

1 **The influence of snow cover on gross**
2 **primary productivity of cultivated land in**
3 **Northeast China**

4

5 **Lue Li^a, Qian Yang^{a,*}, Meng Cui^b, Huanjun Liu^a, Xiaohua Hao^c and**
6 **Yiyang Peng^b**

7 a State Key Laboratory of Black Soils Conservation and Utilization,
8 Northeast Institute of Geography and Agroecology, Chinese Academy of
9 Sciences, 130102, China

10 b Cultivated Land Quality, Monitoring and Protection Center, Ministry of
11 Agriculture and Rural Affairs, Beijing, 100125, China

12 c Northwest Institute of Eco-Environment and Resources, Chinese
13 Academy of Sciences, Lanzhou, 730000, China

14

15 * Correspondence: Qian Yang, Email address: yangqian@iga.ac.cn, Tel.:
16 +86-135-0441-6860

17 **Abstract**

18 Snow cover is a critical regulator of hydrological cycles and vegetation productivity in
19 temperate ecosystems, yet its multifaceted impact on cultivated lands remains poorly
20 quantified, especially across diverse geographical regions. This study elucidates the
21 spatially heterogeneous mechanisms by which snow cover dynamics regulate Gross
22 Primary Productivity (GPP) on cultivated land in Northeast China, a vital grain

23 production base. By integrating 20 years of remote sensing observations, climate
24 records, and soil data, we employed partial correlation, ridge regression, and Partial
25 Least Squares Structural Equation Model (PLS-SEM) to isolate the effects of snow
26 cover parameters, including Snow Water Equivalent (SWE), Snow Cover Duration
27 (SCD), and Snow Cover End Date (SCED). Our results reveal a distinct geographical
28 zoning of snow cover influences: SWE dominated GPP variability in the arid Western
29 Sand Area and Liaohe Plain, whereas SCD was the primary driver in the Songnen Plain,
30 and SCED exerted the strongest control in the colder Changbai Mountain and Xing'an
31 Mountain regions. The PLS-SEM further quantified that these impacts are mediated
32 primarily through snow-induced modifications to spring soil moisture and temperature,
33 with the dominant pathway shifting from hydrological benefits in water-limited plains
34 to thermal limitations in colder high-latitude areas. These findings suggest a significant
35 correlation between changes in snow cover and cultivated land GPP, providing insights
36 into the potential role of snow cover in modulating GPP dynamics.

37 Keywords: snow cover, gross primary productivity, cultivated land, Northeast China

38 **1 Introduction**

39 Cultivated land is a critical natural resource for ensuring food security, ecological
40 stability, and economic sustainability. Under the pressure of intensifying soil erosion
41 and climate change, understanding trends in gross primary productivity (GPP) variation
42 on cultivated land and the associated environmental response mechanisms has become
43 imperative for sustainable development and enhanced cropland conservation. GPP

44 represents vegetation's photosynthetic carbon fixation capacity per unit time and serves
45 as a critical metric of carbon assimilation through photosynthesis (Beer et al., 2010;
46 Sjöström et al., 2013). Cropland ecosystems play a pivotal role in terrestrial carbon
47 cycling (Wang et al., 2022), where GPP directly governs crop growth dynamics, carbon
48 sequestration potential, and agricultural productivity variations, making it an essential
49 indicator of agroecosystem productivity (Wagle et al., 2015). As an important
50 component of terrestrial ecosystems, snow cover significantly affects the carbon cycle
51 by altering ecosystem functioning. In recent decades, amid global warming, significant
52 changes in snow cover have been observed (Mudryk et al., 2020; Pulliainen et al., 2020),
53 which subsequently influence vegetation dynamics and GPP through altered
54 environmental conditions (Meredith et al., 2019).

55 Previous studies demonstrated that snow cover and its phenological changes regulate
56 the surface energy balance and hydrological cycles, while directly affecting the timing
57 of the growing season and photosynthetic efficiency on cultivated land, thereby
58 modulating GPP. GPP is a comprehensive indicator of the complex interactions among
59 climatic, topographic, edaphic, botanical, and anthropogenic factors. Winter snow
60 water equivalent (SWE) and snow cover duration (SCD) largely determine soil
61 moisture (SM) availability and thermal regimes (Blankinship and Hart, 2012). These
62 regulatory effects prove particularly crucial during spring sowing periods, with lasting
63 impacts on annual carbon uptake efficiency (Chen et al., 2019). Meanwhile, SCD
64 decreases are associated with advanced vegetation phenology and subsequent increases
65 in productivity (Pulliainen et al., 2017). SWE primarily affects GPP by altering SM and

66 nitrogen dynamics, with a thick snow layer additionally protecting root systems from
67 winter freeze injury (Brooks et al., 2011; Knowles et al., 2017). A delayed Snow Cover
68 End Date (SCED) can enhance early-growing-season GPP in arid lands and grassland
69 ecosystems, while often exerting a suppressive effect on forest GPP (Wang et al., 2024).
70 These effects are further modulated by climate change drivers, including temperature
71 rise and precipitation variability (Peng et al., 2010). In summary, snow cover and its
72 phenological changes significantly influence the GPP of ecosystems by regulating
73 hydrothermal conditions and vegetation growth.

74 The mechanisms by which snow cover influences GPP, however, exhibit significant
75 heterogeneity across vegetation types and geographic contexts. Li et al. (2022) revealed
76 that the influence of snow cover parameters on spring soil moisture is most pronounced
77 in farmland among different land-use types. The positive hydrological effect of snow
78 cover on SM is more pronounced in relatively arid regions, resulting in a greater
79 enhancement of GPP. In contrast, in energy-limited or humid systems where water is
80 not the primary limiting factor, the contribution of snowmelt to GPP becomes marginal.
81 Previous work by Wang et al. (2024) shows that the relationship between snow cover
82 and vegetation productivity in Northeast China varies by underlying surface type and
83 is further modulated by local environmental conditions. A knowledge gap exists in
84 previous work regarding how multi-metric snow characteristics interact with snow-
85 vegetation productivity relationships simultaneously across agricultural regions in
86 Northeast China. This limited understanding hinders our ability to accurately predict
87 how ongoing climate-driven changes in snow cover will affect the regional carbon

88 budgets and the ecosystem functioning of cultivated land, particularly in snow-
89 dependent regions.

90 Northeast China hosts a vital grain production base, crucial to national food security.
91 Due to a growing population and intensifying climate change, understanding regional
92 GPP responses across geographical conditions has become increasingly urgent. This
93 study integrates multi-source data, including 20 years of remote sensing observations,
94 climate records, and agricultural statistics, to systematically analyze spatiotemporal
95 patterns of snow cover variation and their mechanistic impacts on GPP of cultivated
96 land in Northeast China. The objectives include (1) examining the spatiotemporal
97 variations in snow cover (e.g., SWE, SCD, and SCED); (2) elucidating the
98 spatiotemporal heterogeneity of snow cover's effects on GPP of cultivated land; and (3)
99 exploring the mechanisms underlying the regulatory roles of snow cover on GPP.

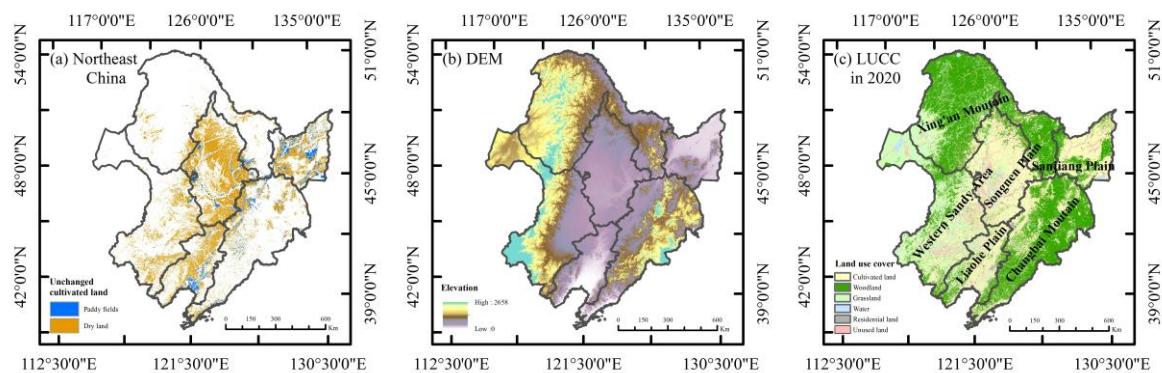
100 **2 Materials and methods**

101 **2.1 Study area**

102 Northeast China is a high-latitude region ($38^{\circ}72'$ to $53^{\circ}56'N$, $115^{\circ}52'$ to $135^{\circ}09'E$)
103 comprising Heilongjiang, Jilin, and Liaoning provinces, as well as the eastern four
104 leagues of the Inner Mongolia Autonomous Region. The region covers approximately
105 1.25 million km^2 and hosts $358,700$ km^2 of cultivated land, accounting for 26.6% of
106 China's total cultivated area (Wang et al., 2023a). The topography exhibits distinct
107 regional differentiation, with mountainous peripheries on three sides and extensive

108 plains in the interior. Six major geographical regions exist in the region: the Songnen
109 Plain, Sanjiang Plain, Liaohe Plain, Xing'an Mountain, and Changbai Mountain as
110 shown in Figure 1.

111 Table 1 compares the climatic characteristics across the six sub-regions. The region
112 features a temperate monsoon climate characterized by winter snowfall (Xue et al.,
113 2022), low evaporation rates, and high humidity. However, as shown in Table 1, there
114 are pronounced climatic gradients across the six sub-regions. The effective accumulated
115 temperature ($\geq 10^{\circ}\text{C}$) ranges from 2320 $^{\circ}\text{C}$ in the cooler Xing'an Mountain area to
116 3654 $^{\circ}\text{C}$ in the warmer Liaohe Plain (Xu et al., 2023). Similarly, annual precipitation
117 exhibits stark contrasts, from a mere 200-400 mm in the arid Western Sand Area to 800-
118 1200 mm in the humid Changbai Mountain. These geographic and climatic
119 differentiations are crucial for understanding regional ecosystem responses.



120
121 Figure 1 The overview of the study area: (a) cultivated land in Northeast China; (b) digital elevation
122 model (DEM) provided by SRTM; (c) land use cover provided by LUCC.

123

124

125 Table 1 The details of six geographic divisions in Northeast China

Geographical region	Area ($10^4 \times k m^2$)	Elevation range (m)	Cultivated land (thousand km^2)	Accumulated temperature $\geq 10 ^\circ C$	Precipitation (mm)
Songnen Plain	18.35	95~957	107.6	2706	400 ~ 650
Sanjing Plain	10.18	0~1030	66.8	2402	600 ~ 800
Liaohe Plain	10.57	0~1215	35.3	3654	500 ~ 700
Changbai Mount	24.64	0~2658	64.6	2857	800 ~ 1200
Western Sand Area	26.14	115~2015	53.6	3262	200 ~ 400
Xing' an Mountain	34.55	67~1079	30.4	2320	400 ~ 700

126

2.2 Materials

127

2.2.1 Snow cover products

128 Three snow cover parameters were utilized in this study: SWE, SCD, and SCED from
 129 hydrological year (HY) 2001 to HY 2000. The hydrological year is defined as the
 130 duration from September to August. Daily SWE data were sourced from the National
 131 Cryosphere Desert Data Center's fusion product with the spatial resolution of
 132 0.25°across China for the period 1980-2020 (Jiang et al., 2022). This dataset integrated
 133 the advantages of existing SWE data products with topographic and temporal covariates
 134 and was validated using ground observations from 647 monitoring stations. The
 135 validation results demonstrated correlation coefficients (R^2) of 0.77 and 0.70, with
 136 mean absolute errors (MAE) of 7.54 mm and 8.62 mm and root mean square errors
 137 (RMSE) of 12.29 mm and 13.73 mm, respectively.

138 The SCD and SCED data were obtained from the MODIS-based Chinese Snow
139 Phenology Dataset (Zhao et al., 2022). This China-wide dataset (2000-2020) has a 500
140 m spatial resolution, and its accuracy has been rigorously validated against ground
141 stations. The dataset demonstrates high accuracy, with R^2 , RMSE, and MAE values of
142 0.94, 12.09 days, and 7.60 days for SCD, and 0.56, 19.89 days, and 7.74 days for SCED,
143 respectively.

144 **2.2.2 GPP data**

145 This study utilized the MOD17A2H Version 6 GPP product (Running et al., 2021). The
146 data encompassed the growing seasons (April-September) from HY2001 to HY2020.
147 This product provides 8-day composite data at 500 m spatial resolution, offering
148 cumulative measurements of vegetation photosynthetic activity. MODIS products have
149 been extensively validated and widely adopted in terrestrial carbon cycle research
150 (Endsley et al., 2023; Wang et al., 2017). Existing studies have validated the MOD17A2
151 GPP data product across various ecosystems in China, demonstrating a strong
152 agreement with in-situ eddy covariance flux tower observations ($R^2 = 0.76$) (Zhu et al.,
153 2016).

154 **2.2.3 Climate data**

155 Precipitation, air temperature, and solar radiation data were used to analyze the domain
156 factors influencing snow cover. The monthly precipitation and temperature data were
157 obtained from the 1 km-resolution monthly precipitation dataset (Peng, 2020) and the

158 1 km-resolution monthly mean temperature dataset for China (Peng, 2019). These
159 datasets provide monthly records from 1901 to 2021 across China at a spatial resolution
160 of 1 km, comprehensively covering various climatic variables. A comprehensive
161 evaluation under diverse environmental conditions demonstrated that the ERA5-LAND
162 product accurately represents actual solar radiation patterns, making it highly suitable
163 for various ecological and climatological applications (Mihalevich et al., 2022; Muñoz-
164 Sabater et al., 2021).

165 **2.2.4 Soil data**

166 Soil temperature (ST) and soil moisture (SM) data were obtained from the Famine Early
167 Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)
168 (McNally, 2018). The FLDAS data are generated using the Noah Land Surface Model
169 (LSM) version 3.6.1, with a spatial resolution of $0.1^\circ \times 0.1^\circ$ and monthly temporal
170 resolution, providing 28 surface variables from 1982 to the present. This comprehensive
171 dataset includes the 0-10 cm SM and ST used in this study, which are particularly
172 relevant for analyzing vegetation dynamics and ecosystem processes.

173 The FLDAS data have been validated against multiple in-situ soil observation networks
174 and demonstrated superior accuracy to the Global Land Data Assimilation System
175 (GLDAS) (Li et al., 2021). The validation involved extensive comparisons with
176 ground-based measurements, confirming the reliability of FLDAS outputs for
177 estimating soil parameters. This high-quality dataset enables robust analysis of soil-

178 vegetation-atmosphere interactions, supporting various applications in ecological
179 modeling and climate studies.

180 **2.2.5 Land use type**

181 Northeast China lost 6,694 km² of cultivated land between 2000 and 2020, primarily
182 due to urban expansion and the Grain for Green Program. The land use data were
183 obtained from the 1 km-resolution China Land Use Dataset (1980-2020) (Xu et al.,
184 2018). Pixel-wise screening of land-use distribution data from 2001 to 2020 identified
185 cultivated land that remained unchanged over the 20 years for analysis. Figure 1(a)
186 shows the spatial distribution of unchanged cultivated land, including 87.83% dryland
187 and 12.63% paddy land.

188 **2.3 Methods**

189 **2.3.1 Trend analysis**

190 The long-term trends in the annual time series of SCD, SWE, and GPP (2001-2020)
191 were analyzed using the Theil-Sen slope method (Sen, 1968). The statistical
192 significance of these trends was evaluated with the Mann-Kendall test (Kendall, 1948;
193 Mann, 1945). In the Mann-Kendall test, a monotonic trend is considered statistically
194 significant at the 90%, 95%, and 99% confidence levels if the absolute value of the
195 computed Z statistic exceeds 1.65, 1.96, and 2.58, respectively.

196 **2.3.2 Partial correlation**

197 All datasets were resampled to a consistent spatial resolution of $0.05^\circ \times 0.05^\circ$ using the
198 nearest neighbor method to facilitate subsequent pixel-by-pixel analysis. Then, a partial
199 correlation analysis was employed to statistically quantify the relationship between two
200 variables while controlling for the effects of one or more covariates (Gonzalez, 2003;
201 Kashyap and Kuttippurath, 2024; Wei et al., 2022). Specifically, we applied pixel-wise
202 partial correlation to examine the impacts of SCD, SWE, and SCED on GPP across
203 various land-use types, while controlling for concurrent temperature, precipitation, and
204 solar radiation to isolate the direct effects of snow cover.

205 **2.3.3 Ridge regression**

206 Given the potential multicollinearity among snow cover indicators, we used ridge
207 regression rather than ordinary least squares to ensure stable coefficient estimates (Zhao
208 et al., 2023). This approach was applied pixel-wise to quantify the relative contributions
209 of SCD, SWE, and SCED to GPP across the study area. This method identified the
210 dominant snow-cover indicators influencing GPP on cultivated land in each zone,
211 providing valuable insights into the spatial heterogeneity of snow cover's effects on
212 vegetation productivity.

213 **2.3.4 Partial least squares structural equation model**

214 To decipher the complex causal pathways through which snow affects GPP, we
215 employed a Partial Least Squares Structural Equation Model (PLS-SEM). Two latent

216 variables were created during model construction, including Snow and Climate. Snow
217 included SCD, SWE, and SCED, whereas Climate included precipitation, air
218 temperature, and solar radiation. The PLS-SEM also included SM, ST and GPP data for
219 different vegetation types. All variables were normalized before the analysis to facilitate
220 comparison of path coefficients.

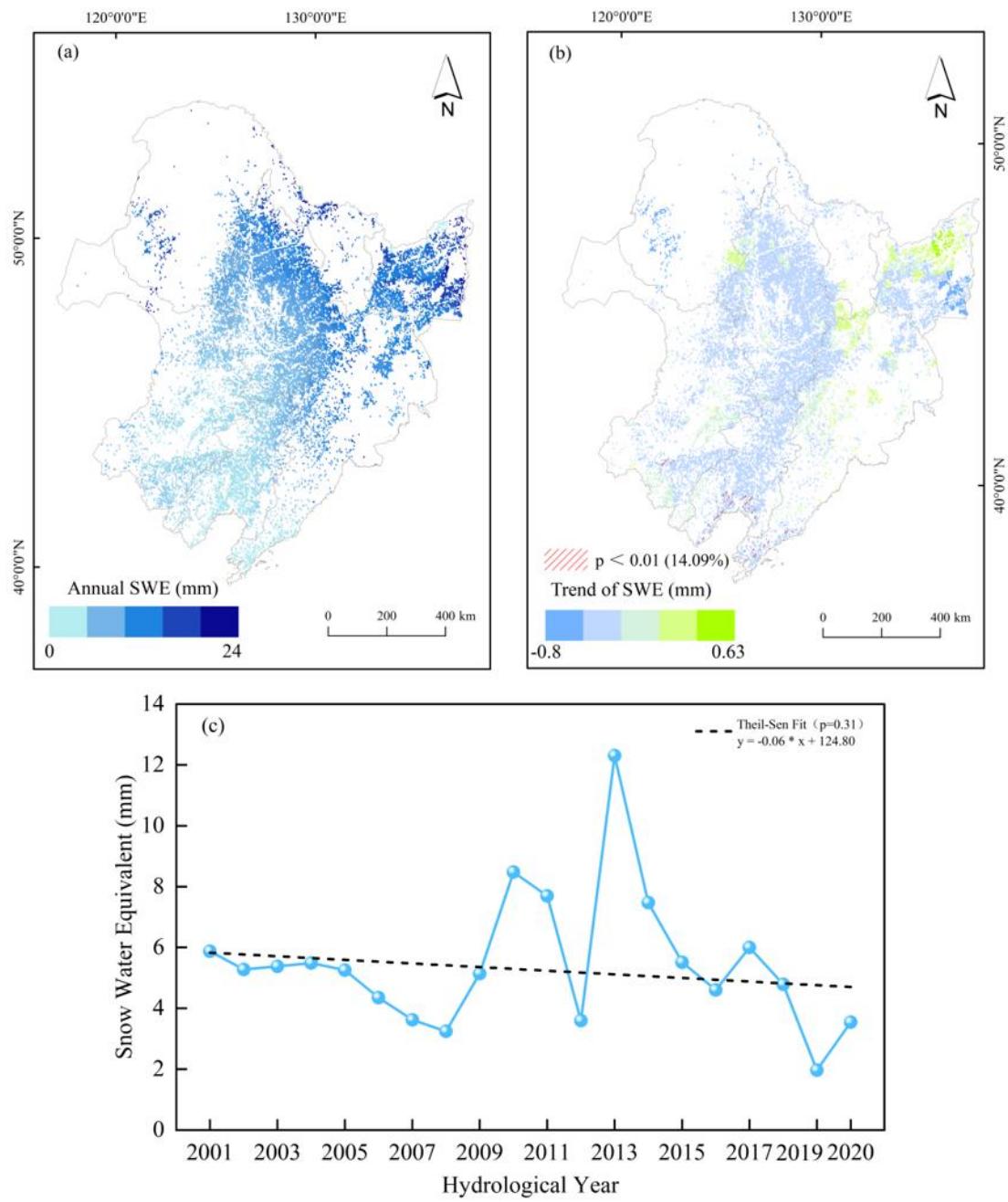
221 The path coefficients in PLS-SEM analysis represent the magnitude and direction of
222 direct effects between two variables. Positive and negative path coefficients correspond
223 to the positive and negative impacts of the independent variable on the dependent
224 variable, respectively, with their values quantifying the impact strength. The goodness-
225 of-fit (GOF) index globally evaluates the quality of the path models and determines
226 their validity. A GOF above 0.36 indicates applicable model results (Wetzel et al.,
227 2009).

228 **3 Results**

229 **3.1 The spatiotemporal distribution of snow cover**

230 Figure 2 displays the spatial distribution of mean SWE in Northeast China from
231 HY2001 to HY2020. Among the six sub-regions, the mean SWE of Sanjiang Plain was
232 the highest at 9.66 mm. The high SWE values were observed in the Xing'an Mountain
233 -Nenjiang conjunction and the Sanjiang Plain. The Xing'an Mountain had the second-
234 highest mean value of 9.05 mm and the second-highest maximum value of 20.10,
235 followed by Songnen Plain. The Changbai Mountain also had a relatively high mean

236 SWE of 6.26 mm. The semi-arid Western Sand Area had the second-lowest mean SWE
237 but the highest maximum SWE. The mountainous areas (Changbai Mountain an
238 Xing'an Mountains) had greater snowfall than the other five sub-regions, explaining
239 the high SWE levels. The Liaohe Plain had the lowest SWE among these six sub-
240 regions due to its lower latitude. The negative slope of the SWE fitting line in Figure
241 2(c) indicates a slight decreasing trend from HY2001 to HY2020.



242

243 Figure 2 The spatial and temporal changes of SWE in Northeast China from HY2001 to HY2020:

244 (a) spatial distribution of mean SWE; (b) changing trend of SWE, the green areas represent positive
 245 impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that
 246 were significant at the 90% confidence level; (c) annual changes of SWE.

247

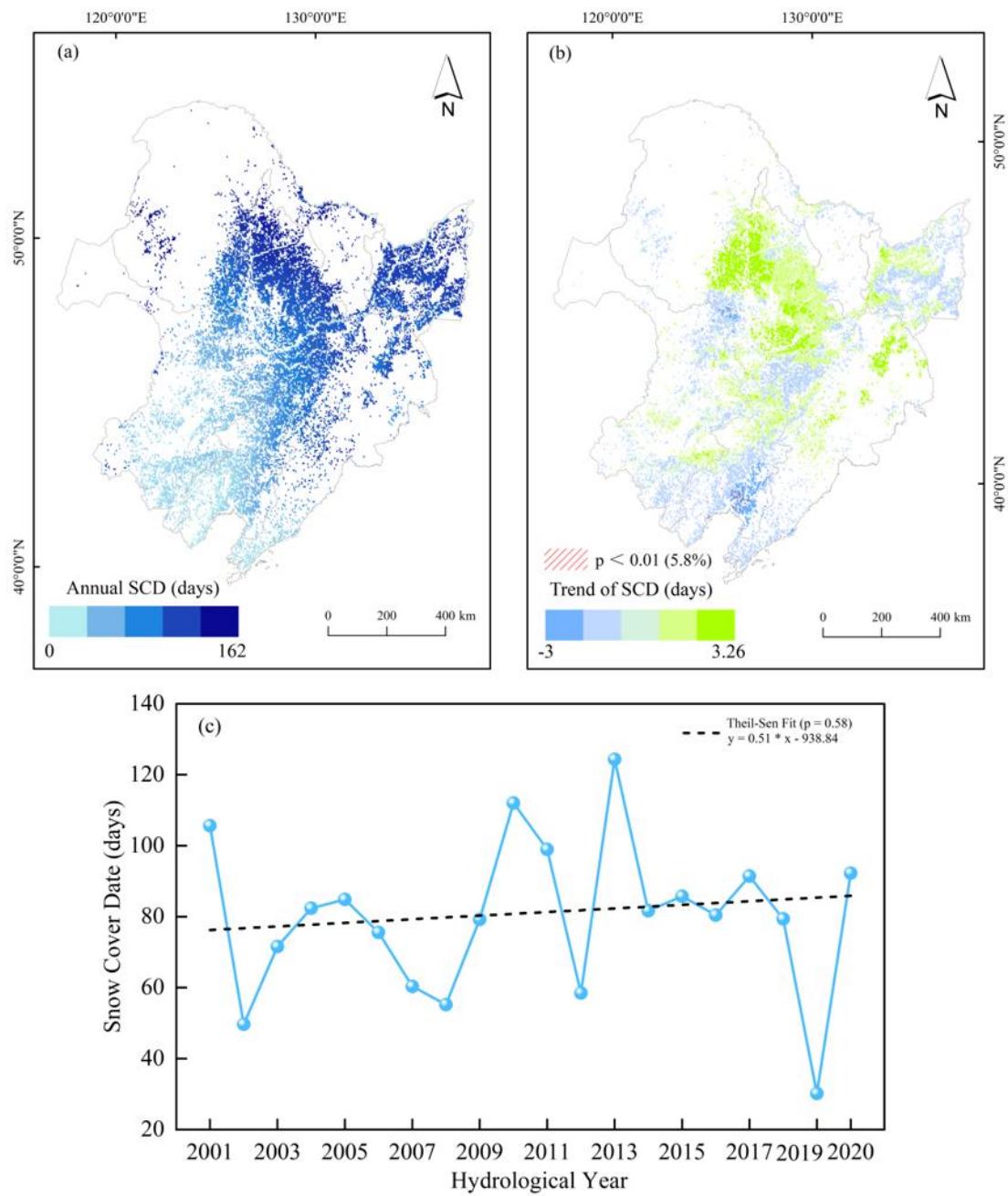
248 Table 2 Statistics of SWE, SCD and SCED in six geographical regions in Northeast China

Geographic region	SWE (mm)		SCD (day)		SCED (day)	
	Max	Mean	Max	Mean	Max	Mean
Songnen Plain	13.51	5.64	152.95	94.56	215.30	180.14
Sanjiang Plain	19.40	9.66	135.64	110.85	211.86	195.08
Liaohe Plain	5.04	1.73	98.29	36.52	187.09	125.81
Changbai Mountain	18.88	6.23	135.48	87.18	213.42	176.38
Western Sand Area	24.07	2.35	154.63	32.38	217.99	108.74
Xing'an Mountain	20.10	8.97	162.44	119.57	222.74	196.11

249

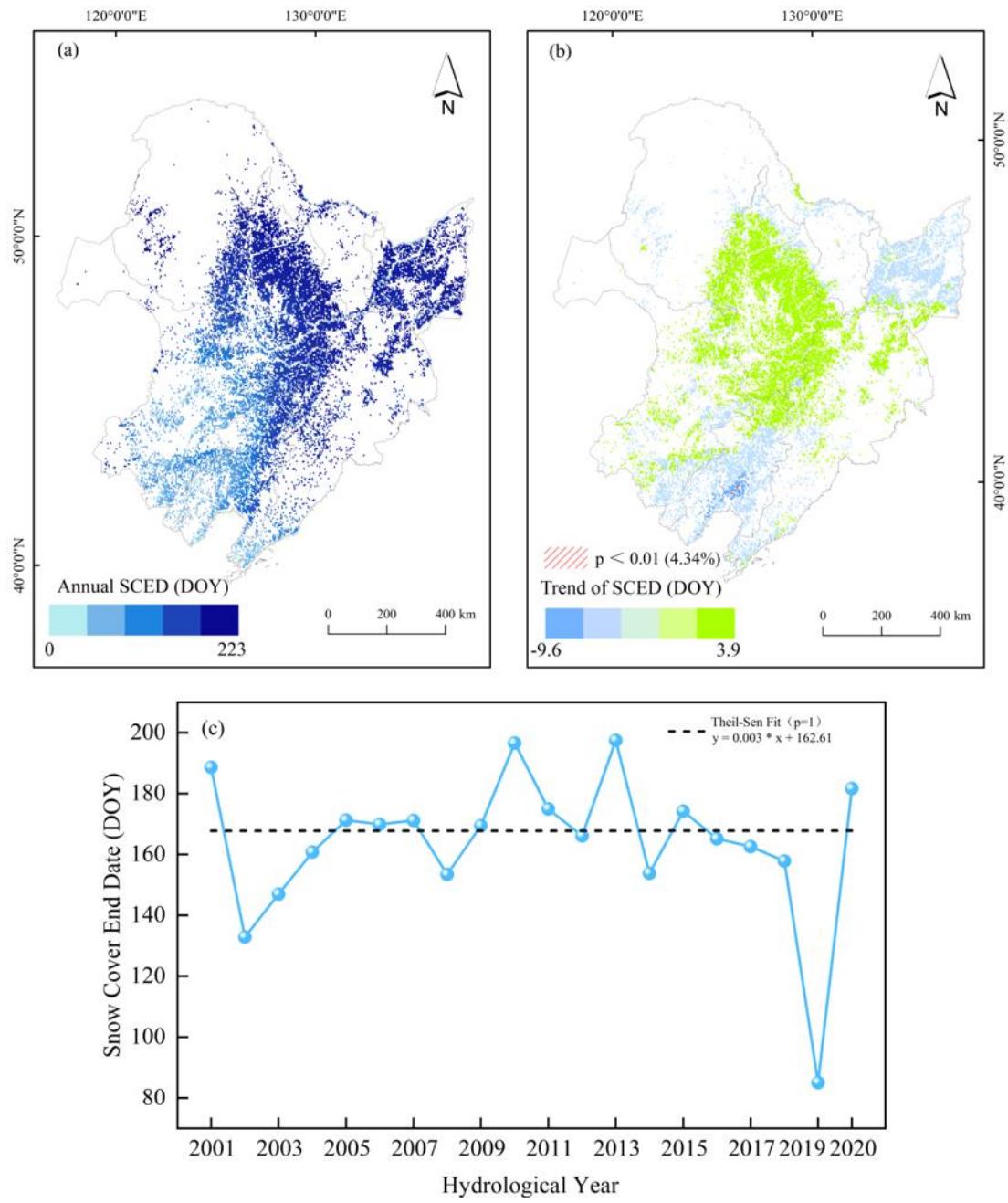
250 Figure 3 shows the spatial distribution of mean SCD in Northeast China from HY2001
 251 to HY2020, Table 2 lists the corresponding statistical results. The SCD had average
 252 value of 80.79 days. High SCD values were primarily observed in the northeastern and
 253 mountainous areas, while low SCD values were distributed in the southwest and low-
 254 altitude areas. Overall, a decreasing trend was observed from the northeast to the
 255 southwest. Noticeable differences were observed in Changbai Mountain. Its
 256 northeastern area, closer to the Sanjiang Plain, showed significantly higher SCD than
 257 the southwestern area near the Liaohe Plain. The Xing'an Mountain had the highest
 258 mean SCD of 1119.57 days and the highest maximum SCD of 162.44 days, higher than
 259 the Changbai Mountain. The Sanjiang Plain had the second-highest mean SCD of
 260 110.85 days, followed by the Songnen Plain. The negative slope of the fitting line in
 261 Figure 3(c) indicates a decreasing trend in SCD, with significant fluctuations between
 262 2008 and 2014. Meanwhile, 54.1% of the cultivated land in the northeastern area
 263 experienced extended SCD, primarily distributed in the Songnen Plain. Areas with
 264 shortened SCD accounted for 45.9% of the total area. Areas with significant SCD

265 declines were mainly concentrated in the Liaohe Plain, similar to the spatial distribution
266 of interannual SWE variation.



267
268 Figure 3 The spatial and temporal changes of SCD in Northeast China from HY2001 to HY2020:
269 (a) spatial distribution of mean SCD; (b) changing trend of SCD, the green areas represent positive
270 impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that
271 were significant at the 90% confidence level; (c) annual changes of SCD.

272 Figure 4 displays the spatial distribution of mean SCED in Northeast China from
273 HY2001 to HY2020. The SCED distribution pattern was similar to that of SWE and
274 SCD. Higher SCEDs were still primarily observed in the northeastern and mountainous
275 areas, while lower SCEDs were distributed in the southwest and low-altitude regions.
276 The statistical results showed that the SCE had an average of approximately 163.99
277 days. About 49% of the pixels had SCEDs ranging from 180 to 210 days, while 49%
278 had SCEDs extending into March of the following year. Such pixels were concentrated
279 in the Changbai Mountain, Sanjiang Plain, and the northeastern Songnen Plain. Pixels
280 with SCEDs above 210 days accounted for only about 3% and were mainly distributed
281 in the Xing'an Mountain. The average SCED in the Sanjiang Plain and Xing'an
282 Mountain were approximately 195.08 days and 196.11 days, respectively. According to
283 Figure 4, the slope of the SCED fitting line in Figure 4(c) indicates a slight advancing
284 trend. The SCED trend was relatively stable between 2005 and 2007, while fluctuations
285 ranging from 10 to 30 days were observed in other years. Delayed SCEDs were
286 observed in 56.15% of the areas. Such regions were primarily distributed in the
287 Songnen Plain, Sanjiang Plain, and Changbai Mountain. Only 43.85% of the regions
288 exhibited earlier SCEDs, mainly concentrated in the Liaohe Plain.



289

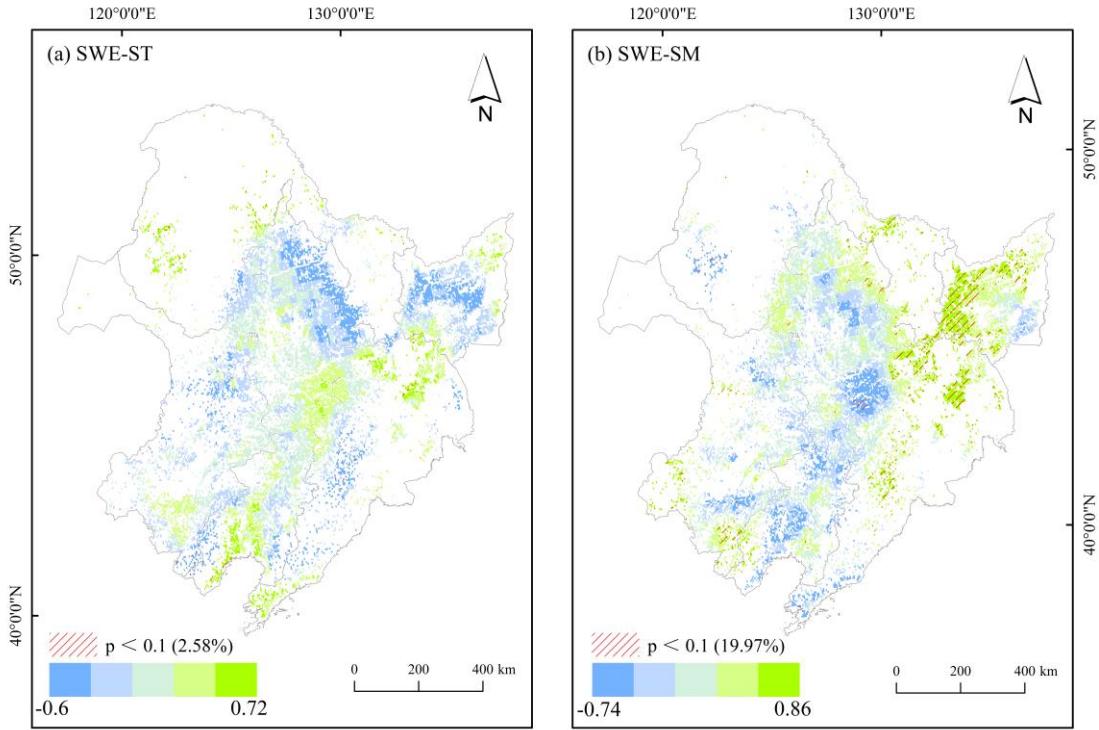
290 Figure 4 The spatial and temporal changes of SCED in Northeast China from HY2001 to HY2020:
 291 (a) spatial distribution of mean SCED; (b) changing trend of SCED, the green areas represent
 292 positive impacts, while the blue areas indicate negative impacts; and the shaded regions denote
 293 pixels that were significant at the 90% confidence level; (c) annual changes of SCED.

294

3.2 Effects of Snow Cover on Soil Properties

295 Figure 5 illustrates the spatial distribution of correlation coefficients between winter
 296 SWE and the subsequent year's ST and SM. As shown in Figure 5(a), the correlation

297 coefficient between SWE and ST ranges from -0.6 to 0.72. Areas with negative
298 correlations accounted for approximately 62.97% of the total cultivated land, which
299 indicate predominantly negative influences of SWE on the ST in the subsequent year.
300 The regions with significantly negative correlations concentrated in the Songnen Plain
301 and Sanjiang Plain. A small portion of areas with positive correlation was found in the
302 Western Sand Area and the northern part of Changbai Mountain. According to Figure
303 5(b), the correlation coefficient between SWE and SM ranges from -0.74 to 0.86. Areas
304 with positive correlations accounted for about 70.45% of the total cultivated land,
305 indicating a primarily positive impact of SWE on the SM in the subsequent year. The
306 areas with significantly positive correlations mainly concentrated in the Sanjiang Plain
307 and Changbai Mountain. Areas with negative correlations between SWE and SM
308 accounted for approximately 29.55%, mainly concentrated in the Songnen Plain and
309 Liaohe Plain.

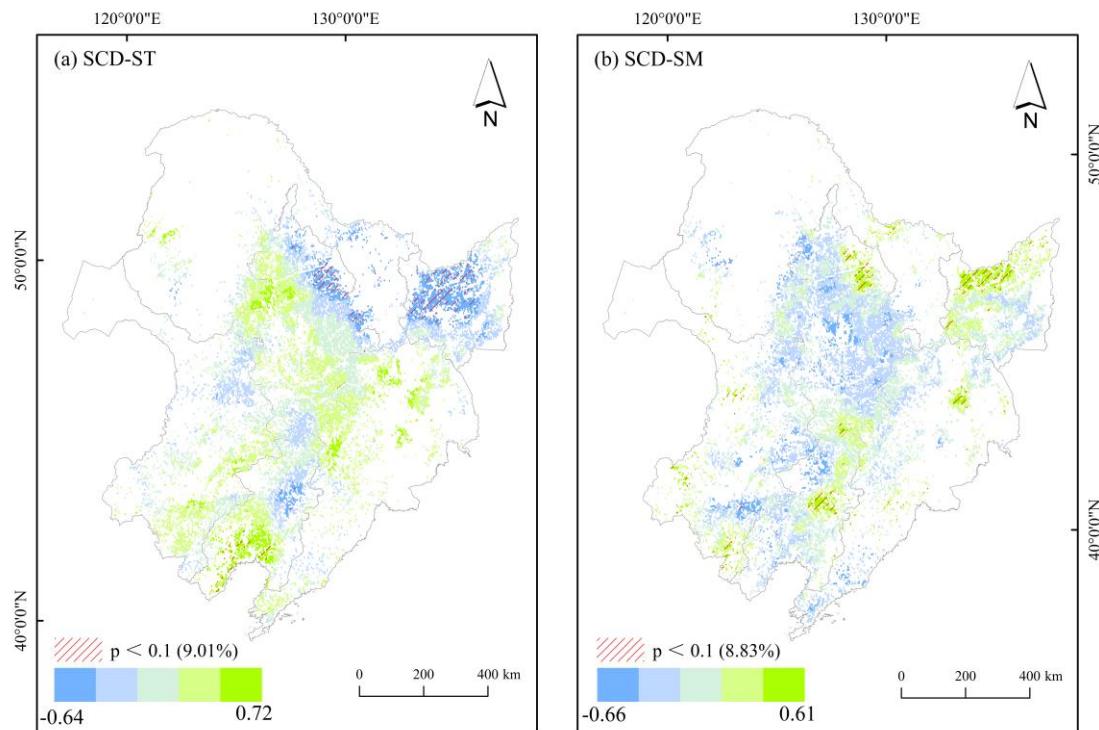


310

311 Figure 5 The correlation coefficients between SWE and soil properties: (a) soil temperature; (b) soil
 312 moisture. Blue and green pixels represent negative and positive correlations respectively. The
 313 shaded regions denote pixels that were significant at the 90% confidence level.

314 Figure 6 illustrates the spatial distribution of correlation coefficients between winter
 315 SCD and soil parameters of the subsequent year. As shown in Figure 6(a),
 316 the correlation coefficient between SCD and ST ranges from -0.64 to 0.72. Areas with
 317 negative correlations accounted for approximately 54.8% of the total cultivated land,
 318 indicating that the influence of SCD on the subsequent year's ST is predominantly
 319 negative. The areas with significantly negative correlations primarily concentrated in
 320 the Songnen Plain and Sanjiang Plain. These results suggest that a longer SCD is
 321 associated with slower soil warming the following spring. Only a small number of areas
 322 with positive correlations were found in the northern part of Changbai Mountain and
 323 the Western Sand Area. Thus, a longer SCD in these areas may, to some extent, promote
 324 ST recovery through insulating effects. According to Figure 6(b), the correlation

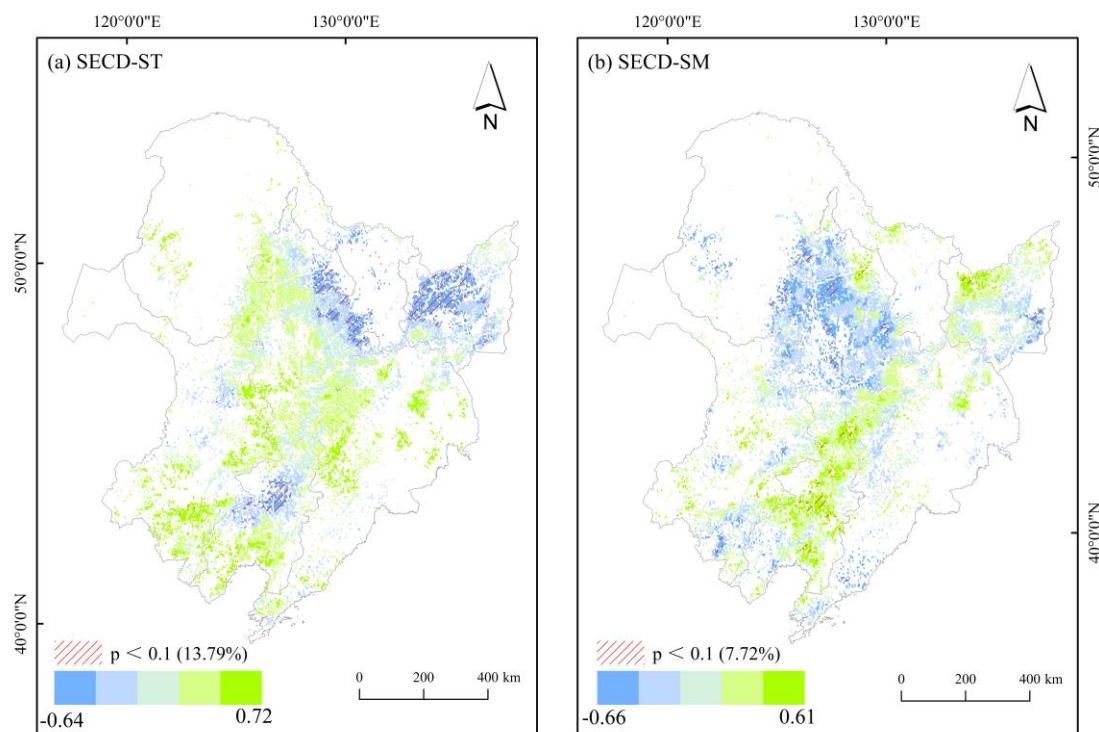
325 coefficient between SCD and SM ranges from -0.66 to 0.61. Areas with positive
 326 correlations accounted for 64.36%, indicating a primarily positive impact of SCD on
 327 the subsequent year's SM. The areas with significantly positive correlations mainly
 328 concentrated in the Songnen Plain and Changbai Mountain. Areas with negative
 329 correlations accounted for only 35.64%, and SCD's moderating effect on SM transitions
 330 from positive to negative from northeast to southwest. The pixels with SCD negatively
 331 affecting SM were primarily concentrated in Liaohe Plain.



332
 333 Figure 6 The correlation coefficients between SCD and soil properties: (a) soil temperature; (b) soil
 334 moisture. Blue and green pixels represent negative and positive correlations, respectively. The
 335 shaded regions denote pixels that were significant at the 90% confidence level.

336 Figure 7 illustrates the spatial distribution of correlation coefficients between winter
 337 SCED and soil parameters of the subsequent year. Figure 7(a) shows that the correlation
 338 coefficient between SCED and SM ranges from -0.64 to 0.72. The areas with negative

339 correlations accounted for approximately 62.97% of the total cultivated land, indicating
 340 a primarily negative impact of SCED on ST. The areas with significant negative
 341 correlations mainly concentrated in the Songnen Plain and Sanjiang Plain. A small
 342 number of areas with positive correlations were primarily found in the northern of
 343 Changbai Mountain and the Western Sand Area. According to Figure 7(b), the
 344 correlation coefficient between SCED and SM ranges from -0.66 to 0.61. Areas with
 345 positive correlations accounted for approximately 70.45% of the total cultivated land,
 346 indicating a mainly positive impact of SCED on the subsequent year's SM. The pixels
 347 with negative SCED effects on SM were primarily concentrated in the Sanjiang,
 348 Songnen, and Liaohe Plains.

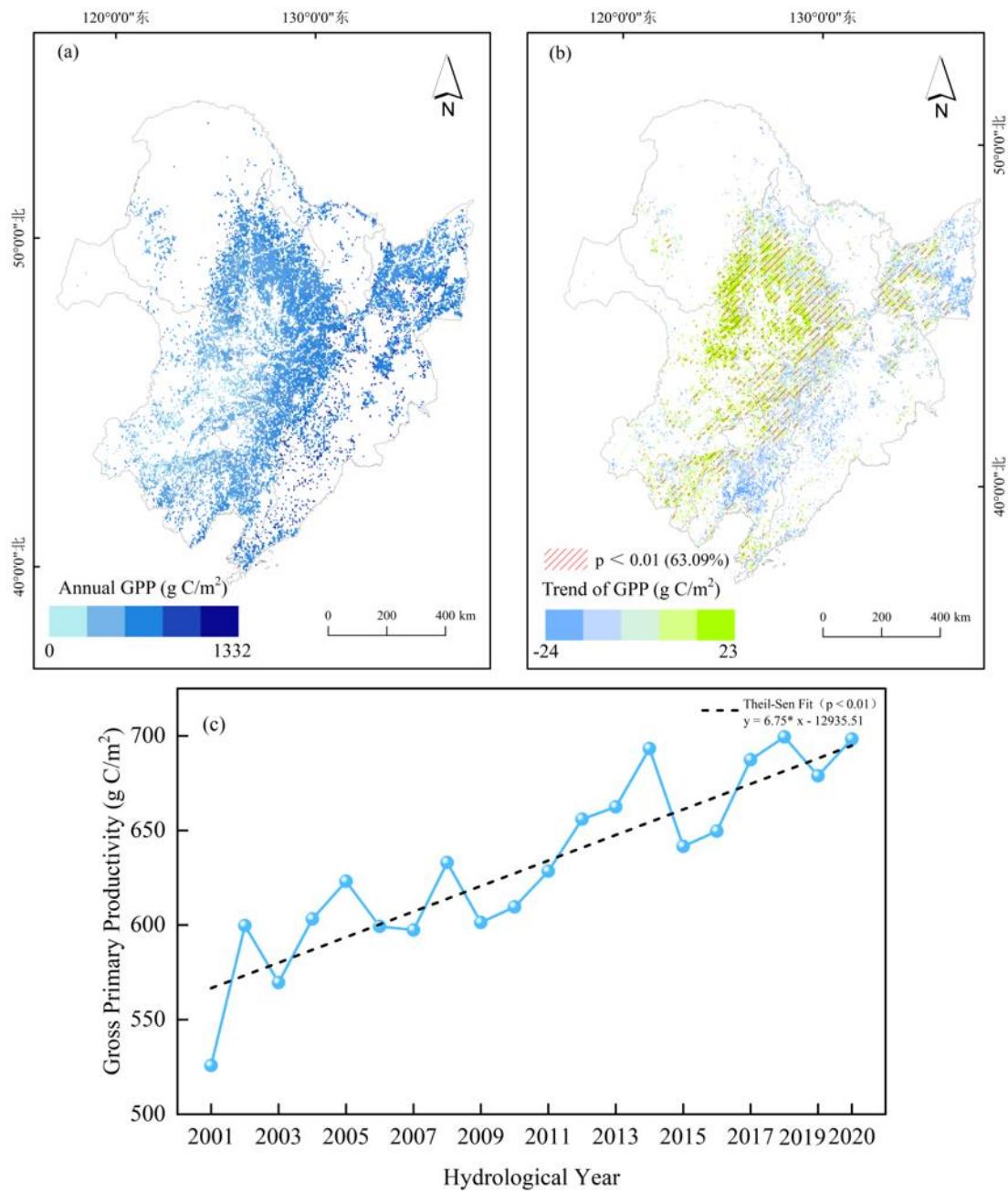


349
 350 Figure 7 Spatial pattern distribution results of the relationship between SCED and soil properties:
 351 (a) soil temperature; (b) soil moisture. Blue and green pixels represent negative and positive

352 correlations respectively. The shaded regions denote pixels that were significant at the 90%
353 confidence level.

354 **3.3 The influence of Snow Cover on GPP**

355 Figure 8 displays the spatial distribution of GPP in Northeast China from HY2001 to
356 HY2020, and Table 3 presents the statistical results for GPP across the six sub-regions.
357 The GPP of cultivated land generally shows a relatively uniform distribution pattern, as
358 shown in Figure 8(a). The Changbai Mountain, Sanjiang Plain, and Xing'an Mountain
359 had relatively high GPP, followed by Songnen Plain and Liaohe Plain, while the
360 Western Sand Area had the lowest GPP during the past 20 years. The interannual
361 variation trends in Figure 8(b) indicate that over the past 20 years, 98% of the cultivated
362 land shows an increasing trend in GPP, with significant GPP growth in 74% of the areas.
363 Furthermore, the growth rates varied across different regions, with the GPP in the
364 Western Sand Area increasing the fastest at an average of approximately $9.04 \text{ g}\cdot\text{C}/\text{m}^2$
365 per year.



366

367 Figure 8 The spatial and temporal changes of GPP in Northeast China from HY2001 to HY2020:
 368 (a) spatial distribution of mean GPP; (b) changing trend of GPP the green areas represent positive
 369 impacts, while the blue areas indicate negative impacts; and the shaded regions denote pixels that
 370 were significant at the 90% confidence level; (c) annual changes of GPP

371

372

373

374

375

376

377

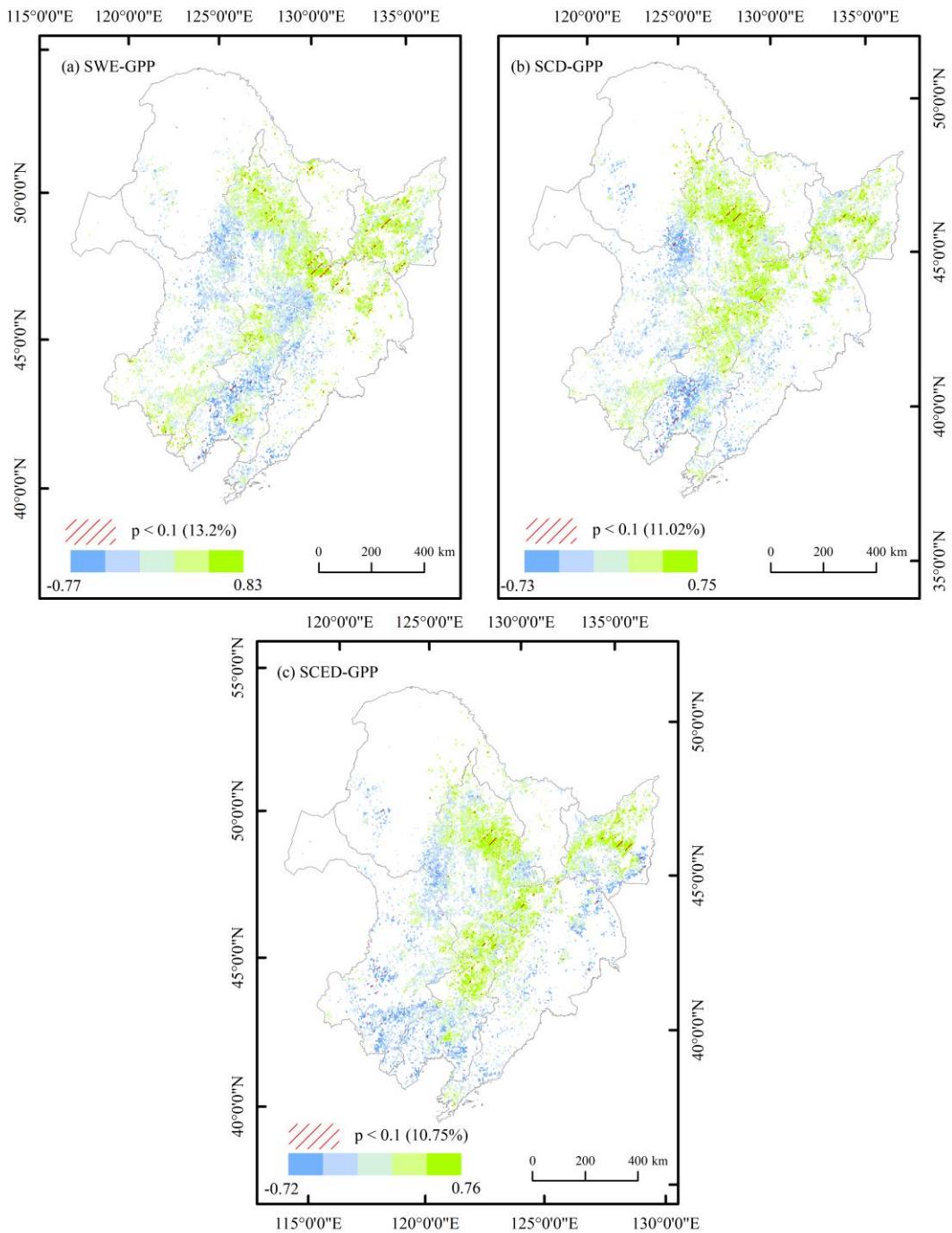
378 Table 3 GPP statistics of six geographic regions in Northeast China. Max. and SD represent the
379 maximum value and standard deviation, respectively.

Geographic regions	Max. (g·C/m ²)	Mean. (g·C/m ²)	SD (g·C/m ²)
Songnen Plain	1077.70	607.34	86.22
Sanjiang Plain	1286.26	697.08	99.44
Liaohe Plain	1141.74	611.99	89.59
Changbai Mountain	1332.11	781.48	145.15
Western Sand Area	854.5	484.89	95.09
Xing'an Mountain	1219.43	674.64	116.66

380

381 Figure 9 reveals distinct spatial patterns in the partial correlations between snow cover
382 and GPP over cultivated land in Northeast China, and Table 4 lists the corresponding
383 statistical results. The correlation between SWE and GPP was nearly balanced, with
384 67.01% of the area showing positive and 32.99% negative correlations for the whole
385 Northeast China; however, only 13.2% of the total area passed the significance test (p
386 < 0.1). The correlation coefficients ranged widely from -0.77 to 0.83. Significant
387 positive correlations were predominantly located in the northern Sanjiang Plain and the
388 central-western Songnen Plain, where snowmelt likely acts as a critical hydrological
389 subsidy for early crop growth (Li et al., 2025; Pan et al., 2022). In contrast, significant
390 negative correlations clustered in the southern Liaohe Plain, suggesting that excessive
391 SWE may lead to spring soil saturation and root zone anoxia. For SCD, 67.02% of the
392 cultivated area exhibited a positive correlation with 11.02% significant at 90% level.

393 And the values ranged from -0.73 to 0.75, showing a clear latitudinal gradient in the
394 Songnen Plain where the protective insulating effect of long-lasting snowpack is most
395 beneficial. A smaller area (32.68%) showed a non-significant negative correlation. The
396 56.18% of SCED is negatively coefficients with 10.75% being significant, and reveal
397 that SCED was predominantly positively correlated with GPP, particularly in the
398 Sanjiang and Songnen Plains, indicating that a delayed melt can favorably align water
399 availability with the crop growth calendar (Si et al., 2023; Wang et al., 2024).
400 Collectively, the impact of snow on agricultural productivity is a function of its dual
401 role as a source of water and as insulation, versus its potential to cause waterlogging
402 and phenological misalignment.



403

404 Figure 9 Spatial distribution of partial correlation between snow parameters and GPP of cultivated
 405 land from HY2001 to HY2020: (a)SWE; (b) SCD; (c)SCED

406

407

408

409

410 Table 4 The summary of partial correlation coefficients between snow cover and GPP in the six sub-
 411 regions. * indicate significance at the 90% confidence level.

Snow cover	Correlation Coefficients	Songnen Plain	Sanjiang Plain	Liaohe Plain	Changbai Mountain	Western Sand Area	Xing'an Mountain
SWE	>0	70.49%	87.27%	43.98%	64.65%	64.73%	68.73%
	<0	29.51%	12.73%	56.02%	35.35%	35.27%	31.27%
	>0*	8.82%	22.55%	3.48%	17.31%	4.39%	10.26%
	<0*	0.397%	0.68%	10.13%	3.41%	0.89%	0.48%
SCD	>0	83.96%	77.46%	42.46%	66.45%	49.44%	65.33%
	<0	16.04%	22.54%	57.54%	33.55%	50.56%	34.67%
	>0*	11.13%	9.29%	1.34%	7.87%	0.73%	10.95%
	<0*	1.72%	0.27%	15.08%	3.29%	1.99%	3.24%
SCED	>0	72.23%	66.24%	50.4%	51.96%	26.71%	54.1%
	<0	22.77%	32.76%	49.6%	48.04%	73.29%	45.9%
	>0*	7.42%	10.28%	7.35%	5.24%	0.61%	4.29%
	<0*	0.66%	3.85%	7.45%	6.35%	10.32%	2.29%

412 3.4 Dominant Controls of Snow Cover on Cropland GPP

413 Figure 10 presents the spatial distribution and area proportions of the relative
 414 contributions of different snow cover indicators to GPP of cultivated land in Northeast
 415 China. SWE predominantly drove GPP variations in the Western Sand Area and Liaohe
 416 Plain, which accounted for approximately 50% of the GPP changes, significantly higher
 417 than the contributions of SCD and SCED. In contrast, SCED emerged as the primary
 418 driver in the Changbai Mountain, Sanjiang Plain, and Xing'an Mountain, with
 419 contribution rates reaching 45.2%, 49.5%, and 38.6%, respectively. The Songnen Plain
 420 demonstrated a distinct pattern, with SCD dominating within 39.59% of the total area,
 421 substantially higher than SWE (31.29%) and SCED (29.11%). This regional analysis
 422 elucidated spatial heterogeneity in the relative contributions of snow cover indicators
 423 to GPP variations across Northeast China. The findings demonstrated distinct
 424 geographical zoning characteristics that provided a theoretical foundation for

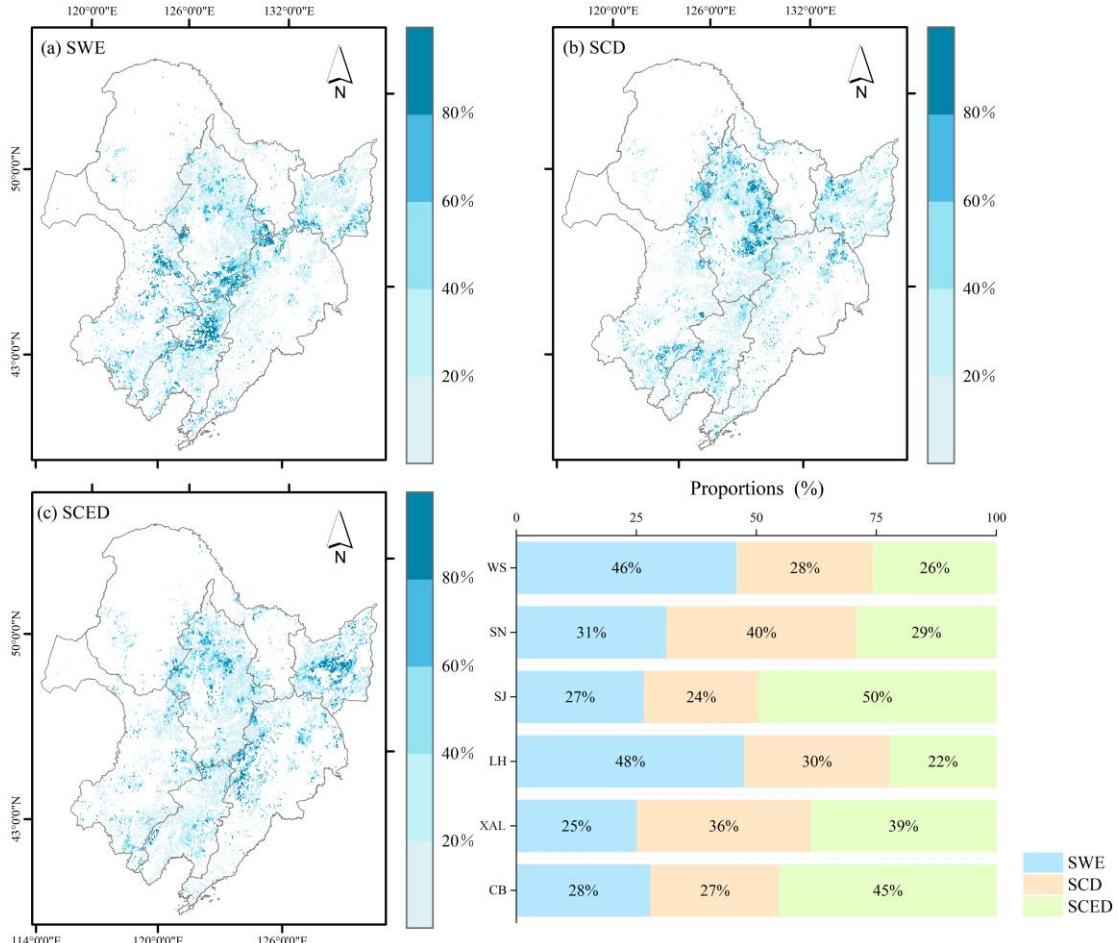
425 understanding the differential impacts of snow cover changes on agricultural
426 productivity across regions. SWE exerted greater influence in relatively arid areas,
427 while SCED had a stronger impact in colder areas.

428

429 Notably, SWE dominates GPP variability in moisture-limited areas, like the Western
430 Sand Area and the Liaohe Plain, accounting for ~50% of the observed fluctuations. Its
431 contribution was 1.6- to 1.7-fold greater than those of SCD and SCED. These results
432 aligned with hydrological theory positing that SWE is a critical drought-mitigating
433 reservoir in arid ecosystems through delayed meltwater release (Barnett et al., 2005).

434 Conversely, SCED emerged as the principal driver in colder high-latitude areas
435 (Changbai Mountain, Sanjiang Plain, Xing'an Mountain), explaining 38.6% to 49.5%
436 of GPP variations. Such spatial patterns likely reflect SCED's bidirectional effects in
437 regulating growing season onset via albedo modulation and frost protection through
438 insulation effects (Pulliainen et al., 2020). Sanjiang Plain exhibited hybrid behavior,
439 where the SCD predominance (39.59%) suggested intermediate sensitivity to SCD and
440 hydrologic inputs.

441



442

443 Figure 10 Spatial distribution and area percentage of snow-related indicators driving GPP variation
 444 of cultivated land in different regions of Northeast China from 2001 to 2020.

445

3.5 Mechanisms of Snow Cover Impacts on GPP

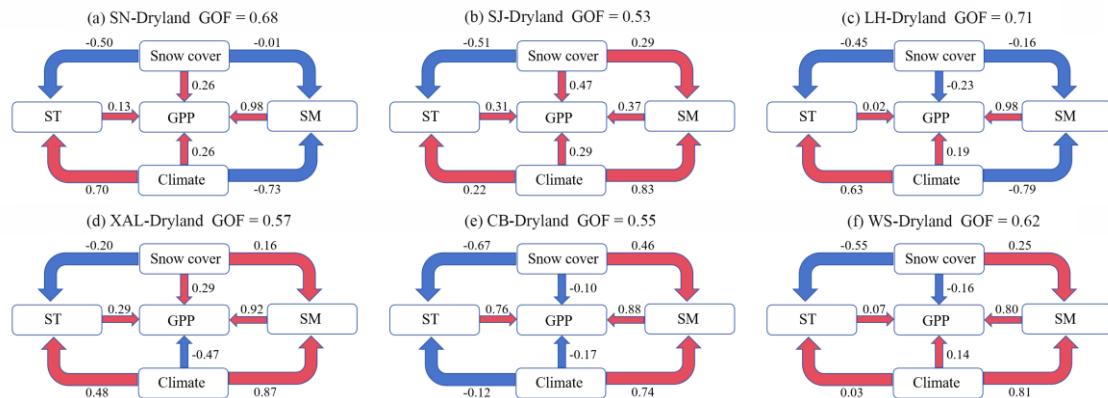
446 Figure 11 systematically quantifies the influence of snow cover on GPP across six
 447 agroecological regions, revealing pronounced spatial heterogeneity in snow cover-GPP
 448 causal networks. The influence of snow cover on GPP is characterized by spatially
 449 contrasting effects, ranging from promotive to inhibitory across different regions. In
 450 regions such as the Sanjiang Plain, the Xing'an Mountains, and the Songnen Plain, snow
 451 cover demonstrates a promotional effect ($\beta = 0.47, 0.29, 0.26$). The spring soil moisture
 452 is effectively replenished by snowmelt, alleviating water stress during the early growing

453 season in arid areas. In contrast, in the Liaohe Plain, the Western Sandy Area, and the
454 Changbai Mountain region, snow cover shows an inhibitory effect ($\beta = -0.23, -0.16, -$
455 0.10). This is primarily attributed to the nutrient leaching effect driven by snowmelt
456 runoff, especially in areas with lighter soil texture or greater slope, where the runoff
457 leads to the loss of key nutrients such as nitrogen and phosphorus, thereby weakening
458 vegetation productivity.

459 A widespread finding is that snow cover exerts a consistent negative effect on soil
460 temperature (ST) (mean $\beta = -0.58$). This indicates that although snow cover provides
461 an insulating effect during winter, its persistence or melting process in the early growing
462 season significantly lowers soil temperature, delays phenology, and thereby creates a
463 thermal limitation. This pathway is particularly pronounced in the Changbai Mountain
464 ecosystem, where the indirect inhibitory effect of snow cover on GPP through reducing
465 ST reaches $\beta = -0.51$. This suggests that in certain regions, thermal limitation may
466 dominate over hydrological effects in determining the ultimate impact of snow cover
467 on productivity.

468 The relationship between snow cover and soil moisture (SM) exhibits complex
469 geographical divergence, which in turn triggers different cascading effects. In the
470 Songnen Plain and the Liaohe Plain, snow cover shows a negative correlation with SM
471 ($\beta = -0.50, -0.16$). Combined with the strong positive effect of SM on GPP ($\beta = 0.96,$
472 0.92), this forms an inhibitory pathway that begins with reduced snow cover, leading to
473 soil moisture deficit, and ultimately results in decreased ecosystem productivity by
474 limiting vegetation growth. In contrast, in other regions such as the Sanjiang Plain ($\beta =$

475 0.13), snow cover may replenish SM through meltwater, creating a positive feedback
 476 loop. This divergence profoundly reflects the regulatory role of region-specific
 477 hydrological mechanisms, such as groundwater levels, soil water retention capacity,
 478 and snowmelt timing.



479
 480 Figure 11 The standardized path coefficients between snow cover and GPP via soil properties. The
 481 Model fit was validated through goodness-of-fit (GOF), demonstrating acceptable parameter
 482 estimation accuracy. Blue arrows denote inhibitory effects, whereas red pathways indicate
 483 facilitative relationships. Arrowhead orientation specifies causal pathways from exogenous to
 484 endogenous variables. ST and SM stand for soil temperature and soil moisture. SN, SJ, LH,
 485 XAL, CB and WS stands for Songnen Plain, Sanjiang Plain, Liaohe Plain, Xing'an Mountains, Changbai
 486 Mountains and West Sand Area.

487 4 Discussion

488 This study aimed to elucidate the spatiotemporal variations in snow cover parameters
 489 (SWE, SCD, and SCED) and their heterogeneous impacts on GPP of cultivated land
 490 across six subregions in Northeast China, while uncovering the underlying regulatory
 491 mechanisms through soil properties. By integrating long-term satellite and reanalysis
 492 products with partial correlation analyses and a PLS-SEM framework, we show that
 493 snow cover exerts strong but spatially heterogeneous controls on cropland GPP via its
 494 effects on spring ST and SM, with distinct response patterns among major agricultural

495 plains. These findings demonstrate that snow is not merely a passive climatic
496 background factor but an active regulator of agricultural carbon uptake in a region that
497 is both snow-dominated and critical for national food security.

498 **4.1 Changes in snow cover and GPP**

499 The principal findings demonstrate a 63% decrease in SWE across cultivated lands,
500 contrasted by a 54% increase in SCD and delayed SCED in 61% of areas, which
501 collectively correlated with significant GPP enhancements in 74% of regions,
502 underscoring snow cover's pivotal role in modulating agricultural carbon assimilation
503 under climatic shifts. Our results are broadly consistent with recent large-scale
504 assessments showing that snow cover changes exert strong and spatially heterogeneous
505 influences on vegetation productivity across the Northern Hemisphere (Liu et al., 2023;
506 Mudryk et al., 2020). Similar to Liu et al. (2023), we find that both the direction and
507 magnitude of snow–GPP relationships depend on background climate, and that failing
508 to consider lagged hydrothermal pathways can underestimate the true influence of snow
509 on growing-season productivity. However, whereas Liu et al. (2023) emphasized lagged
510 snow effects in natural ecosystems, our study focuses specifically on cultivated land,
511 where management practices and soil manipulation modulate snow–soil–GPP linkages.
512 Within Northeast China, our findings complement and extend previous analyses that
513 examined snow–vegetation interactions across all underlying surface types. Wang et al.
514 (2024) showed that in this region, increases in SWE tend to favor GPP in dryland and
515 grassland, while snow phenology metrics such as SCED and SCD are more influential

516 in forests. Our results refine this picture by isolating cropland and demonstrating that
517 (i) SWE dominates GPP variability in moisture-limited cultivated systems, (ii) SCD
518 and SCED become critical where cold stress and drainage limitations are prominent,
519 and (iii) the relative dominance of these metrics shifts systematically.

520 **4.2 Linkages of snow, soil, and GPP**

521 The spatial patterns of SWE, SCD, and SCED reveal a clear north–south and east–west
522 organization of snow regimes over cultivated land. Areas with deeper snowpacks and
523 longer snow duration are concentrated at higher latitudes and elevations, while low-
524 lying southern and coastal croplands experience shallower and shorter-lasting snow.
525 Against this backdrop, our correlation analyses show that snow metrics affect GPP
526 primarily through their modification of soil hydrothermal conditions, in line with the
527 notion that vegetation responds to hydrothermal states rather than snow itself (Liu et
528 al., 2023).

529 In cold, energy-limited subregions, thicker and more persistent snow tends to enhance
530 GPP by moderating winter and early-spring stress. Increased SWE and longer SCD
531 insulate the soil, maintaining higher near-surface temperatures and reducing freeze-
532 thaw damage, which promotes higher early-season GPP through improved root activity
533 and reduced winter mortality (Mudryk et al., 2020; Liu et al., 2023). In these areas, our
534 PLS-SEM results indicate that the dominant pathway from snow to GPP is temperature-
535 driven: SWE and SCD warm the soil profile, advance favorable thermal conditions for
536 crop emergence, and indirectly raise GPP by shortening the period of severe cold stress.
537 By contrast, in relatively warm but moisture-limited croplands, SWE emerges as the

538 primary control on interannual GPP variability. Here, snow acts as a critical seasonal
539 water reservoir. Higher SWE increases spring soil moisture, which alleviates early-
540 season water stress and supports more vigorous canopy development, consistent with
541 prior work highlighting the role of snow-derived water for spring soil moisture and
542 subsequent crop performance in Northeast China (Li et al., 2022; Wang et al., 2024). In
543 these zones, the structural paths in the PLS-SEM are dominated by SWE, soil moisture,
544 and GPP, underscoring a moisture-mediated mechanism akin to the broader link
545 between water availability and global GPP.

546 **4.3 Limitations and projections**

547 Several limitations should be acknowledged when interpreting these findings. First,
548 despite using recent high-quality products, uncertainties remain in the underlying
549 datasets. The SWE fields used here, although tailored for China (Jiang et al., 2022), are
550 derived from passive microwave retrievals and data assimilation, which can
551 underestimate SWE in complex terrain and under deep, dense snow (Mihalevich et al.,
552 2022). Similarly, ERA5-Land ST and SM, while widely validated (Muñoz-Sabater et
553 al., 2021), inevitably smooth sub-grid heterogeneity associated with microtopography,
554 tillage practices, and irrigation. MODIS GPP products also carry known uncertainties
555 in cropland, especially under mixed pixel conditions and heterogeneous management.
556 These uncertainties are unlikely to overturn the main regional patterns identified here,
557 but they could affect estimates of effect magnitude, particularly in transition zones
558 where snow–GPP relationships are weak or mixed. Besides, the spatial and temporal
559 resolution of our analysis imposes constraints on generalizability. Aggregating to

560 moderate-resolution grid cells inevitably mixes different soil types, management
561 regimes, and microclimates, which may lead to conservative estimates of snow impacts
562 where fields are strongly heterogeneous.

563

564 Furthermore, our analytical framework is observational and relies on correlation and
565 PLS-SEM to infer dominant pathways rather than process-based simulation. Although
566 PLS-SEM is designed to disentangle direct and indirect effects within complex variable
567 networks, it cannot fully resolve causal mechanisms, and its results depend on the
568 specified model structure and variable selection. For example, we did not explicitly
569 represent snow metamorphism, subsurface runoff, or crop management practices, all of
570 which can modulate how snow-induced hydrothermal changes translate into GPP
571 responses (Bodner et al., 2015). We just discussed the dryland of cultivated land in this
572 paper, and future work will consider the paddy land. Incorporating these factors in
573 future structural models, or coupling our observational analysis with process-based
574 land–surface or crop models, would help test the robustness of the inferred pathways.

575

576 In summary, this study demonstrates that multiple dimensions of snow cover—SWE,
577 SCD, and SCED—jointly structure the soil hydrothermal environment and GPP of
578 cultivated land in Northeast China, with the dominant control shifting from SWE in
579 moisture-limited areas to SCD and SCED in colder or poorly drained regions. This
580 research provides a process-based framework for understanding snow-vegetation
581 coupling in cold-region agroecosystems, moving beyond simple correlative analyses.

582 The novel application of ridge regression to identify the dominant snow indicator for
583 GPP in each subregion offers a powerful tool for regional-scale assessment and
584 prediction. From an application perspective, these findings can directly inform climate-
585 adaptive agricultural management. For example, in the Western Sand Area, practices
586 that enhance snow harvesting and retention could be prioritized to bolster spring soil
587 moisture. In contrast, in the Changbai Mountain, selecting crop varieties with lower
588 base temperatures for growth or developing strategies to accelerate snowmelt (where
589 feasible) could mitigate the negative impacts of a delayed SCED.

590 **5 Conclusion**

591 This study used multi-source remote sensing data to clarify how snow cover dynamics
592 regulate cultivated land GPP in Northeast China from HY2001 TO HY2020. By jointly
593 analyzing SWE, SCD, SCED, and GPP, we revealed pronounced regional heterogeneity
594 in snow cover–crop interactions: snow cover reductions in the Liaohe Plain and Western
595 Sand Area contrasted with prolonged snow duration and delayed melt in the Songnen
596 and Sanjiang Plains, where GPP increased most strongly.

597
598 By controlling for temperature, precipitation, and radiation, we isolated the intrinsic
599 snow–GPP relationships for different cropping systems. SCD was identified as the
600 dominant snow metric for dryland GPP. Ridge regression further showed that SWE
601 primarily regulates GPP in the Western Sand Area and Liaohe Plain, while SCD
602 dominates in the Songnen and Sanjiang Plains, and SCED is most important in the

603 Changbai Mountain and Xing'an Mountain.

604

605 Finally, the PLS-SEM framework quantified both the direct effects of snow cover
606 indicators on GPP and their indirect effects via SM and ST, elucidating the snow-soil–
607 vegetation coupling mechanism in cold-region agroecosystems. Snow cover generally
608 exerts a negative effect on gross primary productivity through its thermal influence. In
609 the Liaohe Plain and Songnen Plain, snow cover indirectly suppresses cropland GPP
610 through its water-mediated effect. In the Sanjiang Plain, Xing'an Mountains, Changbai
611 Mountain, and Western Sandy Area, snow cover indirectly promotes the increase of
612 cropland GPP through its water-mediated effect.

613

614 Future work should integrate field experiments and higher-resolution data on crop types
615 and management practices to disentangle these complex interactions and validate the
616 proposed mechanisms at a finer scale.

617 **Author Contributions**

618 Conceptualization, Yang Q. and Liu H.; Data curation, Hao X.H.; Methodology, Cui
619 M.; validation, Li L. and Yang Q.; Formal analysis, Li L., Hao. X.H.; Investigation,
620 Peng Y.; Writing—original draft preparation, Li L.; Writing—review and editing, Yang
621 Q. and Liu H; Funding acquisition, Yang Q. All authors have read and agreed to the
622 published version of the manuscript.

623 **Funding**

624 This research was jointly supported by National Key Research and Development
625 Program of China (Grant No. 2024YFD1500602-4).

626 **Acknowledgments**

627 This research is an output of Cropland Degradation Monitoring. The anonymous
628 reviewers to improve the quality of this manuscript are greatly appreciated. The efforts
629 of Mr Wendi Luo are also appreciated for responding the comments.

630 **Conflicts of Interest**

631 The authors declare that they have no conflict of interest.

632 **Data Availability**

633 The data is available on request.

634 **Reference**

635 Abebe, S.A., Qin, T., Zhang, X., Yan, D., 2022. Wavelet transform-based trend analysis of streamflow
636 and precipitation in Upper Blue Nile River basin. *Journal of Hydrology: Regional Studies*, 44:
637 101251.

638 Beer, C. et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with
639 climate. *Science*, 329(5993): 834-838.

640 Blankinship, J.C., Hart, S.C., 2012. Consequences of manipulated snow cover on soil gaseous emission
641 and N retention in the growing season: a meta-analysis. *Ecosphere*, 3(1): 1-20.

642 Bodner, G., Nakhforoosh, A., Kaul, H.-P., 2015. Management of crop water under drought: a review.
643 *Agronomy for Sustainable Development*, 35: 401-442.

644 Brooks, P.D. et al., 2011. Carbon and nitrogen cycling in snow-covered environments. *Geography*

689 Mudryk, L. et al., 2020. Historical Northern Hemisphere snow cover trends and projected changes in the
690 CMIP6 multi-model ensemble. *The Cryosphere*, 14(7): 2495-2514.

691 Muñoz-Sabater, J. et al., 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land
692 applications. *Earth system science data*, 13(9): 4349-4383.

693 Pan, M. et al., 2022. Effect of snow cover on spring soil moisture content in key agricultural areas of
694 Northeast China. *Sustainability*, 14(3): 1527.

695 Peng, S., 2019. 1-km monthly mean temperature dataset for china (1901–2022). National Tibetan Plateau
696 Data Center: Beijing, China.

697 Peng, S., 2020. 1-km monthly precipitation dataset for China (1901–2022). National Tibetan Plateau
698 Data Center: Beijing, China.

699 Peng, S., Piao, S., Ciais, P., Fang, J., Wang, X., 2010. Change in winter snow depth and its impacts on
700 vegetation in China. *Global Change Biology*, 16(11): 3004-3013.

701 Pulliainen, J. et al., 2017. Early snowmelt significantly enhances boreal springtime carbon uptake.
702 *Proceedings of the National Academy of Sciences*, 114(42): 11081-11086.

703 Pulliainen, J. et al., 2020. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018.
704 *Nature*, 581(7808): 294-298.

705 Running, S., Mu, Q., Zhao, M., 2021. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m
706 SIN Grid V061. (No Title).

707 Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. *Journal of the American
708 statistical association*, 63(324): 1379-1389.

709 Sjöström, M. et al., 2013. Evaluation of MODIS gross primary productivity for Africa using eddy
710 covariance data. *Remote sensing of environment*, 131: 275-286.

711 Wagle, P., Xiao, X., Suyker, A.E., 2015. Estimation and analysis of gross primary production of soybean
712 under various management practices and drought conditions. *ISPRS Journal of Photogrammetry
713 and Remote Sensing*, 99: 70-83.

714 Wang, L., Faye, B., Li, Q., Li, Y., 2023a. A spatio-temporal analysis of the ecological compensation for
715 cultivated land in northeast China. *Land*, 12(12): 2179.

716 Wang, L. et al., 2017. Evaluation of the latest MODIS GPP products across multiple biomes using global
717 eddy covariance flux data. *Remote Sensing*, 9(5): 418.

718 Wang, W., Yin, S., Yu, J., He, Z., Xie, Y., 2023b. Long-term trends of precipitation and erosivity over
719 Northeast China during 1961–2020. *International Soil and Water Conservation Research*, 11(4):
720 743-754.

721 Wang, X. et al., 2022. Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite
722 Observations and Numerical Modeling. *Geophysical Research Letters*, 49(12).
723 DOI:10.1029/2022gl099022

724 Wang, Y. et al., 2024. Unraveling the effects of snow cover change on vegetation productivity: Insights
725 from underlying surface types. *Ecosphere*, 15(5): e4855.

726 Wei, X. et al., 2022. Assessment of the variation and influencing factors of vegetation NPP and carbon
727 sink capacity under different natural conditions. *Ecological Indicators*, 138: 108834.

728 Wetzels, M., Odekerken-Schröder, G., Van Oppen, C., 2009. Using PLS path modeling for assessing
729 hierarchical construct models: Guidelines and empirical illustration. *MIS quarterly*: 177-195.

730 Xu, X. et al., 2018. China many periods of land use land cover remote sensing monitoring data set
731 (CNLUCC). Chinese Academy of Sciences, Resources and Environment Science Data Center
732 Data Registration and Publication System.

733 Xu, Y. et al., 2017. Spatial and temporal trends of reference crop evapotranspiration and its influential
734 variables in Yangtze River Delta, eastern China. *Theoretical and Applied Climatology*, 130: 945-
735 958.

736 XU, Y. et al., 2023. Main Characteristics and Utilization Countermeasures for Black Soils in Different
737 Regions of Northeast China. *Chinese Journal of Soil Science*, 2023, 54(2):495 – 504. (in
738 Chinese)

739 Xue, L., Kappas, M., Wyss, D., Putzenlechner, B., 2022. Assessing the drought variability in northeast
740 China over multiple temporal and spatial scales. *Atmosphere*, 13(9): 1506.

741 Zambreski, Z.T., Lin, X., Aiken, R.M., Kluitenberg, G.J., Pielke Sr, R.A., 2018. Identification of
742 hydroclimate subregions for seasonal drought monitoring in the US Great Plains. *Journal of
743 Hydrology*, 567: 370-381.

744 Zhao, Y. et al., 2023. Exploring the contribution of environmental factors to evapotranspiration dynamics
745 in the Three-River-Source region, China. *Journal of Hydrology*, 626: 130222.

746 Zhu, H., Lin, A., Wang, L., Xia, Y., Zou, L., 2016. Evaluation of MODIS gross primary production across
747 multiple biomes in China using eddy covariance flux data. *Remote Sensing*, 8(5): 395.