

Impacts of reductions in anthropogenic aerosols and greenhouse gases toward carbon neutrality on dust pollution over the Northern Hemisphere dust belt

Shicheng Yan^{1,2}, Yang Yang^{1,2*}, Lili Ren³, Hailong Wang⁴, Pinya Wang², Lei Chen²,
Jianbin Jin^{1,2}, Hong Liao^{1,2}

¹State Key Laboratory of Climate System Prediction and Risk Management/Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control/Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

²School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

³School of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu, China

⁴Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National

Laboratory, Richland, W.

* Correspondence to Yang Yang (yang.yang@nuist.edu.cn)

26 **Abstract**

27 To mitigate future global warming, many countries have implemented rigorous
28 climate policies for carbon neutrality. Given some shared emission sources with
29 greenhouse gases (GHGs), aerosol particles and their precursor emissions are expected
30 to be reduced as the consequences of global efforts in climate mitigation and
31 environmental improvement, potentially inducing complex climate feedbacks.
32 However, a clear understanding of the individual effects of anthropogenic aerosols and
33 GHGs on natural dust concentrations has not yet emerged, especially in the carbon
34 neutral scenario. Here, we assess the large-scale impacts of reductions in anthropogenic
35 GHGs and aerosol under a carbon neutral scenario in 2060 on natural dust emissions
36 and concentrations over the low- to mid-latitudes in the Northern Hemisphere using the
37 fully coupled Community Earth System Model. Our findings demonstrate a decline in
38 atmospheric dust loading toward carbon neutrality (SSP1-1.9) relative to the high fossil
39 fuel scenario (SSP5-8.5). Mechanistic analysis reveals counteracting modulation
40 mechanisms: (i) Reductions in aerosols amplify surface downwelling shortwave
41 radiation, convection and wind speed, thereby promoting dust emissions by 6–12% and
42 concentrations by 4–20% over North Africa, the Central Asia Desert and East Asia; (ii)
43 GHGs reductions diminish the land-ocean thermal contrast and wind speed, suppressing
44 dust emissions by 6–15% and concentrations by 8–20% mainly over the Central Asia
45 Desert and North Africa. The latter drives the future dust responses. These results
46 highlight that carbon neutral strategies not only achieve climate mitigation goals and
47 air quality improvements, but also generate synergistic benefits through dust pollution
48 suppression.

49

50 **1. Introduction**

51 Dust aerosols are a crucial component of the Earth-atmosphere system, exerting
52 multifaceted influences on environment and climate (Chen et al., 2024; Hu et al., 2023).
53 They play a significant role in modulating the Earth's radiation budget via aerosol-cloud
54 and aerosol-radiation interactions. Dust aerosols absorb longwave radiation and scatter
55 shortwave radiation, thereby influencing atmospheric radiative balance and surface
56 energy fluxes (Kok et al., 2017, 2023; Liu et al., 2021). Additionally, dust aerosols act
57 as cloud condensation nuclei, modifying cloud microphysical properties and
58 subsequently affecting cloud development and precipitation patterns (Min et al., 2009;
59 Yuan et al., 2021; Zhang et al., 2021). In addition, mineral dust transports iron to marine
60 ecosystems, stimulating phytoplankton growth and enhancing carbon fixation (Jickells
61 et al., 2005; Pabortsava et al., 2017). Furthermore, dust can reduce visibility, degrade
62 air quality and have important impacts on public health, particularly in arid and
63 semiarid regions (Fussell et al., 2021; Goudie et al., 2014; Li et al., 2024; Roy et al.,
64 2023). These health risks are extended beyond proximal desert margins to distal urban
65 centers by intercontinental transport mechanisms (Griffin et al., 2007; Meng et al.,
66 2023).

67 The global primary sources of dust emissions are located in the arid zones of the
68 low- to mid-latitudes in the Northern Hemisphere, with core areas concentrated in the
69 Sahara Desert of North Africa, the Central Asia Desert, Arabian Desert, Taklamakan
70 Desert, and Gobi Desert of East Asia, which is often called the dust belt (Prospero et
71 al., 2002; Shao et al., 2011). Specifically, the North African desert, as the world's largest
72 dust source, injects approximately 1.0-1.5 billion tons of dust aerosols annually into the
73 atmosphere, accounting for 50%-65% of the global total dust emissions (Tanaka et al.,
74 2006; Ginoux et al., 2004). Meanwhile, Asian dust sources contribute 30%-40% of the
75 global dust flux and are identified as the second-largest emission center (Kok et al.,
76 2021).

77 Dust emission is influenced by climate change, determined by a combination of
78 natural and anthropogenic factors, including greenhouse gases (GHGs) concentrations,
79 aerosol loading, and land use, with anthropogenic contributions exhibiting increasing
80 influence in the post-industrial era (Gui et al., 2022; Tegen et al., 2004). Variations in
81 GHGs concentrations further regulate dust transport through large-scale atmospheric
82 teleconnections. Elevated GHGs levels amplified the North Atlantic Oscillation (NAO)

(Kuzmina et al., 2005), which changed atmospheric circulation patterns and enhanced dust advection to South Asia (Banerjee et al., 2021). The strengthened West African monsoon under warming conditions was found to amplify dust emissions (Wubben et al., 2024). In the arid and semi-arid regions of North and Central Asia, surface warming enhanced atmospheric instability, thereby intensifying vertical convective motions and significantly increasing dust emission fluxes (Zhou et al., 2023). Anthropogenic aerosols are recognized as an important forcing factor in global and regional climate systems (Ramanathan et al., 2001; Myhre et al., 2017). Analyses of observations from 1979 to 2013 showed that anthropogenic sulfate aerosols over the Asian monsoon region suppressed dust emissions in East Asia by altering atmospheric dynamics (Xie et al., 2025). Specifically, sulfate-induced shifts in the Asian westerly jet enhanced precipitation and reduced surface wind speeds across arid and semi-arid source regions, thereby limiting dust mobilization. Model simulations illustrated that the combined reduction of carbonaceous aerosols (black carbon and organic carbon) and increased sulfate emissions in South Asia synergistically caused atmospheric cooling over continental regions, which attenuated the zonal thermal gradient, resulting in a weakening of the Indian summer monsoon circulation (Das et al., 2020). Concurrently, this altered atmospheric circulation suppressed dust emissions from the Arabian Peninsula and inhibited dust transport across the Arabian Sea. Observational and reanalysis data from the COVID-19 pandemic period revealed that anthropogenic aerosol emission reductions over the Indian subcontinent amplified the Indian summer monsoon intensity and triggered anomalous convective activity over the tropical Indian Ocean, which increased surface wind speeds and enhanced dust lifting over the Arabian Peninsula (Francis et al., 2022). Modeling studies have found that reductions in anthropogenic aerosol emissions along the West African coast led to a decrease in aerosol loading, triggering a northward shift of the monsoonal precipitation belt. This meridional displacement subsequently enhanced surface wind speeds over the Saharan arid zone, thereby increasing mineral dust emission fluxes through intensified wind erosion processes (Menut et al., 2019).

Under future climate change, dust distribution will vary depending on the projected scenarios. Using the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model simulations, Singh et al. (2017) showed a 30% increase in regional dust loading over the South Asian monsoon region by the end of the 21st century (2076-2100) relative to 1976-2000 under the RCP8.5 scenario. Zhao et al.

117 (2023) analyzed the multi-model results under four Shared Socioeconomic Pathways
118 (SSPs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and found
119 that global dust loading was expected to increase by 2.0-12.5% by the end of the 21st
120 century in most future scenarios, except for SSP3-7.0, which shows a slight decline.
121 Liu et al. (2024) estimated a substantial increase in dust mass loading over North Africa
122 during 2081-2100 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios from
123 bias-corrected CMIP6 models. Woodward et al. (2005) showed through HadCM3-
124 coupled model experiments that the annual mean global dust burden would rise by
125 225%, from the 2000 baseline ($4 \times 10^4 \text{ mg m}^{-2}$) to $1.3 \times 10^5 \text{ mg m}^{-2}$ by 2100, under a
126 medium-emission scenario, attributed to desertification and climate change. Gomez et
127 al. (2023) projected that rising CO₂ concentrations would elevate global mean PM_{2.5}
128 levels, partly driven by intensified dust aerosol emissions attributable to a strengthened
129 West African monsoon. Akinsanola et al. (2025) found that African easterly wave
130 activity was projected to undergo a robust intensification across the Sahel region under
131 both SSP2-4.5 and SSP5-8.5 scenarios by the end of the 21st century, with profound
132 implications for Saharan dust emission and transport. These studies mainly focus on
133 investigating dust variations under different Shared Socioeconomic Pathways, thereby
134 examining only the combined effects of anthropogenic aerosols and GHGs. However,
135 relatively little attention has been paid to quantifying the individual contributions of
136 anthropogenic aerosols and GHGs changes to the changing dust concentrations in the
137 future, especially in the carbon-neutral scenario.

138 The future climate changes toward carbon neutrality would also affect dust
139 aerosols, which remains largely unknown. Many countries have committed to achieve
140 carbon neutrality by the middle of the 21st century to limit global temperature rise to
141 below 2°C or even 1.5°C by the end of the 21st century. The pursuit of carbon neutrality
142 will reshape anthropogenic emissions associated with climate and environmental
143 policies, driving changes in atmospheric composition and radiative forcing (Wang et
144 al., 2023; Yang et al., 2023). As nations reduce GHGs and aerosol emissions to mitigate
145 global warming, these shifts are expected to induce complex climate influences. Studies
146 have suggested that anthropogenic aerosol reductions could enhance surface
147 downwelling shortwave radiation, elevate near-surface temperatures, and increase wind
148 speed (Lei et al., 2023; Ren et al., 2024). Projections indicated that by the end of the
149 21st century, interannual precipitation variability will intensify by 3.9% and 5.3% under
150 1.5°C and 2.0°C warming scenarios, respectively (Chen et al., 2020). Consequently, the

151 implementation of carbon neutrality policies is likely to modify the current climate state
152 and affect various meteorological variables (Seager et al., 2019; Lee et al., 2013), which
153 are expected to influence dust mobilization.

154 In the carbon-neutral future, reductions in GHGs and aerosols can change climate
155 and meteorological factors, which further affect dust emissions and concentrations.
156 However, existing studies typically focus on dust flux responses to climate change
157 under future scenarios, thereby examining only the combined effects of anthropogenic
158 aerosols and GHGs, which also have yet to quantify dust response to future climate
159 change due to individual changes in anthropogenic aerosols and GHGs for pursuing
160 carbon neutrality goals (Zhao et al., 2023; Liu et al., 2024). In this study, we conduct
161 Earth system model experiments to assess the impact of aerosols and GHGs reductions
162 toward carbon neutrality on meteorological variables such as precipitation, relative
163 humidity, and wind speed, as well as their implications for dust emissions and
164 concentrations. Although dust is from both natural and anthropogenic sources. This
165 study only focuses on dust from natural sources without considering anthropogenic dust.
166 Given that the combined contribution of dust sources from the North Africa and Asia
167 exceeds 80% of global dust emissions, this study strategically focuses on the dust belt
168 regions, including the Sahara Desert, Central Asia Desert, Arabian Desert, Taklamakan
169 Desert, and Gobi Desert. The findings of this study aim to provide valuable insights to
170 guide the establishment of dust prevention measures and strategies in global pursuit of
171 carbon neutrality. The paper is structured as follows. The method and data are presented
172 in Sect. 2. The results of dust changes related to the reductions in GHGs and aerosols
173 are shown in Sect. 3. The discussion and the conclusions are given in Sect. 4.
174

175 **2. Methods**

176 **2.1 Model Description**

177 The fully coupled Community Earth System Model version 1.2.2 (CESM1)
178 (Hurrell et al., 2013) is used to investigate the effects of meteorological changes
179 induced by anthropogenic aerosols and GHGs under carbon neutrality on dust
180 emissions and concentrations. The atmospheric component utilizes the Community
181 Atmosphere Model version 5 (CAM5), which simulates the major aerosol species,
182 including sulfate, black carbon, primary organic aerosol, secondary organic aerosol,
183 mineral dust and sea salt. These aerosols are distributed in the four lognormal size

184 distribution modes (i.e., Aitken, accumulation, coarse, and primary carbon modes) (Liu
185 et al., 2016). Simulations are conducted at $1.9^\circ \times 2.5^\circ$ horizontal resolution with 30
186 vertical layers. Aerosol particles within the same mode are mixed internally, whereas
187 external mixing assumption is treated for particles between different modes. The dust
188 emission flux is calculated using the Dust Entrainment and Deposition model
189 developed by Zender et al. (2003), which is implemented in the Community Land
190 Model version 4 (CLM4; Oleson et al., 2010). Dust particles are divided into four bins
191 (0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 μm) in CLM4, and subsequently redistributed to
192 four modes of the Modal Aerosol Module scheme. The emission or mobilization
193 process is governed by the synergistic effects of multiple controlling parameters,
194 including wind friction speed, vegetation cover, and surface soil moisture content.
195 Aerosol direct and indirect radiative effects are incorporated in CAM5 (Ma et al., 2022).
196 Furthermore, optimized parameterization schemes for key aerosol processes in CAM5,
197 such as convective transport and wet deposition, have been implemented to enhance
198 model performance (Wang et al., 2013). The dynamic oceanic component in CESM1
199 uses the Parallel Ocean Program version 2 (POP2). In this study, emissions of aerosols
200 and precursors and GHGs concentrations are obtained from the CMIP6 input data,
201 specifically adopting the SSP1-1.9 and SSP5-8.5 (shared socioeconomic pathways).
202 Future emission inventories build on the Shared Socioeconomic Pathways, providing
203 standardized multidimensional parameters (e.g., population, economy, technology,
204 environment, institutions) and qualitative narratives at national/regional scales (van
205 Vuuren et al., 2017; Kriegler et al., 2017; Fujimori et al., 2017; Calvin et al., 2017;
206 Fricko et al., 2017).

207 **2.2 Experimental Design**

208 To quantify the impacts of anthropogenic aerosols and GHGs on future dust
209 toward carbon neutrality, four sets of CESM1 equilibrium simulations are designed,
210 comprising one baseline (Fut_SSP585) and three sensitivity experiments
211 (Fut_CNeutral, AA_CNeutral and GHG_CNeutral). The SSP1-1.9 represents a
212 sustainable development scenario focused on ecological restoration, conservation, and
213 a significant reduction in fossil fuel dependence. This pathway is considered the most
214 likely to achieve the 1.5°C target under the Paris Agreement and carbon neutrality in
215 the mid-21st century (Su et al., 2021; Wang et al., 2023; Zhu et al., 2024). In contrast,
216 the SSP5-8.5 follows a high fossil fuel consumption with substantial associated

217 emissions (Meinshausen et al., 2020). Many countries had committed to achieving
218 carbon neutrality by 2050 or 2060, with most targets set for the post-2050 period (Chen
219 et al., 2022). Focusing on the year 2060 therefore ensures direct alignment with policy
220 timelines and enhances the practical relevance of our results.

221 The `Fut_SSP585` simulation prescribes global GHGs concentrations and
222 anthropogenic emissions of aerosols and precursors from the CMIP6 input data, with
223 all forcings held at 2060 levels under the SSP5-8.5 scenario. In `Fut_CNeutral`
224 experiment, GHGs concentrations, aerosols, and their precursor emissions are adopted
225 following SSP1-1.9 emission pathway in 2060, enabling isolation of combined effects
226 of aerosols and GHGs through comparison with the baseline. The `AA_CNeutral`
227 experiment applies anthropogenic emissions of aerosols and precursors from SSP1-1.9
228 while retaining GHGs concentrations under SSP5-8.5, allowing aerosol effect
229 quantification by comparing with the baseline. Conversely, we also perform the
230 `GHG_CNeutral` simulations in which GHGs concentrations are set to the 2060 levels
231 under SSP1-1.9, along with aerosol emissions using SSP5-8.5 input data, which allows
232 comparison with the baseline to estimate the climate impacts of GHGs. One additional
233 experiment, `Fut_2020`, is also performed for the model evaluation, with GHGs
234 concentrations and aerosol emissions set to the 2020 levels under SSP1-1.9. All
235 simulations are initialized with the same conditions and only the GHGs concentrations
236 and/or aerosol emissions change in time and space every month. All experiments are
237 conducted with three ensemble members of different initial conditions, achieved by
238 applying a small initial perturbation to atmospheric temperature. Each ensemble
239 member is run for 100 years, with the initial 40 years considered as model spin-up
240 period, retaining the latter 60 years for analysis.

241 **2.3 Model Evaluation**

242 Numerous studies documented the hemispheric asymmetry of global dust sources,
243 with most emissions originated from northern hemisphere arid zones, notably North
244 Africa, Central Asia, East Asia, and the Middle East (Shao et al., 2011; Ginoux et al.,
245 2012; Yang et al., 2022). Consistent with prior studies that highlight peak dust activities
246 during boreal spring and summer in these regions (Ginoux et al., 2012; Nabavi et al.,
247 2016; Jethva et al., 2005, Choobari et al., 2014), our seasonal analysis for simulations
248 in 2060 also reveals substantially elevated dust emissions and concentrations in warm
249 seasons, especially spring, compared to autumn and winter (Figure 1). In this study, we

250 mainly focus on spring dust activities. To evaluate model's dust simulation performance,
251 dust optical depth from model results in boreal spring of 2020 is compared with
252 CALIPSO satellite retrievals averaged over 2017–2021. The model reasonably
253 reproduces the overall spatial distribution of dust optical depth (Figure 2), but
254 overestimates dust loading over parts of Central Asia, Eastern Africa and the Gobi
255 Desert. Similar discrepancies have been noted in existing studies, indicating that the
256 deviations between the model and observations are primarily attributable to the
257 topographic source function and the dust emission scheme used in the model (Wu et al.,
258 2020), which could potentially lead to bias in the quantitative analysis of the results.

259 **3 Results**

260 **3.1 Changing dust aerosol toward carbon neutrality**

261 Figures 3a and 3b present the spatial patterns of changes in emission fluxes and
262 near-surface concentrations of dust aerosols between carbon neutrality (SSP1-1.9) and
263 high fossil fuel (SSP5-8.5) scenarios driven by both fixed anthropogenic aerosols and
264 GHGs in 2060. Under the strong decline in anthropogenic emissions toward carbon
265 neutrality, marked reductions in dust emissions (3–12%) and concentrations (4–16%)
266 are observed across primary source regions (Figure 4a-b), particularly the North African
267 dust belt and Central Asian arid corridor, whereas increases in dust emission (3–12%)
268 and concentrations (4–8%) are found over East Asian dust source regions. Dust
269 concentrations in most regions exhibit reductions, exceeding $40 \mu\text{g m}^{-3}$ over North
270 Africa and Central Asia, while northwestern China and the North China Plain show a
271 weak increase in dust concentrations.

272 The simulated future changes in dust concentrations are the combined effects of
273 the reduction of anthropogenic aerosols and GHGs. Here we also investigate their
274 respective impacts on future dust changes through sensitivity experiments. Figures 3c-
275 d illustrate the responses of emission fluxes and near-surface concentrations of dust to
276 anthropogenic aerosol reductions in SSP1-1.9 relative to SSP5-8.5, while 3e-f
277 demonstrate the responses to GHGs reduction alone. The future reductions in
278 anthropogenic aerosols would lead to significant increases in dust emissions (6–12%)
279 and concentrations (4–20%) across the dust belt (Figure 4c-d). However, GHGs
280 reduction induces decreases in dust loads mainly over North Africa and Central Asia.
281 These contrasting patterns indicate opposite dust responses to future reductions in
282 anthropogenic aerosols and GHGs. The following sections illustrate possible

283 mechanisms derived from the analysis of key meteorological drivers and their
284 association with emission reduction strategies.

285 **3.2 Dust increases due to anthropogenic aerosols reductions**

286 Pursuing the carbon neutrality leads to substantial reductions in anthropogenic
287 emissions of aerosols and precursors. As shown in Figure 5, CMIP6 experiments show
288 decreases exceeding 8×10^{-13} kg m⁻² s⁻¹ in anthropogenic emissions of aerosols and
289 precursors, including black carbon, sulfur dioxide and precursor gases of secondary
290 organic aerosols, over polluted eastern China, South Asia, and parts of Europe and
291 North Africa in 2060 under SSP1-1.9 scenario compared to SSP5-8.5, while primary
292 organic matter emissions slightly increase by $4-8 \times 10^{-13}$ kg m⁻² s⁻¹. Although
293 anthropogenic aerosol emission changes are primarily concentrated in Asia, reductions
294 in aerosol optical depth (AOD) of approximately 0.01–0.05 are also evident over remote
295 regions including Northern Africa (Figure 6a), mainly due to the decreases in sulfate
296 aerosol (Figures 6b and 6c). Along with the aerosol reduction, the surface downwelling
297 shortwave radiation increases by 4–12W m⁻² (Figure 7a), which further increases the
298 land surface temperatures by more than 0.6 °C over eastern China, Southeast Asia and
299 North Africa and 0.9 °C over South Asia (Figure 7b). Enhanced convective instability
300 due to the warmer surface condition elevates planetary boundary layer (PBL) heights
301 over most land regions (Figure 7c). Furthermore, diminished atmospheric heating from
302 light-absorbing aerosols (e.g., black carbon) in the air reduces lower tropospheric
303 stability, intensifying convective conditions and resulting in an increase in the PBL
304 height. The associated strengthening of vertical exchange processes enhances near-
305 surface wind speeds by 0.05–0.1 m s⁻¹ through downward momentum transfer (Figure
306 8a) (Qin et al., 2024). Note that, the spatial patterns of changes in PBL height show a
307 mismatch with dust emission changes in some regions, which arises from the imperfect
308 correspondence between boundary layer height and surface wind speed and has been
309 reported in many studies (e.g., Jacobson et al. 2006; Qin et al., 2024). The wind speed
310 responses to aerosol changes reported in these studies agrees with our findings, and the
311 mechanistic interpretation that aerosol reduction increases wind speed is also consistent
312 with their established physical understanding. Related to the surface warming driven
313 by anthropogenic aerosol reductions, relative humidity and soil water content decrease
314 (Figures 8b-c). These changes in meteorological and land surface conditions explain
315 the simulated increases (exceeding 2×10^{-9} kg m⁻² s⁻¹) in dust emissions across the dust

316 belt due to the anthropogenic aerosol reductions toward carbon neutrality (Figure 3c).
317 This result is consistent with previous studies (Menut et al., 2019; Xie et al., 2025).

318 Previous studies have established a robust positive correlation between near-
319 surface wind speed and dust emission fluxes, particularly in arid dust source regions
320 characterized by chronically low soil moisture and minimal precipitation inputs (Zender
321 et al., 2003; Dong et al., 2006). Our analysis reveals that anthropogenic aerosol
322 reductions in SSP1-1.9 relative to SSP5-8.5 amplify 10-m wind speed by 0.05–0.10 m
323 s^{-1} across core dust sources (Figures 8a), driving intensified dust emission fluxes (6–
324 12%) and near-surface concentrations (8–16%) in North and Central Africa (Figures
325 3c-d, Figures 4c-d). The dust-wind speed relationship is modulated by emission
326 thresholds. In arid areas, the threshold of wind speed for dust mobilization increases
327 with rising relative humidity (Ravi et al., 2005). This is primarily due to the enhanced
328 adsorption layer interactions created by overlapping water films on adjacent soil
329 particles (Ravi et al., 2005). Consequently, after the reduction of anthropogenic aerosols,
330 reduced relative humidity by –1% to –3% (Figure 8b) lowers the critical threshold of
331 wind speed, particularly in Central Africa and East Asia. Additionally, in the major dust
332 source regions, precipitation changes are minimal and statistically insignificant (Figure
333 8d), which do not have a large influence on dust concentrations after emitting into the
334 atmosphere.

335 **3.3 Dust decreases due to greenhouse gas reductions**

336 Figure 9a illustrates the surface temperature distribution in 2060 under SSP5-8.5,
337 highlighting persistent land-ocean thermal contrast with continental temperatures
338 around dust source regions much higher than oceanic values. Due to GHGs reductions
339 in SSP1-1.9 relative to SSP5-8.5, surface temperatures decrease by 1.8–3.0 °C over
340 land and 1.2–1.8 °C over adjacent oceans (Figure 9b), where the overall land-sea
341 contrast is largely due to the higher heat capacity of water than land surface. Figures 9c
342 and 9d respectively depict the zonal and meridional distributions of surface
343 temperatures over the Sahara Desert of North Africa. Notably, the surface cooling due
344 to GHGs reductions is stronger over the Sahara Desert (10°–30°N, 10°W–30°E) than
345 that over the Mediterranean Sea (north of 30°N) and North Atlantic Ocean (west of
346 10°W). It diminishes the land-sea temperature gradient, thereby contributing to the
347 decline in wind speed over North Africa (Figure 10a). Central Asia Desert also
348 demonstrates a stronger temperature reduction than the surrounding Caspian Sea

(Figure 9e) and high latitude regions, weakening the land-sea thermal gradient and thereby driving the decrease in surface wind speed throughout Central Asia (Figure 10a). By reducing the land-ocean thermal contrast, GHG mitigation lowers surface wind speeds over major dust source regions, leading to a consequent decline in dust emissions (exceeding $2 \times 10^{-9} \text{ kg m}^{-2} \text{ s}^{-1}$) (Figure 3e), which is consistent with previous study. Qu et al. (2025) studied prolonged wind droughts in a warming climate. Under the SSP5-8.5 scenario, they found that wind droughts decreased in the tropics, primarily due to increased wind speeds. Reversely, in the tropics, global warming amplifies the land-ocean thermal contrast, thereby strengthening winds. Thus, the mechanism of wind speed reduction is consistent with established understanding. As a result of the GHGs reduction implementation, the marked temperature reduction suppresses surface evaporation and alters atmospheric saturation vapor pressure, thereby increasing relative humidity by 1–3% across Northern Hemisphere dust source areas (Figure 10b).

Dust emission suppression in North African and Central Asian regions (Figure 3e) is primarily attributed to the weakened surface wind speeds induced by GHGs reduction (Figure 10a). The GHGs reduction elevates relative humidity (Figure 10b), which raises the critical threshold wind velocity required for dust mobilization. It further reduces dust emission fluxes by 6–15% and atmospheric dust concentrations by 8–20% (Figure 4e-f), particularly in the North African and Central Asian source regions, even though the soil moisture slightly increases in some regions (Figure 10c). This finding is consistent with previous research indicating that dust emissions across most source regions are significantly lower under the low-emission scenarios than under high-emission scenarios (Zhao et al., 2023; Liu et al., 2024; Gomez et al., 2023). The precipitation does not show significant changes over the North Africa and Central Asia (Figure 10d). Over East Asia, the decreases in precipitation and soil water, likely related to the changing atmospheric circulation and moisture transport due to GHGs reductions, slightly promote the dust emissions over some parts of Taklamakan Desert and Gobi Desert (Figure 3e). However, decreases in wind speed do not favor the dust transport (Figure 10a) and are conducive to the local dust deposition. It can be confirmed by the changes in dust deposition that more dust is removed from the atmosphere over the Taklamakan Desert and the downwind North China Plain (Figure 11) and the increase in dust removal surpasses the increase in dust emission (0.5×10^{-9} to $2 \times 10^{-9} \text{ kg m}^{-2} \text{ s}^{-1}$) (Figure 3e).

382 **4 Discussions and Conclusions**

383 In the carbon-neutral future scenario, reductions in GHGs and aerosols for climate
384 mitigation and environmental improvement could change meteorological conditions
385 and further influence dust emissions and concentrations. However, critical knowledge
386 gaps remain in dust response to future climate change for pursuing carbon neutrality
387 goals. While existing work has captured the combined impacts of anthropogenic
388 aerosols and GHGs on dust flux under different future scenarios (Singh et al., 2017;
389 Woodward et al., 2005; Zhao et al., 2023; Liu et al., 2024), the distinct roles of
390 anthropogenic aerosols versus GHGs in modulating dust flux remain unresolved. Our
391 work systematically resolves these knowledge gaps. In this study, the individual
392 impacts of anthropogenic aerosols and GHGs reductions under the global carbon
393 neutral scenario on dust emissions and concentrations over the dust belt of low- to mid-
394 latitudes in the Northern Hemisphere are investigated using the fully coupled CESM1
395 model. The distinct effects of future GHGs and aerosol emission changes on dust
396 emissions are individually assessed. Under carbon neutral scenario (SSP1-1.9),
397 significant reductions in dust emissions (3–12%) and concentrations (4–16%) are seen
398 over major Asian and African dust source regions relative to the high fossil fuel scenario
399 (SSP5-8.5) in 2060 (Figures 4a-b).

400 Anthropogenic aerosols and GHGs reduction exert opposite impacts on dust
401 emissions. Due to aerosol reductions toward carbon neutrality, atmospheric convective
402 is amplified, elevating surface wind speeds by $0.05\text{--}0.10\text{ m s}^{-1}$ and intensifying dust
403 emissions (exceeding $2\times10^{-9}\text{ kg m}^{-2}\text{ s}^{-1}$) and concentrations (exceeding $30\text{ }\mu\text{g m}^{-3}$),
404 particularly in the North African, Central Asian, South Asian, and East Asian source
405 sectors, by year 2060. Additionally, the reduction in aerosols is expected to increase
406 near-surface temperature by $0.3\text{--}1.2^\circ\text{C}$, decreasing relative humidity and soil water
407 content, further intensifying dust emissions. In contrast, GHGs reduction diminishes
408 the land-ocean thermal contrast, suppressing surface winds by $0.01\text{--}0.1\text{ m s}^{-1}$ and
409 associated dust emissions by $2\times10^{-9}\text{ kg m}^{-2}\text{ s}^{-1}$ and concentrations by $50\text{ }\mu\text{g m}^{-3}$ in North
410 Africa and Central Asia (Figures 3e-f). The marked temperature reduction also elevates
411 relative humidity by 1–3%, suppressing dust generation, due to the GHGs reductions.
412 Dust emissions over parts of the Taklamakan Desert and Gobi Desert are promoted,
413 because of a decrease in precipitation and soil water. However, decreases in wind speed
414 enhance dust deposition, leading to a decline in near-surface dust concentrations.

415 Under combined GHG and aerosol reductions, dust emissions decline by 3%–12%
416 across Northern Africa and Central Asia, contrasting with an increase of 3%–9% in East
417 Asia (Figures 4a-b). A consistent pattern has been observed in previous research (Liu
418 et al., 2024). Correspondingly, surface wind speeds decrease by 0.01–0.1 m/s across
419 Northern Africa and Central Asia but increase by 0.01–0.05 m/s over East Asia (Figure
420 12a). Concurrently, relative humidity rises more significantly by 0.1%–3% over major
421 dust source regions (Figure 12b). This increase raises the wind speed threshold for dust
422 emission, thereby suppressing dust uplift. However, in East Asia, higher wind speeds
423 offset the suppression from increased humidity. Changes in soil moisture and
424 precipitation are insignificant in these dust source regions and thus play minor roles in
425 dust emission (Figure 12c-d). Consequently, the suppressive effect of GHG mitigation
426 dominates over the promotive effect of aerosol mitigation in Northern Africa and
427 Central Asia. This outcome primarily results from the stronger cooling effect induced
428 by GHG reductions compared to the warming caused by anthropogenic aerosol
429 reductions (Figure 13a). The cooling diminishes the land–ocean thermal contrast across
430 Africa and Central Asia, further suppressing wind speeds and inhibiting dust emissions
431 (Figure 13b-d). In contrast, elevated wind speeds over East Asia are linked to an
432 intensified Mongolia–Siberian High under joint mitigation, as indicated by sea level
433 pressure increases of 40–80 Pa in Figure 13e. This enhanced pressure gradient
434 strengthens surface winds and promotes dust emissions across source regions in East
435 Asia. This study addresses the critical knowledge gaps about the dust response to future
436 climate change for pursuing carbon neutrality, providing valuable insights to guide the
437 establishment of dust prevention measures and strategies in global pursuit of carbon
438 neutrality.

439 It is noteworthy that the responses of dust emissions and concentrations to the
440 GHG and aerosol mitigation are not linear. Adding the individual effects of GHGs and
441 aerosols together, dust emissions and concentrations show less decreases and even
442 increases in over the Northern Hemisphere dust belt (Figure S1), compared to the
443 combined effect of GHG and aerosol mitigation (Figure 3). The differences are likely
444 associated with nonlinear response of wind fields, including both the wind direction
445 and wind speed, to the temperature changes induced by GHGs and aerosols, which
446 could offset each other and ultimately lead to divergent responses in dust emissions and
447 concentrations.

448 Dust emissions in the Northern Hemisphere reach a maximum in spring, the

449 predominant season for dust storm occurrence. Therefore, this study focuses primarily
450 on dust variations in the spring. Nevertheless, changes in the annual mean dust
451 emissions are also important. Annual mean dust emission changes are highly consistent
452 with spring patterns, showing increased emissions from aerosol reductions and
453 decreased emissions from GHGs mitigation (Figure S2).

454 Although large model uncertainties exist in the projections of climate response to
455 anthropogenic forcings, and climate simulated in CESM is relatively more sensitive to
456 anthropogenic forcings than many other global models (Wang et al., 2023; Ren et al.,
457 2024), inter-model comparisons nevertheless yield consistent results regarding dust
458 emissions under the SSP1-1.9 and SSP5-8.5 scenarios. Specifically, many CMIP6
459 models indicate that GHG and aerosol mitigation reduces dust emissions in Northwest
460 Africa (Figure S3), similar to the CESM simulation. Under future scenario, potential
461 variations in tropospheric ozone concentrations may introduce additional complexity,
462 as ozone can modulate key meteorological drivers as a greenhouse gas (Wang et al,
463 2023; Gao et al, 2022), which can also regulate dust emission processes. It is reasonable
464 to speculate that the decline in ozone concentrations under carbon neutrality pathways
465 would lead to a greater reduction in dust emissions relative to SSP5-8.5 than is currently
466 estimated in this study, if this factor were accounted for. Also, this study does not
467 consider the land cover change and the potential future forest expansion (Cramer et al.,
468 2001; Notaro et al., 2007; Jiang et al., 2011) may weaken the dust changes toward
469 carbon neutrality, which deserves further investigation in future work. Furthermore, as
470 evidenced in our model validation, the CESM dust simulations exhibit inherent
471 limitations, primarily originating from the topographic source function, the dust
472 emission scheme, coarse spatial and vertical model resolution, and PBL
473 parameterization (Wu et al., 2020; Lindvall et al., 2012), which collectively contribute
474 to systematic biases in dust emission flux estimates.

475 Our findings demonstrate that the carbon neutrality scenario leads to an overall
476 reduction in dust emissions compared to the high fossil fuel scenario, thereby
477 alleviating future pressures on dust control policies. These results highlight the
478 importance of advancing carbon neutrality, which not only achieves climate mitigation
479 targets but also helps reduce dust pollution. Notably, however, East Asia exhibits
480 anomalous increases in dust emissions. Therefore, while implementing carbon
481 neutrality policies, it is essential to additionally strengthen regional measures such as
482 afforestation and the construction of protective forest belts to further prevent dust

483 storms.

484 **Author contributions.** YY designed the research; SY performed the simulations and
485 analyzed the data. All authors including LR, HW, PW, LC, JJ and HL discussed the
486 results and wrote the paper.

487

488 **Acknowledgments.** The Pacific Northwest National Laboratory is operated for the U.S.
489 Department of Energy by the Battelle Memorial Institute under contract DE-AC05-
490 76RLO1830.

491

492 **Financial support.** This study was supported by the National Key Research and
493 Development Program of China (Grant 2024YFF0811400), National Natural Science
494 Foundation of China (Grant 42475032), Natural Science Foundation of the Jiangsu
495 Higher Education Institutions of China (Grant 24KJB170007), and Jiangsu Innovation
496 and Entrepreneurship Team (Grant JSSCTD202346).

497

498 **Conflict of Interest.** At least one of the (co-)authors is a member of the editorial board
499 of ACP.

500

501 **Code and data availability.** The dust optical depth for 2020 level can be obtained from
502 CALIPSO satellite retrievals
503 (https://search.earthdata.nasa.gov/search/granules?p=C1633034978-LARC_ASDC,
504 last access:1 June 2025). The CESM model is publicly available at
505 <http://www.cesm.ucar.edu/models/> (last access:1 June 2025). The processed modeling
506 data are available at <https://doi.org/10.5281/zenodo.15478736> (last access:1 June 2025).

507 **References**

508 Akinsanola, A. A., Adebiyi, A. A., Bobde, V., Adeyeri, O. E., Tamoffo, A. T., and Danso,
509 D. K.: Projected changes in African easterly wave activity due to climate change,
510 *Commun. Earth Environ.*, 6, 2, <https://doi.org/10.1038/s43247-024-01981-9>, 2025.

511 Banerjee, P., Satheesh, S. K., and Krishna Moorthy, K.: Is the Atlantic Ocean driving
512 the recent variability in South Asian dust?, *Atmos. Chem. Phys.*, 21, 17665–17685,
513 <https://doi.org/10.5194/acp-21-17665-2021>, 2021.

514 Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S.,
515 Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., and
516 Wise, M.: The SSP4: A world of deepening inequality, *Global Environ. Change*,
517 42, 284–296, 2017.

518 Chen, L., Msigwa, G., Yang, M., Osman, A. I., Fawzy, S., Rooney, D. W., and Yap, P-
519 S.: Strategies to achieve a carbon neutral society: a review, *Environ. Chem. Lett.*,
520 20, 2277–2310, <https://doi.org/10.1007/s10311-022-01435-8>, 2022.

521 Chen, Y., Chen, S., Bi, H., Zhou, J., and Zhang, Y.: Where is the Dust Source of 2023
522 Several Severe Dust Events in China?, *Bull. Amer. Meteor. Soc.*, 105, E2085–
523 E2096, <https://doi.org/10.1175/BAMS-D-23-0121.1>, 2024.

524 Chen, Z., Zhou, T., Zhang, W., Li, P., and Zhao, S.: Projected changes in the annual
525 range of precipitation under stabilized 1.5°C and 2.0°C warming futures, *Earth's
526 Future*, 8, e2019EF001435, <https://doi.org/10.1029/2019EF001435>, 2020.

527 Choobari, O. A., Zawar-Reza, P., and Sturman, A.: The global distribution of mineral
528 dust and its impacts on the climate system: A review, *Atmos. Res.*, 138, 152-165,
529 <https://doi.org/10.1016/j.atmosres.2013.11.007>, 2014.

530 Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V.,
531 Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R.,
532 Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global
533 response of terrestrial ecosystem structure and function to CO₂ and climate change:
534 Results from six dynamic global vegetation models, *Global. Change Biology*, 7(4),
535 357-373, <https://doi.org/10.1046/j.1365-2486.2001.00383.x>, 2001.

536 Das, S., Giorgi, F., Giuliani, G., Dey, S., and Coppola, E.: Near-future anthropogenic
537 aerosol emission scenarios and their direct radiative effects on the present-day
538 characteristics of the Indian summer monsoon, *J. Geophys. Res-atmos.*, 125,
539 e2019JD031414, <https://doi.org/10.1029/2019JD031414>, 2020.

540 Dong, Z., Wang, H., Qian, G., Luo, W., and Zhang, Z.: Wind shear with a blowing-sand
541 boundary layer, *Geophys. Res. Lett.*, 33, L22804,
542 <https://doi.org/10.1029/2006GL026739>, 2006.

543 Francis, D., Fonseca, R., Nelli, N., Teixido, O., Mohamed, R., and Perry, R.: Increased
544 Shamal winds and dust activity over the Arabian Peninsula during the COVID-19
545 lockdown period in 2020, *Aeolian Res.*, 55, 100786,
546 <https://doi.org/10.1016/j.aeolia.2022.100786>, 2022.

547 Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P.,
548 Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M.,
549 Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri,
550 S., Rao, S., Schmid, E., Schoepp, W., and Riahi, K.: The marker quantification of
551 the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st
552 century, *Global Environ. Change*, 42, 251–267,
553 <https://doi.org/10.1016/j.gloenvcha.2016.06.004>, 2017.

554 Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka,
555 Y., and Kainuma, M.: SSP3: AIM implementation of shared socioeconomic
556 pathways, *Global Environ. Change*, 42, 268–283,
557 <https://doi.org/10.1016/j.gloenvcha.2016.06.009>, 2017.

558 Fussell, J. C., and Kelly, F. J.: Mechanisms underlying the health effects of desert sand
559 dust, *Environ. Int.*, 157, 106790, <https://doi.org/10.1016/j.envint.2021.106790>,
560 2021.

561 Gao, J., Yang, Y., Wang, H., Wang, P., Li, H., Li, M., Ren, L., Yue, X., and Liao, H.:
562 Fast climate responses to emission reductions in aerosol and ozone precursors in
563 China during 2013–2017, *Atmos. Chem. Phys.*, 22, 7131–7142,
564 <https://doi.org/10.5194/acp-22-7131-2022>, 2022.

565 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale
566 attribution of anthropogenic and natural dust sources and their emission rates
567 based on MODIS Deep Blue aerosol products, *Rev. Geophys.*, 50, RG3005,
568 <https://doi.org/10.1029/2012RG000388>, 2012.

569 Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation of global
570 dust distribution with the GOCART model: correlation with North Atlantic
571 Oscillation, *Environ. Modell. Softw.*, 19, 113–128, [https://doi.org/10.1016/S1364-8152\(03\)00114-2](https://doi.org/10.1016/S1364-8152(03)00114-2), 2004.

573 Gomez, J., Allen, R. J., Turnock, S. T., Horowitz, L. W., Tsagiris, K., Bauer, S. E.,
574 Olivié, D., Thomson, E. S., and Ginoux, P.: The projected future degradation in air
575 quality is caused by more abundant natural aerosols in a warmer world, *Commun.
576 Earth Environ.*, 4, 22, <https://doi.org/10.1038/s43247-023-00688-7>, 2023.

577 Goudie, A. S.: Desert dust and human health disorders, *Environ. Int.*, 63, 101–113,
578 <https://doi.org/10.1016/j.envint.2013.10.011>, 2014.

579 Griffin, D. W.: Atmospheric Movement of Microorganisms in Clouds of Desert Dust
580 and Implications for Human Health, *Clin. Microbiol. Rev.*, 20, 459–477,
581 <https://doi.org/10.1128/cmr.00039-06>, 2007.

582 Gui, K., Yao, W., Che, H., An, L., Zheng, Y., Li, L., Zhao, H., Zhang, L., Zhong, J.,
583 Wang, Y., and Zhang, X.: Record-breaking dust loading during two mega dust
584 storm events over northern China in March 2021: aerosol optical and radiative
585 properties and meteorological drivers, *Atmos. Chem. Phys.*, 22, 7905–7932,
586 <https://doi.org/10.5194/acp-22-7905-2022>, 2022.

587 Hu, Z., Ma, Y., Jin, Q., Idrissa, N. F., Huang, J., and Dong, W.: Attribution of the March
588 2021 exceptional dust storm in North China, *Bull. Am. Meteorol. Soc.*, 104, E749–
589 E755, <https://doi.org/10.1175/BAMS-D-22-0151.1>, 2023.

590 Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J.,
591 Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long,
592 M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein,
593 M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The
594 Community Earth System Model: A Framework for Collaborative Research, *Bull.*
595 *Am. Meteor. Soc.*, 94, 1339–1360, <https://doi.org/10.1175/BAMS-D-12-00121.1>,
596 2013.

597 Jacobson, M. Z., and Kaufman, Y. J.: Wind reduction by aerosol particles, *Geophys.*
598 *Res. Lett.*, 33, L24814, <https://doi.org/10.1029/2006GL027838>, 2006.

599 Jethva, H., Satheesh, S. K., and Srinivasan, J.: Seasonal variability of aerosols over the
600 Indo-Gangetic basin, *J. Geophys. Res.*, 110, D21204,
601 <https://doi.org/10.1029/2005JD005938>, 2005.

602 Jiang, D., Zhang, Y. and Lang, X.: Vegetation feedback under future global warming,
603 *Theor. Appl. Climatol.*, 106, 211–227, <https://doi.org/10.1007/s00704-011-0428-6>, 2011.

604 Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N.,
605 Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N.,
606 Laroche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I.,
607 and Torres, R.: Global Iron Connections Between Desert Dust, Ocean
608 Biogeochemistry, and Climate, *Science*, 308, 67-71,
609 <https://doi.org/10.1126/science.1105959>, 2005.

610 Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M.,
611 Colarco, P. R., Hamilton, D. S., Huang, Y., Ito, A., Klose, M., Li, L., Mahowald,
612 N. M., Miller, R. L., Obiso, V., Pérez García-Pando, C., Rocha-Lima, A., and Wan,
613 J. S.: Contribution of the world's main dust source regions to the global cycle of
614 desert dust, *Atmos. Chem. Phys.*, 21, 8169–8193, <https://doi.org/10.5194/acp-21-8169-2021>, 2021.

615 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S.,
616 Albani, S., and Haustein, K.: Smaller desert dust cooling effect estimated from
617 analysis of dust size and abundance, *Nat. Geosci.*, 10, 274–278,
618 <https://doi.org/10.1038/ngeo2912>, 2017.

619 Kok, J. F., Storelvmo, T., Karydis, V.A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T.,
620 He, C., and Leung, D. M.: Mineral dust aerosol impacts on global climate and
621 climate change, *Nat. Rev. Earth Environ.*, 4, 71–86,
622 <https://doi.org/10.1038/s43017-022-00379-5>, 2023.

623 Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J.,
624 Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I.,

627 Bertram, C., Dietrich, J.-P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-
628 Campen, H., Biewald, A., Bonsch, M., Giannousakis, A., Kreidenweis, U., Müller,
629 C., Rolinski, S., Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K.,
630 Emmerling, J., Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5):
631 an energy and resource intensive scenario for the 21st century, *Global Environ.*
632 *Change*, 42, 297–315, 2017.

633 Kuzmina, S. I., Bengtsson, L., Johannessen, O. M., Drange, H., Bobylev, L. P., and
634 Miles, M. W.: The North Atlantic Oscillation and greenhouse-gas forcing,
635 *Geophys. Res. Lett.*, 32, L04703, <https://doi.org/10.1029/2004GL021064>, 2005.

636 Lee, S., and Feldstein, S. B.: Detecting Ozone- and Greenhouse Gas–Driven Wind
637 Trends with Observational Data, *Science*, 339, 563–567,
638 <https://doi.org/10.1126/science.1225154>, 2013.

639 Lei, Y., Wang, Z., Wang, D., Zhang, X., Chen, H., Yue, X., Tian, C., Zhong, J., Guo, L.,
640 Li, L., Zhou, H., Liu, L., and Xu, Y.: Co-benefits of carbon neutrality in enhancing
641 and stabilizing solar and wind energy, *Nat. Clim. Chang*, 13, 693–700,
642 <https://doi.org/10.1038/s41558-023-01692-7>, 2023.

643 Li, B., Liao, H., Li, K., Wang, Y., Zhang, L., Guo, Y., Liu, L., Li, J., Jin, J., Yang, Y.,
644 Gong, C., Wang, T., Shen, W., Wang, P., Dang, R., Liao, K., Zhu, Q., and Jacob,
645 D. J.: Unlocking nitrogen management potential via large-scale farming for air
646 quality and substantial Co-benefits, *Natl. Sci. Rev.*, 11, nwae324,
647 <https://doi.org/10.1093/nsr/nwae324>, 2024.

648 Lindvall, J., Svensson, G., and Hannay, C.: Evaluation of Near-Surface Parameters in
649 the Two Versions of the Atmospheric Model in CESM1 using Flux Station
650 Observations, *J. Climate*, 26, 26–44, <https://doi.org/10.1175/JCLI-D-12-00020.1>,
651 2013.

652 Liu, J., Wang, X., Wu, D., Wei, H., Li, Y., and Ji, M.: Historical footprints and future
653 projections of global dust burden from bias-corrected CMIP6 models, *npj Clim.*
654 *Atmos. Sci.*, 7, 1, <https://doi.org/10.1038/s41612-023-00550-9>, 2024.

655 Liu, X., Chen, S., Guo, Z., Zhou, H., Chen, Y., Kang, Y., Liu, Q., Huang, G., Liu, T.,
656 Chen, C., and He, Q.: The influence of dusts on radiation and temperature over the
657 eastern Asia with a regional climate model, *Sci. Total Environ.*, 792, 148351,
658 <https://doi.org/10.1016/j.scitotenv.2021.148351>, 2021.

659 Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch,
660 P. J.: Description and evaluation of a new four-mode version of the Modal Aerosol
661 Module (MAM4) within version 5.3 of the Community Atmosphere Model,
662 *Geosci. Model Dev.*, 9, 505–522, <https://doi.org/10.5194/gmd-9-505-2016>, 2016.

663 Ma, X., Huang, G., and Cao, J.: The significant roles of anthropogenic aerosols on
664 surface temperature under carbon neutrality, *Sci. Bull.*, 67, 470–473,
665 <https://doi.org/10.1016/j.scib.2021.10.022>, 2022.

666 Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M.,
667 Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John,
668 A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J.,
669 Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and
670 Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas
671 concentrations and their extensions to 2500, *Geosci. Model Dev.*, 13, 3571–3605,
672 <https://doi.org/10.5194/gmd-13-3571-2020>, 2020.

673 Meng, Q., Yan, C., Li, R., Zhang, T., Zheng, M., Liu, Y., Zhang, M., Wang, G., Du, Y.,
674 Shang, C., and Fu, P.: Variations of PM2.5-bound elements and their associated
675 effects during long-distance transport of dust storms: Insights from multi-sites
676 observations, *Sci. Total Environ.*, 889, 164062,
677 <https://doi.org/10.1016/j.scitotenv.2023.164062>, 2023.

678 Menut, L., Tuccella, P., Flamant, C., Deroubaix, A., and Gaetani, M.: The role of
679 aerosol-radiation-cloud interactions in linking anthropogenic pollution over
680 southern west Africa and dust emission over the Sahara, *Atmos. Chem. Phys.*, 19,
681 14657–14676, <https://doi.org/10.5194/acp-19-14657-2019>, 2019.

682 Min, Q. L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., and Chang, F.:
683 Evidence of mineral dust altering cloud microphysics and precipitation, *Atmos.*
684 *Chem. Phys.*, 9, 3223–3231, <https://doi.org/10.5194/acp-9-3223-2009>, 2009.

685 Myhre, G., Forster, P. M., Samset, B. H., Hodnebrog, Ø., Sillmann, J., Aalbergsjø, S.
686 G., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M.,
687 Kharin, V., Lamarque, J. F., Olivié, D., Richardson, T., Shindell, D., Shine, K. P.,
688 Stjern, C. W., Takemura, T., Voulgarakis, A., and Zwiers, F.: PDRMIP: A
689 Precipitation Driver and Response Model Intercomparison Project, Protocol and
690 preliminary results, *Bull. Am. Meteorol. Soc.*, 98(6), 1185–1198,
691 <https://doi.org/10.1175/bams-d-16-0019.1>, 2017.

692 Nabavi, S. O., Haimberger, L., and Samimi, Cyrus.: Climatology of dust distribution
693 over West Asia from homogenized remote sensing data, *Aeolian Res.*, 21, 93–107,
694 <https://doi.org/10.1016/j.aeolia.2016.04.002>, 2016.

695 Notaro, M., Vavrus, S., and Liu, Z.: Global Vegetation and Climate Change due to
696 Future Increases in CO₂ as Projected by a Fully Coupled Model with Dynamic
697 Vegetation, *J. Climate*, 20, 70–90, <https://doi.org/10.1175/JCLI3989.1>, 2007.

698 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence,
699 P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., and Decker, M.: Technical
700 description of version 4.0 of the Community Land Model (CLM) (NCAR/TN-
701 478+STR), University Corporation for Atmospheric Research,
702 <https://doi.org/10.5065/D6FB50WZ>, 2010.

703 Pabortsava, K., Lampitt, R. S., Benson, J., Crowe, C., McLachlan, R., Moigne, F. A.,
704 Moore, C. M., Pebody, C., Provost, P., Rees, A. P., Tilstone, G. H., and Woodward,

705 E. M. S.: Carbon sequestration in the deep Atlantic enhanced by Saharan dust, *Nat.*
706 *Geosci.*, 10, 189–194, <https://doi.org/10.1038/ngeo2899>, 2017.

707 Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental
708 characterization of global sources of atmospheric soil dust identified with the
709 nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,
710 *Rev. Geophys.*, 40(1), 1002, <https://doi.org/10.1029/2000RG000095>, 2002.

711 Qin, Y., Zhou, M., Hao, Y., Huang, X., Tong, D., Huang, L., Zhang, C., Cheng, J., Gu,
712 W., Wang, L., He, X., Zhou, D., Chen, Q., Ding, A., and Zhu, T.: Amplified
713 positive effects on air quality, health, and renewable energy under China's carbon
714 neutral target, *Nat. Geosci.*, 17, 411–418, <https://doi.org/10.1038/s41561-024-01425-1>, 2024.

715 Qu, M., Shen, L., Zeng, Z., Yang, B., Zhong, H., Yang, X. and Liu, X.: Prolonged wind
716 droughts in a warming climate threaten global wind power security, *Nat. Clim.
717 Chang.* 15, 842–849, <https://doi.org/10.1038/s41558-025-02387-x>, 2025.

718 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, Climate, and
719 the Hydrological Cycle, *Science*, 294, 2119-2124,
720 <https://doi.org/10.1126/science.1064034>, 2001.

721 Ravi, S., and D'Odorico, P.: A field-scale analysis of the dependence of wind erosion
722 threshold velocity on air humidity, *Geophys. Res. Lett.*, 32, L21404,
723 <https://doi.org/10.1029/2005GL023675>, 2005.

724 Ren, L., Yang, Y., Wang, H., Wang, P., Yue, X., and Liao, H.: Co-benefits of mitigating
725 aerosol pollution to future solar and wind energy in China toward carbon neutrality,
726 *Geophys. Res. Lett.*, 51, e2024GL109296,
727 <https://doi.org/10.1029/2024GL109296>, 2024.

728 Roy, D., Kim, J., Lee, M., and Park, J.: Adverse impacts of Asian dust events on human
729 health and the environment—A probabilistic risk assessment study on particulate
730 matter-bound metals and bacteria in Seoul, South Korea, *Sci. Total Environ.*, 875,
731 162637, <https://doi.org/10.1016/j.scitotenv.2023.162637>, 2023.

732 Seager, R., Cane, M., Henderson, N., Lee, D., Abernathey, R., and Zhang, H.:
733 Strengthening tropical Pacific zonal sea surface temperature gradient consistent
734 with rising greenhouse gases, *Nat. Clim. Change*, 9, 517–522,
735 <https://doi.org/10.1038/s41558-019-0505-x>, 2019.

736 Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami,
737 M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in
738 Earth system science, *Aeolian Res.*, 2, 181-204,
739 <https://doi.org/10.1016/j.aeolia.2011.02.001>, 2011.

740 Singh, C., Ganguly, D., and Dash, S. K.: Dust load and rainfall characteristics and their
741 relationship over the South Asian monsoon region under various warming
742 scenarios, *J. Geophys. Res. Atmos.*, 122, 7896-7921,
743 <https://doi.org/10.1002/2017JD027451>, 2017.

744

745 Su, B., Huang, J., Mondal, S. K., Zhai, J., Wang, Y., Wen, S., Gao, M., Lv, Y., Jiang, S.,
746 Jiang, T., and Li, A.: Insight from CMIP6 SSP-RCP scenarios for future drought
747 characteristics in China, *Atmos. Res.*, 250, 105375,
748 <https://doi.org/10.1016/j.atmosres.2020.105375>, 2021.

749 Tanaka, T. Y., and Chiba, M.: A numerical study of the contributions of dust source
750 regions to the global dust budget, *Glob. Planet. Change*, 52, 88-104,
751 <https://doi.org/10.1016/j.gloplacha.2006.02.002>, 2006.

752 Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E.: Relative importance of
753 climate and land use in determining present and future global soil dust emission,
754 *Geophys. Res. Lett.*, 31, L05105, <https://doi.org/10.1029/2003GL019216>, 2004.

755 van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Doelman, J. C., van den Berg, M.,
756 Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y.,
757 Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van
758 Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse
759 gas emissions trajectories under a green growth paradigm, *Global Environ.*
760 *Change*, 42, 237–250, 2017.

761 Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J.-
762 H., Ma, P.-L., and Vinoj, V.: Sensitivity of remote aerosol distributions to
763 representation of cloud–aerosol interactions in a global climate model, *Geosci.*
764 *Model Dev.*, 6, 765–782, <https://doi.org/10.5194/gmd-6-765-2013>, 2013.

765 Wang, P., Yang, Y., Xue, D., Ren, L., Tang, J., Leung, L. R., and Liao, H.: Aerosols
766 overtake greenhouse gases causing a warmer climate and more weather extremes
767 toward carbon neutrality, *Nat. Commun.*, 14, 7257,
768 <https://doi.org/10.1038/s41467-023-42891-2>, 2023.

769 Woodward, S., Roberts, D. L., and Betts, R. A.: A simulation of the effect of climate
770 change–induced desertification on mineral dust aerosol, *Geophys. Res. Lett.*, 32,
771 L18810, <https://doi.org/10.1029/2005GL023482>, 2005.

772 Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., Darmenov, A., Wu, C., Wang, Z.,
773 Luo, T., Feng, Y., and Ke, Z.: Understanding processes that control dust spatial
774 distributions with global climate models and satellite observations, *Atmos. Chem.*
775 *Phys.*, 20, 13835–13855, <https://doi.org/10.5194/acp-20-13835-2020>, 2020.

776 Wubben, E., Spiering, B. R., Veenstra, T., Bos, R., Wang, Z., van Dijk, J., Raffi, I.,
777 Witkowski, J., Hilgen, F. J., Peterse, F., Sangiorgi, F., and Sluijs, A.: Tropical
778 warming and intensification of the West African Monsoon during the Miocene
779 Climatic Optimum, *Paleoceanogr. Paleoclimatol.*, 39, e2023PA004767,
780 <https://doi.org/10.1029/2023PA004767>, 2024.

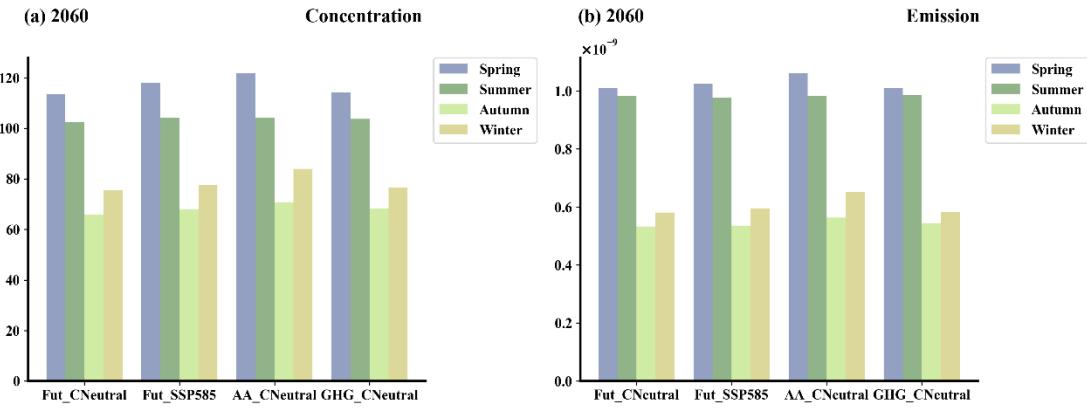
781 Xie, X., Myhre, G., Che, H., Wu, F., Guo, J., Shi, Z., Li, X., Liu, X., and Liu, Y.:
782 Anthropogenic sulfate-climate interactions suppress dust activity over East Asia,
783 *Commun. Earth Environ.*, 6, 159, <https://doi.org/10.1038/s43247-025-02147-x>,
784 2025.

785 Yang, Y., Zeng, L., Wang, H., Wang, P., and Liao, H.: Climate effects of future aerosol
786 reductions for achieving carbon neutrality in China, *Sci. Bull.*, 68, 902-905,
787 <https://doi.org/10.1016/j.scib.2023.03.048>, 2023.

788 Yang, Y., Zeng, L., Wang, H., Wang, P., and Liao, H.: Dust pollution in China affected
789 by different spatial and temporal types of El Niño, *Atmos. Chem. Phys.*, 22,
790 14489–14502, <https://doi.org/10.5194/acp-22-14489-2022>, 2022.

791 Yuan, T., Huang J., Cao J., Zhang G., and Ma X.: Indian dust-rain storm: Possible
792 influences of dust ice nuclei on deep convective clouds, *Sci. Total Environ.*, 779,
793 146439, <https://doi.org/10.1016/j.scitotenv.2021.146439>, 2021.

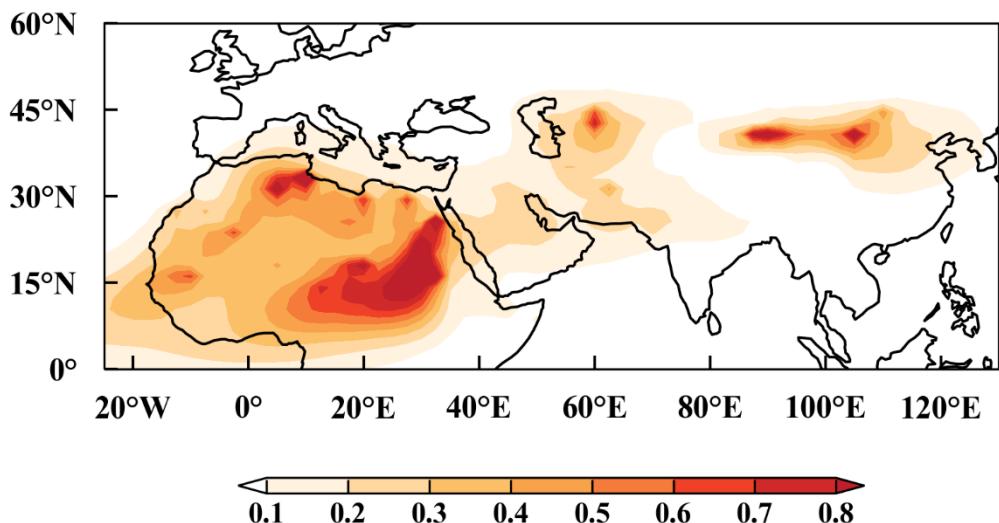
794 Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition
795 (DEAD) model: Description and 1990s dust climatology, *J. Geophys. Res.*, 108,
796 4416, <https://doi.org/10.1029/2002JD002775>, D14, 2003.


797 Zhang, Y., Yu, F., Luo, G., Fan, J., and Liu, S.: Impacts of long-range-transported
798 mineral dust on summertime convective cloud and precipitation: a case study over
799 the Taiwan region, *Atmos. Chem. Phys.*, 21, 17433–17451,
800 <https://doi.org/10.5194/acp-21-17433-2021>, 2021.

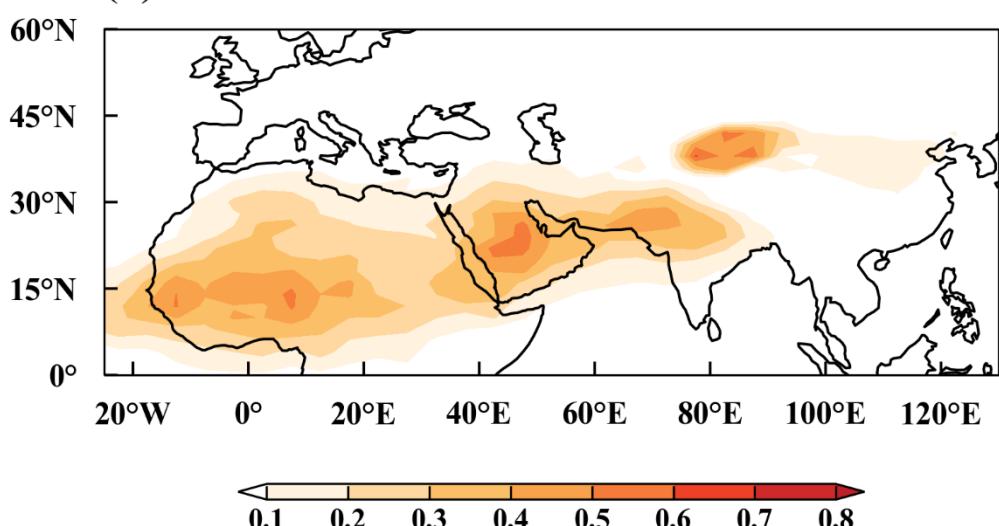
801 Zhao, Y., Yue, X., Cao, Y., Zhu, J., Tian, C., Zhou, H., Chen, Y., Hu, Y., Fu, W., and
802 Zhao, X.: Multi-model ensemble projection of the global dust cycle by the end of
803 21st century using the Coupled Model Intercomparison Project version 6 data,
804 *Atmos. Chem. Phys.*, 23, 7823–7838, <https://doi.org/10.5194/acp-23-7823-2023>,
805 2023.

806 Zhou, Y., Wu, T., Zhou, Y., Zhang, J., Zhang, F., Su, X., Jie, W., Zhao, H., Zhang, Y.,
807 and Wang, J.: Can global warming bring more dust?, *Clim. Dyn.*, 61, 2693–2715,
808 <https://doi.org/10.1007/s00382-023-06706-w>, 2023.

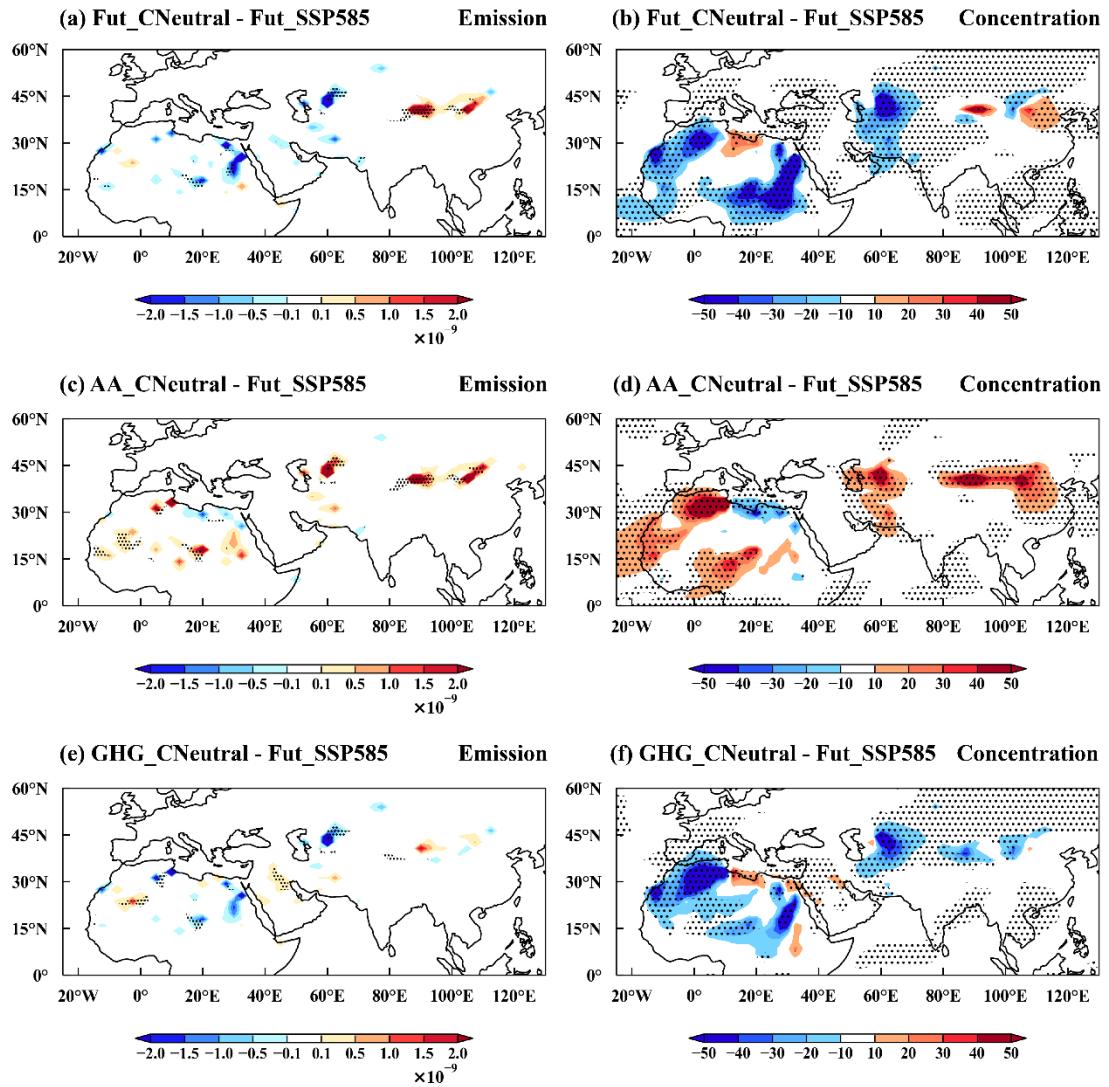
809 Zhu, J., Yang, Y., Wang, H., Gao, J., Liu, C., Wang, P., and Liao, H.: Impacts of
810 projected changes in sea surface temperature on ozone pollution in China toward
811 carbon neutrality, *Sci. Total Environ.*, 915, 170024,
812 <https://doi.org/10.1016/j.scitotenv.2024.170024>, 2024.


813

814
815 **Figure 1.** Seasonal mean (a) dust near-surface concentration ($\mu\text{g m}^{-3}$) and (b) dust
816 emission ($\text{kg m}^{-2} \text{s}^{-1}$) during boreal spring (March-April-May), summer (June-July-
817 August), Autumn (September-October-November) and winter (December-January-
818 February) of 2060 over the dust belt (0° – 60°N , 25°W – 130°E) simulated from the
819 Fut_CNeutral, Fut_SSP585, AA_CNeutral and GHG_CNeutral simulations.
820


821
822 (a) CESM

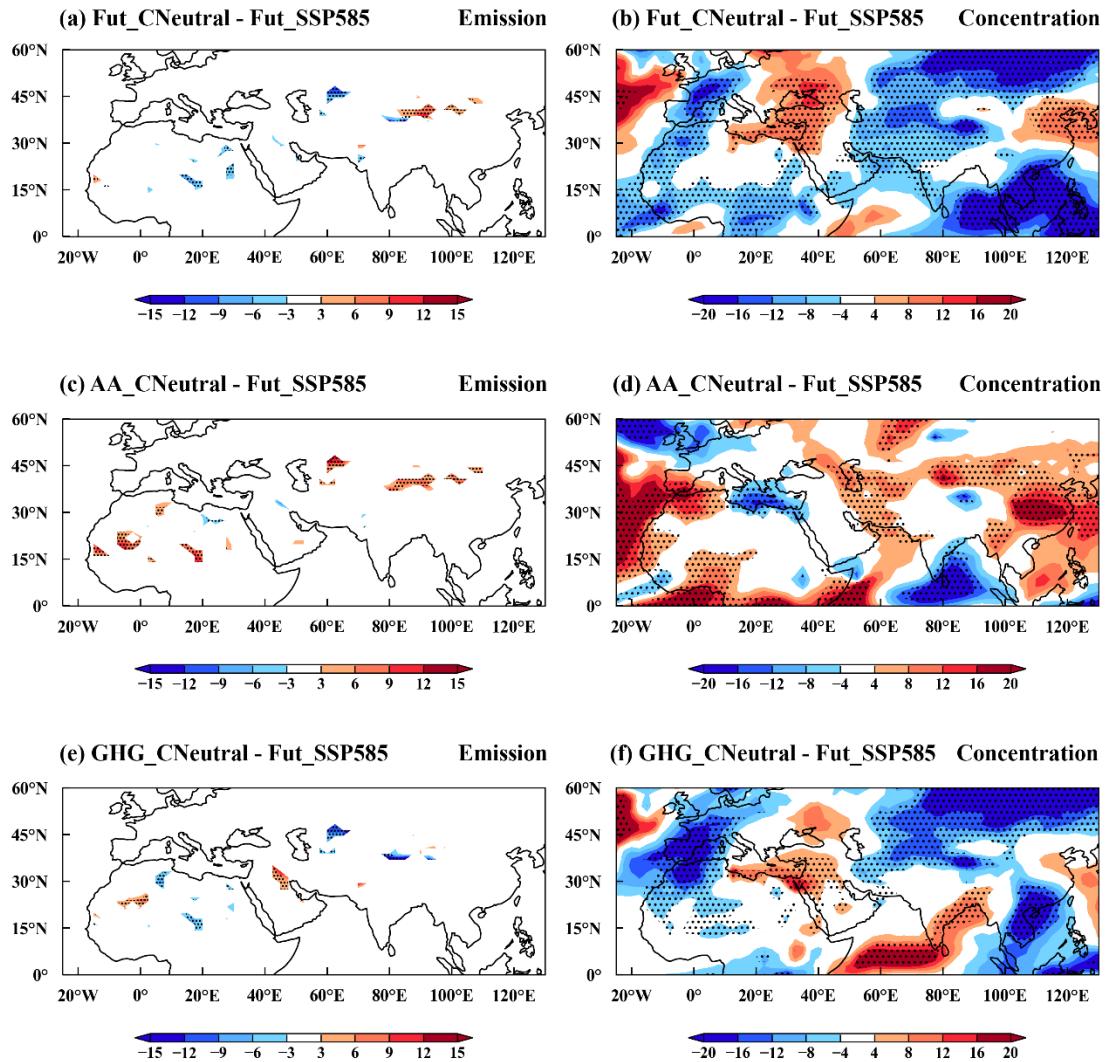
823 3-5



826 (b) CALIPSO

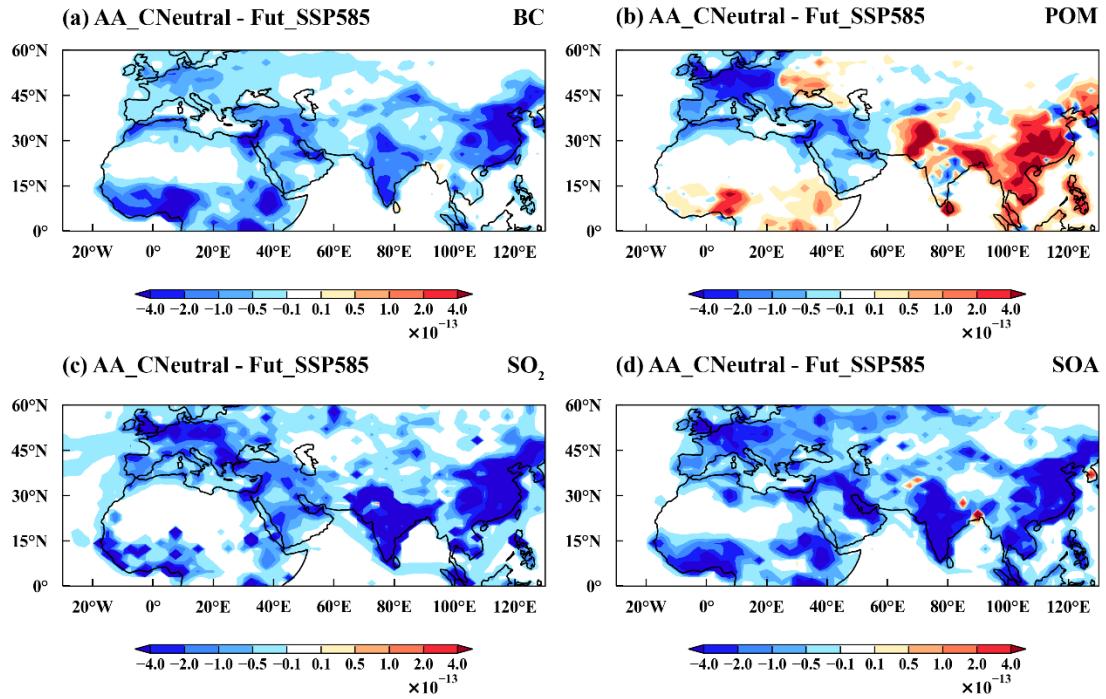
827 3-5

830 **Figure 2.** Spatial distribution of the average dust optical depth (DOD) from March to
831 May 2020 from (a) the CESM model simulation (Fut_2020) and (b) the CALIPSO
832 satellite observations averaged over 2017–2021.

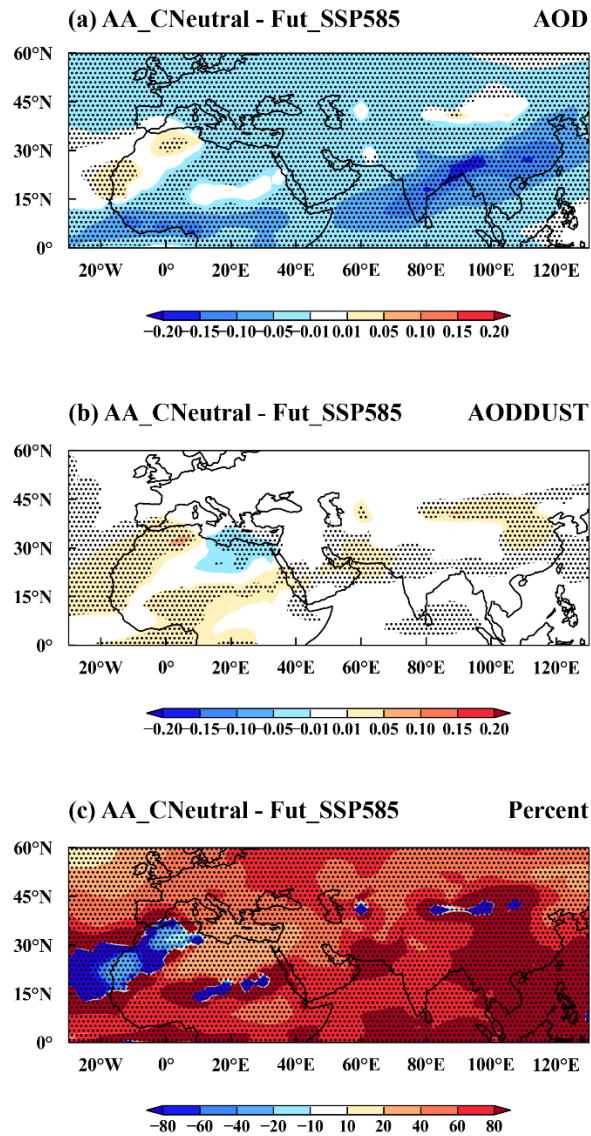


826

827 **Figure 3.** Spatial distribution of changes in March–May mean (a, c, e) dust emissions
 828 ($\text{kg m}^{-2} \text{ s}^{-1}$) and (b, d, f) near-surface dust concentrations ($\mu\text{g m}^{-3}$) in 2060 for
 829 Fut_CNeutral (top), AA_CNeutral (middle), and GHG_CNeutral (bottom) compared to
 830 the Fut_SSP585 simulation. The stippled areas indicate statistically significant
 831 differences at the 90% confidence level based on a two-tailed Student's t test.

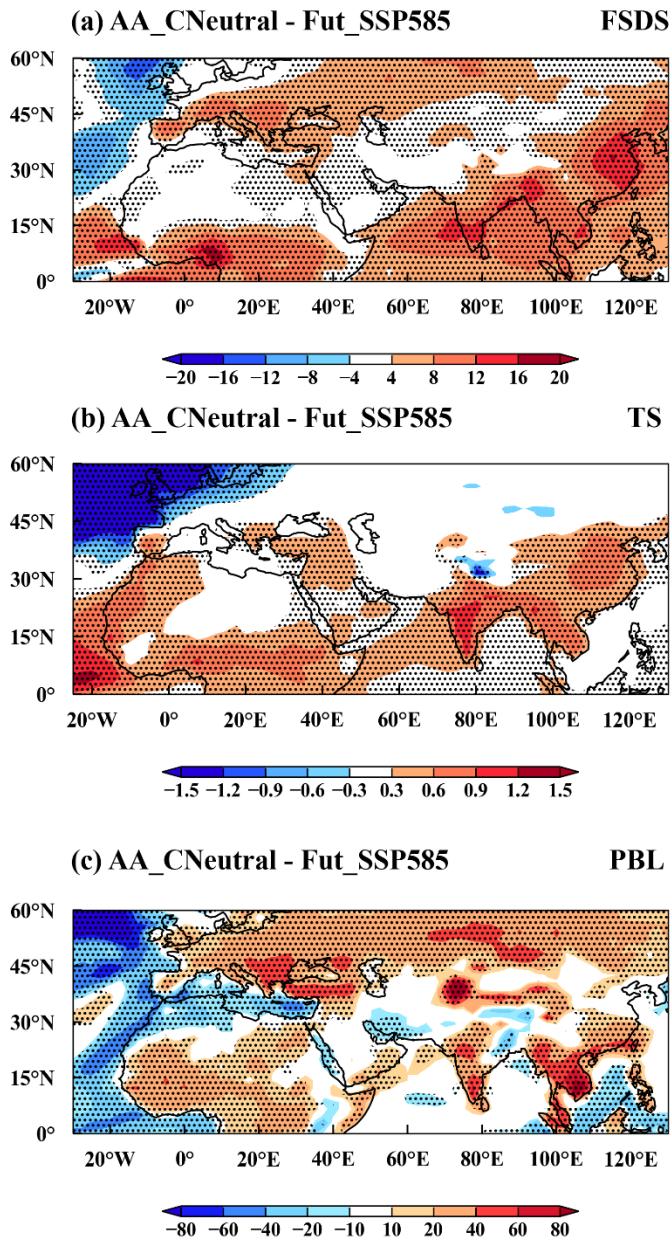

832

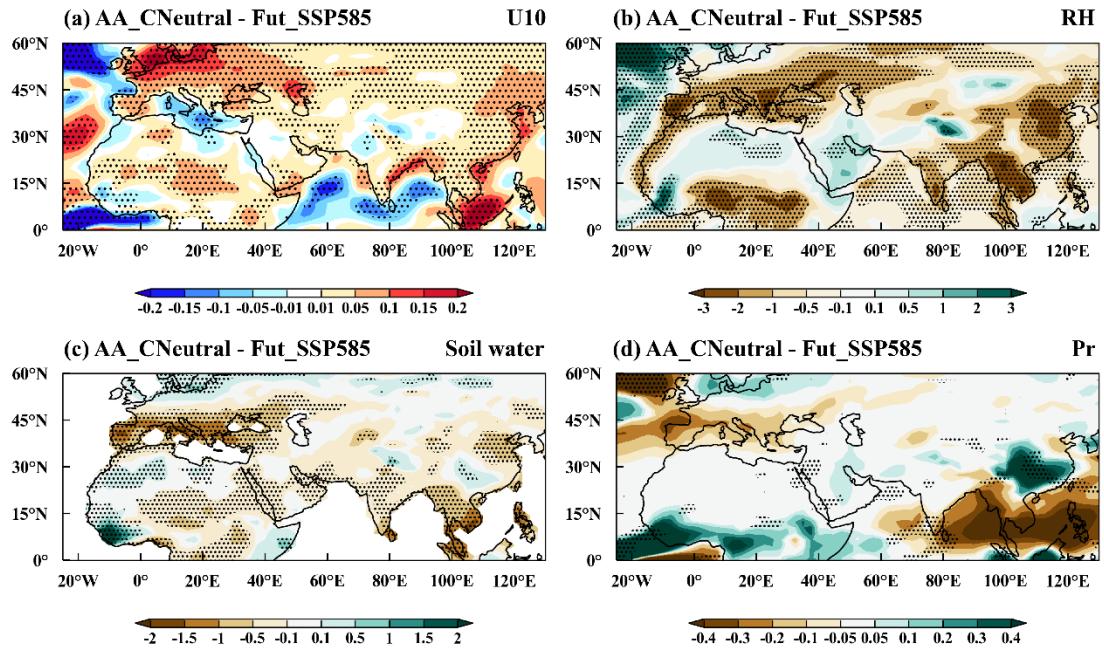
833


834

835 **Figure 4.** Spatial distribution of percentage changes in March–May mean (a, c, e) dust
 836 emissions (%) and (b, d, f) near-surface dust concentrations (%) in 2060 for
 837 Fut_CNeutral (top), AA_CNeutral (middle), and GHG_CNeutral (bottom) compared to
 838 the Fut_SSP585 simulation. The stippled areas indicate statistically significant
 839 differences at the 90% confidence level based on a two-tailed Student's t-test.
 840

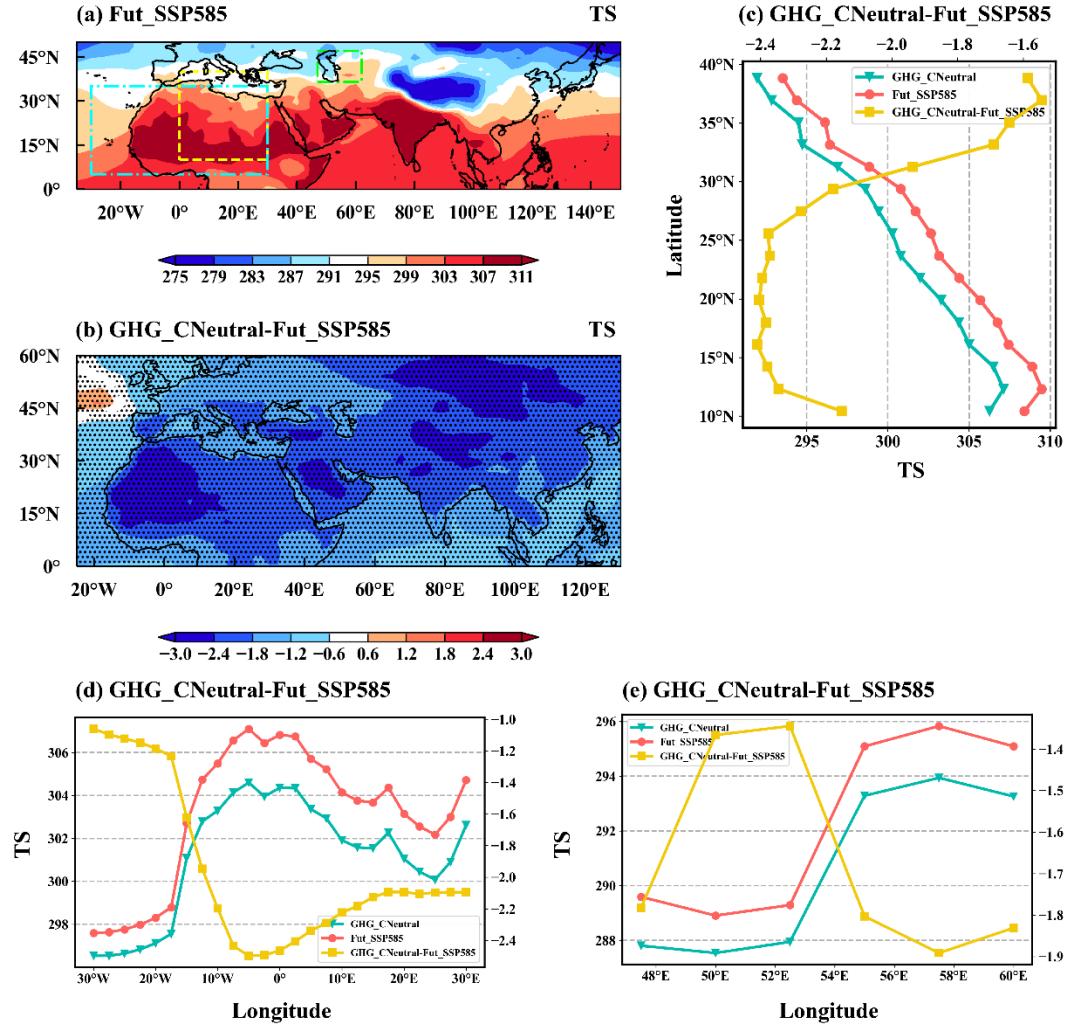
841
842 **Figure 5.** Spatial distribution of changes in March–May mean (a) black carbon (BC,
843 $\text{kg m}^{-2} \text{s}^{-1}$), (b) particulate organic matter (POM, $\text{kg m}^{-2} \text{s}^{-1}$), (c) sulfur dioxide (SO_2 , kg
844 $\text{m}^{-2} \text{s}^{-1}$), and (d) precursor gas of secondary organic aerosol (SOAG, $\text{Tg m}^{-2} \text{yr}^{-1}$) in 2060
845 for AA_CNeutral, compared to the Fut_SSP585 simulation.


846
847


848

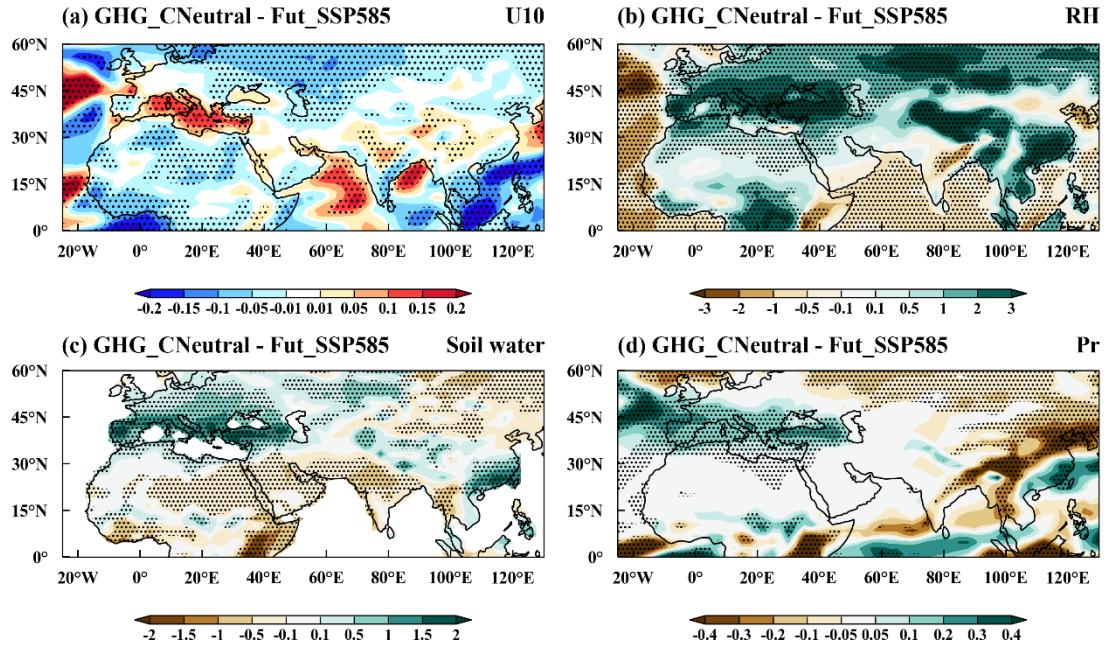
849 **Figure 6.** Spatial distribution of changes in March–May mean (a) aerosol optical depth
 850 (AOD), (b) aerosol optical depth from dust (AODDUST), and (c) the fraction of sulfate
 851 AOD change in total AOD change (%) in 2060 for AA_CNeutral, compared to the
 852 Fut_SSP585 simulation.

853


854
 855 **Figure 7.** Spatial distribution of changes in March–May mean (a) downwelling solar
 856 flux at the surface (FSDS, W/m^2), (b) surface temperature (TS, K), and (c) planetary
 857 boundary layer height (PBL, m), in 2060 for AA_CNeural, compared to the
 858 Fut_SSP585 simulation. The stippled areas indicate statistically significant differences
 859 at the 90% confidence level based on a two-tailed Student's t test.

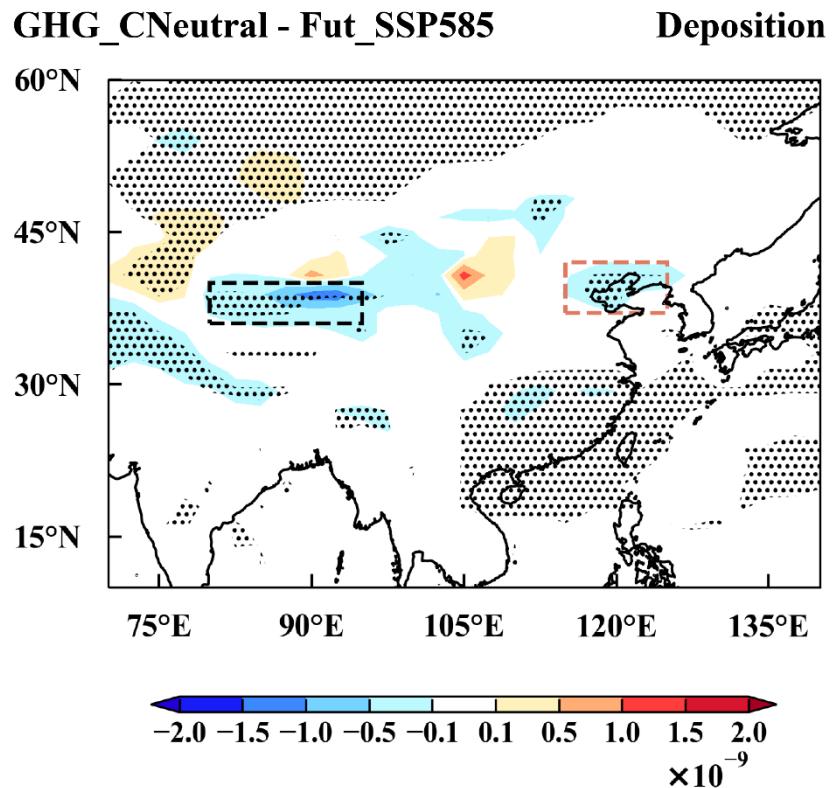
861

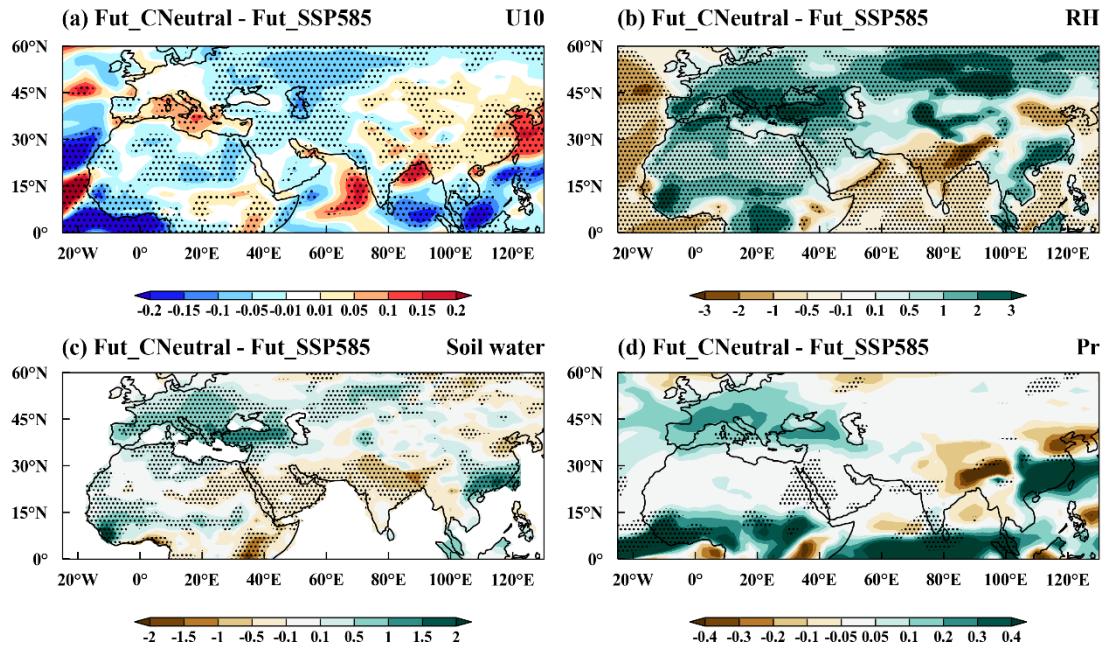
862 **Figure 8.** Spatial distribution of changes in March–May mean (a) 10-meter wind speed
 863 (U10, m s^{-1}), (b) relative humidity (RH, %), (c) soil water content (soil water, kg m^{-2}),
 864 and (d) precipitation rate (pr, mm day^{-1}) in 2060 for AA_CNeutral, compared to the
 865 Fut_SSP585 simulation. The stippled areas indicate statistically significant differences
 866 at the 90% confidence level based on a two-tailed Student's t test.


867

868

869 **Figure 9.** Spatial distribution of March–May mean (a) surface temperature (TS, K) in
 870 2060 from **Fut_SSP585** and (b) changes in March–May mean surface temperature (TS, K)
 871 in 2060 for **GHG_CNeutral**, compared to the **Fut_SSP585** simulation. The stippled
 872 areas in (a) and (b) indicate statistically significant differences at the 90% confidence
 873 level based on a two-tailed Student's t test. (c) Zonal averaged TS (K) over the region
 874 (10°–40°N, 0°–30°E, yellow) and (d–e) meridional averaged TS (K) over the regions
 875 (5°–35°N, 30°W–30°E, blue; 36.5°–47°N, 47°–62°E, green) marked in (a) from March
 876 to May in 2060 for **GHG_CNeutral**, **Fut_SSP5-8.5**, and the changes between
 877 **GHG_CNeutral** and **Fut_SSP5-8.5**.

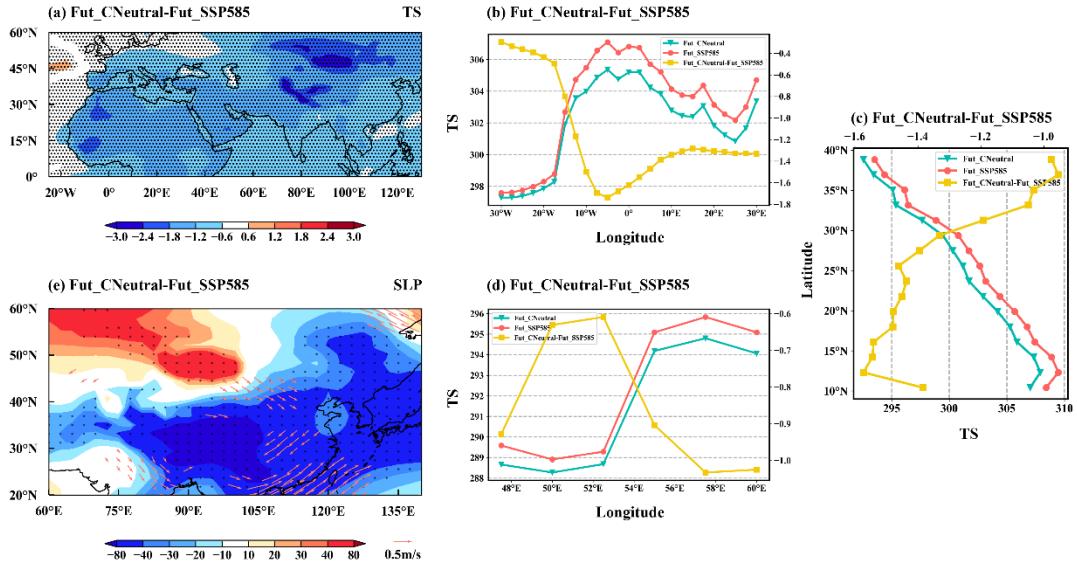

878


879

880 **Figure 10.** Spatial distribution of changes in March–May mean (a) 10-meter wind
 881 speed (U10, m s^{-1}), (b) relative humidity (RH, %), (c) soil water content (soil water, kg
 882 m^{-2}), and (d) precipitation rate (pr, mm day^{-1}) in 2060 for GHG_CNeutral, compared to
 883 the Fut_SSP585 simulation. The stippled areas indicate statistically significant
 884 differences at the 90% confidence level based on a two-tailed Student's t test.

885

886
 887 **Figure 11.** Spatial distribution of dust deposition ($\text{kg m}^{-2} \text{ s}^{-1}$) changes for the period of
 888 March to May in 2060 between GHG_CNeutral and Fut_SSP585 scenarios. The stippled
 889 areas indicate statistically significant differences at the 90% confidence level based on
 890 a two-tailed Student's t test. Negative values denote more dust deposition to the surface.
 891 The Taklimakan (black box) and North China Plain (brown box) are highlighted.
 892
 893



894

895 **Figure 12.** Spatial distribution of changes in March–May mean (a) 10-meter wind
 896 speed (U10, m s^{-1}), (b) relative humidity (RH, %), (c) soil water content (soil water, kg m^{-2}),
 897 and (d) precipitation rate (pr, mm day^{-1}) in 2060 for *Fut_CNeutral*, compared to
 898 the *Fut_SSP585* simulation. The stippled areas indicate statistically significant
 899 differences at the 90% confidence level based on a two-tailed Student's t test.

900

901

Figure 13. Spatial distribution of changes in March–May mean (a) surface temperature (TS, K) and (e) sea level pressure (SLP, Pa) in 2060 for *Fut_CNeutral*, compared to the *Fut_SSP585* simulation. The stippled areas in (a) and (b) indicate statistically significant differences at the 90% confidence level based on a two-tailed Student's t test. (c) Zonal averaged TS (K) over the region (10° – 40° N, 0° – 30° E) and (b, d) meridional averaged TS (K) over the regions (5° – 35° N, 30° W– 30° E; 36.5° – 47° N, 47° – 62° E) marked in (a) from March to May in 2060 for *Fut_CNeutral*, *Fut_SSP5-8.5*, and the changes between *Fut_CNeutral* and *Fut_SSP5-8.5*.