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Abstract. The vertical structure of clouds plays a critical role in atmospheric radiative transfer and is a 

major source of uncertainty in satellite-based retrievals of cloud optical thickness (COT) and cloud 

effective radius (CER). Most operational algorithms assume a single homogeneous layer, but the biases 20 

introduced by this simplification under realistic multilayer conditions remain poorly quantified. This 

study develops a retrieval model for COT and CER based on a random forest framework coupled with 

spatial gradient features, using multispectral observations from the systematically investigates how 

perturbations in cloud vertical structure affect COT and CER retrievals using FY4A/AGRI (Advanced 

Geostationary Radiation Imager) and simulations from Advanced Radiative Transfer Modeling System 25 

(ARMS) over central and eastern China during June–August 2018. The retrieval results agree well with 

MODIS, with correlation coefficients of 0.87 and 0.91 for COT and CER, respectively. To assess the 

impact of vertical cloud structure, We designed ten sensitivity experiments by varyingvaried water and 

ice content across single-, double-, and triple-layer cloud configurations to quantify the impact of 

structural differences on channel reflectance and the COT-CER relationship.in different cloud layers. The 30 

results indicate that upper-level ice clouds significantly mask reflectance from lower water clouds, 

reducing total reflectance by approximately 50% and, leading to systematic retrieval biases: single-layer 
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algorithms underestimate COT at small CER (<10 μm) but overestimate it by approximately 20 units 

under larger CER conditions. lower retrieved values than those of single-layer clouds.In single-layer 

clouds, For CER < 20 μm, the mean COT increase due to variations in low- and mid-level water content 35 

produce mean COT increases ~24% larger than in double-layer structure, with similar biases occurring 

in three-layer clouds.cloud variations in single-layer clouds exceeds that in double-layer clouds by about 

24%, primarily due to the masking effect of upper-level ice clouds in double-layer structures. This 

masking also contributes to retrieval biases in three-layer cloud systems. Furthermore, 

enhancedincreased mid-level liquid water enhances the nonlinear relationship between COT and CER, 40 

increasing retrieval uncertainties. These findings identify cloud vertical heterogeneity as a major source 

of retrieval bias and emphasize the necessity of integrating multilayer cloud information into satellite 

retrieval algorithms. This study highlights the importance of considering multi-layer cloud structures in 

remote sensing algorithms and radiative transfer models. 

1 Introduction 45 

Clouds cover approximately 67% of the Earth’s surface on average (Fang et al., 2016) and exert a pivotal 

influence on the evolution of weather systems and the global hydrological cycle (Matus et al., 2017). The 

pronounced spatial heterogeneity of clouds introduces substantial uncertainties in their microphysical 

properties, which is turn complicates the interactions between clouds and radiation. This uncertainty 

remains a critical limitation in the accuracy of climate change projections and the performance of 50 

numerical weather prediction models (IPCC, 2021). The radiative characteristics of clouds are highly 

sensitive to the physical attributes of cloud particles, particularly variations in key parameters including 

cloud effective radius (CER), cloud optical thickness (COT), cloud water content, cloud top height, and 

cloud base height (Wang et al., 2018; Letu et al., 2020). Among these, COT and CER are two important 

cloud microphysical parameters that govern the cloud’s ability to scatter and absorb solar radiation. 55 

With the advancement of satellite technology, satellite observations have become a powerful tool for 

capturing the spatial and temporal variations of COT and CER on both regional and global scales (Zhao 

et al., 2018). As a result, the retrieval of COT and CER from satellite data has attracted increasing 

attention. Mainstream operational retrieval methods are based on A widely used approach is the classic 

bispectral reflectance technique, which assumes that the cloud within each satellite pixel is single-phase 60 

and vertically homogeneous. By using reflectance measurements from a non-absorbing channel that is 

primarily sensitive to COT and an absorbing channel sensitive to both COT and CER, it is possible to 
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retrieve their effective values (Nakajima and King, 1990), . which serves as the foundation forThis 

principle underlies many operational cloud optical and microphysical products derived from spectral 

imagers such as MODIS, AHI, and AGRI (Platnick et al., 2003; Min et al., 2017; Letu et al., 2020; Chen 65 

et al., 2020; Zhuge et al., 2021; Liu et al., 2023). Although these methods are well established, they 

typically assume a single homogeneous cloud layer within each satellite pixel. However, the errors 

introduced by this simplification under realistic atmospheric conditions remain poorly quantified. The 

accuracy of these retrievals largely depends on the precision of radiative transfer modeling and the 

adequacy of cloud optical property characterization. Radiative transfer models simulate the top-of-70 

atmosphere radiance observed by satellites by accounting for atmospheric absorption, scattering, and 

emission processes under various meteorological conditions, and thus serve as the physical foundation 

for developing satellite-based cloud retrieval algorithms (RTTOV: Saunders et al., 2018; CRTM: Chen 

et al., 2008; ARMS: Weng et al., 2020). 

Given the complex structure of atmospheric clouds and the computational cost of radiative transfer 75 

simulations in cloudy atmospheres, most current cloud retrieval algorithms adopt a simplified assumption 

of a “single-layer homogeneous cloud.” In reality, clouds are often composed of multiple vertically 

arranged layers with distinct microphysical properties,, each characterized by unique microphysical 

features including phase type, droplet size variability, and spatial structure. Based on combined 

CALIPSO and CloudSat observations, Li et al. (2011) reported that overlapping clouds occur with a 80 

global probability of up to 25.8%. Similarly, Yuan and Oreopoulos (2013) found that approximately 30% 

of low-level clouds are obscured by upper-level clouds, with overlapping cloud occurrence exceeding 

90% in tropical regions. Among these, the typical two-layer cloud system composed of upper-level ice 

clouds and lower-level water clouds is the most prevalent type, accounting for over 50% of overlapping 

cloud cases (Sourdeval et al., 2016). Therefore, ignoring the vertical complexity of clouds inevitably 85 

introduces retrieval biases in cloud microphysical parametersCOT and CER retrievals. For instance, 

Huang et al. (2005) demonstrated using satellite, ground-based microwave radiometer, and lidar 

observations that the single-layer assumption can lead to a 30% overestimation in COT. In addition, 

Wang et al. (2019) showed that vertical heterogeneity within ice clouds can result in large 

underestimations (up to −50%) of MODIS ice water path in deep convective and high-latitude regions, 90 

although the effect on global-mean cloud radiative properties is relatively small. 

To reduce these biases, Teng et al. (2020) developed a novel multilayer retrieval algorithm that 
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leverages differential absorption across four shortwave infrared channels (0.87, 1.61, 2.13, and 2.25 μm). 

This method enables simultaneous retrievals of COT and CER for both upper ice and lower liquid layers 

in ice-over-water cloud systems, significantly improving the agreement between simulated and observed 95 

reflectance. More recently, Teng et al. (2023) further advanced this framework by incorporating 

additional spectral constraints, thereby enhancing the robustness of multilayer cloud retrievals under 

complex atmospheric conditions. Despite these advances, major challenges remain. In particular, 

Uncertainties remain in how vertical variations in cloud structure—such as inhomogeneity, overlap, and 

alignment—affect satellite retrievals of COT and CER. Neglecting these variations can bias simulated 100 

radiative effects and heating profiles, underscoring the need for better representation of vertical structure 

in retrieval algorithms and climate models (Wang et al., 2021).Teng et al. (2020) also showed that for 

ice-over-water cloud systems, retrievals assuming a two-layer structure yield reflectance values more 

consistent with observations than those based on the single-layer assumption. 

Although multilayer cloud retrieval algorithms have made significant progress, systematic 105 

quantification of how perturbations in cloud vertical structure affect the retrieval of COT and CER 

remains limited, and assessments of the systematic biases arising from neglecting vertical heterogeneity 

are still lacking. To address this gap, Differences in cloud vertical structure can lead to significant 

discrepancies in the retrieval of cloud properties, thereby affecting the accuracy of simulated radiative 

effects. In particular, the vertical superposition of liquid and ice clouds raises critical questions: How is 110 

the top-of-atmosphere reflectance, as observed by satellites, altered under such configurations? What 

level of uncertainty is introduced into the retrievals of COT and CER? Furthermore, how does the 

relationship between COT and CER vary across different vertical cloud structures? To address these 

questions, COT and CER were retrieved using a bispectral lookup table constructed with the Advanced 

Radiative Transfer Modeling System (ARMS), driven by FY4A/AGRI (Advanced Geostationary 115 

Radiation Imager) observations over central and eastern China from June to August 2018. The retrieved 

results were subsequently validated using MODIS cloud products. On this basis, we design ten sensitivity 

experiments were designed to evaluate the retrieval uncertainties directly induced by perturbations in 

cloud vertical structure, and to reveal the systematic differences between the COT–CER relationships 

obtained from multilayer cloud simulations and those derived under the single-layer assumption.with 120 

different vertical cloud structures to systematically assess the impact of cloud layering on visible and 

shortwave infrared reflectance, and to investigate how variations in vertical structure influence the 
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relationship between COT and CER. The results enhance the understanding of the mechanisms 

underlying cloud remote sensing retrievals and offer insights that can guide more accurate interpretation 

and application of COT and CER retrievals under complex multilayer cloud conditions.This work aims 125 

to elucidate the uncertainties introduced by vertical cloud structure in satellite-based cloud property 

retrievals. 

This paper is organized as follows: Section 1 outlines the importance and current progress of satellite-

based retrievals of COT and CER. Section 2 describes the data sources and retrieval algorithm. Section 

3 presents a validation of the retrieval results against MODIS cloud products. Section 4 investigates the 130 

sensitivity of simulated reflectance, COT, and CER to different vertical cloud structures using ARMS. 

Section 5 summarizes the findings and provides discussion. 

2 Data，Model and Methods 

2.1 FY4A/AGRI Data  

The satellite data used in this study consist of FY4A/AGRI Level-1 full-disk observations. The FY4A 135 

satellite provides high-frequency measurements of the Earth’s atmosphere and surface, delivering critical 

data and products to improve weather forecasting accuracy. Since March 2018, these data have been 

available for download from the Fengyun Satellite Remote Sensing Data Service Network 

(https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html). The AGRI instrument onboard FY4A 

comprises 14 spectral channels, including six visible and near-infrared bands, two mid-infrared bands, 140 

two water vapor bands, and four thermal infrared bands. The AGRI completes a full-disk scan every 15 

minutes. The spatial resolution ranges from 0.5 to 1.0 km for visible and near-infrared channels, and from 

2 to 4 km for infrared channels. The high spatial and temporal resolution of AGRI is advantageous for 

identifying and tracking small-scale, rapidly evolving systems such as nascent convection (Yang et al., 

2017).  145 

To investigate the impact of different vertical cloud structures on COT and CER, satellite observations 

from June to August 2018 over central China (105°E~120°E, 24°N~39°N) were selected. The retrieval 

experiments and validations of COT and CER were performed using two spectral channels: visible (0.55–

0.75 μm) and shortwave near-infrared (1.58–1.64 μm). Before retrieval, the AGRI data were calibrated 

using the official coefficients and lookup tables provided in the L1 files, and geometric correction was 150 

applied based on the nominal projection, ensuring consistency with operational procedures 

https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html
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(https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html). 

Previous studies (Sun et al., 2025) indicate that FY-4A/AGRI radiometric calibration exhibits notable 

seasonal variations, particularly in the shortwave infrared (SWIR) channels (Channels 5 and 6), where 

the fluctuation indices are 2–4 times larger than those of the visible (VIS) channels due to weaker 155 

reflected signals and higher sensitivity to noise. In contrast, VIS channels are relatively stable. During 

the study period, such uncertainties may propagate through radiative transfer simulations and potentially 

affect the retrieval of CER. However, cross-validation with MODIS cloud products shows good 

agreement (see Section 3.1), suggesting that the calibration-related uncertainties of FY-4A/AGRI do not 

significantly affect the analysis of cloud microphysical characteristics, and the data can be considered 160 

reliable for this study. 

2.2 ARMS Model 

This study employs the Advanced Radiative Transfer Modeling System (ARMS) model developed in 

China, which utilizes a fast transmittance calculation scheme (Weng et al., 2020). In the simulation 

process, ARMS takes atmospheric optical parameters as inputs, where the optical thickness varies in 165 

response to changes in the atmospheric environment. These parameters are typically generated using 

spectral libraries containing line-by-line absorption coefficients. Optical properties related to five 

hydrometeor categories—cloud droplets, rain, cloud ice, graupel, snow, and hail are computed for each 

atmospheric layer. Liquid hydrometeors are assumed to be spherical, and their scattering parameters are 

derived using Mie theory. Given an effective particle radius, the total number of particles per layer is 170 

determined from the hydrometeor water content. For ice clouds, scattering by particles with diameters 

equal to or larger than the radiation wavelength is treated using the T-matrix method (Bi and Yang, 2017), 

and the results are stored in a scattering database. The accuracy of the ARMS model has been validated 

in previous studies (Yang et al., 2020; Tang et al., 2021). 

In this study, the ARMS radiative transfer model is employed to simulate cloud reflectance across 175 

multiple spectral bands. Atmospheric background fields are sourced from the ERA5 reanalysis dataset 

(Hersbach et al., 2020), which provides vertical profiles of temperature, water vapor, and ozone, along 

with pressure levels, cloud liquid and ice water content, surface temperature, and surface type. In addition, 

a series of idealized sensitivity experiments are conducted by constructing different cloud vertical 

structures, aiming to investigate the impacts of cloud layering on reflectance, COT, and CER.cloud 180 

https://satellite.nsmc.org.cn/DataPortal/cn/home/index.html
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optical thickness (COT), and cloud effective radius (CER). 

2.3 COT and CER retrieval 

The bispectral retrieval algorithm, developed based on the optical and radiative properties of liquid and 

ice clouds, is one of the most widely used methods for retrieving cloud parameters. It has been 

extensively applied to a variety of satellite instruments (Platnick et al., 2017; Min et al., 2017; Letu et al., 185 

2018; Zhuge et al., 2021). In this study, the COT and CER are retrieved using observations from the 

FY4A/AGRI visible channel (0.65 μm) and shortwave near-infrared channel (1.61 μm), with forward 

simulations provided by the ARMS radiative transfer model. The overall retrieval procedure is illustrated 

in Fig. 1. 

Based on the approach proposed by Zhuge et al. (2017), a fast cloud detection algorithm is 190 

implemented using AGRI Level-1 data (0.47, 0.65, 0.825, and 1.61 μm) to distinguish between cloudy 

pixels and clear-sky conditions, with thresholds listed in Table 1. Pixels with brightness temperatures 

(10.7 μm) below 233 K are classified as ice clouds, and those above 273 K as liquid clouds. ERA5 

reanalysis data are interpolated in time and space to match the spatial and temporal grids of FY4A/AGRI 

satellite observations. Temporal interpolation is performed linearly between the two nearest ERA5 time 195 

steps, while spatial interpolation uses inverse distance weighting based on the four closest ERA5 grids 

to each satellite pixel. The matched atmospheric profiles, surface conditions, and geometric angles are 

then input into the ARMS model. The simulated reflectance under specific atmospheric and cloud 

conditions is utilized to generate look-up tables (LUTs), which support the retrieval of COT and CER for 

both liquid and ice phase clouds (Table 2). Fig. 2 illustrates the theoretical relationship between COT and 200 

CER for liquid clouds (a) and ice clouds (b) under fixed solar and viewing geometry. It can be seen that, 

for both cloud types, the reflectance in the visible and shortwave infrared channels generally increases 

with increasing COT and decreases with increasing CER. This behavior is consistent with previous 

studies (Letu et al., 2020; Zhuge et al., 2021).  

Building upon these physical principles, this study proposes a novel retrieval algorithm for COT and 205 

CER, referred to as the DORF (Differential Operator-based Random Forest) algorithm, which integrates 

multispectral information with spatial structure features. Fig. 3 illustrates the structure and specific 

schematics of the DORF model. The core of the method is a Random Forest (RF) model that leverages 

both FY4A/AGRI multispectral observations and spatial gradient features to construct a nonlinear 
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retrieval framework. The RF model has been widely used in environmental parameter estimation 210 

(Stafoggia et al., 2019). While its applications in cloud remote sensing are relatively limited compared 

to other networks, this study demonstrates that RF, when combined with physically meaningful spatial 

features, can serve as an effective retrieval method for satellite- based cloud property estimation. In this 

framework, the RF model is trained with MODIS-retrieved COT and CER as the ground truth labels, 

whereas the prediction phase relies solely on FY4A/AGRI inputs. No MODIS data are used in prediction, 215 

thereby validating the transferability of the trained model to independent geostationary satellite 

observations. 

Specifically, six representative channels from the AGRI (i.e., channels 2, 5, 6, 7, 10, and 12) are 

selected to characterize the cloud’s reflectance, absorption, and emission properties across different 

spectral bands. For each selected channel Ri (i=1, …,6), we compute the first-order spatial gradients in 220 

the horizontal (x) and vertical (y) directions using the Sobel operator, yielding gradient magnitudes: 

( ) ( )
22

i x i y i
G R R=  +                                             (1) 

The final input vector for each satellite pixel is then formulated as: 

12

1 2 6 1 2 6
, ,..., , , ,...,x R R R G G G R =                                (2) 

Where x denotes the combined spectral and spatial features, serves as input to the RF model. The Sobel 225 

operator is applied to each of the six selected AGRI channels using 3×3 convolution kernels to 

approximate derivatives in the east-west and north-south directions. This magnitude reflects the local 

edge strength and spatial texture of the cloud field. Combined with the corresponding spectral reflectance 

values, they form the complete input vector x for the RF model. The nonlinear relationship between these 

features and the target cloud properties (COT and CER) is established using the MODIS official cloud 230 

products as the reference dataset. 
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Figure 1. Framework of the COT and CER retrieval algorithm for FY4A_AGRI 

Table 1. Cloud detection thresholds for FY4A AGRI. 

Channel Physical significance Threshold 

𝑇0.65 − 𝑅0.825
𝑅0.65 + 𝑅0.825

 Normalized Difference Cloud Index (NDCI) >0.12 

R0.65 Reflectance >0.3 

𝑇0.65 − 𝑅1.61
𝑅1.61 + 𝑅0.65

 Normalized Difference Snow Index (NDSI) >0.26 

R0.47 Reflectance >0.15 

Table 2. Input parameters and grid points of the variables used to build the LUT version of the FY4A_AGRI. 235 

Variables Range Number 

of grids 

Unit 

Sun zenith  0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80 15 degree 

Satellite zenith  0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80 15 - 

Relative Azimuth  0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,1

60,170,180 

19 - 

Water cloud optical thickness 0.25,0.32,0.4,0.5,0.6,0.8,1.0,1.26,1.58,1.99,2.51,3.16, 

3.98,5.01,6.3,7.94,10.0,12.59,15.85,19.95,25.12,31.62, 

39.81,50.12,63.1,79.4,100.0,125.9,158.5 

27  

Water cloud effective radius 2,4,5,8,11,14,17,20,26,30,36,42,50,60 12 μm 

Ice cloud optical thickness 0.25,0.32,0.4,0.5,0.6,0.8,1.0,1.26,1.58,1.99,2.51,3.16, 

3.98,5.01,6.3,7.94,10.0,12.59,15.85,19.95,25.12,31.62, 

39.81,50.12,63.1,79.4,100.0,125.9,158.5 

27  

Ice cloud effective radius 5,10,15,25,30,35,40,50,60,70,80,90,110,130 12 μm 
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Figure 2. Bispectral reflectance LUTs of cloud reflectance at 0.65 um and 1.61 um for water(a) and ice(b) phases 

when the solar zenith angle is 40°, the sensor viewing zenith angle is 40°, and the relative azimuth angle is 20°, and 

the underlying surface is land. The dashed line represents the CER, and the solid line represents the COT. 

 240 

Figure 3. Schematic of the DORF model for COT and CER prediction based on FY-4A/AGRI observations. 

3 COT and CER Retrievals and Comparisons 

To evaluate the accuracy of FY4A/AGRI cloud property retrievals, we compared them with the MODIS 

Collection 6.1 MOD06 daytime cloud products from June to August 2018. For spatial matching, the 1 

km MODIS pixels were averaged within each 4 km AGRI footprint to ensure consistent resolution. For 245 

temporal matching, the MODIS overpass was paired with the closest AGRI full-disk scan (15 min 

interval), with a maximum offset of ±7.5 min. The FY4A/AGRI-derived CER retrievals exhibit strong 

consistency with those fromfrom the MODIS MOD06, with a coefficient of determination (R²) of 0.91, 

a mean absolute error (MAE) of 2.0 μm, and a root-mean-square error (RMSE) of 3.36 μm in Fig. 4. 
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Similarly, the FY4A/AGRI-derived COT exhibits good consistency with MODIS MOD06, with R², MAE, 250 

and RMSE values of 0.87, 3.9, and 8.03, respectively. 

Fig. 5 display the Pprobability density distributions (PDFs) of CER and COT f generated from the 

same 4 km resampled data to ensure consistency with Fig. 4. These PDFs provide a basis for comparing 

the retrievals between FY4A/AGRI and MODIS. rom both sensors further support these findings (Fig. 

5). For CER < 13 μm, The results indicate that FY4A/AGRI tends to underestimates CER relative to 255 

MODIS for CER<13 μm, while it tends to retrieve larger CER valueswhereas in the range of 14~23 

μm, .FY4A/AGRI generally retrieves larger CER values than MODIS. As CER increases further, the 

differences between the two sensors diminish. A similar trend is observed in COT retrievals, with: 

MODIS yields higher COT values  than FY4A/AGRI when for COT < 10 and FY4A/AGRI , while the 

opposite is true for higher values at larger COT values. These differences are mainly attributable to sensor 260 

resolution and the partial filling effect, whereby coarse pixels contain a mix of cloudy and clear areas 

(Chen and Fu, 2017; Ackerman et al., 2008; Chen et al., 2020). Overall, the distributions remain 

consistent, supporting the robustness of the retrievals.These patterns suggest that FY4A/AGRI is less 

sensitive to optically thin clouds compared to MODIS, but still demonstrates robust detection and 

retrieval capabilities for more extensive cloud systems (Min et al., 2017). 265 

To provide a concrete reference for subsequent perturbation experiments, we analyzed a mesoscale 

convective system (MCS) over central-eastern China on August 2, 2018. At 04:00 UTC, FY4A/AGRI 

false-color imagery revealed two isolated northward-moving convective cloud systems (Fig. 6a), with 

high-altitude ice clouds north of 30°N and low-level water clouds below (Fig. 6b). COT and CER 

retrievals from FY4A/AGRI and MODIS (Fig. 6c–f) show two high-value COT centers (>65) between 270 

31–32.5°N and 111–113°E, with close agreement. For 20 ≤ COT<30, FY4A/AGRI slightly 

underestimates values (~12%). CER patterns are generally consistent, though differences appear in thin 

water cloud regions. 

These differences mainly result from: (1) spatial resolution differences (MODIS 1 km vs. AGRI 4 km); 

(2) cloud horizontal inhomogeneity within AGRI pixels; and (3) visible channel degradation and SWIR 275 

fluctuations (Sun et al., 2025). Additionally, in the region 106–107°E, 32–35°N (corresponding to the 

Dabie and Wuling Mountains), FY4A/AGRI and MODIS retrievals show noticeable differences. This 

discrepancy is likely due to the influence of high-elevation terrain on satellite observations and the fact 



12 
 

that the retrieval algorithm was primarily tuned for lowland surface types, without explicitly considering 

mountainous surface characteristics. Despite this local variation, the overall COT and CER patterns 280 

remain consistent within the common observed area. This case thus provides a robust reference for the 

perturbation experiments in Section 4. 

 

Figure 4. Scattering plot (a and b) of COT and CER from MODIS C6 (MOD06) and FY4A/AGRI data in the selected 

area. 285 

 

Figure 5. Probability density function (PDF) of the FY4A/AGRI retrieval results and the MODIS cloud products in 

the region. The red and black solid line shows the FY4A/AGRI results and the MODIS results, respectively. 
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Figure 6. Comparison of retrieved optical parameters using the FY-4 AGRI with MODIS cloud products 290 

(Cloud_Optical_Thickness_16 and Cloud_Effective_Radius_16). The observation time of the FY-4 AGRI is 04:00 

UTC on 2 August 2018 and the MODIS observation time is 03:35 UTC. (a) False-color image (red, 0.65 μm; green, 

1.61 μm; blue, 10.7 μm reversed) where thick ice clouds are orange colored, and low clouds are white colored. (b, 

d, f) cloud-top phase, COT(unitless), CER(unit: μm) from Collection-6.1 MOD06 at 0335 UTC August 2, 2018. (c,e) 

COT(unitless), CER(unit: μm) derived FY4A/AGRI at 0400 UTC August 2, 2018. 295 

4 Cloud Microphysical and Radiation Response to Cloud Vertical Structure  

Cloud vertical structure includes the number of cloud layers, cloud top height, cloud base height, 

cloud thickness, cloud fraction, and the vertical distribution of cloud microphysical properties. It reflects 

the thermodynamic, dynamic, and microphysical processes within the cloud system and plays an 

important role in weather and climate (Xu et al., 2023). To quantitatively investigate the effects of cloud 300 

layer number and cloud phase on cloud reflectance, COT and CER, this study builds upon the case study 

retrieval results from Section 3.2. Cloud water profiles are categorized into single-layer, double-layer, 

and triple-layer clouds, and by adjusting the cloud liquid/ice water content in each layer, the sensitivity 

of cloud reflectance, COT and CER under different vertical cloud structure conditions is systematically 
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analyzed. 305 

4.1 Cloud water/ice content Profiles Classification 

To investigate the impact of cloud vertical structure on COT and CER, 221 vertical profiles of cloud 

liquid and ice water content were extracted from ERA5 at 04:00 UTC on 2 August 2018 over the region 

110~114°E and 30~33°N (Section 3.2). Based on empirical rules, each profile was classified into 

different structural types. The number of peaks in liquid/ice water content was used to determine the 310 

number of cloud layers, while cloud phase was inferred by pressure level: ice clouds above 450 hPa, and 

liquid clouds below 700 hPa and between 700–450 hPa.  

Specifically, single-layer clouds, characterized by one peak, were divided into three types: high-level 

ice clouds, mid-level water clouds, and low-level water clouds. Two-layer cloud structures, identified by 

two peaks, were further categorized into five subtypes based on the cloud phase (ice or water) and the 315 

relative liquid or ice water content in the upper, middle, and lower layers. Three-layer profiles, indicated 

by three peaks, generally represent a typical ice–water–water cloud configuration (Fig. 7).  

Statistical results (Table 3) show that single-layer clouds account for 48% of the profiles, two-layer 

clouds 46%, and three-layer clouds 6%. These proportions are consistent with the findings of Xu et al. 

(2023), who reported that single-layer clouds dominate (55.4%) in radiosonde observations, with two-320 

layer systems being the most frequent among multilayer clouds. This agreement supports the validity and 

physical relevance of the classification method used. 
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Figure 7. Vertical structure types of cloud water and ice content profiles from ERA5. The “large 

cloud” profiles correspond to the original profiles with a fivefold increase in cloud water or ice 325 

content, while the “small cloud” profiles represent the unmodified original profiles. The distinction 

between large and small clouds is not explicitly marked in the figure but can be inferred from the 

differences in water content. 

Table 3 Proportions of single-layer, two-layer, and three-layer Cloud Profiles and Corresponding 

Mode Classifications 330 

Cloud 

Layers 

Height Cloud 

type 

Exp 

No.  

Ratio 

Single 

Layers 

Cloud 

 

H Ice  3  

48% M Water  2 

L Water  1 

 

Two-layer 

Clouds 

H+M Ice + 

Water  

8  

46% 

H+L Ice + 

Water  

6,7 

L+M Ice + 

Water  

4,5 

Three-

layer 

Clouds 

H+M+L Ice + 

Water 

+Water  

9,10 6% 

 

4.2 Sensitivity of Reflectance to Cloud Vertical Structure  

Based on the classification, the sensitivity experiments are designed to investigate how perturbations in 

cloud liquid water content (CWC) and ice water content (IWC) at different vertical levels (low, mid, and 

high) influence the reflectance responses of FY-4A/AGRI Channels 2 and 5. The vertical positions of the 335 

cloud layers are prescribed and fixed, so the variations in reflectance shown in Figs. 8–10 result from 

systematic changes in CWC and IWC at these levels, rather than from changes in cloud height alone. To 

ensure representativeness of each cloud type, the CWC and IWC vertical profiles used in the experiments 

were constructed from the mean profiles of ERA5 for each category. 

Fig. 8 shows the sensitivity of cloud reflectance to CER variations for three single-layer cloud types 340 

under increased LWC or IWC. For low-level water clouds, channel 2 reflectance rises from 0.6 to 0.7 as 

CER increases from 2 to 10 μm, while channel 5 first decreases then rise to 0.68 (Fig. 8a). Increasing 

LWC enhances channel 2 reflectance by about 0.1, with a smaller effect on channel 5. Mid-level water 

clouds exhibit significant reflectance changes in channel 2 only when CER exceeds 10 μm, stabilizing 
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beyond 25 μm (Fig. 8b). High-level ice clouds show slightly higher reflectance in both channels 345 

compared to water clouds (Fig. 8c). Overall, increased LWC in low-level clouds notably boosts 

reflectance, especially in the visible channel, by approximately 15% more than mid- or high-level clouds. 

Moreover, the minimal response of channel 5 reflectance for high-level ice clouds when increasing IWC 

is consistent with Wang et al. (2018), who showed that shortwave infrared (SWIR) channels are primarily 

weighted toward cloud top. If the top-layer CER is already large, additional IWC exerts little effect on 350 

SWIR reflectance. 

For double-layer clouds, the reflectance response is determined by the combination of liquid and 

ice clouds. In the “mid-level water cloud–high-level ice cloud” configuration, channel 5 reflectance 

remains nearly unchanged under different perturbations, whereas channel 2 exhibits significant variations. 

For CER < 5 µm, increasing mid-level CWC or high-level IWC yields almost identical results; for CER > 355 

5 µm, increasing high-level IWC produces slightly higher channel 2 reflectance than increasing mid-

level CWC (Fig. 9a, d), likely due to multiple scattering in the upper ice cloud enhancing upward 

radiation while partially diminishing the mid-level water cloud contribution. In the “low-level water 

cloud–high-level ice cloud” configuration (Fig. 9c and f), the overall reflectance response is similar to 

that of the mid-level water cloud–high-level ice cloud case, indicating that the upper ice cloud dominates 360 

the system’s radiative properties. This mechanistically supports the observational findings of Kiran et al. 

(2015), which reported that despite the presence of liquid water clouds at lower levels, the net radiative 

forcing at the top of the atmosphere remains nearly balanced, primarily due to the simultaneous 

shortwave cooling and longwave heating effects of the upper ice cloud. By contrast, in the “low-level 

water cloud–mid-level ice cloud” configuration, the reflectance response to increases in CWC/IWC at 365 

different levels is markedly different from the previous two cases. Specifically, increasing low-level 

CWC causes channel 2 reflectance to vary nonlinearly with CER, first decreasing and then increasing 

(Fig. 9b), whereas increasing mid-level IWC results in a linear decrease of reflectance in both channels 

2 and 5, with channel 5 even decreasing by approximately 0.12 when CER > 30 µm (Fig. 9e).Fig. 9 

illustrates reflectance changes for two-layer cloud structures. When lower-layer LWC increases and 370 

upper-layer COT is low, reflectance in channels 2 and 5 increases minimally due to incomplete masking 

(Fig. 9a). For mid-level ice over low-level water clouds, channel 2 and 5 reflectance decrease markedly, 

with channel 5 more strongly attenuated (Fig. 9b). Increasing mid-level LWC mainly enhances 

reflectance for CER < 10 μm, indicating high sensitivity of small particles (Fig. 9c). A similar pattern is 
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seen with increased high-level IWC, though channel 2 reflectance decreases and channel 5 increases at 375 

CER > 50 μm (Fig. 9d). The combination of high-level ice over low-level water yields the highest 

reflectance among two-layer clouds (Fig. 9e). When water clouds lie at mid-level, added upper-level 

IWC raises reflectance at CER = 30 μm by up to 23% in both channels (Fig. 9f). 

Three For the three-layer clouds consisting of high-level ice cloud over mid-level water cloud over 

low-level water cloud, increasing either low- or mid-level CWC enhances Channel 2 reflectance with 380 

increasing CER, with the increase being more pronounced for mid-level CWC display more complex 

nonlinear reflectance behavior (Fig. 10a-b). The response of Channel 5 reflectance exhibits a similar 

trend but with a smaller magnitude, indicating that the mid-level water cloud contributes more 

significantly to reflectance in both channels. When high-level IWC is increased, Channel 2 reflectance 

decreases approximately linearly with CER, while Channel 5 also declines (Fig. 10c). For CER >14 µm, 385 

Channel 5 reflectance drops from ~0.4 to 0.25, highlighting the strong radiative shielding effect of the 

high-level ice cloud on underlying water clouds.Increasing LWC in lower or middle layers causes 

alternating enhancement or reduction of reflectance across CER ranges (Fig. 10a). With higher upper-

level IWC, channels 2 and 5 show pronounced increases at CER = 10 μm and > 50 μm (Fig. 10b), 

reflecting strong shortwave scattering by large ice crystals and partial penetration effects on lower layers. 390 

These observations align with Li et al. (2011), who found that multilayer clouds have weaker shortwave 

reflectance than single-layer clouds due to their higher cloud tops allowing shortwave radiation to 

partially transmit to lower clouds or the surface. 

 

Figure 8. Variation of cloud reflectance at Channel 2 (solid lines) and Channel 5 (dashed lines) with 395 

cloud effective radius (CER) under different LWC or IWC condition. Black lines correspond to 

reflectance simulated using the original LWC/IWC profiles from ERA5 reanalysis, while red lines 

represent reflectance simulated with LWC/IWC increased by a factor of 5. Three single-layer cloud 

types are shown: low-level water clouds (a, Exp 1), mid-level water clouds (b, Exp 2), and high-
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level ice clouds (c, Exp 3). The simulations assume a solar zenith angle of 40°, sensor viewing zenith 400 

angle of 40°, and relative azimuth angle of 20°. 

 

Figure. 9. Reflectance–CER relationships for six double-layer cloud sensitivity experiments: (a, d) 

mid-level water + high-level ice cloud, with (a) increased mid-level CWC (Exp 8) and (d) increased 

high-level IWC(Exp 8); (b, e) low-level water + mid-level ice cloud, with (b) increased low-level 405 

CWC(Exp 4) and (e) increased mid-level IWC(Exp 5); (c, f) low-level water + high-level ice cloud, 

with (c) increased low-level CWC(Exp 6) and (f) increased high-level IWC(Exp 7). Each panel 

illustrates the effect of adjusting cloud water content (CWC) or ice water content (IWC) on the 

reflectance–CER relationship for the corresponding cloud vertical structure.Figure 9. Reflectance–

CER Relationships under varying LWC/IWC Conditions for Six Overlapping cloud types. (a) Low-410 

level water cloud with increased LWC beneath high-level ice cloud (Exp 6); (b) Low-level water 

cloud with increased LWC beneath mid-level ice cloud (Exp 4); (c) Mid-level water cloud with 

increased LWC beneath high-level ice cloud (Exp 8); (d) Low-level water cloud with increased 

LWC overlain by high-level ice cloud (Exp 7); (e) Low-level water cloud with increased IWC 

beneath mid-level ice cloud (Exp 5); (f) Mid-level water cloud with increased IWC beneath high-415 

level ice cloud (Exp 8). 

 

Figure10. Similar to Fig. 9, but for multi-layer clouds (a) Exp 9 and (b) Exp 10. 

4.3 Sensitivity of COT–CER Relationship to Cloud Vertical Structure 

The operational COT and CER retrieval algorithm developed in Section 3 is based on single-layer cloud 420 
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assumptions. In reality, cloud systems are frequently multi-layered, which can introduce significant 

uncertainties in retrievals. To quantify these effects, we conducted idealized perturbation experiments 

using representative single-, double-, and three-layer cloud configurations (Fig. 11), perturbing CWC or 

IWC at specific vertical levels and comparing the resulting optical thickness (ΔCOT) with unperturbed 

cases.To investigate the impact of vertical cloud structure perturbations on the retrieval of cloud optical 425 

thickness (COT) and cloud effective radius (CER), representative configurations of single-layer, two-

layer, and three-layer clouds were selected (Fig. 11). By perturbing LWC or IWC at specific vertical 

levels and comparing the results with unperturbed cases, the change in optical thickness (ΔCOT) was 

quantified. 

Fig. 11a and 10b show ΔCOT as a function of CER after increasing the LWC in low- and mid-level 430 

water clouds, respectively. For single-layer clouds, ΔCOT increases nonlinearly with CER, showing a 

rapid rise when CER is below 15 μm before approaching saturation. Notably, when CER < 10 μm, 

increasing LWC in mid-level water clouds leads to a maximum ΔCOT of 52, which is approximately 1.6 

times greater than that resulting from the same perturbation in low-level clouds (Fig. 11b). For two-layer 

structures, three typical configurationsmodes were analyzed: (1) mid-level ice cloud over low-level water 435 

cloud (Fig. 11c), (2) high-level ice cloud over low-level water cloud (Fig. 11d), and (3) high-level ice 

cloud over mid-level water cloud (Fig. 11e). In all cases, ΔCOT changes from LWC/IWC perturbations 

were generally smaller than in single-layer clouds, especially for CER < 20 μm On average, the mean 

COT increase due to low- and mid-level water cloud variations in single-layer clouds exceeds that in 

double-layer clouds by about 24%, primarily due to the masking effect of upper-level ice clouds in 440 

double-layer structures. Low-level water beneath mid-level ice showed negative ΔCOT at small CER, 

whereas high-level ice over low-level water enhanced ΔCOT. The high-level ice over mid-level water 

scenario exhibited a non-monotonic ΔCOT pattern for small CER, likely due to complex radiative 

interactions between layers. For three-layer clouds (Fig. 11f), increases in mid- or lower-level CWC 

significantly enhance ΔCOT, although peak values are slightly lower than in single-layer clouds (Fig. 445 

11e). The lower water layer dominates the response, while overlying ice partially masks the effect. These 

results agree with Wang et al. (2021), who showed that subgrid-scale cloud structure and overlapping 

condensate significantly modulate radiative effects.  

We further examined the impact of multi-layer cloud vertical structures by comparing COT from 

idealized double- and triple-layer simulations with single-layer retrievals. Fig. 12 shows the difference 450 
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between COT retrieved under the single-layer assumption and that simulated with multi-layer clouds 

(ΔCOT_retrieval, hereafter abbreviated as ΔCOT_R) as a function of CER. Overall, when CER < 10 μm, 

ΔCOT_R changes from negative to positive, indicating that the single-layer assumption systematically 

underestimates the true COT under small droplet conditions. As CER increases beyond 14 μm, ΔCOT_R 

gradually becomes positive, with single-layer retrievals exceeding two-layer simulations by 455 

approximately 20 units on average. This primarily results from the single-layer assumption’s inability to 

capture the shielding effect of overlying ice clouds on underlying water clouds, as well as the differential 

contribution of particles at different vertical levels to reflectance in the visible and shortwave infrared 

channels. 

For the “mid-level water cloud and high-level ice cloud” structure, ΔCOT_R remains negative for 460 

CER < 22 μm before turning positive (Fig. 12a). For the “low-level water cloud and high-level ice cloud” 

structure, positive ΔCOT_R appear only when CER > 45 μm (Fig. 12b). Increasing the IWC of the high-

level ice cloud maintains negative ΔCOT_R at small CER, with the positive transition also at CER > 45 

μm. In the “low-level water and mid-level ice” scenario, ΔCOT_R is near zero for CER < 5 μm, increases 

gradually with CER, and plateaus beyond 30 μm. The critical CER values where ΔCOT_R changes sign 465 

depend on the perturbed layer: ~14 μm for mid-level IWC and ~30 μm for low-level CWC (Fig. 12c), 

consistent with reflectance sensitivity results.  

 For the three-layer cloud case, increasing mid-level CWC results in single-layer retrievals being 

consistently smaller than the simulations when CER < 50 μm, highlighting the limitations of the single-

layer assumption under complex vertical structures (Fig. 12d). Together with the preceding COT–CER 470 

analyses, these results quantitatively demonstrate that neglecting vertical heterogeneity introduces 

significant biases in single-layer retrievals, with both the magnitude and sign of ΔCOT_R strongly 

dependent on CER and the vertical distribution, thickness, and microphysical properties of water and ice 

layers. Importantly, the trends observed in ΔCOT_R are consistent with the reflectance sensitivity 

experiments, confirming the direct impact of vertical cloud structure on operational COT retrievals. 475 
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Figure 11. Changes in cloud optical thickness (ΔCOT) as a function of CER for six selected vertical 

cloud structure types (Exp 1, 2, 7, 8, and 10). Each panel shows the ΔCOT resulting from adding 

LWC or IWC to a specific vertical layer relative to a reference state without that layer. Blue lines 480 

represent the contribution of added LWC, while red lines represent added IWC. Model numbers are 

indicated in each panel. when the solar zenith angle is 40°, the sensor viewing zenith angle is 40°, 

and the relative azimuth angle is 20°. 
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Figure 12. Differences in cloud optical thickness (COT) between multilayer cloud vertical 485 

structures and the single-layer assumption as a function of CER. Blue: difference between COT 

retrieved under the single-layer assumption and COT simulated for double-layer clouds; Red and 

pink: difference after adding CWC to the mid-level water cloud; Green: difference after adding IWC 

to the high-level ice cloud. 

5 Summary and Conclusions 490 

Based on FY4A/AGRI geostationary satellite observations over eastern and central China during June–

August 2018, this study focuses on the influence of cloud vertical structure on the relationship between 

cloud optical thickness (COT) and cloud effective radius (CER). Adeveloped a bispectral retrieval 

algorithm for cloud optical thickness (COT ) and cloud effective radius (CER) was developed using, 

employing the Advanced Radiative Transfer Modeling System (ARMS) and validated . The algorithm’s 495 

reliability was validated against MODIS cloud products. Additionally, ten idealized vertical cloud 

structures were constructed tTo systematically examine the impact of vertical cloud heterogeneity, ten 

idealized single-, double-, and three-layer cloud structures were constructed, allowing evaluation of how 

perturbations in cloud water content (CWC) and ice water content (IWC) at different altitudes affect both 

reflectance and the resulting COT–CER relationship.evaluate the sensitivity of visible and shortwave-500 

infrared reflectance to cloud layer variations. The associated changes in retrieved COT and CER highlight 

the significant uncertainties introduced by vertical cloud heterogeneity in microphysical retrievals. 

The COT and CER retrieved from FY4A/AGRI show good agreement with MODIS, confirming its 

reliability for analyzing the sensitivity of COT and CER to cloud vertical structure. with correlation 

coefficients of 0.87 and 0.91, respectively, indicating reliable performance in capturing cloud 505 

microphysical properties. Figure 13 presents a conceptual schematic of the radiative effects of cloud 

layering. Cloud reflectance in the visible and shortwave-infrared channels is influenced by CWC and 

IWC at different altitudes, as well as particle size. A case study reveals that FY4A/AGRI performs well 

in high-COT regions but tends to overestimate COT in low-value areas. CER retrievals are generally 

consistent with MODIS in ice cloud regions, though underestimations occur in thin water clouds. Due to 510 

resolution differences, FY4A/AGRI performs well in large-scale cloud retrievals but has lower capability 

than MODIS in representing thin and small-scale clouds. For single-layer liquid clouds, increasing low-

level LWC strongly enhances reflectance, with visible channel increases about 15% greater than those 

for mid-level liquid or high-level ice clouds. In two-layer clouds, with the “mid-level water–high-level 

ice” and “low-level water–high-level ice” configurations are dominated by the upper ice cloud, while in 515 
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the “low-level water–mid-level ice” configuration, increasing low-level CWC first reduces and then 

increases reflectance, whereas increasing mid-level IWC causes a linear decrease. For three-layer clouds, 

mid- and low-level water clouds contribute most to the visible channel, while high-level IWC strongly 

reduces reflectance through radiative shielding. mid-level liquid and high-level ice, increasing mid-level 

LWC mainly boosts reflectance in small particle size regions (CER < 10 μm). In three-layer systems, 520 

reflectance dependence on CER is more influenced by cloud layer altitude and peak LWC/IWC locations.  

Through idealized perturbation experiments on representative single-, double-, and triple-layer cloud 

structures, we quantified the impact of cloud vertical structure on the COT–CER relationship. Results 

show that for single-layer clouds, ΔCOT increases nonlinearly with CER, reaching a maximum at small 

particle sizes (CER < 15 μm). When CER < 10 μm, an increase in mid-level water cloud LWC produces 525 

a ΔCOT of up to 52, approximately 1.6 times that of an equivalent perturbation in low-level clouds. For 

multi-layer clouds, overlying ice layers partially mask the radiative effects of lower water clouds, causing 

ΔCOT to be negative or non-monotonic at small CER. Further comparison between multi-layer 

simulations and single-layer retrievals shows that single-layer retrievals systematically underestimate 

COT at small CER, while at larger CER, the single-layer results exceed double-layer simulations by 530 

about 20 units on average. For the low-level water–mid-level ice cloud structure, the difference between 

retrieval and simulated results is close to 0 when CER < 5 μm, gradually increases with CER, and plateaus 

for CER > 30 μm, reflecting the sustained shielding effect of the upper ice layer on the lower water cloud. 

In triple-layer clouds, increasing mid-level CWC causes single-layer retrievals to remain below 

simulation values for CER < 50 μm, further highlighting the limitations of the single-layer assumption 535 

under complex vertical structures.Building on the reflectance sensitivity findings, the study further 

examines how vertical structure perturbations affect the relationship between COT and CER. Increasing 

LWC/IWC at specific altitudes revealed that ΔCOT exhibits a nonlinear trend with CER in single-layer 

clouds, with mid-level LWC increases causing up to 1.6 times the ΔCOT of low-level increases. Among 

various cloud structures, the most significant increase in COT occurs at smaller CER values (<15 μm) 540 

when LWC increases in the low to mid-level water clouds, while variations in high-level IWC contribute 

minimally to COT changes. These findings highlight the critical role of low-level water cloud variability 

on shortwave radiation reflection and optical thickness in both modeling and retrieval processes. 

These results suggest that assuming a single homogeneous cloud layer in remote sensing retrievals can 

cause significant errors. Upper-level ice clouds can shield lower-level water clouds, leading to 545 
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underestimated total reflectance and systematic low bias in COT. CER retrievals are also sensitive to 

cloud layer height and water/ice content distribution, with neglect of inter-layer radiative effects 

increasing uncertainty. Sensitivity experiments indicate that for CER < 20 μm, the mean increase in COT 

caused by variations in single-layer clouds exceeds that in double-layer cloud structures by 

approximately 24%. Incorporating prior cloud vertical structure information from active sensors or 550 

reanalysis can improve COT and CER retrieval accuracy, as well as provide guidance for obtaining more 

reliable retrievals under complex multilayer cloud conditions.enhancing the monitoring and forecasting 

of severe convective weather. 

 

Figure 1213. Conceptual diagram illustrating the radiative characteristics and retrieval implications 555 

of COT and CER under different vertical cloud structures. 

Code availability. The code used in this study are available from the corresponding author upon 

reasonable request(ghlyy@mail.iap.ac.cn). 

Data availability. The FY4A/AGRI data used for the main COT and CER retrieval in this study are 

released from the Fengyun Meteorological Satellite Remote Sensing Data Service Platform 560 

(https://satellite.nsmc.org.cn/DataPortal/cn/data/order.html). The MODIS cloud product used for the 

DORF model building and for validating the spatial distributions of retrieved COT and CER from 

FY4A/AGRI(https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD06_L2--61,MYD06_L2--

61). The ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) are used to supply atmospheric temperature, humidity, and pressure profiles as input to the 565 

ARMS model (Hersbach et al., 2020). Additionally, vertical profiles of cloud liquid water and ice water 

content from ERA5 are used to construct and classify the idealized cloud vertical structure models used 

in the sensitivity experiments (https://cds.climate.copernicus.eu/datasets/). The Advanced Radiative 

Transfer Modeling System (ARMS) model developed in China (Weng et al., 2020), and the package is 

available from hanyang@cma.gov.cn. The random forest technique is available at https://scikit-570 

https://satellite.nsmc.org.cn/DataPortal/cn/data/order.html
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD06_L2--61,MYD06_L2--61
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD06_L2--61,MYD06_L2--61
mailto:hanyang@cma.gov.cn
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