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Abstract

Snow cover is a critical regulator of hydrological cycles and vegetation productivity in
temperate ecosystems, yet its multifaceted impact on cultivated lands remains poorly
quantified, especially across diverse geographical regions. This study elucidates the
spatially heterogeneous mechanisms by which snow cover dynamics regulate Gross

Primary Productivity (GPP) on cultivated land in Northeast China, a vital grain
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production base. By integrating 20 years of remote sensing observations, climate
records, and soil data, we employed partial correlation, ridge regression, and Partial
Least Squares Structural Equation Model (PLS-SEM) to isolate the effects of snow
cover parameters, including Snow Water Equivalent (SWE), Snow Cover Duration
(SCD), and Snow Cover End Date (SCED). Our results reveal a distinct geographical
zoning of snow cover influences: SWE dominated GPP variability in the arid Western
Sand Area and Liaohe Plain, whereas SCD was the primary driver in the Songnen Plain,
and SCED exerted the strongest control in the colder Changbai Mountain and Xing'an
Mountain regions. The PLS-SEM further quantified that these impacts are mediated
primarily through snow-induced modifications to spring soil moisture and temperature,
with the dominant pathway shifting from hydrological benefits in water-limited plains
to thermal limitations in colder high-latitude areas. These findings suggest a significant
correlation between changes in snow cover and cultivated land GPP, providing insights
into the potential role of snow cover in modulating GPP dynamics.

Keywords: snow cover, gross primary productivity, cultivated land, Northeast China

1 Introduction

Cultivated land is a critical natural resource for ensuring food security, ecological
stability, and economic sustainability. Under the pressure of intensifying soil erosion
and climate change, understanding trends in gross primary productivity (GPP) variation
on cultivated land and the associated environmental response mechanisms has become

imperative for sustainable development and enhanced cropland conservation. GPP
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represents vegetation's photosynthetic carbon fixation capacity per unit time and serves
as a critical metric of carbon assimilation through photosynthesis (Beer et al., 2010;
Sjostrom et al., 2013). Cropland ecosystems play a pivotal role in terrestrial carbon
cycling (Wang et al., 2022), where GPP directly governs crop growth dynamics, carbon
sequestration potential, and agricultural productivity variations, making it an essential
indicator of agroecosystem productivity (Wagle et al., 2015). As an important
component of terrestrial ecosystems, snow cover significantly affects the carbon cycle
by altering ecosystem functioning. In recent decades, amid global warming, significant
changes in snow cover have been observed (Mudryk et al., 2020; Pulliainen et al., 2020),
which subsequently influence vegetation dynamics and GPP through altered

environmental conditions (Meredith et al., 2019).

Previous studies demonstrated that snow cover and its phenological changes regulate
the surface energy balance and hydrological cycles, while directly affecting the timing
of the growing season and photosynthetic efficiency on cultivated land, thereby
modulating GPP. GPP is a comprehensive indicator of the complex interactions among
climatic, topographic, edaphic, botanical, and anthropogenic factors. Winter snow
water equivalent (SWE) and snow cover duration (SCD) largely determine soil
moisture (SM) availability and thermal regimes (Blankinship and Hart, 2012). These
regulatory effects prove particularly crucial during spring sowing periods, with lasting
impacts on annual carbon uptake efficiency (Chen et al., 2019). Meanwhile, SCD
decreases are associated with advanced vegetation phenology and subsequent increases

in productivity (Pulliainen et al., 2017). SWE primarily affects GPP by altering SM and
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nitrogen dynamics, with a thick snow layer additionally protecting root systems from
winter freeze injury (Brooks et al., 2011; Knowles et al., 2017). A delayed Snow Cover
End Date (SCED) can enhance early-growing-season GPP in arid lands and grassland
ecosystems, while often exerting a suppressive effect on forest GPP (Wang et al., 2024).
These effects are further modulated by climate change drivers, including temperature
rise and precipitation variability (Peng et al., 2010). In summary, snow cover and its
phenological changes significantly influence the GPP of ecosystems by regulating

hydrothermal conditions and vegetation growth.

The mechanisms by which snow cover influences GPP, however, exhibit significant
heterogeneity across vegetation types and geographic contexts. Li et al. (2022) revealed
that the influence of snow cover parameters on spring soil moisture is most pronounced
in farmland among different land-use types. The positive hydrological effect of snow
cover on SM is more pronounced in relatively arid regions, resulting in a greater
enhancement of GPP. In contrast, in energy-limited or humid systems where water is
not the primary limiting factor, the contribution of snowmelt to GPP becomes marginal.
Previous work by Wang et al. (2024) shows that the relationship between snow cover
and vegetation productivity in Northeast China varies by underlying surface type and
is further modulated by local environmental conditions. A knowledge gap exists in
previous work regarding how multi-metric snow characteristics interact with snow-
vegetation productivity relationships simultaneously across agricultural regions in
Northeast China. This limited understanding hinders our ability to accurately predict

how ongoing climate-driven changes in snow cover will affect the regional carbon
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budgets and the ecosystem functioning of cultivated land, particularly in snow-

dependent regions.

Northeast China hosts a vital grain production base, crucial to national food security.
Due to a growing population and intensifying climate change, understanding regional
GPP responses across geographical conditions has become increasingly urgent. This
study integrates multi-source data, including 20 years of remote sensing observations,
climate records, and agricultural statistics, to systematically analyze spatiotemporal
patterns of snow cover variation and their mechanistic impacts on GPP of cultivated
land in Northeast China. The objectives include (1) examining the spatiotemporal
variations in snow cover (e.g., SWE, SCD, and SCED); (2) elucidating the
spatiotemporal heterogeneity of snow cover's effects on GPP of cultivated land; and (3)

exploring the mechanisms underlying the regulatory roles of snow cover on GPP.

2 Materials and methods

2.1 Study area

Northeast China is a high-latitude region (38°72' to 53°56'N, 115°52' to 135°09'E)
comprising Heilongjiang, Jilin, and Liaoning provinces, as well as the eastern four
leagues of the Inner Mongolia Autonomous Region. The region covers approximately
1.25 million km? and hosts 358,700 km? of cultivated land, accounting for 26.6% of
China's total cultivated area (Wang et al., 2023a). The topography exhibits distinct

regional differentiation, with mountainous peripheries on three sides and extensive
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plains in the interior. Six major geographical regions exist in the region: the Songnen
Plain, Sanjiang Plain, Liaohe Plain, Xing’an Mountain, and Changbai Mountain as

shown in Figure 1.

Table 1 compares the climatic characteristics across the six sub-regions. The region
features a temperate monsoon climate characterized by winter snowfall (Xue et al.,
2022), low evaporation rates, and high humidity. However, as shown in Table 1, there
are pronounced climatic gradients across the six sub-regions. The effective accumulated
temperature (>10°C) ranges from 2320°C in the cooler Xing'an Mountain area to
3654°C in the warmer Liaohe Plain (Xu et al., 2023). Similarly, annual precipitation
exhibits stark contrasts, from a mere 200-400 mm in the arid Western Sand Area to 800-
1200 mm in the humid Changbai Mountain. These geographic and climatic

differentiations are crucial for understanding regional ecosystem responses.
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Figure 1 The overview of the study area: (a) cultivated land in Northeast China; (b) digital elevation

model (DEM) provided by SRTM; (c) land use cover provided by LUCC.



125  Table 1 The details of six geographic divisions in Northeast China

) Area Elevation . Accumulated L
Geographical 4 Cultivated land Precipitation
. (10%xk range ,.  temperature >
region ) (thousand km~) (mm)
m°) (m) 10 °C
Songnen Plain 18.35 95~957 107.6 2706 400 ~ 650
Sanjing Plain 10.18 0~1030 66.8 2402 600 ~ 800
Liaohe Plain 10.57 0~1215 353 3654 500 ~ 700
Changbai Mount  24.64 0~2658 64.6 2857 800 ~ 1200
Western Sand
26.14  115~2015 53.6 3262 200 ~ 400
Area
Xing’ an
i 34.55 67~1079 30.4 2320 400 ~ 700
Mountain

126 2.2 Materials

127 2.2.1 Snow cover products

128  Three snow cover parameters were utilized in this study: SWE, SCD, and SCED from
129  hydrological year (HY) 2001 to HY 2000. The hydrological year is defined as the
130  duration from September to August. Daily SWE data were sourced from the National
131 Cryosphere Desert Data Center's fusion product with the spatial resolution of
132 0.25°across China for the period 1980-2020 (Jiang et al., 2022). This dataset integrated
133 the advantages of existing SWE data products with topographic and temporal covariates
134  and was validated using ground observations from 647 monitoring stations. The
135  validation results demonstrated correlation coefficients (R?) of 0.77 and 0.70, with
136  mean absolute errors (MAE) of 7.54 mm and 8.62 mm and root mean square errors

137  (RMSE) of 12.29 mm and 13.73 mm, respectively.
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The SCD and SCED data were obtained from the MODIS-based Chinese Snow
Phenology Dataset (Zhao et al., 2022). This China-wide dataset (2000-2020) has a 500
m spatial resolution, and its accuracy has been rigorously validated against ground
stations. The dataset demonstrates high accuracy, with R?, RMSE, and MAE values of
0.94, 12.09 days, and 7.60 days for SCD, and 0.56, 19.89 days, and 7.74 days for SCED,

respectively.

2.2.2 GPP data

This study utilized the MOD17A2H Version 6 GPP product (Running et al., 2021). The
data encompassed the growing seasons (April-September) from HY2001 to HY2020.
This product provides 8-day composite data at 500 m spatial resolution, offering
cumulative measurements of vegetation photosynthetic activity. MODIS products have
been extensively validated and widely adopted in terrestrial carbon cycle research
(Endsley et al., 2023; Wang et al., 2017). Existing studies have validated the MOD17A2
GPP data product across various ecosystems in China, demonstrating a strong

agreement with in-situ eddy covariance flux tower observations (R? = 0.76) (Zhu et al.,

2016).

2.2.3 Climate data

Precipitation, air temperature, and solar radiation data were used to analyze the domain
factors influencing snow cover. The monthly precipitation and temperature data were

obtained from the 1 km-resolution monthly precipitation dataset (Peng, 2020) and the



158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

1 km-resolution monthly mean temperature dataset for China (Peng, 2019). These
datasets provide monthly records from 1901 to 2021 across China at a spatial resolution
of 1 km, comprehensively covering various climatic variables. A comprehensive
evaluation under diverse environmental conditions demonstrated that the ERAS-LAND
product accurately represents actual solar radiation patterns, making it highly suitable
for various ecological and climatological applications (Mihalevich et al., 2022; Mufioz-

Sabater et al., 2021).

2.2.4 Soil data

Soil temperature (ST) and soil moisture (SM) data were obtained from the Famine Early
Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)
(McNally, 2018). The FLDAS data are generated using the Noah Land Surface Model
(LSM) version 3.6.1, with a spatial resolution of 0.1° x 0.1° and monthly temporal
resolution, providing 28 surface variables from 1982 to the present. This comprehensive
dataset includes the 0-10 cm SM and ST used in this study, which are particularly

relevant for analyzing vegetation dynamics and ecosystem processes.

The FLDAS data have been validated against multiple in-situ soil observation networks
and demonstrated superior accuracy to the Global Land Data Assimilation System
(GLDAS) (Li et al., 2021). The validation involved extensive comparisons with
ground-based measurements, confirming the reliability of FLDAS outputs for

estimating soil parameters. This high-quality dataset enables robust analysis of soil-
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vegetation-atmosphere interactions, supporting various applications in ecological

modeling and climate studies.

2.2.5 Land use type

Northeast China lost 6,694 km? of cultivated land between 2000 and 2020, primarily
due to urban expansion and the Grain for Green Program. The land use data were
obtained from the 1 km-resolution China Land Use Dataset (1980-2020) (Xu et al.,
2018). Pixel-wise screening of land-use distribution data from 2001 to 2020 identified
cultivated land that remained unchanged over the 20 years for analysis. Figure 1(a)
shows the spatial distribution of unchanged cultivated land, including 87.83% dryland

and 12.63% paddy land.

2.3 Methods

2.3.1 Trend analysis

The long-term trends in the annual time series of SCD, SWE, and GPP (2001-2020)
were analyzed using the Theil-Sen slope method (Sen,1968). The statistical
significance of these trends was evaluated with the Mann-Kendall test (Kendall, 1948;
Mann, 1945). In the Mann-Kendall test, a monotonic trend is considered statistically
significant at the 90%, 95%, and 99% confidence levels if the absolute value of the

computed Z statistic exceeds 1.65, 1.96, and 2.58, respectively.
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2.3.2 Partial correlation

All datasets were resampled to a consistent spatial resolution of 0.05°x0.05° using the
nearest neighbor method to facilitate subsequent pixel-by-pixel analysis. Then, a partial
correlation analysis was employed to statistically quantify the relationship between two
variables while controlling for the effects of one or more covariates (Gonzalez, 2003;
Kashyap and Kuttippurath, 2024; Wei et al., 2022). Specifically, we applied pixel-wise
partial correlation to examine the impacts of SCD, SWE, and SCED on GPP across
various land-use types, while controlling for concurrent temperature, precipitation, and

solar radiation to isolate the direct effects of snow cover.

2.3.3 Ridge regression

Given the potential multicollinearity among snow cover indicators, we used ridge
regression rather than ordinary least squares to ensure stable coefficient estimates (Zhao
et al., 2023). This approach was applied pixel-wise to quantify the relative contributions
of SCD, SWE, and SCED to GPP across the study area. This method identified the
dominant snow-cover indicators influencing GPP on cultivated land in each zone,
providing valuable insights into the spatial heterogeneity of snow cover's effects on

vegetation productivity.

2.3.4 Partial least squares structural equation model

To decipher the complex causal pathways through which snow affects GPP, we

employed a Partial Least Squares Structural Equation Model (PLS-SEM). Two latent
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variables were created during model construction, including Snow and Climate. Snow
included SCD, SWE, and SCED, whereas Climate included precipitation, air
temperature, and solar radiation. The PLS-SEM also included SM, ST and GPP data for
different vegetation types. All variables were normalized before the analysis to facilitate

comparison of path coefficients.

The path coefficients in PLS-SEM analysis represent the magnitude and direction of
direct effects between two variables. Positive and negative path coefficients correspond
to the positive and negative impacts of the independent variable on the dependent
variable, respectively, with their values quantifying the impact strength. The goodness-
of-fit (GOF) index globally evaluates the quality of the path models and determines
their validity. A GOF above 0.36 indicates applicable model results (Wetzels et al.,

2009).

3 Results

3.1 The spatiotemporal distribution of snow cover

Figure 2 displays the spatial distribution of mean SWE in Northeast China from
HY2001 to HY2020. Among the six sub-regions, the mean SWE of Sanjiang Plain was
the highest at 9.66 mm. The high SWE values were observed in the Xing’an Mountain
-Nenjiang conjunction and the Sanjiang Plain. The Xing’an Mountain had the second-
highest mean value of 9.05 mm and the second-highest maximum value of 20.10,

followed by Songnen Plain. The Changbai Mountain also had a relatively high mean
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SWE of 6.26 mm. The semi-arid Western Sand Area had the second-lowest mean SWE
but the highest maximum SWE. The mountainous areas (Changbai Mountain an
Xing’an Mountains) had greater snowfall than the other five sub-regions, explaining
the high SWE levels. The Liaohe Plain had the lowest SWE among these six sub-
regions due to its lower latitude. The negative slope of the SWE fitting line in Figure

2(c) indicates a slight decreasing trend from HY2001 to HY2020.
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Figure 2 The spatial and temporal changes of SWE in Northeast China from HY2001 to HY2020:

(a) spatial distribution of mean SWE; (b) changing trend of SWE, the green areas represent positive

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that

were significant at the 90% confidence level; (c) annual changes of SWE.
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Table 2 Statistics of SWE, SCD and SCED in six geographical regions in Northeast China

Geographic SWE (mm) SCD (day) SCED (day)
region Max  Mean  Max Mean Max Mean
Songnen Plain  13.51 5.64 15295 9456 21530 180.14
Sanjiang Plain  19.40 9.66 135.64 110.85 211.86 195.08
Liaohe Plain 5.04 1.73 98.29 36.52 187.09 125.81
Changbai
Mountain

Western Sand
24.07 235 154.63 32.38 217.99 108.74

18.88  6.23 13548 87.18 21342 176.38

Area

Xing’an
. 20.10 8.97 16244 119.57 222.74 196.11
Mountain

Figure 3 shows the spatial distribution of mean SCD in Northeast China from HY2001
to HY 2020, Table 2 lists the corresponding statistical results. The SCD had average
value of 80.79 days. High SCD values were primarily observed in the northeastern and
mountainous areas, while low SCD values were distributed in the southwest and low-
altitude areas. Overall, a decreasing trend was observed from the northeast to the
southwest. Noticeable differences were observed in Changbai Mountain. Its
northeastern area, closer to the Sanjiang Plain, showed significantly higher SCD than
the southwestern area near the Liaohe Plain. The Xing’an Mountain had the highest
mean SCD of 1119.57 days and the highest maximum SCD of 162.44 days, higher than
the Changbai Mountain. The Sanjiang Plain had the second-highest mean SCD of
110.85 days, followed by the Songnen Plain. The negative slope of the fitting line in
Figure 3(c) indicates a decreasing trend in SCD, with significant fluctuations between
2008 and 2014. Meanwhile, 54.1% of the cultivated land in the northeastern area
experienced extended SCD, primarily distributed in the Songnen Plain. Areas with

shortened SCD accounted for 45.9% of the total area. Areas with significant SCD
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declines were mainly concentrated in the Liaohe Plain, similar to the spatial distribution

of interannual SWE variation.
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Figure 3 The spatial and temporal changes of SCD in Northeast China from HY2001 to HY2020:

(a) spatial distribution of mean SCD; (b) changing trend of SCD, the green areas represent positive

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that

were significant at the 90% confidence level; (¢) annual changes of SCD.
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Figure 4 displays the spatial distribution of mean SCED in Northeast China from
HY2001 to HY2020. The SCED distribution pattern was similar to that of SWE and
SCD. Higher SCEDs were still primarily observed in the northeastern and mountainous
areas, while lower SCEDs were distributed in the southwest and low-altitude regions.
The statistical results showed that the SCE had an average of approximately 163.99
days. About 49% of the pixels had SCEDs ranging from 180 to 210 days, while 49%
had SCEDs extending into March of the following year. Such pixels were concentrated
in the Changbai Mountain, Sanjiang Plain, and the northeastern Songnen Plain. Pixels
with SCEDs above 210 days accounted for only about 3% and were mainly distributed
in the Xing’an Mountain. The average SCED in the Sanjiang Plain and Xing’an
Mountain were approximately 195.08 days and 196.11 days, respectively. According to
Figure 4, the slope of the SCED fitting line in Figure 4(c) indicates a slight advancing
trend. The SCED trend was relatively stable between 2005 and 2007, while fluctuations
ranging from 10 to 30 days were observed in other years. Delayed SCEDs were
observed in 56.15% of the areas. Such regions were primarily distributed in the
Songnen Plain, Sanjiang Plain, and Changbai Mountain. Only 43.85% of the regions

exhibited earlier SCEDs, mainly concentrated in the Liaohe Plain.
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Figure 4 The spatial and temporal changes of SCED in Northeast China from HY2001 to HY2020:
(a) spatial distribution of mean SCED; (b) changing trend of SCED, the green areas represent

positive impacts, while the blue areas indicate negative impacts; and the shaded regions denote
pixels that were significant at the 90% confidence level; (c) annual changes of SCED.

3.2 Effects of Snow Cover on Soil Properties

Figure 5 illustrates the spatial distribution of correlation coefficients between winter

SWE and the subsequent year's ST and SM. As shown in Figure 5(a), the correlation
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coefficient between SWE and ST ranges from -0.6 to 0.72. Areas with negative
correlations accounted for approximately 62.97% of the total cultivated land, which
indicate predominantly negative influences of SWE on the ST in the subsequent year.
The regions with significantly negative correlations concentrated in the Songnen Plain
and Sanjiang Plain. A small portion of areas with positive correlation was found in the
Western Sand Area and the northern part of Changbai Mountain. According to Figure
5(b), the correlation coefficient between SWE and SM ranges from -0.74 to 0.86. Areas
with positive correlations accounted for about 70.45% of the total cultivated land,
indicating a primarily positive impact of SWE on the SM in the subsequent year. The
areas with significantly positive correlations mainly concentrated in the Sanjiang Plain
and Changbai Mountain. Areas with negative correlations between SWE and SM
accounted for approximately 29.55%, mainly concentrated in the Songnen Plain and

Liaohe Plain.
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Figure 5 The correlation coefficients between SWE and soil properties: (a) soil temperature; (b) soil
moisture. Blue and green pixels represent negative and positive correlations respectively. The
shaded regions denote pixels that were significant at the 90% confidence level.

Figure 6 illustrates the spatial distribution of correlation coefficients between winter
SCD and soil parameters of the subsequent year. As shown in Figure 6(a),
the correlation coefficient between SCD and ST ranges from -0.64 to 0.72. Areas with
negative correlations accounted for approximately 54.8% of the total cultivated land,
indicating that the influence of SCD on the subsequent year's ST is predominantly
negative. The areas with significantly negative correlations primarily concentrated in
the Songnen Plain and Sanjiang Plain. These results suggest that a longer SCD is
associated with slower soil warming the following spring. Only a small number of areas
with positive correlations were found in the northern part of Changbai Mountain and
the Western Sand Area. Thus, a longer SCD in these areas may, to some extent, promote

ST recovery through insulating effects. According to Figure 6(b), the correlation
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coefficient between SCD and SM ranges from -0.66 to 0.61. Areas with positive
correlations accounted for 64.36%, indicating a primarily positive impact of SCD on
the subsequent year's SM. The areas with significantly positive correlations mainly
concentrated in the Songnen Plain and Changbai Mountain. Areas with negative
correlations accounted for only 35.64%, and SCD's moderating effect on SM transitions
from positive to negative from northeast to southwest. The pixels with SCD negatively

affecting SM were primarily concentrated in Liaohe Plain.
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Figure 6 The correlation coefficients between SCD and soil properties: (a) soil temperature; (b) soil
moisture. Blue and green pixels represent negative and positive correlations, respectively. The
shaded regions denote pixels that were significant at the 90% confidence level.

Figure 7 illustrates the spatial distribution of correlation coefficients between winter
SCED and soil parameters of the subsequent year. Figure 7(a) shows that the correlation

coefficient between SCED and SM ranges from -0.64 to 0.72. The areas with negative
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correlations accounted for approximately 62.97% of the total cultivated land, indicating
a primarily negative impact of SCED on ST. The areas with significant negative
correlations mainly concentrated in the Songnen Plain and Sanjiang Plain. A small
number of areas with positive correlations were primarily found in the northern of
Changbai Mountain and the Western Sand Area. According to Figure 7(b), the
correlation coefficient between SCED and SM ranges from -0.66 to 0.61. Areas with
positive correlations accounted for approximately 70.45% of the total cultivated land,
indicating a mainly positive impact of SCED on the subsequent year's SM. The pixels
with negative SCED effects on SM were primarily concentrated in the Sanjiang,

Songnen, and Liaohe Plains.
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Figure 7 Spatial pattern distribution results of the relationship between SCED and soil properties:

(a) soil temperature; (b) soil moisture. Blue and green pixels represent negative and positive
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correlations respectively. The shaded regions denote pixels that were significant at the 90%

confidence level.

3.3 The influence of Snow Cover on GPP

Figure 8 displays the spatial distribution of GPP in Northeast China from HY2001 to
HY2020, and Table 3 presents the statistical results for GPP across the six sub-regions.
The GPP of cultivated land generally shows a relatively uniform distribution pattern, as
shown in Figure 8(a). The Changbai Mountain, Sanjiang Plain, and Xing’an Mountain
had relatively high GPP, followed by Songnen Plain and Liaohe Plain, while the
Western Sand Area had the lowest GPP during the past 20 years. The interannual
variation trends in Figure 8(b) indicate that over the past 20 years, 98% of the cultivated
land shows an increasing trend in GPP, with significant GPP growth in 74% of the areas.
Furthermore, the growth rates varied across different regions, with the GPP in the
Western Sand Area increasing the fastest at an average of approximately 9.04 g-C/m?

per year.
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Figure 8 The spatial and temporal changes of GPP in Northeast China from HY2001 to HY2020:
(a) spatial distribution of mean GPP; (b) changing trend of GPP the green areas represent positive

impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that

were significant at the 90% confidence level; (c) annual changes of GPP
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Table 3 GPP statistics of six geographic regions in Northeast China. Max. and SD represent the

maximum value and standard deviation, respectively.

Geographic regions Max. (g-C/m?) Mean. (g-C/m?) SD (g-C/m?)
Songnen Plain 1077.70 607.34 86.22
Sanjiang Plain 1286.26 697.08 99.44

Liaohe Plain 1141.74 611.99 89.59

Changbai Mountain 1332.11 781.48 145.15

Western Sand Area 854.5 484.89 95.09

Xing’an Mountain 1219.43 674.64 116.66

Figure 9 reveals distinct spatial patterns in the partial correlations between snow cover
and GPP over cultivated land in Northeast China, and Table 4 lists the corresponding
statistical results. The correlation between SWE and GPP was nearly balanced, with
67.01% of the area showing positive and 32.99% negative correlations for the whole
Northeast China; however, only 13.2% of the total area passed the significance test (p
< 0.1). The correlation coefficients ranged widely from -0.77 to 0.83. Significant
positive correlations were predominantly located in the northern Sanjiang Plain and the
central-western Songnen Plain, where snowmelt likely acts as a critical hydrological
subsidy for early crop growth (Li et al., 2025; Pan et al., 2022). In contrast, significant
negative correlations clustered in the southern Liaohe Plain, suggesting that excessive
SWE may lead to spring soil saturation and root zone anoxia. For SCD, 67.02% of the

cultivated area exhibited a positive correlation with 11.02% significant at 90% level.
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And the values ranged from -0.73 to 0.75, showing a clear latitudinal gradient in the
Songnen Plain where the protective insulating effect of long-lasting snowpack is most
beneficial. A smaller area (32.68%) showed a non-significant negative correlation. The
56.18% of SCED is negatively coefficients with 10.75% being significant, and reveal
that SCED was predominantly positively correlated with GPP, particularly in the
Sanjiang and Songnen Plains, indicating that a delayed melt can favorably align water
availability with the crop growth calendar (Si et al.,, 2023; Wang et al., 2024).
Collectively, the impact of snow on agricultural productivity is a function of its dual
role as a source of water and as insulation, versus its potential to cause waterlogging

and phenological misalignment.
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Table 4 The summary of partial correlation coefficients between snow cover and GPP in the six sub-

regions. * indicate significance at the 90% confidence level.

) . ) . Western )
Snow Correlation  Songnen Sanjiang Liaohe  Changbai Sand Xing’an
cover Coefficients Plain Plain Plain  Mountain Area Mountain
>0 70.49%  87.27%  43.98%  64.65% 64.73%  68.73%
SWE <0 29.51% 12.73%  56.02%  35.35% 3527%  31.27%
>0* 8.82% 22.55%  3.48% 17.31%  4.39% 10.26%
<0* 0.397% 0.68% 10.13% 3.41% 0.89% 0.48%
>0 83.96%  77.46%  42.46%  66.45% 49.44%  65.33%
SCD <0 16.04%  22.54%  57.54%  33.55% 50.56%  34.67%
>(0* 11.13% 9.29% 1.34% 7.87% 0.73% 10.95%
<0* 1.72% 0.27% 15.08% 3.29% 1.99% 3.24%
>0 72.23%  66.24%  50.4% 51.96%  26.71% 54.1%
SCED <0 22.77%  32.76%  49.6% 48.04%  73.29% 45.9%
>0* 7.42% 10.28%  7.35% 5.24% 0.61% 4.29%
<0* 0.66% 3.85% 7.45% 6.35% 10.32% 2.29%

3.4 Dominant Controls of Snow Cover on Cropland GPP

Figure 10 presents the spatial distribution and area proportions of the relative
contributions of different snow cover indicators to GPP of cultivated land in Northeast
China. SWE predominantly drove GPP variations in the Western Sand Area and Liaohe
Plain, which accounted for approximately 50% of the GPP changes, significantly higher
than the contributions of SCD and SCED. In contrast, SCED emerged as the primary
driver in the Changbai Mountain, Sanjiang Plain, and Xing’an Mountain, with
contribution rates reaching 45.2%, 49.5%, and 38.6%, respectively. The Songnen Plain
demonstrated a distinct pattern, with SCD dominating within 39.59% of the total area,
substantially higher than SWE (31.29%) and SCED (29.11%). This regional analysis
elucidated spatial heterogeneity in the relative contributions of snow cover indicators
to GPP variations across Northeast China. The findings demonstrated distinct

geographical zoning characteristics that provided a theoretical foundation for
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understanding the differential impacts of snow cover changes on agricultural
productivity across regions. SWE exerted greater influence in relatively arid areas,

while SCED had a stronger impact in colder areas.

Notably, SWE dominates GPP variability in moisture-limited areas, like the Western
Sand Area and the Liaohe Plain, accounting for ~50% of the observed fluctuations. Its
contribution was 1.6- to 1.7-fold greater than those of SCD and SCED. These results
aligned with hydrological theory positing that SWE 1is a critical drought-mitigating
reservoir in arid ecosystems through delayed meltwater release (Barnett et al., 2005).
Conversely, SCED emerged as the principal driver in colder high-latitude areas
(Changbai Mountain, Sanjiang Plain, Xing’an Mountain), explaining 38.6% to 49.5%
of GPP variations. Such spatial patterns likely reflect SCED's bidirectional effects in
regulating growing season onset via albedo modulation and frost protection through
insulation effects (Pulliainen et al., 2020). Sanjiang Plain exhibited hybrid behavior,
where the SCD predominance (39.59%) suggested intermediate sensitivity to SCD and

hydrologic inputs.
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Figure 10 Spatial distribution and area percentage of snow-related indicators driving GPP variation

of cultivated land in different regions of Northeast China from 2001 to 2020.

3.5 Mechanisms of Snow Cover Impacts on GPP

Figure 11 systematically quantifies the influence of snow cover on GPP across six
agroecological regions, revealing pronounced spatial heterogeneity in snow cover-GPP
causal networks. The influence of snow cover on GPP is characterized by spatially
contrasting effects, ranging from promotive to inhibitory across different regions. In
regions such as the Sanjiang Plain, the Xing'an Mountains, and the Songnen Plain, snow
cover demonstrates a promotional effect (B =0.47, 0.29, 0.26). The spring soil moisture

is effectively replenished by snowmelt, alleviating water stress during the early growing
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season in arid areas. In contrast, in the Liaohe Plain, the Western Sandy Area, and the
Changbai Mountain region, snow cover shows an inhibitory effect (f = -0.23, -0.16, -
0.10). This is primarily attributed to the nutrient leaching effect driven by snowmelt
runoff, especially in areas with lighter soil texture or greater slope, where the runoff
leads to the loss of key nutrients such as nitrogen and phosphorus, thereby weakening
vegetation productivity.

A widespread finding is that snow cover exerts a consistent negative effect on soil
temperature (ST) (mean B = —0.58). This indicates that although snow cover provides
an insulating effect during winter, its persistence or melting process in the early growing
season significantly lowers soil temperature, delays phenology, and thereby creates a
thermal limitation. This pathway is particularly pronounced in the Changbai Mountain
ecosystem, where the indirect inhibitory effect of snow cover on GPP through reducing
ST reaches B = —0.51. This suggests that in certain regions, thermal limitation may
dominate over hydrological effects in determining the ultimate impact of snow cover
on productivity.

The relationship between snow cover and soil moisture (SM) exhibits complex
geographical divergence, which in turn triggers different cascading effects. In the
Songnen Plain and the Liaohe Plain, snow cover shows a negative correlation with SM
(B =-0.50, -0.16). Combined with the strong positive effect of SM on GPP (B = 0.96,
0.92), this forms an inhibitory pathway that begins with reduced snow cover, leading to
soil moisture deficit, and ultimately results in decreased ecosystem productivity by

limiting vegetation growth. In contrast, in other regions such as the Sanjiang Plain (B =
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0.13), snow cover may replenish SM through meltwater, creating a positive feedback
loop. This divergence profoundly reflects the regulatory role of region-specific
hydrological mechanisms, such as groundwater levels, soil water retention capacity,

and snowmelt timing.
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Figure 11 The standardized path coefficients between snow cover and GPP via soil properties. The

L\

Model fit was validated through goodness-of-fit (GOF), demonstrating acceptable parameter
estimation accuracy. Blue arrows denote inhibitory effects, whereas red pathways indicate
facilitative relationships. Arrowhead orientation specifies causal pathways from exogenous to
endogenous variables. ST and SM stand for soil temperature and soil moisture. SN, SJ, LH, XAL,
CB and WS stands for Songnen Plain, Sanjiang Plain, Liaohe Plain, Xing’an Mountains, Changbai
Mountains and West Sand Area.

4 Discussion

This study aimed to elucidate the spatiotemporal variations in snow cover parameters
(SWE, SCD, and SCED) and their heterogeneous impacts on GPP of cultivated land
across six subregions in Northeast China, while uncovering the underlying regulatory
mechanisms through soil properties. By integrating long-term satellite and reanalysis
products with partial correlation analyses and a PLS-SEM framework, we show that
snow cover exerts strong but spatially heterogeneous controls on cropland GPP via its

effects on spring ST and SM, with distinct response patterns among major agricultural
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plains. These findings demonstrate that snow is not merely a passive climatic
background factor but an active regulator of agricultural carbon uptake in a region that

is both snow-dominated and critical for national food security.

4.1 Changes in snow cover and GPP

The principal findings demonstrate a 63% decrease in SWE across cultivated lands,
contrasted by a 54% increase in SCD and delayed SCED in 61% of areas, which
collectively correlated with significant GPP enhancements in 74% of regions,
underscoring snow cover's pivotal role in modulating agricultural carbon assimilation
under climatic shifts. Our results are broadly consistent with recent large-scale
assessments showing that snow cover changes exert strong and spatially heterogeneous
influences on vegetation productivity across the Northern Hemisphere (Liu et al., 2023;
Mudryk et al., 2020). Similar to Liu et al. (2023), we find that both the direction and
magnitude of snow—GPP relationships depend on background climate, and that failing
to consider lagged hydrothermal pathways can underestimate the true influence of snow
on growing-season productivity. However, whereas Liu et al. (2023) emphasized lagged
snow effects in natural ecosystems, our study focuses specifically on cultivated land,
where management practices and soil manipulation modulate snow—soil-GPP linkages.
Within Northeast China, our findings complement and extend previous analyses that
examined snow—vegetation interactions across all underlying surface types. Wang et al.
(2024) showed that in this region, increases in SWE tend to favor GPP in dryland and

grassland, while snow phenology metrics such as SCED and SCD are more influential
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in forests. Our results refine this picture by isolating cropland and demonstrating that
(i) SWE dominates GPP variability in moisture-limited cultivated systems, (ii) SCD
and SCED become critical where cold stress and drainage limitations are prominent,
and (iii) the relative dominance of these metrics shifts systematically.

4.2 Linkages of snow, soil, and GPP

The spatial patterns of SWE, SCD, and SCED reveal a clear north—south and east—west
organization of snow regimes over cultivated land. Areas with deeper snowpacks and
longer snow duration are concentrated at higher latitudes and elevations, while low-
lying southern and coastal croplands experience shallower and shorter-lasting snow.
Against this backdrop, our correlation analyses show that snow metrics affect GPP
primarily through their modification of soil hydrothermal conditions, in line with the
notion that vegetation responds to hydrothermal states rather than snow itself (Liu et
al., 2023).

In cold, energy-limited subregions, thicker and more persistent snow tends to enhance
GPP by moderating winter and early-spring stress. Increased SWE and longer SCD
insulate the soil, maintaining higher near-surface temperatures and reducing freeze—
thaw damage, which promotes higher early-season GPP through improved root activity
and reduced winter mortality (Mudryk et al., 2020; Liu et al., 2023). In these areas, our
PLS-SEM results indicate that the dominant pathway from snow to GPP is temperature-
driven: SWE and SCD warm the soil profile, advance favorable thermal conditions for
crop emergence, and indirectly raise GPP by shortening the period of severe cold stress.

By contrast, in relatively warm but moisture-limited croplands, SWE emerges as the
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primary control on interannual GPP variability. Here, snow acts as a critical seasonal
water reservoir. Higher SWE increases spring soil moisture, which alleviates early-
season water stress and supports more vigorous canopy development, consistent with
prior work highlighting the role of snow-derived water for spring soil moisture and
subsequent crop performance in Northeast China (Li et al., 2022; Wang et al., 2024). In
these zones, the structural paths in the PLS-SEM are dominated by SWE, soil moisture,
and GPP, underscoring a moisture-mediated mechanism akin to the broader link
between water availability and global GPP.

4.3 Limitations and projections

Several limitations should be acknowledged when interpreting these findings. First,
despite using recent high-quality products, uncertainties remain in the underlying
datasets. The SWE fields used here, although tailored for China (Jiang et al., 2022), are
derived from passive microwave retrievals and data assimilation, which can
underestimate SWE in complex terrain and under deep, dense snow (Mihalevich et al.,
2022). Similarly, ERAS5-Land ST and SM, while widely validated (Mufoz-Sabater et
al., 2021), inevitably smooth sub-grid heterogeneity associated with microtopography,
tillage practices, and irrigation. MODIS GPP products also carry known uncertainties
in cropland, especially under mixed pixel conditions and heterogeneous management.
These uncertainties are unlikely to overturn the main regional patterns identified here,
but they could affect estimates of effect magnitude, particularly in transition zones
where snow—GPP relationships are weak or mixed. Besides, the spatial and temporal

resolution of our analysis imposes constraints on generalizability. Aggregating to
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moderate-resolution grid cells inevitably mixes different soil types, management
regimes, and microclimates, which may lead to conservative estimates of snow impacts

where fields are strongly heterogeneous.

Furthermore, our analytical framework is observational and relies on correlation and
PLS-SEM to infer dominant pathways rather than process-based simulation. Although
PLS-SEM is designed to disentangle direct and indirect effects within complex variable
networks, it cannot fully resolve causal mechanisms, and its results depend on the
specified model structure and variable selection. For example, we did not explicitly
represent snow metamorphism, subsurface runoff, or crop management practices, all of
which can modulate how snow-induced hydrothermal changes translate into GPP
responses (Bodner et al., 2015). We just discussed the dryland of cultivated land in this
paper, and future work will consider the paddy land. Incorporating these factors in
future structural models, or coupling our observational analysis with process-based

land—surface or crop models, would help test the robustness of the inferred pathways.

In summary, this study demonstrates that multiple dimensions of snow cover—SWE,
SCD, and SCED—jointly structure the soil hydrothermal environment and GPP of
cultivated land in Northeast China, with the dominant control shifting from SWE in
moisture-limited areas to SCD and SCED in colder or poorly drained regions. This
research provides a process-based framework for understanding snow-vegetation

coupling in cold-region agroecosystems, moving beyond simple correlative analyses.
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The novel application of ridge regression to identify the dominant snow indicator for
GPP in each subregion offers a powerful tool for regional-scale assessment and
prediction. From an application perspective, these findings can directly inform climate-
adaptive agricultural management. For example, in the Western Sand Area, practices
that enhance snow harvesting and retention could be prioritized to bolster spring soil
moisture. In contrast, in the Changbai Mountain, selecting crop varieties with lower
base temperatures for growth or developing strategies to accelerate snowmelt (where

feasible) could mitigate the negative impacts of a delayed SCED.

5 Conclusion

This study used multi-source remote sensing data to clarify how snow cover dynamics
regulate cultivated land GPP in Northeast China from HY2001 TO HY2020. By jointly
analyzing SWE, SCD, SCED, and GPP, we revealed pronounced regional heterogeneity
in snow cover—crop interactions: snow cover reductions in the Liaohe Plain and Western
Sand Area contrasted with prolonged snow duration and delayed melt in the Songnen

and Sanjiang Plains, where GPP increased most strongly.

By controlling for temperature, precipitation, and radiation, we isolated the intrinsic
snow—GPP relationships for different cropping systems. SCD was identified as the
dominant snow metric for dryland GPP. Ridge regression further showed that SWE
primarily regulates GPP in the Western Sand Area and Liaohe Plain, while SCD

dominates in the Songnen and Sanjiang Plains, and SCED is most important in the
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Changbai Mountain and Xing’an Mountain.

Finally, the PLS-SEM framework quantified both the direct effects of snow cover
indicators on GPP and their indirect effects via SM and ST, elucidating the snow-soil—
vegetation coupling mechanism in cold-region agroecosystems. Snow cover generally
exerts a negative effect on gross primary productivity through its thermal influence. In
the Liaohe Plain and Songnen Plain, snow cover indirectly suppresses cropland GPP
through its water-mediated effect. In the Sanjiang Plain, Xing'an Mountains, Changbai
Mountain, and Western Sandy Area, snow cover indirectly promotes the increase of

cropland GPP through its water-mediated effect.

Future work should integrate field experiments and higher-resolution data on crop types
and management practices to disentangle these complex interactions and validate the

proposed mechanisms at a finer scale.
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