Supplement of

Groundwater storage dynamics and climate variability in the Lower Kutai Basin of Indonesia: reconciling GRACE ΔGWS to piezometry

Supplementary Figures and Tables

Table S1: Comparison of the three GRACE datasets: JPL, CSR, and GSFC.

GRACE data	JPL (RL06M)	CSR (RL06.3)	GSFC (RL06v2.0)
Effective	3°	10	1°
resolution			
Spatial	0.5°	0.25°	0.5°
sampling			
Baseline	2004-2009	2004-2009	2004-2010
period			
Land and	Coastline Resolution Improvement	There is no CRI filter applied as in the	Similar to CSR, no CRI
ocean	(CRI) filter.	JPL version.	filter has been applied to
separation			the dataset.
Downscaling	A set of gain factors is provided	The data were originally estimated in the	The 1° data have been
approach	separately to correct signal attenuation	1° geodesic grid domain but were	resampled onto 0.5° grids.
	and restore the original terrestrial water	resampled and released as 0.25° grids.	Land values are computed
	storage (TWS) signals. These gain		using a least-squares
	factors are derived from the CLM		estimator.
	hydrology model, which operates at a		
	0.5° spatial resolution. A least-squares		
	fitting method is employed to align the		
	'mascon-averaged' hydrology model		
	with the original 3° resolution data.		
Direct use	Users need to apply the optional gain	Users do not need to apply postprocessing	No postprocessing or
	factors for the 0.5° grids.	or scaling factors to the GRACE data, as	scaling factors are
		these solutions can be used as-is for their	required. The data are
		applications.	ready to be used as-is.
Notes for using	Although the data are represented on	Although the mascon solutions appear to	Unlike the JPL and CSR
the data	0.5° grids, neighboring grids are not	have a resolution of ~120 km, the	datasets, no explicit notes
	entirely independent of each other. The	effective resolution is constrained by the	are provided regarding the
	provided gain factors are suitable for	fundamental spatial limitation of	use of this dataset.
	hydrology-related signals but should	GRACE, roughly equivalent to a 300 km	However, the fundamental
	not be applied to mountain glaciers or	radius Gaussian smoother. The dataset	resolution of ~300 km
	ice sheets.	should only be used for basin-scale	should constrain the
		analyses and should not be applied to a	applications of this data.
		single grid point. Users should exercise	
		caution when using the dataset for basins	
		smaller than ~200,000 km ² .	
References	Watkins et al. (2015); Landerer and	Save et al. (2016)	Loomis et al. (2019)
	Swenson (2012); Wiese et al. (2016)	Website:	Website:
	Website:	https://www2.csr.utexas.edu/grace/RL060	https://earth.gsfc.nasa.gov/
	https://grace.jpl.nasa.gov/data/get-	3_mascons.html	geo/data/grace-mascons
	data/jpl_global_mascons/		

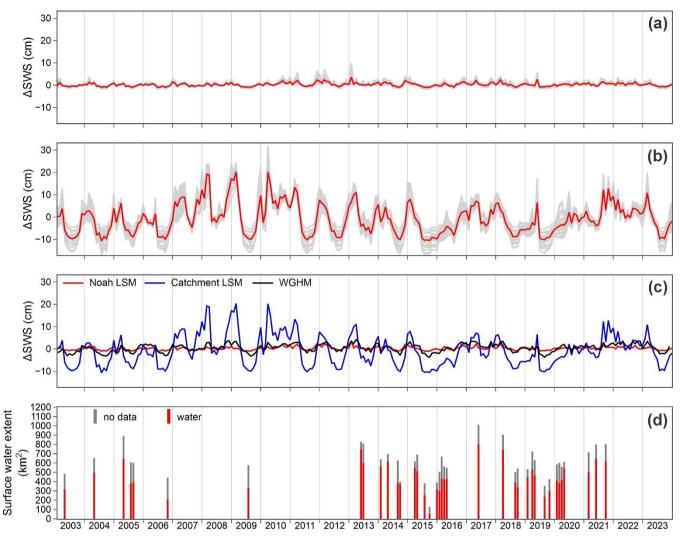


Figure S1: Comparison of Δ SWS between (a) Noah LSM, (b) Catchment LSM, and (c) the ensemble of both LSMs and the WGHM dataset. In panels (a) and (b), gray lines represent uncertainty derived from the composite Δ SWS of both LSMs, whereas red lines indicate the mean Δ SWS. In panel (c), the black line shows the mean Δ SWS from WGHM, and the red and blue lines correspond to the mean Δ SWS from Noah and Catchment LSMs, respectively. Panel (d) displays surface water extent (red bars) from Pekel et al. (2016), with gray bars indicating areas with \leq 20% missing data.

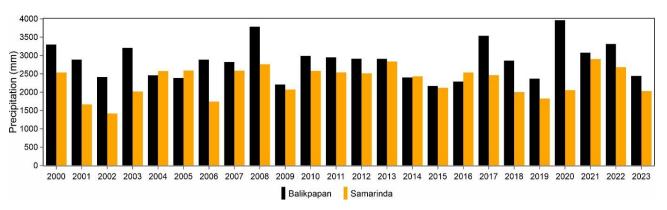


Figure S2: Annual precipitation recorded at Balikpapan and Samarinda stations.

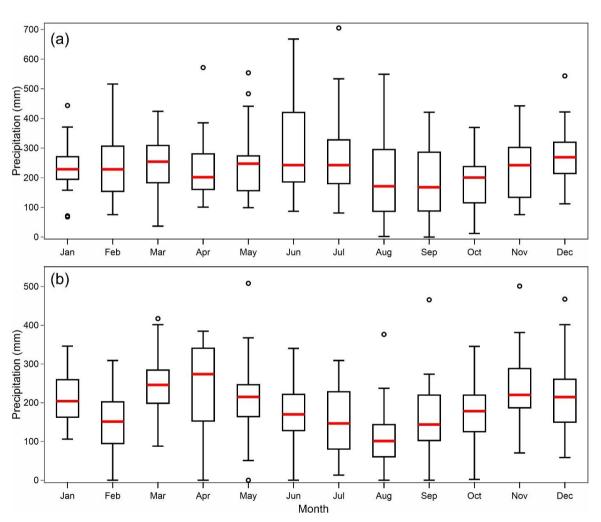


Figure S3: Boxplots of monthly precipitation at (a) Balikpapan and (b) Samarinda stations over a 24-year period (2000-2023). Red lines indicate median values.

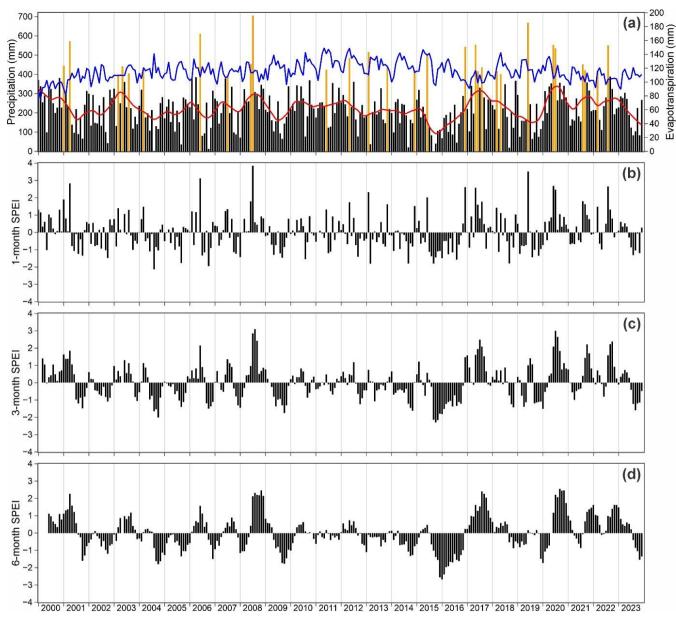


Figure S4: (a) Monthly rainfall records (black and orange bars) at Balikpapan station. Orange bars indicate extreme rainfall events (>90th percentile), whereas the red line represents the precipitation trend derived using LOESS. Evapotranspiration from Noah LSM is shown as a blue line in (a). Plots (b) to (d) display the calculated SPEI.

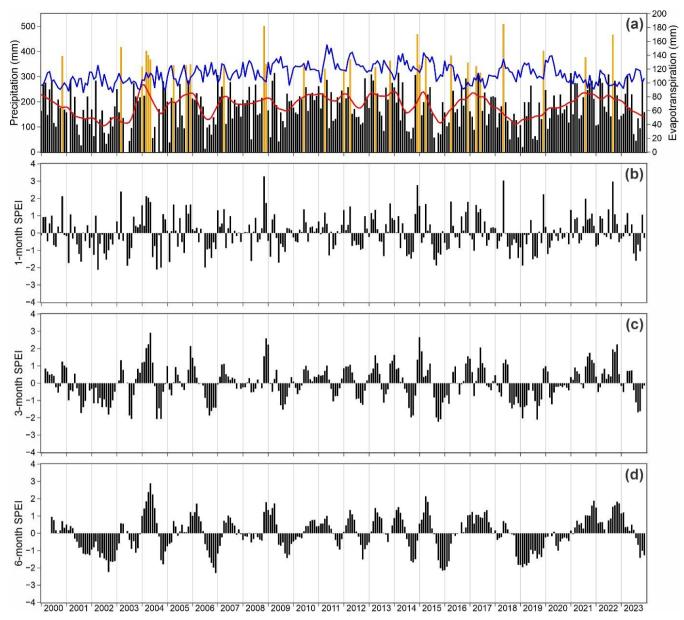


Figure S5: (a) Monthly rainfall records (black and orange bars) at Samarinda station. Orange bars indicate extreme rainfall events (>90th percentile), whereas the red line represents the precipitation trend derived using LOESS. Evapotranspiration from Noah LSM is shown as a blue line in (a). Plots (b) to (d) display the calculated SPEI.

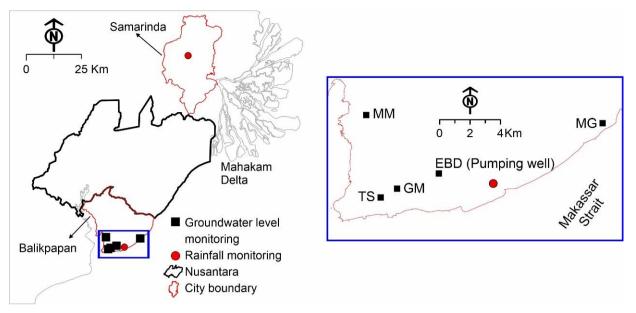


Figure S6: Map showing the locations of groundwater level monitoring sites.

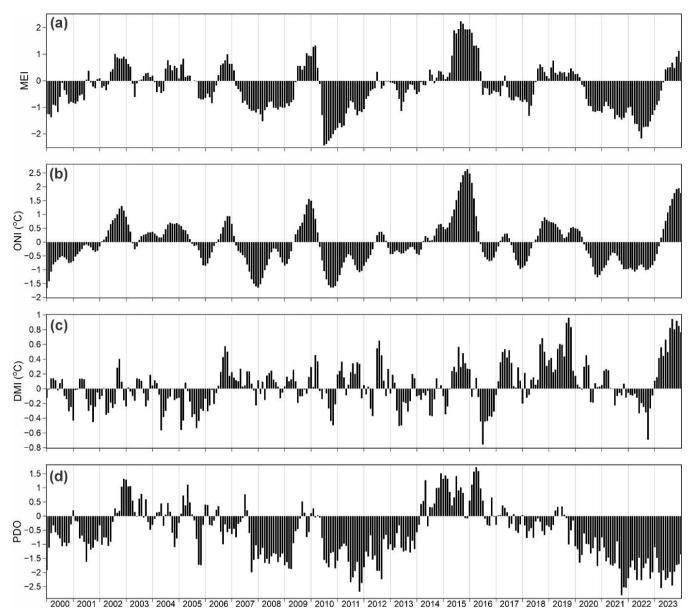


Figure S7: Four climate indices used in this study: (a) MEI, (b) ONI, (c) DMI, and (d) PDO. The indices were retrieved from the NOAA PSL portal (https://psl.noaa.gov/).

35 Table S2: Correlation coefficients (r) and root mean square error (RMSE) between GRACE datasets used in this study.

GRACE datasets	Grids	Correlation (r)	RMSE (cm)	
JPL	Study area vs 1 Mascon	1.00	0.8	
JPL	Study area vs Borneo	0.96	1.8	
GSFC	Study area vs 1 Mascon	0.96	2.5	
GSFC	Study area vs Borneo	0.85	4.4	
CCD	Study area vs 1 Mascon	0.98	1.2	
CSR	Study area vs Borneo	0.87	2.5	

Table S3: Statistical comparison of GRACE datasets employed in this study.

GRACE datasets	Grids	mean	std	min	Q1	Q2	Q3	max	Skewness
	Study area	3.2	5.6	-11.5	-0.4	3.7	7.0	17.2	-0.34
JPL	1 Mascon	3.6	6.3	-12.9	-0.4	4.1	7.8	19.3	-0.34
	Borneo	3.1	4.5	-9.1	0.3	3.0	6.3	14.5	-0.07
	Study area	2.2	7.6	-23.7	-2.1	3.4	7.7	13.8	-1.03
GSFC	1 Mascon	3.0	6.1	-15.5	-0.8	3.9	7.3	15.5	-0.69
	Borneo	1.9	4.6	-12.1	-0.8	2.1	5.0	14.0	-0.31
	Study area	1.5	5.1	-15.5	-0.9	2.8	4.8	13.3	-0.97
CSR	1 Mascon	2.1	5.0	-14.9	-0.4	2.9	5.0	14.6	-0.64
	Borneo	2.0	4.5	-12.3	-0.9	2.6	4.9	13.8	-0.45

Table S4: Statistical comparison of GLDAS and WGHM datasets employed in this study.

GLDAS datasets	Parameters	mean	std	min	Q1	Q2	Q3	max	Skewness
	ΔSMS	-0.4	5.5	-28.8	-2.5	1.7	3.2	5.5	-1.93
Noah LSM	ΔCW	-0.003	0.007	-0.025	-0.007	-0.002	0.002	0.011	-0.64
LSWI	ΔSWS	0.3	0.8	-1.0	-0.3	0.2	0.7	3.7	0.80
Catchment	ΔSMS	-0.5	4.1	-14.3	-3.2	1.3	2.6	4.1	-1.06
LSM	ΔCW	-0.003	0.008	-0.022	-0.008	-0.002	0.002	0.018	0.04
WGHM	ΔSWS	0.4	1.8	-3.7	-0.9	0.6	1.7	4.1	-0.18

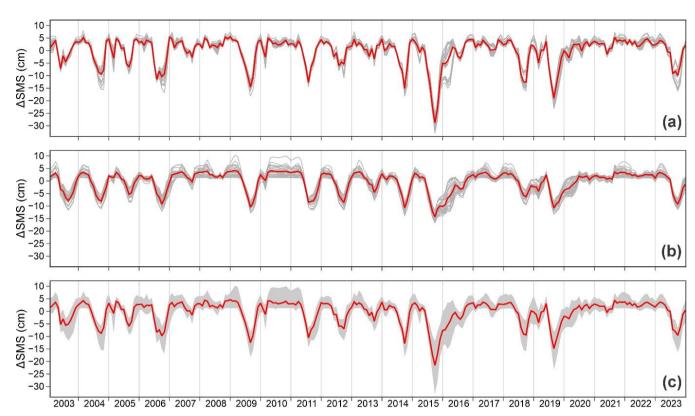


Figure S8: Comparison of Δ SMS between (a) Noah LSM, (b) Catchment LSM, and (c) the ensemble of both datasets. In (a) and (b), gray lines represent Δ SMS for each grid, whereas in (c), the gray shading indicates uncertainty derived from the composite Δ SMS of both GLDAS datasets. The red lines in (a) to (c) represent mean values.

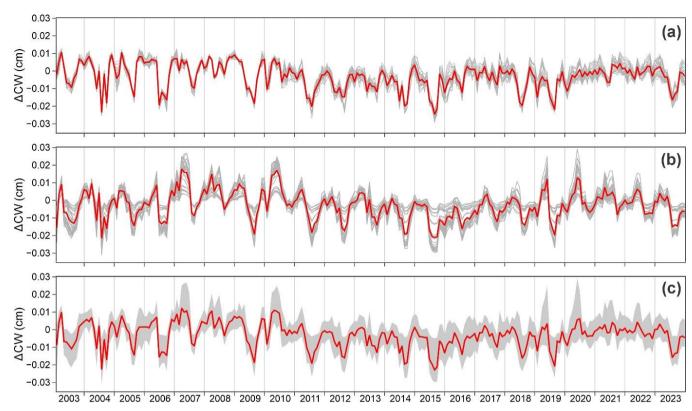


Figure S9: Comparison of Δ CW between (a) Noah LSM, (b) Catchment LSM, and (c) the ensemble of both datasets. In (a) and (b), gray lines represent Δ CW for each grid, whereas in (c), the gray shading indicates uncertainty derived from the composite Δ CW of both GLDAS datasets. The red lines in (a) to (c) represent mean values.

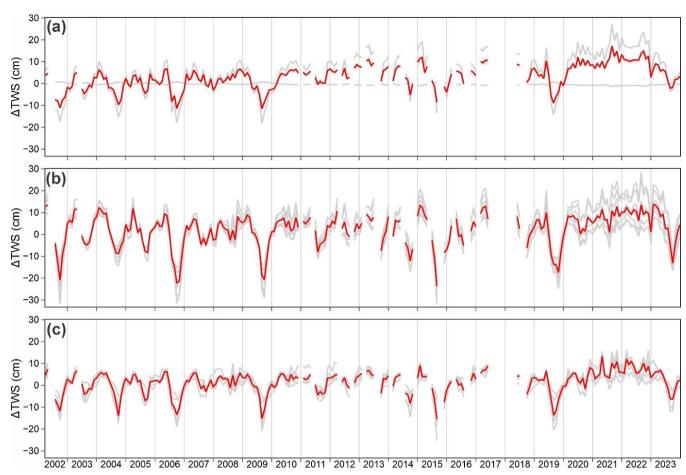


Figure S10: Comparison of Δ TWS between GRACE datasets: (a) JPL, (b) GSFC, and (c) CSR across eight 0.5° grids (JPL and GSFC) and the corresponding finer 0.25° grids (CSR). In (a) to (c), red lines represent mean values, whereas gray lines indicate Δ TWS for each grid.



Figure S11: Distribution of gain factors in the GRACE JPL dataset. Negative gain factors are indicated in dark gray.

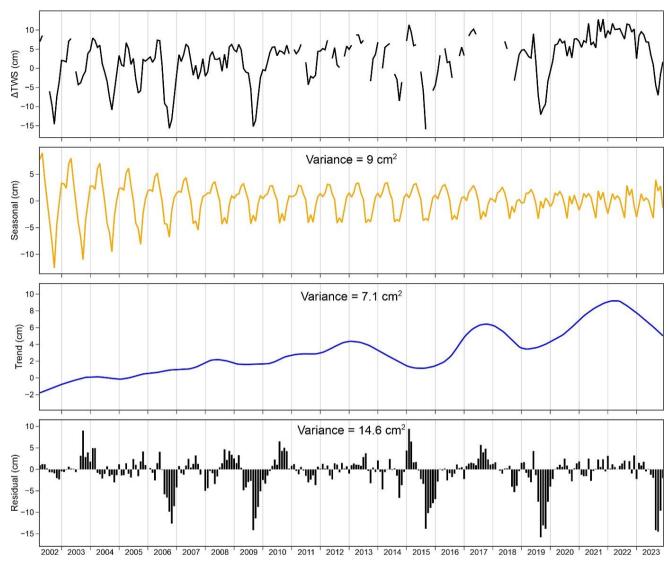


Figure S12: STL analysis results for the mean ensemble ΔTWS derived from the three GRACE datasets: JPL, GSFC, and CSR.

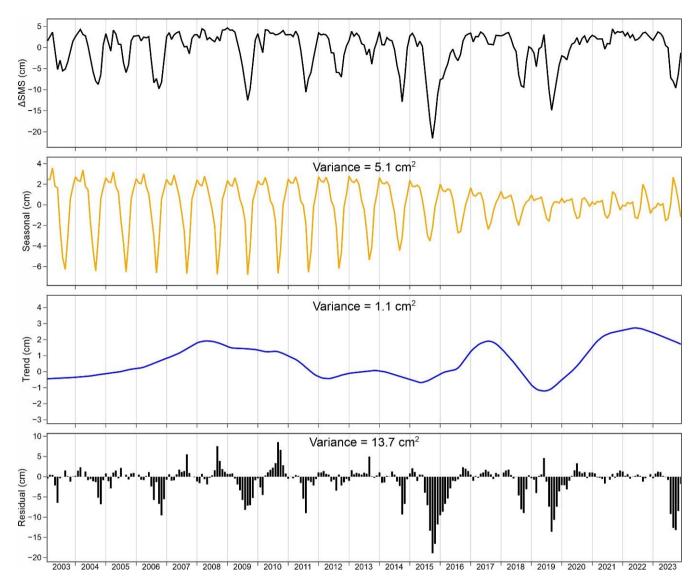


Figure S13: STL analysis results for the mean ensemble Δ SMS derived from the two GLDAS datasets: Noah and Catchment LSMs.

Table S5: Percentage of arithmetically implausible ΔGWS estimates for each of the 36 realizations, categorized by the specific implausibility criteria.

Realizations	Implausible ΔGWS (%)
1	33
2	26
3	37
4	32
5	26
6	37
7	29
8	20
9	34
10	30

Realizations	Implausible ΔGWS (%)
11	24
12	32
13	32
14	27
15	34
16	27
17	21
18	31
19	28
20	23

Realizations	Implausible ΔGWS (%)
21	32
22	30
23	25
24	32
25	24
26	17
27	28
28	39
29	32
30	45

Realizations	Implausible ΔGWS (%)
31	43
32	35
33	50
34	35
35	26
36	39

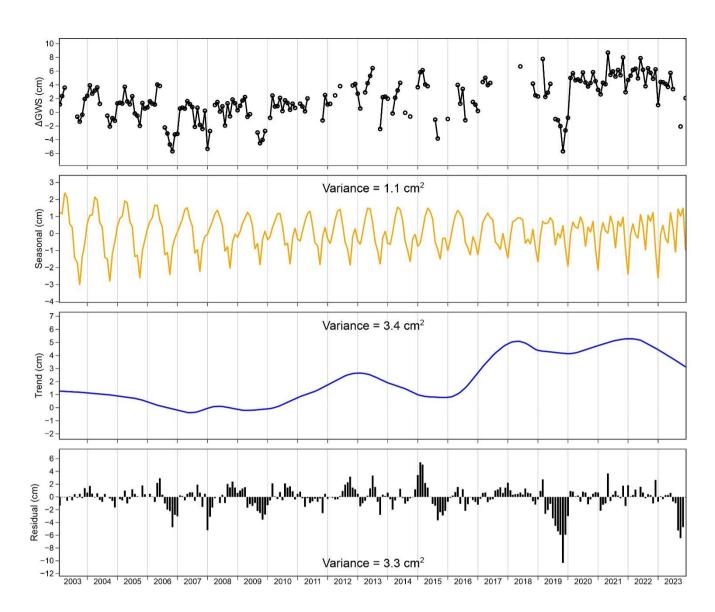


Figure S14: STL analysis results for mean ensemble ΔGWS computed from 36 realizations.

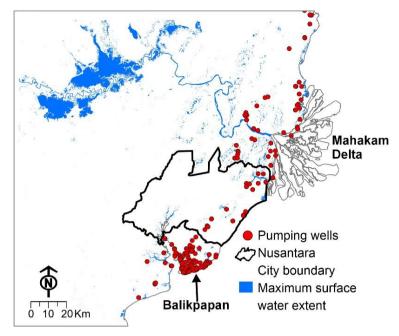


Figure S15: Distribution of registered pumping wells in the coastal part of the study area. The data are obtained from the Indonesian Geological Survey (2023). The surface water extent is from Pekel et al. (2016).

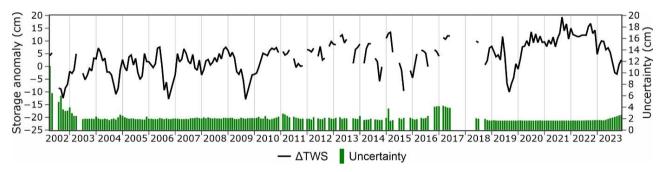
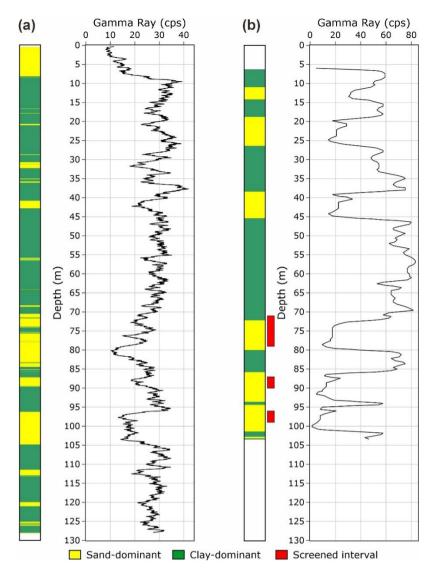



Figure S16: Uncertainty estimates for the 3° GRACE JPL grid in the study area.

90 Figure S17: Lithological logs at (a) MG and (b) EBD sites.

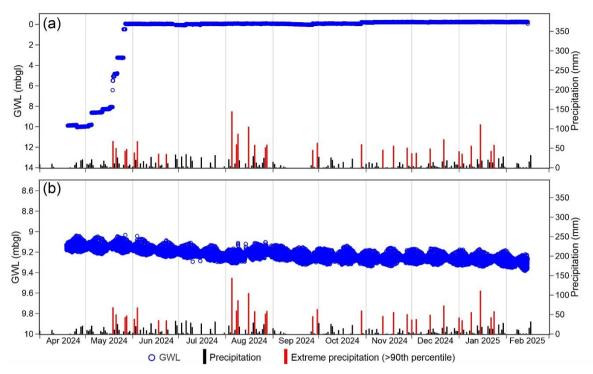


Figure S18: Comparison of hourly groundwater level (GWL) with daily precipitation from Balikpapan station at the MG site: (a) screened interval: 87-90 m, (b) screened interval: 132-135 m.

95 References

100

Indonesian Geological Survey: Pumping well database of Samarinda-Bontang Groundwater Basin [dataset], 2023.

Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resources Research, 48, https://doi.org/10.1029/2011WR011453, 2012.

Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.: Regularization and error characterization of GRACE mascons, Journal of Geodesy, 93, 1381-1398, 10.1007/s00190-019-01252-y, 2019.

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418-422, 10.1038/nature20584, 2016.

Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05 mascons, Journal of Geophysical Research: Solid Earth, 121, 7547-7569, https://doi.org/10.1002/2016JB013007, 2016.

Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.: Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons, Journal of Geophysical Research: Solid Earth, 120, 2648-2671, https://doi.org/10.1002/2014JB011547, 2015.

Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution, Water Resources Research, 52, 7490-7502, https://doi.org/10.1002/2016WR019344, 2016.