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Abstract. The vertical structure of clouds plays a critical role in atmospheric radiative transfer and is a
major source of uncertainty in satellite-based retrievals of cloud optical thickness (COT) and cloud
effective radius (CER). Most operational algorithms assume a single homogeneous layer, but the biases
introduced by this simplification under realistic multilayer conditions remain poorly quantified. This
study systematically investigates how perturbations in cloud vertical structure affect COT and CER
retrievals using FY4A/AGRI (Advanced Geostationary Radiation Imager) and simulations from
Advanced Radiative Transfer Modeling System (ARMS) over central and eastern China during June—
August 2018. We designed ten sensitivity experiments by varying water and ice content across single-,
double-, and triple-layer cloud configurations to quantify the impact of structural differences on channel
reflectance and the COT-CER relationship. The results indicate that upper-level ice clouds significantly
mask reflectance from lower water clouds, reducing total reflectance by approximately 50% and leading
to systematic retrieval biases: single-layer algorithms underestimate COT at small CER (<10 pm) but
overestimate it by approximately 20 units under larger CER conditions. In single-layer clouds, variations
in low- and mid-level water content produce mean COT increases ~24% larger than in double-layer

structure, with similar biases occurring in three-layer clouds. Furthermore, enhanced mid-level liquid


mailto:ghlyy@mail.iap.ac.cn

35

40

45

50

55

60

water enhances the nonlinear relationship between COT and CER, increasing retrieval uncertainties.
These findings identify cloud vertical heterogeneity as a major source of retrieval bias and emphasize the
necessity of integrating multilayer cloud information into satellite retrieval algorithms.
1 Introduction
Clouds cover approximately 67% of the Earth’s surface on average (Fang et al., 2016) and exert a pivotal
influence on the evolution of weather systems and the global hydrological cycle (Matus et al., 2017). The
pronounced spatial heterogeneity of clouds introduces substantial uncertainties in their microphysical
properties, which is turn complicates the interactions between clouds and radiation. This uncertainty
remains a critical limitation in the accuracy of climate change projections and the performance of
numerical weather prediction models (IPCC, 2021). The radiative characteristics of clouds are highly
sensitive to the physical attributes of cloud particles, particularly variations in key parameters including
cloud effective radius (CER), cloud optical thickness (COT), cloud water content, cloud top height, and
cloud base height (Wang et al., 2018; Letu et al., 2020). Among these, COT and CER are two important
cloud microphysical parameters that govern the cloud’s ability to scatter and absorb solar radiation.

With the advancement of satellite technology, satellite observations have become a powerful tool for
capturing the spatial and temporal variations of COT and CER on both regional and global scales (Zhao
et al., 2018). Mainstream operational retrieval methods are based on the classic bispectral reflectance
technique (Nakajima and King, 1990), which serves as the foundation for many operational cloud optical
and microphysical products derived from spectral imagers such as MODIS, AHI, and AGRI (Platnick et
al., 2003; Min et al., 2017; Letu et al., 2020; Chen et al., 2020; Zhuge et al., 2021; Liu et al., 2023).
Although these methods are well established, they typically assume a single homogeneous cloud layer
within each satellite pixel. However, the errors introduced by this simplification under realistic
atmospheric conditions remain poorly quantified. The accuracy of these retrievals largely depends on the
precision of radiative transfer modeling and the adequacy of cloud optical property characterization.
Radiative transfer models simulate the top-of-atmosphere radiance observed by satellites by accounting
for atmospheric absorption, scattering, and emission processes under various meteorological conditions,
and thus serve as the physical foundation for developing satellite-based cloud retrieval algorithms
(RTTOV: Saunders et al., 2018; CRTM: Chen et al., 2008; ARMS: Weng et al., 2020).

In reality, clouds are often composed of multiple vertically arranged layers with distinct microphysical

properties, including phase type, droplet size variability, and spatial structure. Based on combined
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CALIPSO and CloudSat observations, Li et al. (2011) reported that overlapping clouds occur with a
global probability of up to 25.8%. Yuan and Oreopoulos (2013) found that approximately 30% of low-
level clouds are obscured by upper-level clouds, with overlapping cloud occurrence exceeding 90% in
tropical regions. Among these, the typical two-layer cloud system composed of upper-level ice clouds
and lower-level water clouds is the most prevalent type, accounting for over 50% of overlapping cloud
cases (Sourdeval et al., 2016). Therefore, ignoring the vertical complexity of clouds inevitably introduces
retrieval biases in COT and CER retrievals. For instance, Huang et al. (2005) demonstrated using satellite,
ground-based microwave radiometer, and lidar observations that the single-layer assumption can lead to
a 30% overestimation in COT. In addition, Wang et al. (2019) showed that vertical heterogeneity within
ice clouds can result in large underestimations (up to —50%) of MODIS ice water path in deep convective
and high-latitude regions, although the effect on global-mean cloud radiative properties is relatively small.

To reduce these biases, Teng et al. (2020) developed a novel multilayer retrieval algorithm that
leverages differential absorption across four shortwave infrared channels (0.87, 1.61,2.13, and 2.25 um).
This method enables simultaneous retrievals of COT and CER for both upper ice and lower liquid layers
in ice-over-water cloud systems, significantly improving the agreement between simulated and observed
reflectance. More recently, Teng et al. (2023) further advanced this framework by incorporating
additional spectral constraints, thereby enhancing the robustness of multilayer cloud retrievals under
complex atmospheric conditions. Despite these advances, major challenges remain. In particular,
Uncertainties remain in how vertical variations in cloud structure—such as inhomogeneity, overlap, and
alignment—affect satellite retrievals of COT and CER. Neglecting these variations can bias simulated
radiative effects and heating profiles, underscoring the need for better representation of vertical structure
in retrieval algorithms and climate models (Wang et al., 2021).

Although multilayer cloud retrieval algorithms have made significant progress, systematic
quantification of how perturbations in cloud vertical structure affect the retrieval of COT and CER
remains limited, and assessments of the systematic biases arising from neglecting vertical heterogeneity
are still lacking. To address this gap, COT and CER were retrieved using a bispectral lookup table
constructed with the ARMS, driven by FY4A/AGRI observations over central and eastern China from
June to August 2018. The retrieved results were subsequently validated using MODIS cloud products.
On this basis, ten sensitivity experiments were designed to evaluate the retrieval uncertainties directly

induced by perturbations in cloud vertical structure, and to reveal the systematic differences between the
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COT-CER relationships obtained from multilayer cloud simulations and those derived under the single-
layer assumption. The results enhance the understanding of the mechanisms underlying cloud remote
sensing retrievals and offer insights that can guide more accurate interpretation and application of COT
and CER retrievals under complex multilayer cloud conditions.

This paper is organized as follows: Section 1 outlines the importance and current progress of satellite-
based retrievals of COT and CER. Section 2 describes the data sources and retrieval algorithm. Section
3 presents a validation of the retrieval results against MODIS cloud products. Section 4 investigates the
sensitivity of simulated reflectance, COT, and CER to different vertical cloud structures using ARMS.

Section 5 summarizes the findings and provides discussion.

2 Data, Model and Methods

2.1 FY4A/AGRI Data

The satellite data used in this study consist of FY4A/AGRI Level-1 full-disk observations. The FY4A
satellite provides high-frequency measurements of the Earth’s atmosphere and surface, delivering critical
data and products to improve weather forecasting accuracy. Since March 2018, these data have been
available for download from the Fengyun Satellite Remote Sensing Data Service Network
(https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html). The AGRI instrument onboard FY4A
comprises 14 spectral channels, including six visible and near-infrared bands, two mid-infrared bands,
two water vapor bands, and four thermal infrared bands. The AGRI completes a full-disk scan every 15
minutes. The spatial resolution ranges from 0.5 to 1.0 km for visible and near-infrared channels, and from
2 to 4 km for infrared channels. The high spatial and temporal resolution of AGRI is advantageous for
identifying and tracking small-scale, rapidly evolving systems such as nascent convection (Yang et al.,
2017).

To investigate the impact of different vertical cloud structures on COT and CER, satellite observations
from June to August 2018 over central China (105°E~120°E, 24°N~39°N) were selected. The retrieval
experiments and validations of COT and CER were performed using two spectral channels: visible (0.55—
0.75 pum) and shortwave near-infrared (1.58—1.64 um). Before retrieval, the AGRI data were calibrated
using the official coefficients and lookup tables provided in the L1 files, and geometric correction was

applied based on the nominal projection, ensuring consistency with operational procedures

(https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html).


https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html
https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html

125

130

135

140

145

150

Previous studies (Sun et al., 2025) indicate that FY-4A/AGRI radiometric calibration exhibits notable
seasonal variations, particularly in the shortwave infrared (SWIR) channels (Channels 5 and 6), where
the fluctuation indices are 2—4 times larger than those of the visible (VIS) channels due to weaker
reflected signals and higher sensitivity to noise. In contrast, VIS channels are relatively stable. During
the study period, such uncertainties may propagate through radiative transfer simulations and potentially
affect the retrieval of CER. However, cross-validation with MODIS cloud products shows good
agreement (see Section 3.1), suggesting that the calibration-related uncertainties of FY-4A/AGRI do not
significantly affect the analysis of cloud microphysical characteristics, and the data can be considered

reliable for this study.
2.2 ARMS Model

This study employs the Advanced Radiative Transfer Modeling System (ARMS) model developed in
China, which utilizes a fast transmittance calculation scheme (Weng et al., 2020). In the simulation
process, ARMS takes atmospheric optical parameters as inputs, where the optical thickness varies in
response to changes in the atmospheric environment. These parameters are typically generated using
spectral libraries containing line-by-line absorption coefficients. Optical properties related to five
hydrometeor categories—cloud droplets, rain, cloud ice, graupel, snow, and hail are computed for each
atmospheric layer. Liquid hydrometeors are assumed to be spherical, and their scattering parameters are
derived using Mie theory. Given an effective particle radius, the total number of particles per layer is
determined from the hydrometeor water content. For ice clouds, scattering by particles with diameters
equal to or larger than the radiation wavelength is treated using the T-matrix method (Bi and Yang, 2017),
and the results are stored in a scattering database. The accuracy of the ARMS model has been validated
in previous studies (Yang et al., 2020; Tang et al., 2021).

In this study, the ARMS radiative transfer model is employed to simulate cloud reflectance across
multiple spectral bands. Atmospheric background fields are sourced from the ERAS reanalysis dataset
(Hersbach et al., 2020), which provides vertical profiles of temperature, water vapor, and ozone, along
with pressure levels, cloud liquid and ice water content, surface temperature, and surface type. In addition,
a series of idealized sensitivity experiments are conducted by constructing different cloud vertical

structures, aiming to investigate the impacts of cloud layering on reflectance, COT, and CER.

2.3 COT and CER retrieval
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The bispectral retrieval algorithm, developed based on the optical and radiative properties of liquid and
ice clouds, is one of the most widely used methods for retrieving cloud parameters. It has been
extensively applied to a variety of satellite instruments (Platnick et al., 2017; Min et al., 2017; Letu et al.,
2018; Zhuge et al., 2021). In this study, the COT and CER are retrieved using observations from the
FY4A/AGRI visible channel (0.65 pum) and shortwave near-infrared channel (1.61 pm), with forward
simulations provided by the ARMS radiative transfer model. The overall retrieval procedure is illustrated
in Fig. 1.

Based on the approach proposed by Zhuge et al. (2017), a fast cloud detection algorithm is
implemented using AGRI Level-1 data (0.47, 0.65, 0.825, and 1.61 um) to distinguish between cloudy
pixels and clear-sky conditions, with thresholds listed in Table 1. Pixels with brightness temperatures
(10.7 pm) below 233 K are classified as ice clouds, and those above 273 K as liquid clouds. ERAS
reanalysis data are interpolated in time and space to match the spatial and temporal grids of FY4A/AGRI
satellite observations. Temporal interpolation is performed linearly between the two nearest ERAS time
steps, while spatial interpolation uses inverse distance weighting based on the four closest ERAS grids
to each satellite pixel. The matched atmospheric profiles, surface conditions, and geometric angles are
then input into the ARMS model. The simulated reflectance under specific atmospheric and cloud
conditions is utilized to generate look-up tables (LUTs), which support the retrieval of COT and CER for
both liquid and ice phase clouds (Table 2). Fig. 2 illustrates the theoretical relationship between COT and
CER for liquid clouds (a) and ice clouds (b) under fixed solar and viewing geometry. It can be seen that,
for both cloud types, the reflectance in the visible and shortwave infrared channels generally increases
with increasing COT and decreases with increasing CER. This behavior is consistent with previous
studies (Letu et al., 2020; Zhuge et al., 2021).

Building upon these physical principles, this study proposes a novel retrieval algorithm for COT and
CER, referred to as the DORF (Differential Operator-based Random Forest) algorithm, which integrates
multispectral information with spatial structure features. Fig. 3 illustrates the structure and specific
schematics of the DORF model. The core of the method is a Random Forest (RF) model that leverages
both FY4A/AGRI multispectral observations and spatial gradient features to construct a nonlinear
retrieval framework. The RF model has been widely used in environmental parameter estimation
(Stafoggia et al., 2019). While its applications in cloud remote sensing are relatively limited compared

to other networks, this study demonstrates that RF, when combined with physically meaningful spatial
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features, can serve as an effective retrieval method for satellite- based cloud property estimation. In this
framework, the RF model is trained with MODIS-retrieved COT and CER as the ground truth labels,
whereas the prediction phase relies solely on FY4A/AGRI inputs. No MODIS data are used in prediction,
thereby validating the transferability of the trained model to independent geostationary satellite
observations.

Specifically, six representative channels from the AGRI (i.e., channels 2, 5, 6, 7, 10, and 12) are
selected to characterize the cloud’s reflectance, absorption, and emission properties across different
spectral bands. For each selected channel R' (i=1, ...,6), we compute the first-order spatial gradients in
the horizontal (x) and vertical (y) directions using the Sobel operator, yielding gradient magnitudes:

G = \/(axﬁj)z +(o,R,) (1)

The final input vector for each satellite pixel is then formulated as:

x=[R,Ry...,R,G,G,...,G]e R" @)

6
Where x denotes the combined spectral and spatial features, serves as input to the RF model. The Sobel
operator is applied to each of the six selected AGRI channels using 3%3 convolution kernels to
approximate derivatives in the east-west and north-south directions. This magnitude reflects the local
edge strength and spatial texture of the cloud field. Combined with the corresponding spectral reflectance
values, they form the complete input vector x for the RF model. The nonlinear relationship between these
features and the target cloud properties (COT and CER) is established using the MODIS official cloud

products as the reference dataset.
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Figure 1. Framework of the COT and CER retrieval algorithm for FY4A AGRI




Table 1. Cloud detection thresholds for FY4A AGRI.

Channel Physical significance Threshold

To.65 — Rosgzs . .
— Normalized Difference Cloud Index (NDCI) >0.12
Ross + Rosg2s

Ross Reflectance >0.3
To.6s — Ri61 . .
e r— Normalized Difference Snow Index (NDSI) >(.26
Ry 61+ Roes

Ro.a7 Reflectance >0.15

Table 2. Input parameters and grid points of the variables used to build the LUT version of the FY4A AGRI.

Variables Range Number Unit
of grids
Sun zenith 0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80 15 degree
Satellite zenith 0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80 15 -
Relative Azimuth 0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,1 19 -
60,170,180
Water cloud optical thickness ~ 0.25,0.32,0.4,0.5,0.6,0.8,1.0,1.26,1.58,1.99,2.51,3.16, 27

3.98,5.01,6.3,7.94,10.0,12.59,15.85,19.95,25.12,31.62,
39.81,50.12,63.1,79.4,100.0,125.9,158.5
Water cloud effective radius 2,4,58,11,14,17,20,26,30,36,42,50,60 12 pm
Ice cloud optical thickness 0.25,0.32,0.4,0.5,0.6,0.8,1.0,1.26,1.58,1.99,2.51,3.16, 27
3.98,5.01,6.3,7.94,10.0,12.59,15.85,19.95,25.12,31.62,
39.81,50.12,63.1,79.4,100.0,125.9,158.5

Ice cloud effective radius 5,10,15,25,30,35,40,50,60,70,80,90,110,130 12 pm
1.0 1.0
sun zenith=40° sun zenith=40° (b)
satellite zenith=40° satellite zenith=40°

=08 relative azimuth=20° 08 relative azimuth=20°
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205 Figure 2. Bispectral reflectance LUTs of cloud reflectance at 0.65 um and 1.61 um for water(a) and ice(b) phases
when the solar zenith angle is 40°, the sensor viewing zenith angle is 40°, and the relative azimuth angle is 20°, and

the underlying surface is land. The dashed line represents the CER, and the solid line represents the COT.
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Figure 3. Schematic of the DORF model for COT and CER prediction based on FY-4A/AGRI observations.

3 COT and CER Retrievals and Comparisons

To evaluate the accuracy of FY4A/AGRI cloud property retrievals, we compared them with the MODIS
Collection 6.1 MODO06 daytime cloud products from June to August 2018. For spatial matching, the 1
km MODIS pixels were averaged within each 4 km AGRI footprint to ensure consistent resolution. For
temporal matching, the MODIS overpass was paired with the closest AGRI full-disk scan (15 min
interval), with a maximum offset of 7.5 min. The FY-4A/AGRI-derived CER exhibit strong consistency
with the MODIS MODO6 results, with a coefficient of determination (R?) 0of 0.91, a mean absolute error
(MAE) of 2.0 um, and a root-mean-square error (RMSE) of 3.36 um in Fig. 4. Similarly, the
FY4A/AGRI-derived COT exhibits good consistency with MODIS MODO06, with R2, MAE, and RMSE
values 0of 0.87, 3.9, and 8.03, respectively.

Fig. 5 display the probability density distributions (PDFs)of CER and COT generated from the same
4 km resampled data to ensure consistency with Fig. 4. These PDFs provide a basis for comparing the
retrievals between FY4A/AGRI and MODIS. The results indicate that FY4A/AGRI underestimates CER
relative to MODIS for CER<13 um, while it tends to retrieve larger CER values in the range of 14~23
pum. A similar trend is observed in COT, with MODIS yields higher values for COT < 10 and FY4A/AGRI
higher values at larger COT. These differences are mainly attributable to sensor resolution and the partial
filling effect, whereby coarse pixels contain a mix of cloudy and clear areas (Chen and Fu, 2017;
Ackerman et al., 2008; Chen et al., 2020). Overall, the distributions remain consistent, supporting the

robustness of the retrievals.
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To provide a concrete reference for subsequent perturbation experiments, we analyzed a mesoscale
convective system (MCS) over central-eastern China on August 2, 2018. At 04:00 UTC, FY4A/AGRI
false-color imagery revealed two isolated northward-moving convective cloud systems (Fig. 6a), with
high-altitude ice clouds north of 30°N and low-level water clouds below (Fig. 6b). COT and CER
retrievals from FY4A/AGRI and MODIS (Fig. 6¢—f) show two high-value COT centers (>65) between
31-32.5°N and 111-113°E, with close agreement. For 20 << COT<30, FY4A/AGRI slightly
underestimates values (~12%). CER patterns are generally consistent, though differences appear in thin

water cloud regions.

These differences mainly result from: (1) spatial resolution differences (MODIS 1 km vs. AGRI 4 km);
(2) cloud horizontal inhomogeneity within AGRI pixels; and (3) visible channel degradation and SWIR
fluctuations (Sun et al., 2025). Additionally, in the region 106—107°E, 32-35°N (corresponding to the
Dabie and Wuling Mountains), FY4A/AGRI and MODIS retrievals show noticeable differences. This
discrepancy is likely due to the influence of high-elevation terrain on satellite observations and the fact
that the retrieval algorithm was primarily tuned for lowland surface types, without explicitly considering
mountainous surface characteristics. Despite this local variation, the overall COT and CER patterns
remain consistent within the common observed area. This case thus provides a robust reference for the

perturbation experiments in Section 4.
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250 Figure 5. Probability density function (PDF) of the FY4A/AGRI retrieval results and the MODIS cloud products in
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Figure 6. Comparison of retrieved optical parameters using the FY-4 AGRI with MODIS cloud products
(Cloud_Optical_Thickness 16 and Cloud_Effective Radius_16). The observation time of the FY-4 AGRI is 04:00

255 UTC on 2 August 2018 and the MODIS observation time is 03:35 UTC. (a) False-color image (red, 0.65 um; green,
1.61 pum; blue, 10.7 pm reversed) where thick ice clouds are orange colored, and low clouds are white colored. (b,
d, f) cloud-top phase, COT(unitless), CER(unit: pm) from Collection-6.1 MODO06 at 0335 UTC August 2, 2018. (c,e)
COT(unitless), CER(unit: pm) derived FY4A/AGRI at 0400 UTC August 2, 2018.

4 Cloud Microphysical and Radiation Response to Cloud Vertical Structure

260 Cloud vertical structure includes the number of cloud layers, cloud top height, cloud base height,
cloud thickness, cloud fraction, and the vertical distribution of cloud microphysical properties. It reflects

the thermodynamic, dynamic, and microphysical processes within the cloud system and plays an
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important role in weather and climate (Xu et al., 2023). To quantitatively investigate the effects of cloud
layer number and cloud phase on cloud reflectance, COT and CER, this study builds upon the case study
retrieval results from Section 3.2. Cloud water profiles are categorized into single-layer, double-layer,
and triple-layer clouds, and by adjusting the cloud liquid/ice water content in each layer, the sensitivity
of cloud reflectance, COT and CER under different vertical cloud structure conditions is systematically

analyzed.
4.1 Cloud water/ice content Profiles Classification

To investigate the impact of cloud vertical structure on COT and CER, 221 vertical profiles of cloud
liquid and ice water content were extracted from ERAS at 04:00 UTC on 2 August 2018 over the region
110~114°E and 30~33°N (Section 3.2). Based on empirical rules, each profile was classified into
different structural types. The number of peaks in liquid/ice water content was used to determine the
number of cloud layers, while cloud phase was inferred by pressure level: ice clouds above 450 hPa, and
liquid clouds below 700 hPa and between 700—450 hPa.

Specifically, single-layer clouds, characterized by one peak, were divided into three types: high-level
ice clouds, mid-level water clouds, and low-level water clouds. Two-layer cloud structures, identified by
two peaks, were further categorized into five subtypes based on the cloud phase (ice or water) and the
relative liquid or ice water content in the upper, middle, and lower layers. Three-layer profiles, indicated
by three peaks, generally represent a typical ice—water—water cloud configuration (Fig. 7).

Statistical results (Table 3) show that single-layer clouds account for 48% of the profiles, two-layer
clouds 46%, and three-layer clouds 6%. These proportions are consistent with the findings of Xu et al.
(2023), who reported that single-layer clouds dominate (55.4%) in radiosonde observations, with two-
layer systems being the most frequent among multilayer clouds. This agreement supports the validity and

physical relevance of the classification method used.
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Figure 7. Vertical structure types of cloud water and ice content profiles from ERAS. The “large
cloud” profiles correspond to the original profiles with a fivefold increase in cloud water or ice
content, while the “small cloud” profiles represent the unmodified original profiles. The distinction
between large and small clouds is not explicitly marked in the figure but can be inferred from the

differences in water content.

Table 3 Proportions of single-layer, two-layer, and three-layer Cloud Profiles and Corresponding

Mode Classifications

Cloud Height Cloud Exp Ratio
Layers type No.
Single H Ice 3
Layers M Water 2 48%
Cloud L Water
H+M Ice + 8
Two-layer Water 46%
Clouds H+L Ice + 6,7
Water
L+M Ice + 4.5
Water
Three- H+M+L Ice + 9,10 6%
layer Water
Clouds +Water

4.2 Sensitivity of Reflectance to Cloud Vertical Structure

13
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Based on the classification, the sensitivity experiments are designed to investigate how perturbations in
cloud liquid water content (CWC) and ice water content (IWC) at different vertical levels (low, mid, and
high) influence the reflectance responses of FY-4A/AGRI Channels 2 and 5. The vertical positions of the
cloud layers are prescribed and fixed, so the variations in reflectance shown in Figs. 8—10 result from
systematic changes in CWC and IWC at these levels, rather than from changes in cloud height alone. To
ensure representativeness of each cloud type, the CWC and IWC vertical profiles used in the experiments
were constructed from the mean profiles of ERAS for each category.

Fig. 8 shows the sensitivity of cloud reflectance to CER variations for three single-layer cloud types
under increased LWC or IWC. For low-level water clouds, channel 2 reflectance rises from 0.6 to 0.7 as
CER increases from 2 to 10 um, while channel 5 first decreases then rise to 0.68 (Fig. 8a). Increasing
LWC enhances channel 2 reflectance by about 0.1, with a smaller effect on channel 5. Mid-level water
clouds exhibit significant reflectance changes in channel 2 only when CER exceeds 10 um, stabilizing
beyond 25 pum (Fig. 8b). High-level ice clouds show slightly higher reflectance in both channels
compared to water clouds (Fig. 8c). Overall, increased LWC in low-level clouds notably boosts
reflectance, especially in the visible channel, by approximately 15% more than mid- or high-level clouds.
Moreover, the minimal response of channel 5 reflectance for high-level ice clouds when increasing IWC
is consistent with Wang et al. (2018), who showed that shortwave infrared (SWIR) channels are primarily
weighted toward cloud top. If the top-layer CER is already large, additional IWC exerts little effect on
SWIR reflectance.

For double-layer clouds, the reflectance response is determined by the combination of liquid and ice
clouds. In the “mid-level water cloud-high-level ice cloud” configuration, channel 5 reflectance remains
nearly unchanged under different perturbations, whereas channel 2 exhibits significant variations. For
CER < 5 um, increasing mid-level CWC or high-level IWC yields almost identical results; for CER >
5 um, increasing high-level IWC produces slightly higher channel 2 reflectance than increasing mid-
level CWC (Fig. 9a, d), likely due to multiple scattering in the upper ice cloud enhancing upward
radiation while partially diminishing the mid-level water cloud contribution. In the “low-level water
cloud-high-level ice cloud” configuration (Fig. 9c and f), the overall reflectance response is similar to
that of the mid-level water cloud—high-level ice cloud case, indicating that the upper ice cloud dominates
the system’s radiative properties. This mechanistically supports the observational findings of Kiran et al.

(2015), which reported that despite the presence of liquid water clouds at lower levels, the net radiative
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forcing at the top of the atmosphere remains nearly balanced, primarily due to the simultaneous
shortwave cooling and longwave heating effects of the upper ice cloud. By contrast, in the “low-level
water cloud—mid-level ice cloud” configuration, the reflectance response to increases in CWC/IWC at
different levels is markedly different from the previous two cases. Specifically, increasing low-level
CWC causes channel 2 reflectance to vary nonlinearly with CER, first decreasing and then increasing
(Fig. 9b), whereas increasing mid-level IWC results in a linear decrease of reflectance in both channels

2 and 5, with channel 5 even decreasing by approximately 0.12 when CER > 30 pm (Fig. 9e¢).

For the three-layer clouds consisting of high-level ice cloud over mid-level water cloud over low-level
water cloud, increasing either low- or mid-level CWC enhances Channel 2 reflectance with increasing
CER, with the increase being more pronounced for mid-level CWC (Fig. 10a-b). The response of Channel
5 reflectance exhibits a similar trend but with a smaller magnitude, indicating that the mid-level water
cloud contributes more significantly to reflectance in both channels. When high-level IWC is increased,
Channel 2 reflectance decreases approximately linearly with CER, while Channel 5 also declines (Fig.
10c). For CER >14 pm, Channel 5 reflectance drops from ~0.4 to 0.25, highlighting the strong radiative
shielding effect of the high-level ice cloud on underlying water clouds. These observations align with Li
et al. (2011), who found that multilayer clouds have weaker shortwave reflectance than single-layer
clouds due to their higher cloud tops allowing shortwave radiation to partially transmit to lower clouds
or the surface.
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Figure 8. Variation of cloud reflectance at Channel 2 (solid lines) and Channel 5 (dashed lines) with
cloud effective radius (CER) under different LWC or IWC condition. Black lines correspond to
reflectance simulated using the original LWC/IWC profiles from ERAS reanalysis, while red lines
represent reflectance simulated with LWC/IWC increased by a factor of 5. Three single-layer cloud
types are shown: low-level water clouds (a, Exp 1), mid-level water clouds (b, Exp 2), and high-
level ice clouds (¢, Exp 3). The simulations assume a solar zenith angle of 40°, sensor viewing zenith
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Figure. 9. Reflectance—CER relationships for six double-layer cloud sensitivity experiments: (a, d)
mid-level water + high-level ice cloud, with (a) increased mid-level CWC (Exp 8) and (d) increased
high-level IWC(Exp 8); (b, e) low-level water + mid-level ice cloud, with (b) increased low-level
CWC(Exp 4) and © increased mid-level IWC(Exp 5); (c, f) low-level water + high-level ice cloud,
with (c) increased low-level CWC(Exp 6) and (f) increased high-level IWC(Exp 7). Each panel
illustrates the effect of adjusting cloud water content (CWC) or ice water content (IWC) on the
reflectance—CER relationship for the corresponding cloud vertical structure.
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4.3 Sensitivity of COT—CER Relationship to Cloud Vertical Structure

The operational COT and CER retrieval algorithm developed in Section 3 is based on single-layer cloud
assumptions. In reality, cloud systems are frequently multi-layered, which can introduce significant
uncertainties in retrievals. To quantify these effects, we conducted idealized perturbation experiments

using representative single-, double-, and three-layer cloud configurations (Fig. 11), perturbing CWC or
16
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IWC at specific vertical levels and comparing the resulting optical thickness (ACOT) with unperturbed
cases.

For single-layer clouds, ACOT increases nonlinearly with CER, showing a rapid rise when CER is
below 15 um before approaching saturation. Notably, when CER < 10 pum, increasing LWC in mid-level
water clouds leads to a maximum ACOT of 52, which is approximately 1.6 times greater than that
resulting from the same perturbation in low-level clouds (Fig. 11b). For two-layer structures, three typical
configurations were analyzed: (1) mid-level ice cloud over low-level water cloud (Fig. 11c), (2) high-
level ice cloud over low-level water cloud (Fig. 11d), and (3) high-level ice cloud over mid-level water
cloud (Fig. 11e). On average, the COT increase due to low- and mid-level water cloud variations in
single-layer clouds exceeds that in double-layer clouds by about 24%, primarily due to the masking effect
of upper-level ice clouds in double-layer structures. Low-level water beneath mid-level ice showed
negative ACOT at small CER, whereas high-level ice over low-level water enhanced ACOT. The high-
level ice over mid-level water scenario exhibited a non-monotonic ACOT pattern for small CER, likely
due to complex radiative interactions between layers. For three-layer clouds, increases in mid- or lower-
level CWC significantly enhance ACOT, although peak values are slightly lower than in single-layer
clouds (Fig. 11e). The lower water layer dominates the response, while overlying ice partially masks the
effect. These results agree with Wang et al. (2021), who showed that subgrid-scale cloud structure and
overlapping condensate significantly modulate radiative effects.

We further examined the impact of multi-layer cloud vertical structures by comparing COT from
idealized double- and triple-layer simulations with single-layer retrievals. Fig. 12 shows the difference
between COT retrieved under the single-layer assumption and that simulated with multi-layer clouds
(ACOT _retrieval, hereafter abbreviated as ACOT_R) as a function of CER. Overall, when CER < 10 pm,
ACOT _R changes from negative to positive, indicating that the single-layer assumption systematically
underestimates the true COT under small droplet conditions. As CER increases beyond 14 um, ACOT R
gradually becomes positive, with single-layer retrievals exceeding two-layer simulations by
approximately 20 units on average. This primarily results from the single-layer assumption’s inability to
capture the shielding effect of overlying ice clouds on underlying water clouds, as well as the differential
contribution of particles at different vertical levels to reflectance in the visible and shortwave infrared
channels.

For the “mid-level water cloud and high-level ice cloud” structure, ACOT R remains negative for
17
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CER <22 pm before turning positive (Fig. 12a). For the “low-level water cloud and high-level ice cloud”
structure, positive ACOT_R appear only when CER > 45 um (Fig. 12b). Increasing the IWC of the high-
level ice cloud maintains negative ACOT R at small CER, with the positive transition also at CER > 45
pm. In the “low-level water and mid-level ice” scenario, ACOT R is near zero for CER <5 um, increases
gradually with CER, and plateaus beyond 30 um. The critical CER values where ACOT_R changes sign
depend on the perturbed layer: ~14 pm for mid-level IWC and ~30 um for low-level CWC (Fig. 12c),
consistent with reflectance sensitivity results.

For the three-layer cloud case, increasing mid-level CWC results in single-layer retrievals being
consistently smaller than the simulations when CER < 50 um, highlighting the limitations of the single-
layer assumption under complex vertical structures (Fig. 12d). Together with the preceding COT—-CER
analyses, these results quantitatively demonstrate that neglecting vertical heterogeneity introduces
significant biases in single-layer retrievals, with both the magnitude and sign of ACOT R strongly
dependent on CER and the vertical distribution, thickness, and microphysical properties of water and ice
layers. Importantly, the trends observed in ACOT R are consistent with the reflectance sensitivity

experiments, confirming the direct impact of vertical cloud structure on operational COT retrievals.
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Figure 11. Changes in cloud optical thickness (ACOT) as a function of CER for six selected vertical

cloud structure types (Exp 1, 2, 7, 8, and 10). Each panel shows the ACOT resulting from adding

LWC or IWC to a specific vertical layer relative to a reference state without that layer. Blue lines

represent the contribution of added LWC, while red lines represent added IWC. Model numbers are
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indicated in each panel. when the solar zenith angle is 40°, the sensor viewing zenith angle is 40°,

and the relative azimuth angle is 20°.
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Figure 12. Differences in cloud optical thickness (COT) between multilayer cloud vertical
structures and the single-layer assumption as a function of CER. Blue: difference between COT
retrieved under the single-layer assumption and COT simulated for double-layer clouds; Red and
pink: difference after adding CWC to the mid-level water cloud; Green: difference after adding IWC
to the high-level ice cloud.

5 Summary and Conclusions

Based on FY4A/AGRI geostationary satellite observations over eastern and central China during June—
August 2018, this study focuses on the influence of cloud vertical structure on the relationship between
cloud optical thickness (COT) and cloud effective radius (CER). A bispectral retrieval algorithm for COT
and CER was developed using the Advanced Radiative Transfer Modeling System (ARMS) and validated
against MODIS cloud products. To systematically examine the impact of vertical cloud heterogeneity,
ten idealized single-, double-, and three-layer cloud structures were constructed, allowing evaluation of
how perturbations in cloud water content (CWC) and ice water content (IWC) at different altitudes affect
both reflectance and the resulting COT—CER relationship.

The COT and CER retrieved from FY4A/AGRI show good agreement with MODIS, confirming its
reliability for analyzing the sensitivity of COT and CER to cloud vertical structure. Figure 13 presents a

conceptual schematic of the radiative effects of cloud layering. Cloud reflectance in the visible and
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shortwave-infrared channels is influenced by CWC and IWC at different altitudes, as well as particle size.
For single-layer liquid clouds, increasing low-level LWC strongly enhances reflectance, with visible
channel increases about 15% greater than those for mid-level liquid or high-level ice clouds. In two-layer
clouds, the “mid-level water—high-level ice” and “low-level water—high-level ice” configurations are
dominated by the upper ice cloud, while in the “low-level water—mid-level ice” configuration, increasing
low-level CWC first reduces and then increases reflectance, whereas increasing mid-level IWC causes a
linear decrease. For three-layer clouds, mid- and low-level water clouds contribute most to the visible
channel, while high-level IWC strongly reduces reflectance through radiative shielding.

Through idealized perturbation experiments on representative single-, double-, and triple-layer cloud
structures, we quantified the impact of cloud vertical structure on the COT—CER relationship. Results
show that for single-layer clouds, ACOT increases nonlinearly with CER, reaching a maximum at small
particle sizes (CER < 15 um). When CER < 10 pum, an increase in mid-level water cloud LWC produces
a ACOT of up to 52, approximately 1.6 times that of an equivalent perturbation in low-level clouds. For
multi-layer clouds, overlying ice layers partially mask the radiative effects of lower water clouds, causing
ACOT to be negative or non-monotonic at small CER. Further comparison between multi-layer
simulations and single-layer retrievals shows that single-layer retrievals systematically underestimate
COT at small CER, while at larger CER, the single-layer results exceed double-layer simulations by
about 20 units on average. For the low-level water—mid-level ice cloud structure, the difference between
retrieval and simulated results is close to 0 when CER < 5 um, gradually increases with CER, and plateaus
for CER > 30 um, reflecting the sustained shielding effect of the upper ice layer on the lower water cloud.
In triple-layer clouds, increasing mid-level CWC causes single-layer retrievals to remain below
simulation values for CER < 50 um, further highlighting the limitations of the single-layer assumption
under complex vertical structures.

These results suggest that assuming a single homogeneous cloud layer in remote sensing retrievals can
cause significant errors. Upper-level ice clouds can shield lower-level water clouds, leading to
underestimated total reflectance and systematic low bias in COT. CER retrievals are also sensitive to
cloud layer height and water/ice content distribution, with neglect of inter-layer radiative effects
increasing uncertainty. Sensitivity experiments indicate that for CER <20 pum, the mean increase in COT
caused by variations in single-layer clouds exceeds that in double-layer cloud structures by

approximately 24%. Incorporating prior cloud vertical structure information from active sensors or
20



470

475

480

485

490

reanalysis can improve COT and CER retrieval accuracy, as well as provide guidance for obtaining more

reliable retrievals under complex multilayer cloud conditions.
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Figure 13. Conceptual diagram illustrating the radiative characteristics and retrieval implications
of COT and CER under different vertical cloud structures.
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