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Abstract 26 

To mitigate future global warming, many countries have implemented rigorous 27 

climate policies for carbon neutrality. Given some shared emission sources with 28 

greenhouse gases (GHGs), aerosol particles and their precursor emissions are expected 29 

to be reduced as the consequences of global efforts in climate mitigation and 30 

environmental improvement, potentially inducing complex climate feedbacks. 31 

However, a clear understanding of the individual effects of anthropogenic aerosols and 32 

GHGs on natural dust concentrations has not yet emerged, especially in the carbon 33 

neutral scenario. Here, we assess the large-scale impacts of reductions in anthropogenic 34 

GHGs and aerosol under a carbon neutral scenario in 2060 on natural dust emissions 35 

and concentrations over the low- to mid-latitudes in the Northern Hemisphere using the 36 

fully coupled Community Earth System Model. Our findings demonstrate a decline in 37 

atmospheric dust loading toward carbon neutrality (SSP1-1.9) relative to the high fossil 38 

fuel scenario (SSP5-8.5). Mechanistic analysis reveals counteracting modulation 39 

mechanisms: (i) Reductions in aerosols amplify surface downwelling shortwave 40 

radiation, convection and wind speed, thereby promoting dust emissions by 6–12% and 41 

concentrations by 4–20% over North Africa, the Central Asia Desert and East Asia; (ii) 42 

GHGs reductions diminish the land-ocean thermal contrast and wind speed, suppressing 43 

dust emissions by 6–15% and concentrations by 8–20% mainly over the Central Asia 44 

Desert and North Africa. The latter drives the future dust responses. These results 45 

highlight that carbon neutral strategies not only achieve climate mitigation goals and 46 

air quality improvements, but also generate synergistic benefits through dust pollution 47 

suppression. 48 

  49 
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1. Introduction 50 

Dust aerosols are a crucial component of the Earth-atmosphere system, exerting 51 

multifaceted influences on environment and climate (Chen et al., 2024; Hu et al., 2023). 52 

They play a significant role in modulating the Earth's radiation budget via aerosol-cloud 53 

and aerosol-radiation interactions. Dust aerosols absorb longwave radiation and scatter 54 

shortwave radiation, thereby influencing atmospheric radiative balance and surface 55 

energy fluxes (Kok et al., 2017, 2023; Liu et al., 2021). Additionally, dust aerosols act 56 

as cloud condensation nuclei, modifying cloud microphysical properties and 57 

subsequently affecting cloud development and precipitation patterns (Min et al., 2009; 58 

Yuan et al., 2021; Zhang et al., 2021). In addition, mineral dust undergoes long-range 59 

atmospheric transport, affecting biogeochemical processes intransports iron to marine 60 

ecosystems through iron deposition (Jickells et al., 2005), which stimulates, stimulating 61 

phytoplankton biomass productiongrowth and amplifies the biologicalenhancing 62 

carbon fixation efficiency ((Jickells et al., 2005; Pabortsava et al., 2017). Furthermore, 63 

dust can reduce visibility, degrade air quality and have important impacts on public 64 

health, particularly in arid and semiarid regions (Fussell et al., 2021; Goudie et al., 2014; 65 

Li et al., 2024; Roy et al., 2023). These health risks are extended beyond proximal desert 66 

margins to distal urban centers by intercontinental transport mechanisms (Griffin et al., 67 

2007; Meng et al., 2023). 68 

The global primary sources of dust emissions are located in the arid zones of the 69 

low- to mid-latitudes in the Northern Hemisphere, with core areas concentrated in the 70 

Sahara Desert of North Africa, the Central Asia Desert, Arabian Desert, Taklamakan 71 

Desert, and Gobi Desert of East Asia, which is often called the dust belt (Prospero et 72 

al., 2002; Shao et al., 2011). Specifically, the North African desert, as the world's largest 73 

dust source, injects approximately 1.0-1.5 billion tons of dust aerosols annually into the 74 

atmosphere, accounting for 50%-65% of the global total dust emissions (Tanaka et al., 75 

2006; Ginoux et al., 2004). Meanwhile, Asian dust sources contribute 30%-40% of the 76 

global dust flux and are identified as the second-largest emission center (Kok et al., 77 

2021).  78 

Dust emission is influenced by climate change, determined by a combination of 79 

natural and anthropogenic factors, including greenhouse gases (GHGs) concentrations, 80 

aerosol loading, and land use, with anthropogenic contributions exhibiting increasing 81 

influence in the post-industrial era (Gui et al., 2022; Tegen et al., 2004). Variations in 82 
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GHGs concentrations further regulate dust transport through large-scale atmospheric 83 

teleconnections. Elevated GHGs levels amplified the North Atlantic Oscillation (NAO) 84 

(Kuzmina et al., 2005), which changed atmospheric circulation patterns and enhanced 85 

dust advection to South Asia (Banerjee et al., 2021). The strengthened West African 86 

monsoon under warming conditions was found to amplify dust emissions (Wubben et 87 

al., 2024). In the arid and semi-arid regions of North and Central Asia, surface warming 88 

enhanced atmospheric instability, thereby intensifying vertical convective motions and 89 

significantly increasing dust emission fluxes (Zhou et al., 2023). Anthropogenic 90 

aerosols are recognized as an important forcing factor in global and regional climate 91 

systems (Ramanathan et al., 2001; Myhre et al., 2017). Analyses of observations from 92 

1979 to 2013 showed that anthropogenic sulfate aerosols over the Asian monsoon 93 

region suppressed dust emissions in East Asia by altering atmospheric dynamics (Xie 94 

et al., 2025). Specifically, sulfate-induced shifts in the Asian westerly jet enhanced 95 

precipitation and reduced surface wind speeds across arid and semi-arid source regions, 96 

thereby limiting dust mobilization. Model simulations illustrated that the combined 97 

reduction of carbonaceous aerosols (black carbon and organic carbon) and increased 98 

sulfate emissions in South Asia synergistically caused atmospheric cooling over 99 

continental regions, which attenuated the zonal thermal gradient, resulting in a 100 

weakening of the Indian summer monsoon circulation (Das et al., 2020). Concurrently, 101 

this altered atmospheric circulation suppressed dust emissions from the Arabian 102 

Peninsula and inhibited dust transport across the Arabian Sea. Observational and 103 

reanalysis data from the COVID-19 pandemic period revealed that anthropogenic 104 

aerosol emission reductions over the Indian subcontinent amplified the Indian summer 105 

monsoon intensity and triggered anomalous convective activity over the tropical Indian 106 

Ocean, which increased surface wind speeds and enhanced dust lifting over the Arabian 107 

Peninsula (Francis et al., 2022). Modeling studies have found that reductions in 108 

anthropogenic aerosol emissions along the West African coast led to a decrease in 109 

aerosol loading, triggering a northward shift of the monsoonal precipitation belt. This 110 

meridional displacement subsequently enhanced surface wind speeds over the Saharan 111 

arid zone, thereby increasing mineral dust emission fluxes through intensified wind 112 

erosion processes (Menut et al., 2019). 113 

Under future climate change, dust distribution will vary depending on the 114 

projected scenarios. Using the Coupled Model Intercomparison Project Phase 5 115 

(CMIP5) multi-model simulations, Singh et al. (2017) showed a 30% increase in 116 
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regional dust loading over the South Asian monsoon region by the end of the 21st 117 

century (2076-2100) relative to 1976-2000 under the RCP8.5 scenario. Zhao et al. 118 

(2023) analyzed the multi-model results under four Shared Socioeconomic Pathways 119 

(SSPs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and found 120 

that global dust loading was expected to increase by 2.0-12.5% by the end of the 21st 121 

century in most future scenarios, except for SSP3-7.0, which shows a slight decline. 122 

Liu et al. (2024) estimated a substantial increase in dust mass loading over North Africa 123 

during 2081-2100 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios from 124 

bias-corrected CMIP6 models. Woodward et al. (2005) showed through HadCM3-125 

coupled model experiments that the annual mean global dust burden would rise by 126 

225%, from the 2000 baseline (4×10⁴ mg m⁻²) to 1.3×10⁵ mg m⁻² by 2100, under a 127 

medium-emission scenario, attributed to desertification and climate change. Gomez et 128 

al. (2023) projected that rising CO2 concentrations would elevate global mean PM2.5 129 

levels, partly driven by intensified dust aerosol emissions attributable to a strengthened 130 

West African monsoon. Akinsanola et al. (2025) found that African easterly wave 131 

activity was projected to undergo a robust intensification across the Sahel region under 132 

both SSP2-4.5 and SSP5-8.5 scenarios by the end of the 21st century, with profound 133 

implications for Saharan dust emission and transport. These studies mainly focus on 134 

investigating dust variations under different Shared Socioeconomic Pathways, thereby 135 

examining only the combined effects of anthropogenic aerosols and GHGs. However, 136 

relatively little attention has been paid to quantifying the individual contributions of 137 

anthropogenic aerosols and GHGs changes to the changing dust concentrations in the 138 

future, especially in the carbon-neutral scenario.  139 

The future climate changes toward carbon neutrality would also affect dust 140 

aerosols, which remains largely unknown. Many countries have committed to achieve 141 

carbon neutrality by the middle of the 21st century to limit global temperature rise to 142 

below 2°C or even 1.5°C by the end of the 21st century. The pursuit of carbon neutrality 143 

will reshape anthropogenic emissions associated with climate and environmental 144 

policies, driving changes in atmospheric composition and radiative forcing (Wang et 145 

al., 2023; Yang et al., 2023). As nations reduce GHGs and aerosol emissions to mitigate 146 

global warming, these shifts are expected to induce complex climate influences. Studies 147 

have suggested that anthropogenic aerosol reductions could enhance surface 148 

downwelling shortwave radiation, elevate near-surface temperatures, and increase wind 149 

speed (Lei et al., 2023; Ren et al., 2024). Projections indicated that by the end of the 150 
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21st century, interannual precipitation variability will intensify by 3.9% and 5.3% under 151 

1.5℃ and 2.0℃ warming scenarios, respectively (Chen et al., 2020). Consequently, the 152 

implementation of carbon neutrality policies is likely to modify the current climate state 153 

and affect various meteorological variables (Seager et al., 2019; Lee et al., 2013), which 154 

are expected to influence dust mobilization. 155 

In the carbon-neutral future, reductions in GHGs and aerosols can change climate 156 

and meteorological factors, which further affect dust emissions and concentrations. 157 

However, existing studies typically focus on dust flux responses to climate change 158 

under future scenarios, thereby examining only the combined effects of anthropogenic 159 

aerosols and GHGs, which also have yet to quantify dust response to future climate 160 

change due to individual changes in anthropogenic aerosols and GHGs for pursuing 161 

carbon neutrality goals (Zhao et al., 2023; Liu et al., 2024). In this study, we conduct 162 

Earth system model experiments to assess the impact of aerosols and GHGs reductions 163 

toward carbon neutrality on meteorological variables such as precipitation, relative 164 

humidity, and wind speed, as well as their implications for dust emissions and 165 

concentrations. Although dust is from both natural and anthropogenic sources. This 166 

study only focuses on dust from natural sources without considering anthropogenic dust. 167 

Given that the combined contribution of dust sources from the North Africa and Asia 168 

exceeds 80% of global dust emissions, this study strategically focuses on the dust belt 169 

regions, including the Sahara Desert, Central Asia Desert, Arabian Desert, Taklamakan 170 

Desert, and Gobi Desert. The findings of this study aim to provide valuable insights to 171 

guide the establishment of dust prevention measures and strategies in global pursuit of 172 

carbon neutrality. The paper is structured as follows. The method and data are presented 173 

in Sect. 2. The results of dust changes related to the reductions in GHGs and aerosols 174 

are shown in Sect. 3. The discussion and the conclusions are given in Sect. 4. 175 

 176 

2. Methods 177 

2.1 Model Description 178 

The fully coupled Community Earth System Model version 1.2.2 (CESM1) 179 

(Hurrell et al., 2013) is used to investigate the effects of meteorological changes 180 

induced by anthropogenic aerosols and GHGs under carbon neutrality on dust 181 

emissions and concentrations. The atmospheric component utilizes the Community 182 

Atmosphere Model version 5 (CAM5), which simulates the major aerosol species, 183 
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including sulfate, black carbon, primary organic aerosol, secondary organic aerosol, 184 

mineral dust and sea salt. These aerosols are distributed in the four lognormal size 185 

distribution modes (i.e., Aitken, accumulation, coarse, and primary carbon modes) (Liu 186 

et al., 2016). Simulations are conducted at 1.9°×2.5° horizontal resolution with 30 187 

vertical layers. Aerosol particles within the same mode are mixed internally, whereas 188 

external mixing assumption is treated for particles between different modes. The dust 189 

emission flux is calculated using the Dust Entrainment and Deposition model 190 

developed by Zender et al. (2003), which is implemented in the Community Land 191 

Model version 4 (CLM4; Oleson et al., 2010). Dust particles are divided into four bins 192 

(0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 μm) in CLM4, and subsequently redistributed to 193 

four modes of the Modal Aerosol Module scheme. The emission or mobilization 194 

process is governed by the synergistic effects of multiple controlling parameters, 195 

including wind friction speed, vegetation cover, and surface soil moisture content. 196 

Aerosol direct and indirect radiative effects are incorporated in CAM5 (Ma et al., 2022). 197 

Furthermore, optimized parameterization schemes for key aerosol processes in CAM5, 198 

such as convective transport and wet deposition, have been implemented to enhance 199 

model performance (Wang et al., 2013). The dynamic oceanic component in CESM1 200 

uses the Parallel Ocean Program version 2 (POP2). In this study, emissions of aerosols 201 

and precursors and GHGs concentrations are obtained from the CMIP6 input data, 202 

specifically adopting the SSP1-1.9 and SSP5-8.5 (shared socioeconomic pathways). 203 

Future emission inventories build on the Shared Socioeconomic Pathways, providing 204 

standardized multidimensional parameters (e.g., population, economy, technology, 205 

environment, institutions) and qualitative narratives at national/regional scales (van 206 

Vuuren et al., 2017; Kriegler et al., 2017; Fujimori et al., 2017; Calvin et al., 2017; 207 

Fricko et al., 2017).  208 

2.2 Experimental Design 209 

To quantify the impacts of anthropogenic aerosols and GHGs on future dust 210 

toward carbon neutrality, four sets of CESM1 equilibrium simulations are designed, 211 

comprising one baseline (Fut_SSP585) and three sensitivity experiments 212 

(Fut_CNeutral, AA_CNeutral and GHG_CNeutral). The SSP1-1.9 represents a 213 

sustainable development scenario focused on ecological restoration, conservation, and 214 

a significant reduction in fossil fuel dependence. This pathway is considered the most 215 

likely to achieve the 1.5 °C target under the Paris Agreement and carbon neutrality in 216 
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the mid-21st century (Su et al., 2021; Wang et al., 2023; Zhu et al., 2024). In contrast, 217 

the SSP5-8.5 follows a high fossil fuel consumption with substantial associated 218 

emissions (Meinshausen et al., 2020). Many countries had committed to achieving 219 

carbon neutrality by 2050 or 2060, with most targets set for the post-2050 period (Chen 220 

et al., 2022). Focusing on the year 2060 therefore ensures direct alignment with policy 221 

timelines and enhances the practical relevance of our results. 222 

The Fut_SSP585 simulation prescribes global GHGs concentrations and 223 

anthropogenic emissions of aerosols and precursors from the CMIP6 input data, with 224 

all forcings held at 2060 levels under the SSP5-8.5 scenario. In Fut_CNeutral 225 

experiment, GHGs concentrations, aerosols, and their precursor emissions are adopted 226 

following SSP1-1.9 emission pathway in 2060, enabling isolation of combined effects 227 

of aerosols and GHGs through comparison with the baseline. The AA_CNeutral 228 

experiment applies anthropogenic emissions of aerosols and precursors from SSP1-1.9 229 

while retaining GHGs concentrations under SSP5-8.5, allowing aerosol effect 230 

quantification by comparing with the baseline. Conversely, we also perform the 231 

GHG_CNeutral simulations in which GHGs concentrations are set to the 2060 levels 232 

under SSP1-1.9, along with aerosol emissions using SSP5-8.5 input data, which allows 233 

comparison with the baseline to estimate the climate impacts of GHGs. One additional 234 

experiment, Fut_2020, is also performed for the model evaluation, with GHGs 235 

concentrations and aerosol emissions set to the 2020 levels under SSP1-1.9. All 236 

simulations are initialized with the same conditions and only the GHGs concentrations 237 

and/or aerosol emissions change in time and space every month. All experiments are 238 

conducted with three ensemble members of different initial conditions, achieved by 239 

applying a small initial perturbation to atmospheric temperature. Each ensemble 240 

member is run for 100 years, with the initial 40 years considered as model spin-up 241 

period, retaining the latter 60 years for analysis. 242 

2.3 Model Evaluation 243 

Numerous studies documented the hemispheric asymmetry of global dust sources, 244 

with most emissions originated from northern hemisphere arid zones, notably North 245 

Africa, Central Asia, East Asia, and the Middle East (Shao et al., 2011; Ginoux et al., 246 

2012; Yang et al., 2022). Consistent with prior studies that highlight peak dust activities 247 

during boreal spring and summer in these regions (Ginoux et al., 2012; Nabavi et al., 248 

2016; Jethva et al., 2005, Choobari et al, 2014), our seasonal analysis for simulations 249 
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in 2060 also reveals substantially elevated dust emissions and concentrations in warm 250 

seasons, especially spring, compared to autumn and winter (Figure 1). In this study, we 251 

mainly focus on spring dust activities. To evaluate model's dust simulation performance, 252 

dust optical depth from model results in boreal spring of 2020 is compared with 253 

CALIPSO satellite retrievals averaged over 2017–2021. The model reasonably 254 

reproduces the overall spatial distribution of dust optical depth (Figure 2), but 255 

overestimates dust loading over parts of Central Asia, Eastern Africa and the Gobi 256 

Desert. Similar discrepancies have been noted in existing studies, indicating that the 257 

deviations between the model and observations are primarily attributable to the 258 

topographic source function and the dust emission scheme used in the model (Wu et al., 259 

2020), which could potentially lead to bias in the quantitative analysis of the results.  260 

3 Results 261 

3.1 Changing dust aerosol toward carbon neutrality 262 

Figures 3a and 3b present the spatial patterns of changes in emission fluxes and 263 

near-surface concentrations of dust aerosols between carbon neutrality (SSP1-1.9) and 264 

high fossil fuel (SSP5-8.5) scenarios driven by both fixed anthropogenic aerosols and 265 

GHGs in 2060. Under the strong decline in anthropogenic emissions toward carbon 266 

neutrality, marked reductions in dust emissions (3–12%) and concentrations (4–16%) 267 

are observed across primary source regions (Figure 4a-b), particularly the North African 268 

dust belt and Central Asian arid corridor, whereas increases in dust emission (3–12%) 269 

and concentrations (4–8%) are found over East Asian dust source regions. Dust 270 

concentrations in most regions exhibit reductions, exceeding 40 μg m⁻³ over North 271 

Africa and Central Asia, while northwestern China and the North China Plain show a 272 

weak increase in dust concentrations. 273 

The simulated future changes in dust concentrations are the combined effects of 274 

the reduction of anthropogenic aerosols and GHGs. Here we also investigate their 275 

respective impacts on future dust changes through sensitivity experiments. Figures 3c-276 

d illustrate the responses of emission fluxes and near-surface concentrations of dust to 277 

anthropogenic aerosol reductions in SSP1-1.9 relative to SSP5-8.5, while 3e-f 278 

demonstrate the responses to GHGs reduction alone. The future reductions in 279 

anthropogenic aerosols would lead to significant increases in dust emissions (6–12%) 280 

and concentrations (4–20%) across the dust belt (Figure 4c-d). However, GHGs 281 

reduction induces decreases in dust loads mainly over North Africa and Central Asia. 282 
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These contrasting patterns indicate opposite dust responses to future reductions in 283 

anthropogenic aerosols and GHGs. The following sections illustrate possible 284 

mechanisms derived from the analysis of key meteorological drivers and their 285 

association with emission reduction strategies. 286 

3.2 Dust increases due to anthropogenic aerosols reductions 287 

Pursuing the carbon neutrality leads to substantial reductions in anthropogenic 288 

emissions of aerosols and precursors. As shown in Figure 5, CMIP6 experiments show 289 

decreases exceeding 8×10-13 kg m-2 s-1 in anthropogenic emissions of aerosols and 290 

precursors, including black carbon, sulfur dioxide and precursor gases of secondary 291 

organic aerosols, over polluted eastern China, South Asia, and parts of Europe and 292 

North Africa in 2060 under SSP1-1.9 scenario compared to SSP5-8.5, while primary 293 

organic matter emissions slightly increase by 4–8×10-13 kg m-2 s-1. Although 294 

anthropogenic aerosol emission changes are primarily concentrated in Asia, reductions 295 

in aerosol optical depth (AOD) of approximately 0.01–0.05 are also evident over remote 296 

regions including Northern Africa (Figure 6a), mainly due to the decreases in sulfate 297 

aerosol (Figures 6b and 6c). Along with the aerosol reduction, the surface downwelling 298 

shortwave radiation increases by 4–12W m-2 (Figure 7a), which further increases the 299 

land surface temperatures by more than 0.6 ℃ over eastern China, Southeast Asia and 300 

North Africa and 0.9 ℃ over South Asia (Figure 7b). Enhanced convective instability 301 

due to the warmer surface condition elevates planetary boundary layer (PBL) heights 302 

over most land regions (Figure 7c). Furthermore, diminished atmospheric heating from 303 

light-absorbing aerosols (e.g., black carbon) in the air reduces lower tropospheric 304 

stability, intensifying convective conditions and resulting in an increase in the PBL 305 

height. The associated strengthening of vertical exchange processes enhances near-306 

surface wind speeds by 0.05–0.1 m s-1 through downward momentum transfer (Figure 307 

8a) (Qin et al., 2024). Note that, the spatial patterns of changes in PBL height show a 308 

mismatch with dust emission changes in some regions, which arises from the imperfect 309 

correspondence between boundary layer height and surface wind speed and has been 310 

reported in many studies (e.g., Jacobson et al. 2006; Qin et al., 2024). The wind speed 311 

responses to aerosol changes reported in these studies agrees with our findings, and the 312 

mechanistic interpretation that aerosol reduction increases wind speed is also consistent 313 

with their established physical understanding. Related to the surface warming driven 314 

by anthropogenic aerosol reductions, relative humidity and soil water content decrease 315 
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(Figures 8b-c). These changes in meteorological and land surface conditions explain 316 

the simulated increases (exceeding 2×10-9 kg m-2 s-1) in dust emissions across the dust 317 

belt due to the anthropogenic aerosol reductions toward carbon neutrality (Figure 3c). 318 

This result is consistent with previous studies (Menut et al., 2019; Xie et al., 2025). 319 

Previous studies have established a robust positive correlation between near-320 

surface wind speed and dust emission fluxes, particularly in arid dust source regions 321 

characterized by chronically low soil moisture and minimal precipitation inputs (Zender 322 

et al., 2003; Dong et al., 2006). Our analysis reveals that anthropogenic aerosol 323 

reductions in SSP1-1.9 relative to SSP5-8.5 amplify 10-m wind speed by 0.05–0.10 m 324 

s⁻¹ across core dust sources (Figures 8a), driving intensified dust emission fluxes (6–325 

12%) and near-surface concentrations (8–16%) in North and Central Africa (Figures 326 

3c-d, Figures 4c-d). The dust-wind speed relationship is modulated by emission 327 

thresholds. In arid areas, the threshold of wind speed for dust mobilization increases 328 

with rising relative humidity (Ravi et al., 2005).). This is primarily due to the enhanced 329 

adsorption layer interactions created by overlapping water films on adjacent soil 330 

particles (Ravi et al., 2005). Consequently, after the reduction of anthropogenic aerosols, 331 

reduced relative humidity by −1% to −3% (Figure 8b) lowers the critical threshold of 332 

wind speed, particularly in Central Africa and East Asia. Additionally, in the major dust 333 

source regions, precipitation changes are minimal and statistically insignificant (Figure 334 

8d), which do not have a large influence on dust concentrations after emitting into the 335 

atmosphere. 336 

3.3 Dust decreases due to greenhouse gas reductions 337 

Figure 9a illustrates the surface temperature distribution in 2060 under SSP5-8.5, 338 

highlighting persistent land-ocean thermal contrast with continental temperatures 339 

around dust source regions much higher than oceanic values. Due to GHGs reductions 340 

in SSP1-1.9 relative to SSP5-8.5, surface temperatures decrease by 1.8–3.0 ℃ over 341 

land and 1.2–1.8 ℃ over adjacent oceans (Figure 9b), where the overall land-sea 342 

contrast is largely due to the higher heat capacity of water than land surface. Figures 9c 343 

and 9d respectively depict the zonal and meridional distributions of surface 344 

temperatures over the Sahara Desert of North Africa. Notably, the surface cooling due 345 

to GHGs reductions is stronger over the Sahara Desert (10°–30°N, 10°W–30°E) than 346 

that over the Mediterranean Sea (north of 30°N) and North Atlantic Ocean (west of 347 

10°W). It diminishes the land-sea temperature gradient, thereby contributing to the 348 
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decline in wind speed over North Africa (Figure 10a). Central Asia Desert also 349 

demonstrates a stronger temperature reduction than the surrounding Caspian Sea 350 

(Figure 9e) and high latitude regions, weakening the land-sea thermal gradient and 351 

thereby driving the decrease in surface wind speed throughout Central Asia (Figure 352 

10a). By reducing the land-ocean thermal contrast, GHG mitigation lowers surface 353 

wind speeds over major dust source regions, leading to a consequent decline in dust 354 

emissions (exceeding 2×10-9 kg m-2 s-1) (Figure 3e), which is consistent with previous 355 

study. Qu et al. (2025) studied prolonged wind droughts in a warming climate. Under 356 

the SSP5-8.5 scenario, they found that wind droughts decreased in the tropics, primarily 357 

due to increased wind speeds. Reversely, in the tropics, global warming amplifies the 358 

land-ocean thermal contrast, thereby strengthening winds. Thus, the mechanism of 359 

wind speed reduction is consistent with established understanding. As a result of the 360 

GHGs reduction implementation, the marked temperature reduction suppresses surface 361 

evaporation and alters atmospheric saturation vapor pressure, thereby increasing 362 

relative humidity by 1–3% across Northern Hemisphere dust source areas (Figure 10b). 363 

Dust emission suppression in North African and Central Asian regions (Figure 3e) 364 

is primarily attributed to the weakened surface wind speeds induced by GHGs reduction 365 

(Figure 10a). The GHGs reduction elevates relative humidity (Figure 10b), which raises 366 

the critical threshold wind velocity required for dust mobilization. It further reduces 367 

dust emission fluxes by 6–15% and atmospheric dust concentrations by 8–20% (Figure 368 

4e-f), particularly in the North African and Central Asian source regions, even though 369 

the soil moisture slightly increases in some regions (Figure 10c). This finding is 370 

consistent with previous research indicating that dust emissions across most source 371 

regions are significantly lower under the low-emission scenarios than under high-372 

emission scenarios (Zhao et al., 2023; Liu et al., 2024; Gomez et al., 2023). The 373 

precipitation does not show significant changes over the North Africa and Central Asia 374 

(Figure 10d). Over East Asia, the decreases in precipitation and soil water, likely related 375 

to the changing atmospheric circulation and moisture transport due to GHGs reductions, 376 

slightly promote the dust emissions over some parts of Taklamakan Desert and Gobi 377 

Desert (Figure 3e). However, decreases in wind speed do not favor the dust transport 378 

(Figure 10a) and are conducive to the local dust deposition. It can be confirmed by the 379 

changes in dust deposition that more dust is removed from the atmosphere over the 380 

Taklamakan Desert and the downwind North China Plain (Figure 11) and the increase 381 

in dust removal surpasses the increase in dust emission (0.5×10-9 to 2×10-9 kg m-2 s-1) 382 
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(Figure 3e). 383 

4 Discussions and Conclusions 384 

In the carbon-neutral future scenario, reductions in GHGs and aerosols for climate 385 

mitigation and environmental improvement could change meteorological conditions 386 

and further influence dust emissions and concentrations. However, critical knowledge 387 

gaps remain in dust response to future climate change for pursuing carbon neutrality 388 

goals. While existing work has captured the combined impacts of anthropogenic 389 

aerosols and GHGs on dust flux under different future scenarios (Singh et al., 2017; 390 

Woodward et al., 2005; Zhao et al., 2023; Liu et al., 2024), the distinct roles of 391 

anthropogenic aerosols versus GHGs in modulating dust flux remain unresolved. Our 392 

work systematically resolves these knowledge gaps. In this study, the individual 393 

impacts of anthropogenic aerosols and GHGs reductions under the global carbon 394 

neutral scenario on dust emissions and concentrations over the dust belt of low- to mid-395 

latitudes in the Northern Hemisphere are investigated using the fully coupled CESM1 396 

model. The distinct effects of future GHGs and aerosol emission changes on dust 397 

emissions are individually assessed. Under carbon neutral scenario (SSP1-1.9), 398 

significant reductions in dust emissions (3–12%) and concentrations (4–16%) are seen 399 

over major Asian and African dust source regions relative to the high fossil fuel scenario 400 

(SSP5-8.5) in 2060 (Figures 4a-b).  401 

Anthropogenic aerosols and GHGs reduction exert opposite impacts on dust 402 

emissions. Due to aerosol reductions toward carbon neutrality, atmospheric convective 403 

is amplified, elevating surface wind speeds by 0.05–0.10 m s⁻¹ and intensifying dust 404 

emissions (exceeding 2×10-9 kg m-2 s-1) and concentrations (exceeding 30 μg m-3), 405 

particularly in the North African, Central Asian, South Asian, and East Asian source 406 

sectors, by year 2060. Additionally, the reduction in aerosols is expected to increase 407 

near-surface temperature by 0.3-1.2°C, decreasing relative humidity and soil water 408 

content, further intensifying dust emissions. In contrast, GHGs reduction diminishes 409 

the land-ocean thermal contrast, suppressing surface winds by 0.01–0.1 m s-1 and 410 

associated dust emissions by 2×10-9 kg m-2 s-1 and concentrations by 50 μg m-3 in North 411 

Africa and Central Asia (Figures 3e-f ). The marked temperature reduction also elevates 412 

relative humidity by 1–3%, suppressing dust generation, due to the GHGs reductions. 413 

Dust emissions over parts of the Taklamakan Desert and Gobi Desert are promoted, 414 

because of a decrease in precipitation and soil water. However, decreases in wind speed 415 
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enhance dust deposition, leading to a decline in near-surface dust concentrations.  416 

Under combined GHG and aerosol reductions, dust emissions decline by 3%–12% 417 

across Northern Africa and Central Asia, contrasting with an increase of 3%–9% in East 418 

Asia (Figures 4a-b). A consistent pattern has been observed in previous research (Liu 419 

et al., 2024). Correspondingly, surface wind speeds decrease by 0.01–0.1 m/s across 420 

Northern Africa and Central Asia but increase by 0.01–0.05 m/s over East Asia (Figure 421 

12a). Concurrently, relative humidity rises more significantly by 0.1%–3% over major 422 

dust source regions (Figure 12b). This increase raises the wind speed threshold for dust 423 

emission, thereby suppressing dust uplift. However, in East Asia, higher wind speeds 424 

offset the suppression from increased humidity. Changes in soil moisture and 425 

precipitation are insignificant in these dust source regions and thus play minor roles in 426 

dust emission (Figure 12c-d). Consequently, the suppressive effect of GHG mitigation 427 

dominates over the promotive effect of aerosol mitigation in Northern Africa and 428 

Central Asia. This outcome primarily results from the stronger cooling effect induced 429 

by GHG reductions compared to the warming caused by anthropogenic aerosol 430 

reductions (Figure 13a). The cooling diminishes the land–ocean thermal contrast across 431 

Africa and Central Asia, further suppressing wind speeds and inhibiting dust emissions 432 

(Figure 13b-d). In contrast, elevated wind speeds over East Asia are linked to an 433 

intensified Mongolia–Siberian High under joint mitigation, as indicated by sea level 434 

pressure increases of 40–80 Pa in Figure 13e. This enhanced pressure gradient 435 

strengthens surface winds and promotes dust emissions across source regions in East 436 

Asia. This study addresses the critical knowledge gaps about the dust response to future 437 

climate change for pursuing carbon neutrality, providing valuable insights to guide the 438 

establishment of dust prevention measures and strategies in global pursuit of carbon 439 

neutrality. 440 

It is noteworthy that the responses of dust emissions and concentrations to the 441 

GHG and aerosol mitigation are not linear. Adding the individual effects of GHGs and 442 

aerosols together, dust emissions and concentrations show less decreases and even 443 

increases in over the Northern Hemisphere dust belt (Figure S1), compared to the 444 

combined effect of GHG and aerosol mitigation (Figure 3). The differences are likely 445 

associated with nonlinear response of wind fields, including both the wind direction 446 

and wind speed, to the temperature changes induced by GHGs and aerosols, which 447 

could offset each other and ultimately lead to divergent responses in dust emissions and 448 

concentrations. 449 
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Dust emissions in the Northern Hemisphere reach a maximum in spring, the 450 

predominant season for dust storm occurrence. Therefore, this study focuses primarily 451 

on dust variations in the spring. Nevertheless, changes in the annual mean dust 452 

emissions are also important. Annual mean dust emission changes are highly consistent 453 

with spring patterns, showing increased emissions from aerosol reductions and 454 

decreased emissions from GHGs mitigation (Figure S2). 455 

Although large model uncertainties exist in the projections of climate response to 456 

anthropogenic forcings, and climate simulated in CESM is relatively more sensitive to 457 

anthropogenic forcings than many other global models (Wang et al., 2023; Ren et al., 458 

2024), inter-model comparisons nevertheless yield consistent results regarding dust 459 

emissions under the SSP1-1.9 and SSP5-8.5 scenarios. Specifically, many CMIP6 460 

models indicate that GHG and aerosol mitigation reduces dust emissions in Northwest 461 

Africa (Figure S3), similar to the CESM simulation. Under future scenario, potential 462 

variations in tropospheric ozone concentrations may introduce additional complexity, 463 

as ozone can modulate key meteorological drivers as a greenhouse gas (Wang et al, 464 

2023; Gao et al, 2022), which can also regulate dust emission processes. It is reasonable 465 

to speculate that the decline in ozone concentrations under carbon neutrality pathways 466 

would lead to a greater reduction in dust emissions relative to SSP5-8.5 than is currently 467 

estimated in this study, if this factor were accounted for. Also, this study does not 468 

consider the land cover change and the potential future forest expansion (Cramer et al., 469 

2001; Notaro et al., 2007; Jiang et al., 2011) may weaken the dust changes toward 470 

carbon neutrality, which deserves further investigation in future work. Furthermore, as 471 

evidenced in our model validation, the CESM dust simulations exhibit inherent 472 

limitations, primarily originating from the topographic source function, the dust 473 

emission scheme, coarse spatial and vertical model resolution, and PBL 474 

parameterization (Wu et al., 2020; Lindvall et al., 2012), which collectively contribute 475 

to systematic biases in dust emission flux estimates. 476 

Our findings demonstrate that the carbon neutrality scenario leads to an overall 477 

reduction in dust emissions compared to the high fossil fuel scenario, thereby 478 

alleviating future pressures on dust control policies. These results highlight the 479 

importance of advancing carbon neutrality, which not only achieves climate mitigation 480 

targets but also helps reduce dust pollution. Notably, however, East Asia exhibits 481 

anomalous increases in dust emissions. Therefore, while implementing carbon 482 

neutrality policies, it is essential to additionally strengthen regional measures such as 483 
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afforestation and the construction of protective forest belts to further prevent dust 484 

storms.  485 
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 816 
Figure 1. Seasonal mean (a) dust near-surface concentration (μg m-3) and (b) dust 817 

emission (kg m-2 s-1) during boreal spring (March-April-May), summer (June-July-818 

August), Autumn (September-October-November) and winter (December-January-819 

February) of 2060 over the dust belt (0°–60°N, 25°W–130°E) simulated from the 820 

Fut_CNeutral, Fut_SSP585, AA_CNeutral and GHG_CNeutral simulations. 821 
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 823 

Figure 2. Spatial distribution of the average dust optical depth (DOD) from March to 824 

May 2020 from (a) the CESM model simulation (Fut_2020) and (b) the CALIPSO 825 

satellite observations averaged over 2017–2021. 826 
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 828 

Figure 3. Spatial distribution of changes in March–May mean (a, c, e) dust emissions 829 

(kg m-2 s-1) and (b, d, f) near-surface dust concentrations (μg m-3) in 2060 for 830 

Fut_CNeutral (top), AA_CNeutral (middle), and GHG_CNeutral (bottom) compared to 831 

the Fut_SSP585 simulation. The stippled areas indicate statistically significant 832 

differences at the 90% confidence level based on a two-tailed Student's t test. 833 
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 836 

Figure 4. Spatial distribution of percentage changes in March–May mean (a, c, e) dust 837 

emissions (%) and (b, d, f) near-surface dust concentrations (%) in 2060 for 838 

Fut_CNeutral (top), AA_CNeutral (middle), and GHG_CNeutral (bottom) compared to 839 

the Fut_SSP585 simulation. The stippled areas indicate statistically significant 840 

differences at the 90% confidence level based on a two-tailed Student's t-test. 841 
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 843 
Figure 5. Spatial distribution of changes in March–May mean (a) black carbon (BC, 844 

kg m-2 s-1), (b) particulate organic matter (POM, kg m-2 s-1), (c) sulfur dioxide (SO2, kg 845 

m-2 s-1), and (d) precursor gas of secondary organic aerosol (SOAG, Tg m-2 yr-1) in 2060 846 

for AA_CNeural, compared to the Fut_SSP585 simulation. 847 
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 850 

Figure 6. Spatial distribution of changes in March–May mean (a) aerosol optical depth 851 

(AOD), (b) aerosol optical depth from dust (AODDUST), and (c) the fraction of sulfate 852 

AOD change in total AOD change (%) in 2060 for AA_CNeural, compared to the 853 

Fut_SSP585 simulation. 854 
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 856 

Figure 7. Spatial distribution of changes in March–May mean (a) downwelling solar 857 

flux at the surface (FSDS, W/m2), (b) surface temperature (TS, K), and (c) planetary 858 

boundary layer height (PBL, m), in 2060 for AA_CNeural, compared to the 859 

Fut_SSP585 simulation. The stippled areas indicate statistically significant differences 860 

at the 90% confidence level based on a two-tailed Student's t test. 861 
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 863 

Figure 8. Spatial distribution of changes in March–May mean (a) 10-meter wind speed 864 

(U10, m s-1), (b) relative humidity (RH, %), (c) soil water content (soil water, kg m-2), 865 

and (d) precipitation rate (pr, mm day−1) in 2060 for AA_CNeural, compared to the 866 

Fut_SSP585 simulation. The stippled areas indicate statistically significant differences 867 

at the 90% confidence level based on a two-tailed Student's t test. 868 
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 870 

Figure 9. Spatial distribution of March–May mean (a) surface temperature (TS, K) in 871 

2060 from Fut_SSP585 and (b) changes in March-May mean surface temperature (TS, 872 

K) in 2060 for GHG_CNeural, compared to the Fut_SSP585 simulation. The stippled 873 

areas in (a) and (b) indicate statistically significant differences at the 90% confidence 874 

level based on a two-tailed Student's t test. (c) Zonal averaged TS (K) over the region 875 

(10°–40°N, 0°–30°E, yellow) and (d-e) meridional averaged TS (K) over the regions 876 

(5°–35°N, 30°W–30°E, blue; 36.5°–47°N, 47°–62°E, green) marked in (a) from March 877 

to May in 2060 for GHG_CNeutral, Fut_SSP5-8.5, and the changes between 878 

GHG_CNeutral and Fut_SSP5-8.5. 879 
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 881 

Figure 10. Spatial distribution of changes in March–May mean (a) 10-meter wind 882 

speed (U10, m s-1), (b) relative humidity (RH, %), (c) soil water content (soil water, kg 883 

m-2), and (d) precipitation rate (pr, mm day−1) in 2060 for GHG_CNeural, compared to 884 

the Fut_SSP585 simulation. The stippled areas indicate statistically significant 885 

differences at the 90% confidence level based on a two-tailed Student's t test. 886 
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 888 
Figure 11. Spatial distribution of dust deposition (kg m-2 s-1) changes for the period of 889 

March to May in 2060 between GHG_CNeural and Fut_SSP585 scenarios. The stippled 890 

areas indicate statistically significant differences at the 90% confidence level based on 891 

a two-tailed Student's t test. Negative values denote more dust deposition to the surface. 892 

The Taklimakan (black box) and North China Plain (brown box) are highlighted. 893 
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 896 

Figure 12. Spatial distribution of changes in March–May mean (a) 10-meter wind 897 

speed (U10, m s-1), (b) relative humidity (RH, %), (c) soil water content (soil water, kg 898 

m-2), and (d) precipitation rate (pr, mm day−1) in 2060 for Fut_CNeutral, compared to 899 

the Fut_SSP585 simulation. The stippled areas indicate statistically significant 900 

differences at the 90% confidence level based on a two-tailed Student's t test. 901 
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 904 

Figure 13. Spatial distribution of changes in March–May mean (a) surface temperature 905 

(TS, K) and (e) sea level pressure (SLP, Pa) in 2060 for Fut_CNeutral, compared to the 906 

Fut_SSP585 simulation. The stippled areas in (a) and (b) indicate statistically 907 

significant differences at the 90% confidence level based on a two-tailed Student's t 908 

test. (c) Zonal averaged TS (K) over the region (10°–40°N, 0°–30°E) and (b, d) 909 

meridional averaged TS (K) over the regions (5°–35°N, 30°W–30°E; 36.5°–47°N, 47°–910 

62°E) marked in (a) from March to May in 2060 for Fut_CNeutral, Fut_SSP5-8.5, and 911 

the changes between Fut_CNeutral and Fut_SSP5-8.5. 912 
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