend previous analyses that 512 

examined snow–vegetation interactions across all underlying surface types. Wang et al. 513 

(2024) showed that in this region, increases in SWE tend to favor GPP in dryland and 514 

grassland, while snow phenology metrics such as SCED and SCD are more influential 515 



in forests. Our results refine this picture by isolating cropland and demonstrating that 516 

(i) SWE dominates GPP variability in moisture-limited cultivated systems, (ii) SCD 517 

and SCED become critical where cold stress and drainage limitations are prominent, 518 

and (iii) the relative dominance of these metrics shifts systematically. 519 

4.2 Linkages of snow, soil, and GPP  520 

The spatial patterns of SWE, SCD, and SCED reveal a clear north–south and east–west 521 

organization of snow regimes over cultivated land. Areas with deeper snowpacks and 522 

longer snow duration are concentrated at higher latitudes and elevations, while low-523 

lying southern and coastal croplands experience shallower and shorter-lasting snow. 524 

Against this backdrop, our correlation analyses show that snow metrics affect GPP 525 

primarily through their modification of soil hydrothermal conditions, in line with the 526 

notion that vegetation responds to hydrothermal states rather than snow itself (Liu et 527 

al., 2023). 528 

In cold, energy-limited subregions, thicker and more persistent snow tends to enhance 529 

GPP by moderating winter and early-spring stress. Increased SWE and longer SCD 530 

insulate the soil, maintaining higher near-surface temperatures and reducing freeze–531 

thaw damage, which promotes higher early-season GPP through improved root activity 532 

and reduced winter mortality (Mudryk et al., 2020; Liu et al., 2023). In these areas, our 533 

PLS-SEM results indicate that the dominant pathway from snow to GPP is temperature-534 

driven: SWE and SCD warm the soil profile, advance favorable thermal conditions for 535 

crop emergence, and indirectly raise GPP by shortening the period of severe cold stress. 536 

By contrast, in relatively warm but moisture-limited croplands, SWE emerges as the 537 



primary control on interannual GPP variability. Here, snow acts as a critical seasonal 538 

water reservoir. Higher SWE increases spring soil moisture, which alleviates early-539 

season water stress and supports more vigorous canopy development, consistent with 540 

prior work highlighting the role of snow-derived water for spring soil moisture and 541 

subsequent crop performance in Northeast China (Li et al., 2022; Wang et al., 2024). In 542 

these zones, the structural paths in the PLS-SEM are dominated by SWE, soil moisture, 543 

and GPP, underscoring a moisture-mediated mechanism akin to the broader link 544 

between water availability and global GPP. 545 

4.3 Limitations and projections 546 

Several limitations should be acknowledged when interpreting these findings. First, 547 

despite using recent high-quality products, uncertainties remain in the underlying 548 

datasets. The SWE fields used here, although tailored for China (Jiang et al., 2022), are 549 

derived from passive microwave retrievals and data assimilation, which can 550 

underestimate SWE in complex terrain and under deep, dense snow (Mihalevich et al., 551 

2022). Similarly, ERA5-Land ST and SM, while widely validated (Muñoz-Sabater et 552 

al., 2021), inevitably smooth sub-grid heterogeneity associated with microtopography, 553 

tillage practices, and irrigation. MODIS GPP products also carry known uncertainties 554 

in cropland, especially under mixed pixel conditions and heterogeneous management. 555 

These uncertainties are unlikely to overturn the main regional patterns identified here, 556 

but they could affect estimates of effect magnitude, particularly in transition zones 557 

where snow–GPP relationships are weak or mixed. Besides, the spatial and temporal 558 

resolution of our analysis imposes constraints on generalizability. Aggregating to 559 



moderate-resolution grid cells inevitably mixes different soil types, management 560 

regimes, and microclimates, which may lead to conservative estimates of snow impacts 561 

where fields are strongly heterogeneous. 562 

 563 

Furthermore, our analytical framework is observational and relies on correlation and 564 

PLS-SEM to infer dominant pathways rather than process-based simulation. Although 565 

PLS-SEM is designed to disentangle direct and indirect effects within complex variable 566 

networks, it cannot fully resolve causal mechanisms, and its results depend on the 567 

specified model structure and variable selection. For example, we did not explicitly 568 

represent snow metamorphism, subsurface runoff, or crop management practices, all of 569 

which can modulate how snow-induced hydrothermal changes translate into GPP 570 

responses (Bodner et al., 2015). We just discussed the dryland of cultivated land in this 571 

paper, and future work will consider the paddy land. Incorporating these factors in 572 

future structural models, or coupling our observational analysis with process-based 573 

land–surface or crop models, would help test the robustness of the inferred pathways. 574 

 575 

In summary, this study demonstrates that multiple dimensions of snow cover—SWE, 576 

SCD, and SCED—jointly structure the soil hydrothermal environment and GPP of 577 

cultivated land in Northeast China, with the dominant control shifting from SWE in 578 

moisture-limited areas to SCD and SCED in colder or poorly drained regions. This 579 

research provides a process-based framework for understanding snow-vegetation 580 

coupling in cold-region agroecosystems, moving beyond simple correlative analyses. 581 



The novel application of ridge regression to identify the dominant snow indicator for 582 

GPP in each subregion offers a powerful tool for regional-scale assessment and 583 

prediction. From an application perspective, these findings can directly inform climate-584 

adaptive agricultural management. For example, in the Western Sand Area, practices 585 

that enhance snow harvesting and retention could be prioritized to bolster spring soil 586 

moisture. In contrast, in the Changbai Mountain, selecting crop varieties with lower 587 

base temperatures for growth or developing strategies to accelerate snowmelt (where 588 

feasible) could mitigate the negative impacts of a delayed SCED. 589 

5 Conclusion 590 

This study used multi-source remote sensing data to clarify how snow cover dynamics 591 

regulate cultivated land GPP in Northeast China from HY2001 TO HY2020. By jointly 592 

analyzing SWE, SCD, SCED, and GPP, we revealed pronounced regional heterogeneity 593 

in snow cover–crop interactions: snow cover reductions in the Liaohe Plain and Western 594 

Sand Area contrasted with prolonged snow duration and delayed melt in the Songnen 595 

and Sanjiang Plains, where GPP increased most strongly. 596 

 597 

By controlling for temperature, precipitation, and radiation, we isolated the intrinsic 598 

snow–GPP relationships for different cropping systems. SCD was identified as the 599 

dominant snow metric for dryland GPP. Ridge regression further showed that SWE 600 

primarily regulates GPP in the Western Sand Area and Liaohe Plain, while SCD 601 

dominates in the Songnen and Sanjiang Plains, and SCED is most important in the 602 



Changbai Mountain and Xing’an Mountain.  603 

 604 

Finally, the PLS-SEM framework quantified both the direct effects of snow cover 605 

indicators on GPP and their indirect effects via SM and ST, elucidating the snow-soil–606 

vegetation coupling mechanism in cold-region agroecosystems. Snow cover generally 607 

exerts a negative effect on gross primary productivity through its thermal influence. In 608 

the Liaohe Plain and Songnen Plain, snow cover indirectly suppresses cropland GPP 609 

through its water-mediated effect. In the Sanjiang Plain, Xing'an Mountains, Changbai 610 

Mountain, and Western Sandy Area, snow cover indirectly promotes the increase of 611 

cropland GPP through its water-mediated effect. 612 

 613 

Future work should integrate field experiments and higher-resolution data on crop types 614 

and management practices to disentangle these complex interactions and validate the 615 

proposed mechanisms at a finer scale. 616 
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