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Abstract. We developed WULFFSS, a new stochastic monthly gridded forest-fire model for the western United States (US).
Operating at 12-km resolution, WULFFSS calculates monthly probabilities of fires that burn at least 100 ha of forest area as
well as the forest area burned per fire. The model is forced by variables related to vegetation, topographic, anthropogenic, and
climate factors, organized into three indices representing spatial, annual-cycle, and lower frequency temporal domains. These
indices can interact, so variables promoting fire in one domain amplify fire-promoting effects in another. Fire probability and
size models use multiple logistic and linear regression, respectively, and can be easily updated as new data or ideas emerge.
During its training period of 1985-2024, WULFFSS captures 71% and 86% of observed interannual variability in western US
forest-fire frequency and area, respectively. It reproduces regional differences in seasonal timing, frequencies, and sizes of
fires, and performs well in cross-validation exercises that test the model’s accuracy in years or regions not considered during
model training. While lacking fine-scale fire dynamics, WULFFSS’ use of classic statistics promotes interpretability and
efficient ensemble generation. Designed to run within a vegetation ecosystem model, bidirectional feedbacks between
vegetation and fire can identify how ecosystem changes have altered or will alter fire-climate relationships across the western
US. The model's predictive power should improve with increasingly accurate and extensive observational data, and its
approach can be extended to other regions. Here we provide a thorough description of the WULFFSS model, including the

motivation underlying its development, caveats to our approach, and areas for future improvement.



35

40

45

50

55

1 Introduction

In the western United States (US), the annual wildfire area increased by approximately 250% from 1985-2024, largely because
annual forest-fire extent increased 10-fold (902%) during this time (Fig. 1a). These rapid increases in annual area burned over
the last few decades occurred despite consistent efforts to suppress wildfire (Fig. 1b), signifying a break from the ease with
which fires were contained through most of the 20% century. Importantly, the frequency of western US forest fires has not
increased in recent decades (Syphard et al., 2025), so it is the growing sizes of fires rather than their numbers that are
responsible for the rapid increases in area burned (Juang et al., 2022). Severe, stand-replacing forest fires also appear to have
been more prevalent in recent decades than in previous centuries (Parks and Abatzoglou, 2020; Hagmann et al., 2021; Higuera
et al., 2021; Parks et al., 2023; Williams et al., 2023). Thus, even though western US fires are still less common than during
pre-European centuries (Parks et al., 2025), the rapid recent increase in fire activity has often not been ecologically restorative
(Coop et al., 2020). Further, carbon emissions from increasingly large and severe fires work against carbon-neutrality targets
for climate change mitigation (Anderegg et al., 2022, 2024; Jones et al., 2024). Growing sizes and spread rates (Balch et al.,
2024) of severe forest fires in the western US have also combined with growing human populations in fire-prone areas
(Radeloff et al., 2023) to increasingly put people and property in harm’s way (Higuera et al., 2023), including via air pollution
far from the flames themselves (Burke et al., 2023). Continued growth in forest-fire sizes and severities may also alter mountain
hydrology, with cascading impacts on water resources and flood risk (Kampf et al., 2022; Williams et al., 2022). These trends

motivate improved understanding of, and capability to model, past and future changes to western US forest-fire activity.
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Figure 1: Annual western US wildfire extent and suppression expenditures. (a) Time series of annual western US (grey)
total wildfire area, (green) forest area burned, and (brown) non-forest area burned from 1985-2024. Bold lines show the Theil-
Sen trends in the logarithm of area burned. Delta (A) values indicate the relative change from the first to last year of each trend
and p-values indicate trend significance assessed with one-tailed block (2-year) bootstrap. (b) Scatterplot of annual federal fire
suppression cost versus forest-fire area (colors correspond to year) from 1985-2023 (suppression cost unavailable for 2024).
Federal suppression costs from www.nifc.gov/fire-information/statistics/suppression-costs and inflation-adjusted to 2024 US
dollars. Fire dataset described in section 3.1.
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Drying and warming have been primary drivers of the increase in western US forest area burned in recent decades (Westerling
et al., 2006; Abatzoglou and Williams, 2016; Holden et al., 2018; Williams et al., 2019; Brown et al., 2023). Precipitation
declines from the early 1980s to the early 2020s were promoted by trends toward the cool states of the El Nifio-Southern
Oscillation and Pacific Decadal Variability (Lehner et al., 2018), which were probably mostly due to natural climate variability
but potentially also promoted by anthropogenic forcing (Hwang et al., 2024; Jiang et al., 2024). The linkage between
anthropogenic forcing and warming is clearer and likely to continue (Vose et al., 2017). Warming primarily reduces forest fuel
moisture by enhancing the atmosphere’s evaporative demand, melting snow earlier in the year, and extending the season of
vegetation water use. Temperature drives atmospheric moisture demand through its exponential impact on the vapor pressure
deficit (VPD), and this variable is strongly correlated with annual forest-fire area in the western US (He et al., 2025) (Fig. 2,
left side). Fuel moisture and wildfire activity are also critically affected by other climate variables, including precipitation
total, precipitation frequency, and dry windiness (Abatzoglou and Kolden, 2013; Williams et al., 2015; Holden et al., 2018;
Brey et al., 2021). Considering a number of methods to quantify fuel aridity, Abatzoglou and Williams (2016) attributed
approximately half of the western US forest area burned from 1984-2015 to anthropogenic climate trends. However, that
study’s analysis was not spatially explicit, it focused exclusively on area burned, and it did not consider contributions from

other human impacts on fire, such as through land use, fire suppression, or ignitions.

Fuel characteristics are also key determinants of wildfire activity, in part because they modulate the sensitivity of fire to climate
(Bradstock, 2010; Littell et al., 2018). As long there are sufficient lightning or human ignitions, increased abundance and
connectivity of flammable fuels will make fire activity more responsive to aridity (Fig. 2). In non-forested areas of the western
US, where fuels are generally more limiting due to less biomass and connectivity, the relationship between area burned and
aridity is considerably weaker than in forested areas (Fig. 2) despite non-forest areas on average being warmer, drier, and

therefore more likely to burn based on fuel moisture alone.
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Figure 2: Annual wildfire area versus atmospheric aridity. Regressions are shown for forested (circles with green outlines)

and non-forested (squares with brown outlines) areas of the western US. The vapor-pressure deficit (VPD) is a measure of the

aridity of the atmosphere and March—October (Mar-Oct) is a time period when VPD is particularly strongly correlated with

annual area burned. Fire and climate data described in sections 3.1 and 3.3.

Fuel characteristics also modulate how fire responds to climate within forests, and thus fire activity in a given region and time
period may be strongly affected by that region’s fire history. In a meta-analysis of >1,000 western US forest fires, Parks et al.
(2015) found a self-regulating effect of fire, where fuel reductions caused by past fires tended to limit subsequent fire spread
for 5-20 years. In other meta-analyses, Parks et al. (2018a) and Hakkenberg et al. (2024) found that pre-fire fuel abundance,

and ladder fuels in particular, strongly affect fire severity.

The US practice of fire exclusion has led to artificially high levels of vegetation biomass, spatial continuity, and understory
vegetation in many western US forests (Hagmann et al., 2021). This has been especially detrimental for semi-arid forests where
pre-European fire frequencies were on the order of 5-30 years (Swetnam, 1993; Swetnam and Baisan, 1996; Van de Water
and Safford, 2011). In these forests, a century or more of little-to-no fire represents a dramatic departure from a historical fire
regime typified by frequent, low-intensity surface fires. Resultant fuel accumulation has been conducive to vertical movement
of fire into forest canopies (Steel et al., 2015; Hagmann et al., 2021). Accordingly, in many semi-arid western US forests, fire

exclusion is partly responsible for the strength of the positive response of annual forest-fire area to warming and drying.

In the coming decades, continued changes to western US forest ecosystems due to changes in climate, fire regimes, and human
activities will feed back to modify how fire sizes, frequencies, severities are affected by subsequent fluctuations and trends in

climate (Williams and Abatzoglou, 2016; Littell et al., 2018; Buotte et al., 2019). For example, a continued rapid increase in
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forest-fire area may become increasingly self-regulating as fuel loads and connectivity decline (Parks et al., 2015, 2018b).
Forecasting the timing, magnitude, and geography of this effect requires understanding of complex fire-induced mortality and
succession (Harvey et al., 2016). In simulations with the LANDIS-II model, Hurteau et al. (2019) found that both coupled and
uncoupled simulations resulted in large increases in area burned and fire emissions, but the coupled simulations had a small
self-regulating effect that reduced projected trends by 10-15%. However, LANDIS-II is computationally intensive and this
study was confined to three representative transects within the Sierra Nevada, rather than the whole Sierra Nevada. In addition,
Hurteau et al. (2019) made simplifying assumptions that fire ignitions are randomly distributed across the landscape and fire
effects on biomass only last for 10 years. Taking a much simpler approach, Abatzoglou et al. (2021) performed simulations
treating the entire western US forest area as essentially a single model grid cell to assess how sensitive future western US
trends in forest-fire area should be to the strength of fire’s self-regulating effect. Even simulations that assumed a very strong
self-regulating effect projected continued rapid increases in forest fire area, though at only half the rate as simulations assuming
no self-regulation. In addition to not considering spatial variability, Abatzoglou et al. (2021) focused solely on area burned
and the simulations lacked ecological dynamics. As such, they modeled only until 2050 and did not assess whether the self-
regulating effect of larger fires may be more pronounced for other variables such as fire intensity, severity, or biomass

combusted.

Most wildfire impacts are caused by a relatively small number of fires (Moritz et al., 2005) and approximately 90% of the total
area burned in the western US is accounted for by fewer than 10% of wildfires (Short, 2022). Given that larger fires tend to
burn at higher severity (Cova et al., 2023), realistic simulation of future fire-vegetation coupling requires modeling extreme
fire events. For realistic simulations of complex processes, a mechanistic modeling approach that explicitly simulates fine-
scale processes such as combustion and energy transfer is ideal. However, the temporal and spatial scales at which fine-scale
mechanistic fire models can be run are severely limited by computational constraints. For example, coupled atmosphere/fire
models such as HIGRAD/FIRETEC (Linn, 1997; Linn et al., 2012), CAWFE (Coen, 2013) and WRF-Fire (Muioz-Esparza et
al., 2018) can only feasibly operate at a scale of tens of kilometers at most, insufficient to understand the drivers of historical
and future wildfire activity across the large scale of the western US. One model designed for efficient simulation of fire
dynamics across regions as large as the western US is SPITFIRE (Thonicke et al., 2010; Lasslop et al., 2014), which is
described as process-based because it simulates fire intensity and wind-driven fire spread following Rothermel’s equations
(Rothermel, 1972; Andrews, 2018). However, the rules that govern ignitions and whether fuels are abundant and dry enough
to burn are empirically parameterized. An advantage of mechanistic, or process-based, models is that they are deterministic; a
given set of predictor conditions will always lead to the same fire outcome, making them diagnosable and replicable. Their
disadvantage is that at the relatively low spatial and temporal resolutions necessary for decadal to centennial simulations across

a large region like the western US, a model like SPITFIRE is likely to underrepresent variability and extremes.
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Due to the limitations of all other forest-fire models, we developed a new stochastic forest-fire model for the western US,
WULFFSS. We designed this model to operate in a coupled framework within a forest ecosystem model, the Dynamic
Temperate and Boreal Fire and Forest-Ecosystem Simulator (DYNAFFOREST) (Hansen et al., 2022). The WULFFSS
simulates the monthly occurrences and sizes of forest fires >1 km? in size on a 12-km resolution grid. Fire probabilities and
sizes are determined as functions of fuel characteristics, topography, human population, and climate/weather. WULFFSS
reproduces realistic spatiotemporal variations in fire frequency and area burned under historical conditions, and its use of
conventional statistics promotes interpretability of model behavior and outputs. The model’s computational efficiency and
stochastic nature allow for many simulations of monthly forest-fire activity across the western US for decades or centuries at
a time. Implementation of WULFFSS within a forest ecosystem-model such as DYAFFOREST will allow for simulation of
the coupled interactions between fire and ecosystems that will ultimately shape how the western US forest-fire regime evolves
under anthropogenic climate change. While WULFFSS was built to be coupled with DYNAFFOREST, it is designed in a

modular fashion where coupling with other vegetation models should be relatively straight forward.

2 Geographic domain

Our study area is the forested domain of the eleven westernmost states of the coterminous US: Arizona, California, Colorado,
Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming. Consistent with other work in the region
(Buotte et al., 2019; Hansen et al., 2022), we determine the forested domain from the 250-m forest map from Ruefenacht et al.
(2008), from which we calculate a 1-km resolution map of fractional forest coverage. We classify a given 1-km grid cell as
forested if >50% of the 250-m grid cells are forest. From this 1-km forest map, we determine our 12-km resolution model
domain to include all 12-km grid cells containing at least one forested 1-km grid cell. We remove 12-km grid cells immediately
south of the Canadian border because some of our landcover- and population-related predictor variables require information
from surrounding grid cells. In total, there are 11,132 12-km grid cells within our forested western US study domain (Fig. 3).
In assessments of regional model performance we consider the four quadrant regions mapped in Fig. 3: Pacific Northwest

(PNW), Northern Rockies (N Rockies), California and Nevada (CA/NV), and the four-corner states (4 Corners).
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Figure 3: The western US study domain. Grey contour outlines the western US forested study region. Shades from white to
green: fractional forest cover in each 12-km grid cell within the forested study region according to the Ruefenacht et al. (2008)
forest map. Orange dots: ignition locations of forest fires >100 ha in the study region from 1985-2024. Yellow: non-forested
areas of the western US. Grey: outside the western US. Colored boundaries identify the four quadrant regions considered in
regional analyses: Pacific Northwest (red, PNW), Northern Rockies (blue, N Rockies), California and Nevada (green, CA/NV),
and the four-corner states (purple, 4 Corners).

3 Data
3.1 Forest fire

To parameterize the fire model we use the Western US MTBS-Interagency (WUMI2024a) database of observed wildfires from
1984-2024 (Williams et al., 2025). Like its predecessor described by Juang et al. (2022), the WUMI2024a was developed by
harmonizing several public US government sources and it does not include fires <1 km? in size. The WUMI2024a contains a
list of western US wildfire events, including ignition date, ignition location, and final fire size, as well as a 1-km resolution
map of the area burned by each fire. See Williams et al. (2025) for details about the data sources and the methods underlying
the WUMI2024a. We constrain calibration of the WULFFSS to 1985-2024 due to a suspicious absence of fires from Wyoming
and New Mexico in 1984.



180

185

190

195

200

205

We estimate forest area burned by each fire in the WUMI2024a and only retain fires that burned >1 km? of forest area. To
estimate the forest area burned by each fire, we multiply each 1-km grid cell of fractional area burned by the fractional forest
area and then sum. Of the 21,570 wildfires represented in the WUMI2024a in 1985-2024, 7,639 have >1 km? forest area
burned. However, a number of wildfires are identified in the WUMI2024a as ‘parent fires’ composed of smaller sub-fires. This
occurs because, although the most accurate dataset feeding into the WUMI2024a is the MTBS, that dataset sometimes
attributes burned areas from multiple fires to a single event. The WUMI2024a notes these cases, and we replace parent fires
with their associated sub-fires. To keep burned areas consistent with the high-quality calculations from MTBS, we re-scale the
forest area burned by each set of sub-fires so that they sum to the parent fire’s value. In cases where a sub-fire’s ignition
location is not within a 1-km forested grid cell that burned, we reassign the ignition location to the nearest grid cell with forest
area that burned. We find 56 parent fires composed of at least two sub-fires with >1 km? forest area burned after rescaling.
After replacing parent fires with their sub-fires, our dataset consists of 7,799 wildfires with >1 km? forest area burned from
1985-2024. This number is reduced to 7,635 after removing fires ignited in areas outside our western US study domain shown
in Fig. 3 because they ignited near the Canadian or Mexican border or in a 12-km grid cell containing no 1-km grids with

>50% forest area.
3.2 Topography

We calculate topographic predictors from the 1-km digital elevation model produced by the NOAA GLOBE project (Hastings
and Dunbar, 1998). From the 1-km grid of mean elevation we calculate 1-km grids of slope and aspect. We then calculate 12-
km grids of mean slope to represent steepness as well as the standard deviation of 1-km elevation values to represent terrain

ruggedness.
3.3 Climate

3.3.1 Daily 1/24° gridded climate

We calculate climate predictors from daily gridded climate data with 1/24° (~4 km) geographic resolution for January 1951 —
December 2024. This period begins in 1951 rather than coincident with our 1985-2024 study period because the longer climate
record is used to spin-up our forest simulations (section 3.4). Daily variables are precipitation total (prec, mm), maximum
temperature (tmax, °C), minimum temperature (¢min, °C), vapor pressure (ea, hPa), mean downwelling solar radiation at the
surface (solar, W m?), and mean 2-m wind speed (wind, m s™). For prec, tmax, and tmin, data come from the 1/24°-resolution
nClimGrid Daily dataset produced by the National Oceanic and Atmospheric Administration (Durre et al., 2022), which covers
1951—present. For ea we apply the Clausius Clapeyron formulation to the daily 1/24°-resolution dew point (¢dew, °C) dataset
from the PRISM group at Oregon State University (Daly et al., 2021). This dataset is better than reanalysis products because
it is based on station observations. However, the daily PRISM dataset starts in 1981. For 1951-1980, we use a dynamically-
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downscaled version of the ERAS reanalysis for the western US (Rahimi et al., 2022). This reanalysis has 9-km spatial
resolution and covers September 1950 — April 2025. We use daily outputs of mean specific humidity (g, m*> m™) and surface
pressure (p, hPa) to estimate ea: pq/(0.622+0.378q). We then bilinearly interpolate to 1/24° resolution and use quantile
mapping to bias correct the Rahimi et al. data such that, for each grid cell and each of the 12 months, the distributions of daily
ea estimated from Rahimi et al. match those estimated from PRISM during their period of overlap. For solar and wind, we
prioritize the daily outputs from Rahimi et al. because there are no long-term spatially continuous records of direct observations
of these variables and the Rahimi et al. data have uniquely high spatial resolution and long temporal coverage. We downscale

the Rahimi et al. solar and wind data to 1/24° resolution using bilinear interpolation.

For solar, we account for the effect of slope and aspect on incident solar angle (e.g., solar intensity is higher on south-facing
slopes). The Rahimi et al. reanalysis accounts for the effect of elevation on solar intensity, but not the effect of slope and
aspect. To do this, we use 1-km resolution maps of slope and aspect, calculated from the 1-km maps of mean elevation from
NOAA GLOBE (Hastings and Dunbar, 1998). Our method is to, for each day in a generic 365-day year and assuming a top-
of-atmosphere solar constant of 1367 W m?2, use the method developed by Kumar er al. (1997) to estimate the mean
downwelling solar intensity at the surface at 1-km resolution for two scenarios: one with observed elevation, slope, and aspect
(solar_topo) and another with observed elevation but assuming topography within each 1-km grid cell is flat (solar_flaf). For
each day we then calculate an adjustment factor representing the fractional effect of slope and aspect on incident solar radiation
at the surface as solar_adj = solar _topo/solar flat. We then upscale the daily grids of solar_adj to 1/24° resolution and
calculate a topography-adjusted version of solar (solar_topo) by multiplying each daily map of solar by its corresponding map

of solar_adj.

We use the 1/24° daily climate maps described above to calculate a number of fire-relevant derived variables. We calculate
daily mean VPD as the average of the daily maximum and minimum VPD (VPDmax and VPDmin, respectively), where
VPDmax is calculated as the saturation vapor pressure (es) at tmax minus ea and VPDmin is calculated using es at tmin. As a
metric representing daily atmospheric fire weather, we use a modified version of the hot-dry-windy index (HDWI, hPa m s!)
representing surface conditions. The standard formulation of the HDWI (Srock et al., 2018) multiplies wind by VPD at multiple
vertical levels within the bottom 500 m of the atmosphere on a sub-daily time scale (e.g., 6 hourly), and then defines each
day’s HDWI value as the maximum among all values from at any vertical level or time step. Our simplified approach is to

estimate daily HDWI as VPDmax multiplied by wind.

To represent the effect of snowpack we use the 4-km daily gridded climate data to simulate daily mean snow-water equivalent
(SWE, mm) using the SnowClim model (Lute et al., 2022), which is designed for efficient simulation of western US snow

dynamics in response to gridded forcing data at a daily or sub-daily time step.
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To represent fuel moisture we calculate the daily 100- and 1,000-hour dead fuel moisture content (FM100 and FM1000,
respectively, %) following the method of the National Fire Danger Rating System (NFDRS) (Cohen and Deeming, 1985). The
100-hour and 1,000-hour fuel classes represent woody fuels 25-76 mm and 76-203 mm in diameter, respectively, and the
names of the fuel classes represent the approximate e-folding time required for moisture content to equilibrate with the
atmosphere. We include the effect of simulated snow in our calculations by setting relative humidity to 100% when the snow
depth is >5 mm and by withholding precipitation that increases the water content of the snowpack until it melts out of the

snowpack.

3.3.2 Monthly 12-km climate predictors

We calculate nearly all monthly climate predictors from the daily 1/24° grids described above. In addition to monthly means
we also consider variables representing fire-relevant sub-monthly quantities (e.g., maximum 1- or 3-day mean HDWI or VPD,
maximum single-day SWE of the past 12 months) as well as variables representing the integration of climate conditions over

multiple months (e.g., 3-, 6-, 9-, or 12-month mean VPD).

In addition to 12-km climate predictors derived from our daily 1/24° dataset, we also consider lightning frequency using the
0.1°resolution daily maps of lightning-strike density from the National Lightning Detection Network (NLDN,
https://www.ncei.noaa.gov/pub/data/swdi/). This dataset begins in 1987 and we aggregate to monthly maps of 12-km lightning

frequency for 1987-2024. However, NLDN methodology changed over time so we only use maps of long-term and monthly
climatological mean lightning frequencies as predictors. To account for temporal variability in lightning potential on
interannual timescales, we consider monthly mean convective available potential energy (CAPE) as well as maximum 1- and

3-day mean CAPE from Rahimi et al. (2022), which we upscale to 12-km resolution using bilinear interpolation.
3.4 Landcover

Due to a lack of spatially continuous and temporally evolving observational maps of fire-relevant forest biomass variables
throughout our study period, we simulate forest biomass during our study period using the Dynamic Temperate and Boreal
Fire and Forest-Ecosystem Simulator (DYNAFFOREST) (Hansen et al., 2022). DYNAFFOREST is a process-based forest
ecosystem model designed to efficiently simulate forest dynamics across the western US at a medium spatial resolution (grid
cell size of 1 km?). The model represents 11 forest types and one grass/shrub type, runs at an annual time step, and simulates
a suite of variables representing various stand structure characteristics and ecosystem functions. DYNAFFOREST is a cohort
based model. In each forested 1-km grid cell, a single tree representing one forest type is simulated. Simulated metrics from
the single tree are then used to estimate stand structural characteristics for each grid-year, such as stand age, density, basal

area, mean canopy height, and diameter at 1.35 m above the ground. DYNAFFOREST tracks 3 live and 3 dead above-ground

10
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biomass pools: stem, branch, and foliage, and standing snags, downed coarse wood, and forest floor litter. Cohort mortality

occurs probabilistically as a function of background causes, drought, and fire.

When a fire occurs, DYNAFFOREST estimates percent crown kill of the cohort as a function of fuel aridity, tree size, and
forest-type specific crown dimensions. Probability of mortality is estimated as a function of crown kill and bark thickness.
Following a fire, forest establishment and recovery is simulated in DYNAFFOREST probabilistically based on the fecundity
of the surrounding forest types, dispersal distance in the target grid cell and surrounding grid cells, and the effects of climate
on seed germination and establishment. Key functional traits related to postfire recovery, like cone serotiny and asexual
resprouting, are included. If stand-replacing fire occurs and postfire establishment does not occur the next year, then the

landcover is assumed to convert to grass/shrub, though forest can return when seed supplies and climate conditions allow.

Because DYNAFFOREST outputs are not observational, our empirically parameterized fire model will not perfectly represent
how observed forest characteristics affect the probabilities and sizes of forest fires. However, DYNAFFOREST has been well
benchmarked across large diverse forest types of the western US (Hansen et al., 2022) and used to simulate coupled fire-forest
relations in the context of fuels management (Daum et al., 2024). Additionally, we find reasonable representation of
ecoregional differences in most above-ground biomass pools when we compare DYNAFFOREST outputs with the US Forest
Service’s Forest Inventory and Analysis survey data (USDA Forest Service, 2019). Further, in the DYNAFFOREST simulation
used to produce the 1985-2024 forest maps that we use to parameterize the fire model, we apply the observed 1-km maps of
forest area burned from WUMI2024a. By allowing DYNAFFOREST to simulate forest responses to known fires, our
parameterization reflects not just the effects of naturally occurring, long lasting gradients in forest condition on fire, but also

more transient, sharper gradients caused by prior fires.

To assure realistic and stable forest dynamics leading into the 1985-2024 parameterization period, we conduct a >334-year
spin-up using WULFFSS coupled with DYNAFFOREST. For the first 300 years (1651-1950), we force DYNAFFOREST
with detrended climate data from 1901-1950 and climate years are randomly selected with replacement. For 1951-1984, we
observed climate so that forest condition in the WULFFSS parameterization can reflect the legacies of recent climate
variations. With the exception of the variables used to force WULFFSS, the climate variables used by DYNAFFOREST are
mean June—August 0—100 cm soil moisture and annual forest-type specific temperature metrics such as growing-degree days
and freezing-degree days. Monthly 0-100 cm moisture is modeled from monthly 12-km climate data from 1901-2024
following Williams et al. (2017, 2020) and bilinearly interpolated to 1-km resolution. The temperature metrics are calculated
from monthly 1/24° grids of mean of tmax and tmin. We downscale the 1/24° grids to 1-km resolution guided by the TopoWx
dataset (Oyler et al., 2015). Specifically, TopoWx provides monthly grids of tmax and tmin from 1948-2016 with resolutions
of 1/24° and 1/120° (~800 m). For each month and variable, we use the 1/120° (~800 m) version to calculate a mean 1980—

2016 climatology with 1-km resolution (estimating 1-km values from the 1/120° grid using nearest-neighbor interpolation)

11



310

315

320

325

330

335

and then produce a 1-km map of offsets that relate each 1-km climatological mean value to its overlying 1/24°-resolution value
from the same years. We apply the offsets to the monthly mean ¢tmax and tmin from NOAA nClimGrid (Vose et al., 2014) to
produce 1-km maps of monthly mean tmax and tmin from 1901-2024. Thus, we force the non-fire portion of the

DYNAFFOREST simulations with observed climate data for the 1901-2024 period.

Due to lack of fine-scale data on forest ecosystems from the pre-spin-up period, we initialize the spin-up using a 1-km
resolution map of observed modern forest types that we derived from the 250-m map of Ruefenacht et al. (2008) forest types.

Initial fuel loads are representative of the 11 forest types and the biomass pools stabilize after approximately 250 years of spin-

up.

For landcover variables not simulated by DYNAFFOREST, we use the maps of land-cover type from the US Geological

Survey’s National Land Cover Database (NLCD; https://www.usgs.gov/centers/eros/science/annual-national-land-cover-

database). The NLCD provides annual maps of landcover classifications at 30-m resolution across the US for 1985-2023.
Because these the NLCD map for a given year often reflects the effects of fires during that year, and we do not wish to mistake
the effects of fires for their causes, we consider each year’s landcover to be represented by the prior year’s NLCD map (for
1951-1985 we assign the 1985 landcover). From these 30-m maps of landcover we calculate 1-km maps of fractional coverage
for four non-forest landcover categories: unburnable (water, ice, wetland, barren), developed (low, medium, high intensity),
agriculture (cultivated, pasture, developed open space), and grass/shrub (grass/herb, shrub/scrub). For each year from 1951—
2024 we then rescale these fractional coverages so that, for grid-years where the DYNAFFOREST simulation does not indicate
forest coverage, these non-forest classes sum to full coverage. Likewise, for grid-years where DYNAFFOREST simulates

forest coverage, we set the non-forest types to zero.

In addition to 1-km maps of aboveground forest biomass density (in distinct pools and in total), mean canopy height, mean
diameter at breast height, and fractional coverage by landcover type, we also calculate 1-km maps of forest connectivity. We
define this as, for each 1-km grid cell, the fraction of adjoining grid cells with >10,000 kg ha™! live biomass density, which
corresponds to approximately the 5™ percentile of all simulated 1-km? live biomass density values for 1985-2024. Specifically,
for each 1-km grid cell with >10,000 kg ha'! live biomass we calculate the number of consecutive adjoining grid cells in each
of the 8 directions radiating away from central grid cell that also have >10,000 kg ha! live biomass. In each of the four
directions radiating north, south, east, and west, we consider the 6 nearest grid cells. In each of the four diagonal directions we
consider the nearest 4 grid cells. We then calculate connectivity as 1 (for the central grid cell) plus the sum of the total number
of adjoined grid cells with >10,000 kg ha! grid cells the 8 directions divided by the number of grid cells considered (41). This
approach allows for efficient recalculations of connectivity when simulations are run in coupled mode with DYNAFFOREST

and the size of the area represented is roughly aligned with that of a large wildfire 10,000 ha in size.
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From the 1-km grids of annual forest properties and fractional coverage by landcover type described above we calculate 12-
km maps of averages within each 12-km grid cell. Given that fire sizes can also be influenced by landcover beyond the ignition
location, we also consider variables that represent spatial averages within the area of a very large 500 km? (50,000 ha) fire,
which we approximate as a 23 x 23 km square. Likewise, our use of sub-12-km landcover data to produce landcover predictors
allows our modelling to include the effects of within-grid heterogeneity of fuel conditions, which is important given that most
fires are smaller than 144 km?.

3.5 Human population and roads

Humans cause approximately half of all ignitions (Balch et al., 2017) and suppressing almost all wildfires in the western US.
We therefore include predictor variables related to population density and distance to populated areas. Because the US Census
changed how it provides population information in 2020, so that reported numbers are sometimes swapped among Census
units (‘blocks’) to maintain confidentiality, we work with census-based housing-unit density instead. Specifically, we use the
shapefiles of census-based, block-level housing density in 2000, 2010, and 2020 developed by the SILVIS Lab
(https://silvis.forest.wisc.edu/data/wui-change/) (Radeloff et al., 2018, 2023). For 1950-1990 we use decadal hindcast maps

of housing density produced by the SILVIS Lab using partial block-group level census data. For 2030, which is used with
2020 to interpolate housing density for 2021-2024, we use a projection based on county-level forecasts of housing density

from Woods & Poole Economics (https://www.woodsandpoole.com/our-databases/united-states/), which is downscaled to the

block level by the SILVIS Lab based on 2020 housing density patterns. For each decade we rasterize the polygon data to a 1-
km grid of housing density. We then produce annual maps of 1-km housing density for 1951-2024 by linearly interpolating

between the decadal maps.

From the annual 1-km maps of housing density we produce two sets of 1-km maps to represent distance from populated areas.
In the first, we map the distance to the nearest grid cell with >5 housing units km™ to represent distance to a relatively sparsely
populated community. In the second we map the distance to the nearest grid cell with >50 housing units km™ to represent

distance from a more heavily urbanized area.

Related to population, we also consider spatiotemporal variations in total and per-capita gross domestic product (GDP) as
proxies for variations in fire-suppression capacity. We use the annual 0.5°-resolution maps of GPD and GDP per capita from

1990-2022 from Kummu et al. (2025) and bilinearly downscale to 12-km resolution.

The geographic distribution of ignitions and fire-suppression activities also depend on roads. We use the 2013 Global Roads

Open Access Data Set, Version 1 (gROADSvVI; https://search.earthdata.nasa.gov/search/granules?p=C1000000202-SEDAC.

This dataset specifies for each road segment a Functional Class: Highway, Primary, Secondary, Tertiary, Local/Urban, Trail,
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Private, or Unspecified. We aggregate these into two classes: major (Highway and Primary) and minor roads (all others). We
then produce 1-km maps of the distance to the nearest major road, distance to nearest minor road, and distance to nearest road

of any class. We treat the road network as static in time due to unavailability of construction or closure dates.

Finally, we calculate 12-km maps of mean 1-km housing density, distance to nearest location with >5 or >50 housing units

km, and distance to nearest major road, minor road, or any road as predictor variables in the forest-fire model.

4 Model description

The WULFFSS model has a spatial resolution of 12 km across the forested domain of the western US (Fig. 3) and operates
monthly. The model is parameterized on the dataset of 7,635 forest-fire locations and sizes described in section 3.1. A

schematic that visualizes the general framework of WULFFSS is provided in Figure 4.
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Figure 4: Flowchart outlining the general framework of the WULFFSS.

WULFFSS consists of three statistical models, loosely following Westerling et al. (2011). The general framework is that first
model estimates, for each grid-month, the probability of >1 wildfire (P) from a multi-variate logistic regression with predictor
variables representing landcover, topography, humans, and climate. To account for the possibility of >1 wildfire in a given
grid-month, the second model then uses P as a single predictor in a logistic regression to estimate the probability that any given

number of wildfires occurs in each grid-month (). The third model is a fire-size model that uses multi-variate regression to
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estimate the forest area burned (4) by each wildfire as a function of landcover, topography, humans, and climate, similar to

the P model.

The P and 4 models each consist of three components representing spatial variability (S), the mean annual cycle (C), and
temporal anomalies (7), as well as interactions between these components (SC, ST, and CT). The S component is constructed
first to capture the how variations in fire activity are driven by factors that are far more variable in space than in time, as these
factors (e.g., forest biomass, lightning frequency, variables related to human population and fire suppression) are likely to
modulate the sensitivity of fire activity to temporal variables. The C component is then constructed to account for variations
in fire activity that are due to the mean annual climate cycle. Finally, the 7 component is constructed to account for effects of
interannual climate variability, which are likely to be strongly modulated by the effects of the S and C variables already

accounted for.

The S component represents drivers of forest-fire occurrence or size that are most variable in the spatial domain, such as
topographic slope, fuel availability, human population, mean annual lightning frequency, and long-term mean aridity, all of
which may directly influence fire occurrence and also modulate the effects of C and 7. Each potential S predictor is
standardized such that all grid-month values in the study domain have a mean of 0 and standard deviation of 1 for the calibration
period (1985-2024). Many S predictors represent alternate expressions of a single predictor, for example house density,
logio(house density), mean house density within 50 kha, and logio(mean house density within 50 kha). Logarithmic

transformations are made on many of the S variables to give these variables more Gaussian distributions.

The C component represents climatological drivers of forest-fire occurrence or size that are most variable in the domain of the
mean annual cycle, such as long-term means of each month’s lightning frequency as well as variables that influence the
seasonality of fuel moisture such as prec, solar, and VPD. For all potential C predictors, mean annual cycles are calculated
based on the calibration period. As for S, most potential C variables are permutations of common variables. For example, the
effects of climate variables related to fuel moisture may accumulate over several months, so the annual cycle of each climate
variable is considered as 1-, 2-, 3-, 4-, and 5-month running means. Further, two versions of most C variables are considered.
In the first, each grid cell’s mean annual cycle is scaled from 0—1, where 0 and 1 represent the mean annual minimum and
maximum, respectively, so all spatial variability is due to variability in the timing of the annual cycle. In the second, mean
annual cycles are not scaled and these variables retain spatial differences in each month’s mean conditions. For each of these

unscaled C variables, values are standardized relative to all calibration-period grid-months.

The T component represents climatological drivers of forest-fire occurrence or size that are most variable in the temporal
domain of interannual and longer. Potential T predictors include the standardized precipitation index (SPI) (McKee et al.,

1993), frequency of wet days with >2.54 mm prec (Holden et al., 2018), FM1000, FM100, VPD, solar, HDWI, CAPE, and
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SWE. As for C, many potential 7 variables are permutations to represent cumulative effects over various ranges of months. In
addition, monthly measures of some sub-monthly meteorological conditions are considered such as the highest 1- or 3-day
mean VPD within a month. Because 7' is meant to represent climate variability beyond the annual cycle, T variables are
standardized so that for a given variable in a given grid cell, values have a mean of 0 and standard deviation of 1 for each of

the 12 months during the calibration period.

In both the P and 4 models, each of the three components is represented by a single composite index that expresses the
combined effect of multiple predictor variables. The variables that contribute to each of the three components (S, C, and 7) are
selected stepwise and only retained if they contribute significantly to model skill (see section 4.1). Thus, each model ultimately
uses only a subset of the potential predictors. Lists of all potential predictors are listed in Tables A1-A3 (see Tables S1-S3 for
variable descriptions). For some variables, it is logical that the effect on P or 4 should be only positive or negative. For
example, the direct effect of fuel availability on fire occurrence and size is far more likely to be positive than negative, but a
statistical model may detect a hump-shaped or even negative relationship due to the co-occurring influences of moisture on
fuel availability (positive) and flammability (negative) (Bradstock, 2010; Krawchuk and Moritz, 2011). To avoid including
unrealistic effects due to co-linearities or model overfitting, we do not allow some predictors to be included if the sign of their

effects are inconsistent with our understanding of western US forest fire (see Tables A1-A3).

4.1 Model framework

We use stepwise multiple regression to build the P and 4 models. We use multiple logistic regression to calculate our estimates
OfP (P est):

Pest=1/(1 + exp(-Xppr)), (1)

where [p is a vector of logistic regression coefficients and Xp is a matrix of the three S, C, and T composite predictors (Sp, Cp,

and Tp, respectively), as well and their interaction terms (SpCp, Sp,Tp, and Cp,Tp), such that

XpPBr = Bro+ BriSe + Br2Cp + BrsTr + BraSrCp + BrsSpTr + BrsCrTp. 2)

Each of the three composite predictors, Sp, Cp, and Tr, represents contributions from a number of S, C, and T variables, where

each S, C, and T variable included has been selected in a stepwise process and transformed to linearize its relationship with P

following methods to be described below.
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To model 4, we follow a similar approach as for P except that we use multiple linear, rather than logistic, regression to estimate

size-weighted and normalized anomalies of 4 (4zw; details in section 4.4):

AZw:XABA, (3)

where B4 is a vector of linear regression coefficients and X4 is a matrix of S, C, and T composite variables (S4, C4, and T4,

respectively) and their interactions (S4C4, S4,74, and C4,T4) such that

X4 = Pao + Pa1Sa + Pa2Ca + BuazTu + BaaSaCa + PasSaTa + PasCuTa. @)

Notably, we considered including three-way interactions between the S, C, and T predictors in the P and 4 models but doing
so did not improve model skill. In the rest of this subsection we describe the parts of the model-building framework that are

common to the P and 4 models. Details specific to just the P or 4 model will be described in sections 4.2 and 4.4, respectively.

Both models are built sequentially, first constructing the spatial composite predictor (Sk, where subscript x is P for the P model
or A for the 4 model). Next the annual cycle composite predictor (Cx) and its interaction with Sy (SxCx) are built. Finally the

temporal anomaly predictor (7%) as and its interactions with Sx and Cx (S:7x and CiTx, respectively) are built.

To construct Sy, we first assess the general shape and strength of the relationship between each potential S predictor and the
variable we are modeling, x, using a binned regression. We sort each potential Sy predictor into equally sized bins (45 the Px
model and 25 for the 4 model), and calculate the mean of x for each bin. For each potential predictor we then regress the
binned mean x values against the means of the binned predictor values and quantify the relationship using linear, quadratic,
and cubic fits. The accuracy of each fit is assessed with the Akaike Information Criterion with a correction for low sample size
(AICc) (Akaike, 1974; Hurvich and Tsai, 1989) and penalty for higher-order fits. Curve fits resulting in AICc>0 are
immediately dismissed. Among the remaining curve fits, a Monte Carlo significance test is conducted in which x is randomized
and re-binned 100 times for the P model and 200 times for the 4 model. Curve fits are only considered if the actual AICc is
more negative than at least 95% of the AICc values from the Monte Carlo test. Finally, the variable and curve fit combination
with the most negative AICc is tentatively accepted as the initial predictor (Vs:) to represent Sy. Specifically, Vs; is calculated
by applying the selected curve fit to all the values of the selected variable and then S is calculated by standardizing Vs; relative
to a mean of 0 and standard deviation of 1. An initial version of the model is then developed by applying S as the single
variable to estimate x. Model accuracy is assessed as correlation between modeled and observed values of x (see sections 4.2
and 4.4 for details about the correlation tests specific to the P and A estimates). At this point in the model-building process,
the model coefficients and correlation values are recalculated 100 times when Vs; values are randomly reordered (200 times

for the A model). If the model’s correlation value is not >95% of the alternative correlation values, then the variable under
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consideration is dismissed and we consider the potential predictor that led to the next lowest AICc value in the binned

regression analysis.

After Sy is initially created from a single variable, we calculate residuals in x and explore whether additional S variables should
be included within Sx. We do this by regressing binned means of the residuals, representing variance in x not yet accounted for
by the model, against the binned values for all potential Sx predictors still under consideration. Notably, if the predictor variable
selected in the previous step has a logio counterpart, or vice versa, the counterpart is not considered in subsequent model-
building steps. As before, only curve fits resulting in a negative AICc and satisfying the Monte Carlo significance test are
considered. If >1 curve fits satisfy these criteria, the variable and curve fit with the most negative AICc is passed on for further
consideration as Vs: by updating the calculation of S by adding Vs2 to Vs; and re-standardizing. We then re-fit the regression
equation using Sy to estimate the predictand and calculate an updated correlation between model estimates and observations.
If the updated correlation is more positive than the previous correlation and is also more positive than 95% of the Monte-Carlo
generated correlations calculated with randomized Vs: values, then the model is updated using Vs and Vsz. If these correlation
criteria are not satisfied, the variable and curve fit that resulted in the next most negative AICc value is considered as a potential

Vs2. This process is repeated until no additional variable and curve fit satisfies the above criteria for inclusion in Sk.

Next, the Cx component is added, constructed in the same stepwise manner as Sy, where a C variable is only included in Cy if
(1) the binned regression with residuals leads to a negative AICc that is lower than 95% of values produced when residuals are
randomized in the Monte Carlo repetitions and (2) model estimates of x correlate more positively with observations than did
the previous model’s estimates and also more positively than 95% of Monte Carlo correlations calculated when the C variable
under consideration is scrambled randomly. A difference from construction of Sy is that now the model is a multivariate
regression with three predictors: Sy, Cy, and their interaction, SxCy. To avoid nonsensical interactions in SxCy where two negative
predictor anomalies would have the same effect as two positive anomalies, we positive-shift all Sx and Cx values by subtracting
each predictor variable’s minimum value before multiplying them. For the P model, we subtract the lowest Sp and Cp values
to occur among all grid-months in the calibration period. For the 4 model, we subtract the lowest S4 and C4 values among
grid-months that cooccurred with calibration-period fire. We then calculate SxCx as the standardized product of the positive-

shifted S\ and C; predictors such that the values of SiCx have a mean of 0 and standard deviation of 1.

Finally, the same methods are used to construct 7 to capture temporal variability not accounted for by Sy and Cx. With 7
included, the matrix of normalized predictors (X) includes all 6 predictor variables shown in Equations 2 and 4 (S, Cx, Tx, and

3 interactions).

Following parameterization of the initial models, we found that some potential predictor variables not selected initially could

contribute significantly if considered in a second pass. This was unsurprising because each stepwise improvement to one
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component of the model affects the influence of the other components through interactions. We thus perform a second pass in
the model-building process in which S, C, and T variables that were not selected in the original construction of Sx, Cx, and Tx
are given another opportunity for inclusion. In addition, we consider a small number of variables that were not considered in
the first pass. For example, some variables such as temporally varying SWE and fractional snow coverage do not fall cleanly
into one of the three categories. Snow may be viewed as a landcover feature that inhibits fire spread or modulates the ability
of climate anomalies to affect fuel moisture, in which case S is appropriate, but snow presence and amount are highly variable
in time. Breaking snow qualities into monthly climatologies and standardized anomalies about those climatologies is not ideal,
however, as SWE and fractional coverage are highly non-normal and dominated by zeros. We therefore allow, in the second
round of stepwise model fitting, for monthly SWE and fractional snow coverage to be considered as both S and 7 variables.
We also consider some additional S variables representing distance from road as well as landcover characteristics that are not
outputs from the DYNAFFOREST model. These variables are only considered in the second round because (1) we do not have
a temporally varying dataset of road networks and (2) we prefer that the effect of landcover on modeled fire is dominated by
variables that we can simulate with DYNAFFOREST as coupled interactors with fire. Tables A1-A3 specify the variables we

only consider in the second rounds model fitting.
4.2 The forest-fire probability model

To model P, we use all available grid-months in the observed 1985-2024 forest-fire dataset to fit a logistic regression
(equations 1 and 2). During this period, forest fires occurred in 7,394 unique grid-months. For more efficient model
parameterization and to avoid biasing the model with conditions under which large forest fires are exceedingly improbable,
we exclude grid-months from our logistic regression where mean daily SWE exceeds the 99 percentile (0.76 mm) of values,
coinciding with the 7,318 forest fires. Excluding the 20% of calibration-period grid-months when mean SWE exceeds this
value leaves a sample size of 4,286,622 grid-months with which to parameterize the P model. Among these grid-months, the

observed frequency of >1 forest fire is 0.0017.

We assess the accuracy of the logistic P model using the Matthew’s correlation coefficient (MCC) (Matthews, 1975), which
rewards correct positive and negative classifications and penalizes against incorrect classifications. Because Pes is scalar (0—
1), we convert Pes to 500 potential predictions of binary fire occurrence by, for each grid-month, drawing 500 random,
uniformly distributed numbers from 0-1, predicting fire occurrence (1) in all cases where the random number is less than Pes,
and predicting no fire (0) when the random number is greater than Pes.. This allows for calculation of 500 MCC values and we

consider the mean value to represent the MCC of the model.

To construct the S, component we consider 54 potential predictors initially and 14 additional predictors in the second pass

(Table A1). Variables and curve fits selected by the stepwise process to build the composite S, predictor are shown in Fig. 5a.
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Variables not included in the original round of model fitting but added in the subsequent round are indicated by “2™ round” in
Fig. 5. The construction of S, indicates that Pes is promoted by topographic slope, lightning frequency, high fractional forest
coverage and forest connectivity, and high prior-year precipitation total where grass and shrub cover is abundant. Pes is reduced
in areas of high housing density, near roads, in areas with high unburnable cover (barren land and water), and where the mean

climatology is very wet (mean annual aridity index >2 standard deviations above the mean).

To construct C,, we consider 48 potential predictors initially and 16 additional predictors in the second pass (Table A2, Fig.
5b). The annual cycle of Pe.s: is dominated by annual cycles in fire weather (high HDWI), fuel moisture (as represented by wet-
day frequency, VPD, and solar radiation), and lightning frequency.

To construct 7, we consider 25 potential 7 predictors initially and 12 additional predictors in the second pass (Table A3, Fig.
5c¢). High Pey is promoted when FM100 is low, VPD has been anomalously high over the past 89 months, and in months with
high HDWI and infrequent precipitation, but Pes can be suppressed if precipitation totals were anomalously low between 1.5

and 0.5 years ago.
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Figure 5: Predictor variables and associated curve fits in the fire-probability (P) model. Variables are in three categories:
spatial (Sp), mean annual climate cycle (Cy), and temporal climate anomalies (7). Y-axis values in each panel indicate observed
fire probabilities (Poss, x107) not already accounted for prior to inclusion of that panel’s predictor variable. Bars indicate the
mean residual Poss values among grid-months for which the predictor variable falls within each of 45 evenly spaced bins. Red
lines/curves indicate the linear, quadratic, or cubic fit used to approximate the response of Poss residuals to each predictor
variable. With the exception of some C, predictor variables, which are scaled from 0-1, predictors are expressed as z-scores
(standard-deviations from the mean). Statistics indicate each curve fit’s low-sample-size Akaike Information Criterion (AICc)
and the fraction of fits that produced a more negative AICc when the values being predicted are randomly scrambled prior to
binning (p). Variable names are provided above each panel and are defined in Tables A1-A3. Panels representing variables
selected in the second round of model fitting have grey text: “2" round.”

The spatiotemporal distribution of Pes: generally agrees well with observations (Fig. 6). However, there is a positive bias of
Pes among very low values. In particular, among the grid-months that we excluded from model calibration due to mean daily
SWE exceeding the 99" percentile, Poss was 28.20% of Pesi. We therefore apply a bias adjustment to all grid-months with SWE
exceeding the above threshold by multiplying Pes in these grid-months by 0.2820. Despite the bias correction for snowy grid-
months, our model still systematically overestimates Pess among grid months with low values of Poss (Fig. 6a). Among the 50%
of 1985-2024 grid-months where Peg is below the median (1.19x10#), the mean Poss is 52% of modeled. This positive bias
among very low values of Pes is strongest in PNW (Fig. 6a). We do not apply a further correction to account for this because
the positive bias among low Pe.s values is of little consequence to the accuracy of the P model. The vast majority of fires are
simulated to occur under higher Pesr conditions; 96% of simulated fires occur where Pes is above the median. Among these
grid-months, Pes scales well with Poss (Fig. 6a). This finding of consistently strong model skill where Pes: is above-median
generally holds true at the regional scale as well (colored dots in Fig. 6a represent the 4 regions mapped onto Fig. 6b). Figure
6b further shows a realistic geographic distribution of mean P.s. Our model captures known areas of particularly high fire
densities such as in California’s Sierra Nevada and North Coast ranges, the mountainous areas of southern Arizona and New

Mexico, and a relatively remote portion of the northern Rocky Mountains in central Idaho.
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Figure 6: Fire probability estimates. (a) Mean observed and estimated probabilities of grid-months with >1 fire (Poss and
P, respectively) within each of 12 bins of Pesr. Y-axis values correspond to the mean Pes: within each bin. Filled black dots:
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mean observed versus simulated frequency of all grid-months in the full western US forested domain. Empty colored dots:
analysis for each of the four quadrant regions mapped in panel (b). Dashed black line: 1-to-1 line. Model estimates shown on
y-axis to aid visual interpretation of model errors. (b) Map of modeled monthly Pes: averaged over May—September 1985-2024
with boundaries of the four regions.

4.3 Modeling number of forest fires per month

Following Westerling et al. (2011), we use the modeled probability of >1 forest fire occurring in a grid-month (Pes) as a single
predictor in a logistic regression to estimate the probability that the number of fires in a given grid-month equals or exceeds
N, where N can be 1, 2, or 3. For each possible N, a logistic regression is fit using Pes from the 7,393 grid-months with >1

forest fire. Py is calculated as:

Pyv=1/(1+ exp(-Bno - Pn1Pes)), (%)

where N varies from 1-3 and the B values are empirically fit logistic regression coefficients associated with each value of N.
By design, Pv=1 when N =1 and Py reduces as N increases (Fig. 7). The maximum N we consider is 3 because there are very
few occurrences of grid-months in the observed dataset with >3 fires. To prevent unrealistically large numbers of fires in a

grid-month, Py is not allowed to exceed the largest Py value that was associated with N fires during model calibration.
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Figure 7: Probability of more than one wildfire. Given that >1 forest fire occurs in a given grid-month, the probability that
the number of forest fires equals or exceeds 2 or 3 as a function of the modeled probability of >1 forest fire (Pesr). The maximum
number of fires in a grid-month is 3 because there are very few (<10) cases of a given grid-month having >3 fires in the
observed dataset.

4.4 Area-burned modeling
To model each fire’s forested area burned (4), we fit a multi-variate linear regression based on spatial (S4), annual cycle (Ca),
and temporal anomaly (7) predictor variables to estimate transformed values of 4 for the 7,635 forest fires (eqn. 3 and 4).
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Because fire sizes have a highly skewed distribution with large fires disproportionately dominating the total area burned, we
statistically transform the observed values of 4 to quantiles and then convert the quantile values to standardized anomalies (G)

with a normal distribution (4z).

Because of the disproportionate influence of large fires, we weight Az values by the logarithm of forest area burned, linearly
scaled from zero to one (4zw). Thus we refer to the model estimating Azw values as the Az, model. Weights of zero (100 ha
forest area burned) were reassigned the next lowest weight. To assess accuracy of the Az, model, we use a weighted Pearson’s

correlation ().

In fitting the Azw model, we initially consider 82 potential S4 predictors, 58 potential C4 predictors, and 47 potential 74
predictors (Tables A1-A3). Because fires often burn over multiple months and may not reach large-fire (=100 ha) status in the
ignition month, the potential predictor variables for C4 and 74 include climate conditions in the month following the starts date
of fires. In the second round we consider 22, 0, and 21 additional variables for S4, C4, and T4, respectively. The predictor
variables and curve fits selected for the Azw model are shown in Figure 8. The variables selected for S4 indicate that large fire
size is promoted where forest biomass and topographic slope are high, the long-term average climate is not too wet, and roads
and population centers are far away (Fig. 8a). Variables selected for C4 indicate the annual cycle in fire size is driven by the
annual cycles of fuel moisture and fire weather (Fig. 8b). Variables selected for 74 indicate temporal variations in fire sizes
are also dominated by fuel moisture, as represented by low FM1000, high VPD, and anomalously low precipitation totals over

the prior year and a half, and high fire-weather conditions in the month of or following ignition (Fig. 8c).

24



650

655

660

(a) Spatial variables
deadmass_coarse_50kha_In

roaddist_major_In

aridityindex_In

0.4 1.2 0.7
ACc=-42.7  |AlICc=-43.2 AlCc=-11.4 : AlCc=-6.9
0.8 p<0.005| , +[p<0.005 1.2ip<0.005 0.9 0.01] p<0.005
3 2 10 1 ' A4 0 1 2 2 10 1 2 40 1 2 3 2 4 0 1

livemass_total_In

AlCc=-4.3
-1i2nd round p=0.02

2 - 0 1

(b) Seasonal variables
rec_In_1mo hdwi_max3d_scale_1mo hdwi_max1d_1moafter aridityindex_scale_3mo aridityindex_In_2mo

2nd round;
-1 0

-1/AICc=-56.0 AlCc=-18.97%- AlCc=-9.9] "“|AICc=-3.6
_1.0lp<0.005 p<0.005) () p=0.0351.6p=0.015
“T4 32401 1 2

3 0 025 05 075

025 0.5 0.75

Temporal variables
'm1000_anom_1moafter vpd_anom_3mo spi_17-6mosprior vpd_anom_12mo

AlCc=-77.6 AlCc=-60.7 AlCc=-12.9
-1.21p<0.005 1.2 p<0.005 0.9 p=0.005]-0.9!p<O0.
2 -1 0 1 2 2 -1 0 1 2 Y2 10 1 2 2 -1 0 1 2 2 -1 0 1 2 3

1hdwi_anom_max1 d_1mo

101 2 3

Figure 8: Predictor variables and associated curve fits in the size-weighted area burned (4z+») model. Variables are in
three categories: spatial (S4), mean annual climate cycle (Ca), and temporal climate anomalies (7.4). Y-axis values in each panel
indicate residual Az. not already accounted for prior to inclusion of that panel’s predictor variable. Most residual values are
negative because the weighted regression prioritizes estimation of large fire sizes, so 4z, predictions are biased positive. Bars
indicate the mean residual Az, among observed forest fires for which the predictor variable was split into 25 evenly spaced
bins. Red lines/curves indicate the linear, quadratic, or cubic fit used to approximate the response of 4zw to each predictor
variable. Statistics indicate each curve fit’s low-sample-size Akaike Information Criterion (AICc) and the fraction of fits that
produced a more negative AICc when the values being predicted are randomly scrambled prior to binning (p). With the
exception of some C predictor variables that are scaled from 0—1, units of x-axis predictors are in standard-deviations from the
mean. Variable names are provided above each panel and are defined in Tables A1-A3.

4.4.1 Bias-correction of Az and transformation to forest area burned

Modeled values of 4z, are biased positive by an average of 0.653 o relative to observed Az (Azoss) (Fig. 9a). This is expected
because the weighted regression preferentially represents larger fires. We find no systematic tendency for the bias to vary
seasonally or geographically. We apply a bias correction to calculate our model estimates of Az (Azest) as AzZest = Azw — 0.653
c. Although our fire-size model does not account for the majority of variability among individual Az.ss values, it captures the

underlying variability in mean Aze»s among larger groups of fires. For each of 10 Az.« bins, each representing an equal share
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of observed fires, the mean of the corresponding Az.ss values is very near the mean of the Az.sr values (Fig. 9b). The alignment
of the colored dots around the 1-to-1 line indicates that these results generally hold at the regional scale, though with tendencies
to underestimate fire sizes in N Rockies and overestimate in CA/NV. Figure 9c maps the simulated distribution of the potential
for large fires, highlighting California’s Sierra Nevada and Coast Range and the eastern Cascades as particularly conducive to

large forest fires.
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Figure 9: Fire-size estimates. Scatter plot of modeled, area-weighted normalized fire size anomalies (A4zw) versus observations
(Azobs). Redder colors indicate a higher density of sample points. The rw and r values in the top-left correspond to the weighted
and unweighted correlations between Az.ss and Azw. The y-axis position of the green vertical line and the green bias value
correspond to the mean of Az, minus Azoss. (b) Scatter plot of binned means of modeled Az values after subtraction of the bias
in Azw (Azest) versus the means of corresponding Azess values. Each black dot represents an Az.s decile for the full western US
domain, with the x- and y-axis locations representing the mean Azo»s and Azes values, respectively. Horizontal extents of the
corresponding boxes bound the interquartile values of Az.ss and the vertical black line within each box is the median Azops.
Colored circles show binned means of Az.s: and Azo»s when the analysis was repeated for each of the four regions (PNW: Pacific
Northwest, N Rockies: Northern Rockies, CA/NV: California and Nevada, 4 Corners: the four-corner states). Black diagonal
dashed line: 1-to-1 line. In (a and b), grey vertical and horizontal dashed lines cross through the zero intercepts to aid visual
interpretation. We show model estimates on the y-axis to aid interpretation of model errors. (c) Map of each grid cell’s 95
percentile of May—Sep Azes: during 1985-2024 to show geographic variability in the potential for an existing fire to grow very
large.

4.5 Accounting for stochastic variability

Across the western US and within the four regional quadrants, interannual variations in modeled P and mean Az generally
correlate well with observations, but simulated interannual variability is systematically muted relative to observations (Fig.
10). This is expected, as the occurrences and sizes of individual fires are highly stochastic. For more realistic representation of
variability in our simulations of fire occurrences and sizes, we add semi-random variability to each modeled value of Pesr and

Azest. The distributions of random variations are constrained empirically by the distributions of errors in Pesr and Azes:.
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Figure 10: Interannual variability. Scatter plots of annual modeled versus observed forest-fire probability (P) and
normalized fire-size anomalies (4z) for the western US and each of the four quadrant regions, 1985-2024. (a—¢) Modeled
annual sum of P across all grid-months (ZPes) versus observed annual sum of grid-months with >1 forest fire (XPoss). (f)
Modeled annual mean of Az (Azes:) corresponding to the grid-months of the observed fires versus observed annual mean of 4z
(Azobs). Diagonal dashed lines are 1-to-1 lines. Model estimates shown on y-axes to aid interpretation of model error.
Correlation (r) indicates Pearson’s correlation between observed and modeled time series. The oy/ox values express the
standard deviation of the modeled time series as a percentage of the standard deviation of the observed time series.

4.5.1 Stochastic variations in fire probability

The distribution of uncertainty around any value of Pes is difficult to characterize because fire probability in a given grid-
month can only be observed as binary, and errors in Pess can only be assessed by comparing mean values of Pes: to Poss across
many grid-months. However, quantification of error in Pesr averaged across many grid-months does not provide direct guidance
as to the distribution of errors surrounding any single grid-month’s Pes value. In exploratory analysis we found that the
distribution of Pes: uncertainty does not scale predictably as a function of Pes (e.g., errors are not systematically larger for larger
Pes: values) so we include stochasticity in our modeling of P by simply adjusting Pess with observed sequences of regionally

averaged errors.

To identify regions where temporal variability in Pes is relatively coherent, we perform a rotated principal components analysis
(PCA) on monthly regional errors. Initially, we divide our western US forested study domain into 64 regions based on the map
of coterminous US pyromes from Short et al. (2020). To reduce the number of regions, we merge each of the 59 pyromes that
averaged fewer than seven fires/year during 1985-2024 with the nearest pyrome, producing 10 forested regions with adequate
fire frequencies for characterization of monthly error in Pes. For each region we calculate monthly sums of Pes and Pobs,

calculate 3-month running means centered on the middle month (Pesis and Poss3) to reduce the effects of extreme Poss outliers,
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and define the monthly error (Perror) as Pobsi/Pesi3. We then perform a PCA on the 10 time series of Peror, and retain the five
principal components (PCs) with eigenvalues >1 as distinct modes of variability. The loadings associated with these PCs are
rotated using the varimax method and multiplied against Peror to reproject the original Peor variance onto the five new rotated
PC time series (PCr). The 10 original pyrome groups are combined into five new groups of relatively coherent Peor variability

based on correlation between Peror and PCr (Fig. 11).

(@)

I:’e t3 F>ob33

10

I LM.LMLA“MIA A..MAAAALMA“

1990 2000 2010 2020

o

1990 2000 2010 2020

(d)p
30
20
1o!lM ! 20t
5 AH‘ ol MUVUVIAUY VULV UUUUVU N UUNL
1990 2000 2010 2020 1990 2000 2010 2020

Figure 11: Intra-annual error in modeled fire probability by pyrome group. Time series of 3-month running means of the
modeled (red; Pest3) and observed (blue; Poss3) monthly sums of grid cells with >1 forest fire in each of five pyrome groups.
Each group is composed of a group of pyromes (Short et al., 2020) with similar time series of monthly error in modeled fire
probability (Perror = Pobs3/Pesi3). In each panel, the red area in the map indicates the pyrome group represented by the time series
and the other groups are infilled with lighter colors.

To include stochastic variability in our model simulations, we calculate an adjusted version of Pess (Pestaqj) by multiplying each
simulated calendar year of Pes values by a randomly drawn year of Peror from the 40-year model calibration period, where
each month’ map of Peror represents the regions shown in Fig. 11 (to avoid extreme values we bound Peror between 0.33 and
3). This approach preserves realistic Peror autocorrelation both spatially and between months. To demonstrate the effectiveness
of this approach at eliminating the bias toward too little temporal variability in Pesr (shown previously in Fig. 10a—e), we
produce a 1,000-member ensemble of Peswua (Fig. 12). Including errors in our simulation successfully gives Peswag (middle box
plots in Fig. 12) a wider distribution than Pes (left box plots) that is generally better aligned with observations (right box plots).
The percentage value above each set of box plots in Fig. 12 indicates how the median standard deviation of annual simulated
sums of Pesadj compares to the observed standard deviation. These values are no longer systematically below 100% (compare

to percentage values in Fig. 10a—e), indicating that our approach improves the realism of temporal variability in simulated P.
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Figure 12. Distributions of modeled and observed interannual fire probability. Box plots of annual observed and modeled
annual sums of the probability of >1 fire/month (P) averaged across all forested grid cells (mean(XP)) in the West US study
region and the four quadrant regions. For each region, the light-colored boxplot on the left represents the distribution of the
originally modeled time series of P (Pes): thick line is median annual P, box bounds interquartiles, whiskers bound inner
90% range. The boxplot in the middle represents the mean distribution across 1,000 simulated time series of Pes after
adjustments to include random errors (Peswdj). The white box plot on the right represents the distribution of observed sums of
mean P (Pobs). Percentage numbers indicate the magnitude of the mean standard deviation of the 1,000 simulated time series
of annual XPesuq relative to the standard deviation of the observed time series. Differences between these values and the
percentages provided in Fig. 10a—e are due to inclusion of error in the 1,000 simulations represented here. Values of annual
2P are averaged across all grid cells for each region to reduce the influence of large regional differences in ZP in the figure.

4.5.2 Stochastic variations in fire size

The distribution of uncertainty around estimates of Az.s is easier to assess than that of Pes: because error in Azes: (€A4zes) can be
quantified for each fire. In addition, e4z.s values are normally distributed and increase as a function of Azes (Fig. 9b). As Azes
increases, the spread among corresponding €A4z.s: values widens and remains symmetrical. When we bin Az. into deciles, the
standard deviation among €A4z.s values increases linearly with 4z.. (Fig. 13). The relationship detected at the large scale of the
western US also remains generally consistent at the regional scale, though the slope of the €A4zes versus Azes relationship is
higher than the west-wide mean in CA/NV and lower in N Rockies. Overall, we conclude that we can characterize the
uncertainty Az.s: with reasonable accuracy by simply treating it as a linear function of Az.s itself, though future work should

diagnose and ideally resolve regional variations in mean €A4zes.
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Figure 13: Variability among modeled fire-size errors. Standard deviation of error in estimates of normalized fire-size
anomalies (e4zesr) as a function of Az.s for (white dots, black regression line) the entire western US forested domain and the
four quadrant regions within: (red) Pacific Northwest (PNW), (blue) Northern Rockies (N Rockeis), (green) California and
Nevada (CA/NV), and (purple) Four Corners (4 Corners). €4zes is the observed normalized fires-size anomaly (4zoss) minus
Azest. For each domain, Az.s values associated with observed fires are binned into deciles and, for each decile, the standard
deviation of €4z is plotted against mean Az.;. Regression lines show the least-squares fit for each domain and the grey area
bounds the 95% confidence interval around the black regression line for the full West US domain, which corresponds to the

equation at the bottom of plot.

0.7t

For each simulated value of 4z.s we calculate an adjusted Az estimate (Azeswdj) by adding an error value drawn from a normal
distribution with a mean of zero and a standard deviation of €A4zesr, Where €Azes is calculated as a linear function of Azex
following the equation in Fig. 13. Based on a 1,000-member ensemble of simulated Azeswq, this method of widening the

distribution of Az.s aligns the distribution of Azeswq; with observations (Fig. 14).
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Figure 14: Effect of adding errors on the distribution of modeled fire sizes. Cumulative distribution functions of observed
and modeled normalized fire-size anomalies (4z) for (a) the whole western US domain and (b—e) the quadrant regions. Thin
solid lines represent observed Az (Azoss). Dashed lines represent simulated Az before including error (A4zes:). Grey areas
represent 1,000 simulations of Az after adjustment to include errors (Azestad)).

Adding error to Az.s: enhances the interannual variability of mean Azeswq; (Fig. 15). However, there is still a tendency toward

too-little variation in Azeswqi. This is likely because errors in our estimates of Az (edzes) are spatially and temporally
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autocorrelated. We do not account for this because imposing realistic spatiotemporal covariance among €A4z.s: values would

risk overfitting the model and reducing its interpretability.
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Figure 15: Distributions of modeled and observed interannual variability in mean standardized fire size. Box plots of
modeled and observed annual means of normalized fire-size anomalies (4z) in the western US (grey) and the four quadrant
regions (colors). For each region, the light-colored boxplot on the left represents the distribution of the originally modeled time
series of Az (Azes:). The middle boxplot represents the average distribution among 1,000 simulated time series of Az.s: after the
adjustments to include random errors (Azeswadj). The white box plots on the right represent the annual time series of observed
Az (Azoss). Boxes bound inter quartiles, whiskers bound 5% and 95" percentiles, and thick black bars represent medians of
annual values. Percentages indicate the magnitude of the mean standard deviation among the 1,000 simulated time series of
mean(Azesud;) relative to the standard deviation of the time series of mean (4zoss). Differences between these values and the
percentages in Fig. 10f—j are due to inclusion of error in the 1,000 simulations represented here.

4.6 Transformation of normalized fire-size anomalies to area burned

Previous work has shown that fire sizes can be effectively approximated by a positively-skewed generalized pareto (GP)
distribution (Buch et al., 2023; Preisler et al., 2011; Westerling et al., 2011). We transform all values of Azeswa; to hectares of
forest area burned (4gpes) by assuming that fire sizes follow a GP distribution with the shape and scale parameters estimated
from the observed forest fire sizes. However, a comparison of the distribution of observed A (4oss) versus the GP-transformed
values calculated by back-transforming Azess using the empirical GP distribution parameters (4gposs) reveals a bias in the
Agpobs distribution because the GP is an imperfect representation of the true distribution of 4o.ss (Fig. 16a). We quantify the
observed bias (Agp_bias log10) as logio(Agposs) minus logio(4oss), which we plot as a function of logio(4oss) in Fig. 16b. Much
of the bias arises because the 4oss distribution has a lower bound of 100 ha (Fig. 16a), which causes the most frequent, small

values of Agposs to be too small and the least frequent, largest values of Agposs to be too large.

To reduce shortcomings of the GP distribution we bias correct such that the bias-corrected observed fire sizes (4bcobs) take on
the distribution more consistent with that of Aoss (Fig. 16¢). This is done by estimating Agp bias logl0 (Agp_bias logl0_esft)
as a 4M-order function of logio(4gposs) for small fires (Agposs < 223 ha) and as a 5™-order function of logio(Agposs) for larger
fires (Fig. 16b). Specifically, Abcoss is calculated by subtracting Agp bias _log10 from logio(Agposs) and transforming the logio
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values back to normal, thereby restoring Abcoss to nearly the original distribution of Aess. In simulations, bias-corrected fire
sizes (Abces) are calculated in the same way except Agp bias logl0 _est is calculated as a function of logio(Agpes) rather than
logio(Agposs). The grey shading behind the blue and red points in Fig. 16¢ represents an ensemble of 1,000 simulations of
Abcest, where in each simulation we estimate all values of Aoss. The strong overlap between the grey, blue, and red CDFs in
Fig. 16c indicates that our method produces realistic fire-size distributions. To prevent unrealistically large bias estimates in
simulations, values of Agp bias logi0 est should not be allowed to exceed the empirically calculated range of

Agp bias logl0 values.
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Figure 16. Bias correction of fire-size distributions. (a) Cumulative distribution function (CDF) of the observed fire sizes
(red, Aobs) and the same observed fire sizes after being turned into quantiles and then back-transformed to hectares (ha) based
on the observed generalized pareto (GP) distribution parameters (blue, Agposs). (b) Scatter plot of the bias in Agpoess caused by
the imperfect match between the actual fire-size distribution and that estimated by the GP. For small fires <223 ha, the green
curve represents a 4"-order curve of the 4gp bias as a function of 4. For larger fires, the orange curve represents a 5M-order
fit. (c) Comparison of the CDFs of (red) observed fire sizes (4oss; same as in panel (a)) and (blue) bias-corrected observed fire
sizes (Abcors), where, Aobs values were first converted to normalized fire size anomalies (Azoss), then back transformed to
hectares assuming a generalized pareto distribution (4gposs), and finally bias corrected based on the curve fits in (b). The CDFs
of Aobs and Abcoss are overlaid on the range of CDFs produced from 1,000 simulations of modeled fire sizes (grey, 4bces:),
where, in each simulation, the model is used to estimate the observed fire sizes.

4.7 Cross-validation

To assure the skill of WULFFSS is not due to overfitting, we perform temporal and spatial cross-validations. In the temporal
cross validation, we retrain the models 13 times, each time withholding a period of 3—4 consecutive years such that each year
in the 1985-2024 calibration period is withheld once from the training period. We then use each of the 13 models to simulate
fire for the withheld periods. For the spatial cross-validation we again produce 13 models, now withholding from each
calibration a contiguous region approximately 500 x 500 km in area. Each model is then used to simulate 1985-2024 fire for
its withheld region. For each cross-validation approach, a full set of out-of-sample simulation outputs are produced for the

western US for 1985-2024 and correlated against observations for assessment of out-of-sample skill.
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5 Model Performance

The WULFFSS simulations of frequency and extent of western US forest fires are generally highly skilled. Figures 17 and 18
show observed versus simulated time series of forest-fire frequency and forest area burned at the full scale of the western US
as well as for each of the four regions. See Figs. S1 and S2 for plots representing each of the 11 western US states. The mean
of a 100-member ensemble of simulations accounts for 71% (r=0.84) of the observed interannual variability in western US
forest-fire frequency (Fig. 17a, left side). Model performance remains high out-of-sample. In the 13-fold temporal cross-
validation, the cross-validated correlation between observed and ensemble-mean simulated annual fire frequency remains high
at 0.81. The model performs similarly well in the 13-fold spatial cross-validation (r=0.83). WULFFSS also accurately
simulates the mean annual cycle of forest-fire frequency. Correlation between the full monthly time series of observed and

modeled fire frequency is strong (1>0.90) (Fig. 17a, right side).

The model generally performs well at the regional level, accounting for >66% of variability in annual fire frequency in PNW
(r>0.81; Fig. 17b), >71% in N Rockies (1>0.84; Fig. 17¢), and >50% in 4 Corners (1>0.71; Fig. 17¢). The CA/NV region is an
exception to the strong model performance (Fig. 17d), where the ensemble-mean accounts for just 16—21% of interannual fire-
frequency variability (r=0.40-0.46), due mostly to large underestimates in 1987 and 2008 as well as recent overestimates in
2021-2022 and 2024. Reasons for model underperformance in CA/NV are numerous. In California (Fig. Slc), the large
observed fire frequencies in 1987 and 2008 were due to anomalous dry lightning events (Kalashnikov et al., 2022), which are
not adequately represented in WULFFSS. The more recent overestimates in California fire frequency may be due to increased
resources for fire detection and suppression in California, increased public and corporate awareness of fire hazards, and
reductions in fuel continuity due to drought and related bark-beetle outbreaks that our modeling does not capture. Nevada also
contributes to the relatively low model skill in CA/NV (Fig. Sl1g); WULFFSS overestimates mean fire frequency by
approximately 70% in Nevada, a far larger mean bias than for any other state. The overestimates of fire activity in Nevada’s
sparse and isolated Great Basin forests suggest that our approach underestimates the ability of low biomass and vegetation
connectivity to limit fire activity and/or that our DYNAFFOREST-based estimates of biomass and connectivity are too high
there. In addition, while our model indicates that fire frequency is positively related to remoteness from human population
(Fig. 5), ignitions may be a limiting factor in forested areas of Nevada with especially light human footprints. The model also
majorly underestimates 2024 fire frequency in PNW due to a failure to capture the large number of fires in Oregon and
southwest Idaho that ignited from outbreaks of dry lightning in mid and late July (Fig. Sle,i). While WULFFSS does consider
long-term mean patterns of lighting activity, it does not model fire as a function of temporal variability in lightning because
the only long-term lighting dataset we are aware of (from the NLDN, 1987—present) has temporal instabilities due to
instrumental changes and it does not cover the full model-calibration period. While CAPE is considered to be a T variable due
to its coincidence with lightning and atmospheric instability, high CAPE is also associated with precipitation, limiting its value

as a proxy for dry lightning.
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870  The model does generally well at capturing regional differences in the mean annual cycle of fire frequency (Fig. 17, right-hand

875

panels). For example, the model correctly simulates that peak monthly fire frequency occurs in August in PNW and N Rockies
but in June—July in 4 Corners (Fig. 17b—e). WULFFSS accurately simulates regional differences in the timing of onset and
termination of the mean annual fire starts. On the other hand, the spatial cross-validation reveals that when training data are

withheld from 4 Corners, the model underestimates fire frequencies in that region (Fig. 17¢).
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Figure 17: Modeled versus observed forest-fire frequency. Plots for (a) the western US and each of the four quadrant
regions: (b) Pacific Northwest (PNW), (c) Northern Rockies (N Rockies), (d) California and Nevada (CA/NV), and (e) 4
Corners. Panels on the left show annual frequency of (black) observed and (colored) modeled forest fire. Panels on left show
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annual values and panels on right show the mean annual cycle of monthly values. The three colored lines indicate 100-member
ensemble means from (dots) the fully calibrated model, (squares) the 13-fold temporally cross-validated models (CVtime),
and (triangles) the 13-fold spatially cross-validated models (CVspace). Colored shading bounds the inner 95% of ensemble
members of the fully-calibrated model. In each panel, the three correlation values (r) indicate Pearson’s correlation between
(r) observations and the ensemble means from the fully calibrated model, the 13-fold temporally cross-validated models, and
the 13-fold spatially cross-validated models, respectively. In the annual-cycle panels on the right, correlation values indicate
correlation between the full observed and modeled time series of monthly fire-frequency over 1985-2024, not the mean annual
cycle.

Model performance is also strong in terms of area burned, accounting for 86% (r = 0.93) of interannual variability in the
logarithm of area burned when fully calibrated and >76% (r>0.87) in our cross-validated exercises (Fig. 18a). At the regional
scale, model performance remains strong, accounting for 55-81% of cross-validated variability in the four regions. The model
also reproduces observed regional differences in nuanced characteristics of annual area burned. For example, the model
captures the tendency for interannual burned-area variability to be dominated by extreme years in N Rockies and 4 Corners,
but for interannual variability to be more evenly distributed in PNW and CA/NV (Fig. 18b—e). The model also generally
captures the mean annual cycles and sub-annual variations in area burned, though in CA/NV our model consistently over-
estimates burned areas throughout the fire season (Fig. 18d). In our state-specific analysis we find that overestimates of area
burned in CA/NV are apparent in both California and Nevada, but the bias is more severe and systematic in Nevada, where
WULFFSS models nearly four times more area burned than is observed (Fig. S2). This is the largest such bias among the 11
states, followed by Utah where estimates of area burned exceed observations by a factor of two. Consistent overestimates of
area burned in these states, home to the relatively dry and spatially discontinuous forests of the Great Basin, further implicates

fuel limitation in sparsely forested areas as a cause of error for WULFFSS.

The years with the largest errors in regional area burned are 2020 and 2024, both years when observed forest-fire extent
exceeded simulations. In 2020, WULFFSS grossly underestimates area burned in PNW, and to a lesser extent in CA/NV (Fig.
18b,d). Potential contributing factors include rare lightning storms from tropical storm Fausto in August 2020, two extreme
heat waves in the days to weeks immediately following the lightning storms, and overstretched suppression resources due to a
high concentration of large forest fires in California and Oregon and the COVID-19 pandemic. In 2024, the large underestimate
of fire frequency in PNW noted above (Fig. 17b), in Oregon and Idaho specifically (Fig. S1), translated to underestimates in
total area burned (Figs. 18b, S2). However, it is likely that our observational record of area burned is biased high in 2024, as
MTBS maps are not yet available for most large wildfires in that year, so the currently available maps of many of that year’s
largest fires do not represent within-fire spatial heterogeneity in area burned. On average, MTBS maps indicate that
approximately 20% of area within forest-fire perimeters is unburned, consistent with Meddens et al. (2016), so it is likely that

our underestimate of area burned in 2024 will be lessened somewhat once MTBS data become available.

35



—
)
-

30/West US ==observed ~——modeled| [West US

i E—ECVtime -
8 r=0.94,0.88, 0.91 CVspace| 2 r=0.84,0.78, 0.84
o
S 20 1
X
o 1
£ 10
"4
(b) 121 1990 2000 2010 2:20 OJFMAMJ JASON
PNW - observed Hm\?tdeled PNW
10y = E—8CVtime =
§ 8-r =0.91,0.85, 0.88 r—aCVspace| 1 r=0.78,0.72,0.76
* 6 ]
NE a 105
< 2R \ |
_‘-.. : k] ',. ~ A T 0
© - 1990 2000 2010 2020 MJJASO
N Rockies ==observed '—'m\C/JtCiiggd 0.4'N Rockies
§ 6ir = 0.89,0.85, 0.86 Bﬁ EﬁCCVspace- 03 r=0.73,0.71, 0.71
x 10.2
N
E 10.1
1990 2000 2010 2020 g MJJASO

g

15{CA/NV ~ ==—observed ~——modeled] [CA/NV

r=0.79,0.79, 0.80 B—E‘Cf:ysipmaec . 08+ _ 0.64, 0.55, 0.58

10t ] 106

X |04

WA Ve i) )
1990 20 2010 2020 MAMJ JASON

10[4 Corners =—observed ~—modeled| ¢ g4 Corners
2

kmZ2 x 1000

P
()
-

i E—aCVtime =
ir=0.84,0.80, 082 A—aGVspace r=0.74, 0.70, 0.62
0.4

I L P 2N o
A Sl Y :.LL_L J — 0
915 1990 2000 2010 2020 MAMJ JASON

Figure 18: Modeled versus observed forest-fire area. Plots for (a) the western US and each of the four quadrant regions: (b)
Pacific Northwest (PNW), (c) Northern Rockies (N Rockies), (d) California and Nevada (CA/NV), and (e) 4 Corners. Panels
on the left show annual (black) observed and (colored) modeled forest area burned. Panels on left show annual values and
panels on right show the mean annual cycle of monthly values. The three colored lines indicate 100-member ensemble means
920 from (dots) the fully calibrated model, (squares) the 13-fold temporally cross-validated models (CVtime), and (triangles) the
13-fold spatially cross-validated models (CVspace). Colored shading bounds the inner 95% of ensemble members of the fully-
calibrated model. In each panel, the three correlation values (r) indicate Pearson’s correlation between (r) observations and the
ensemble means from the fully calibrated model, the 13-fold temporally cross-validated models, and the 13-fold spatially
cross-validated models, respectively. In the annual-cycle panels on the right, correlation values are for the full observed versus
925 modeled time series of monthly forest area burned over 1985-2024, not the mean annual cycle.
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6 Discussion, strengths, and limitations
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The WULFFSS simulates the monthly gridded probabilities and sizes of forest fires in the western US as a function of land
cover, topography, human population, and climate. The model uses standard regression-based statistical methods, which
constrains flexibility but enhances interpretability and reproducibility. The skill of our model should serve as a benchmark for

more complex but methodologically opaque modeling efforts.

Our model has high skill. It simulates realistic characteristics of fire such as annual cycles, ranges of interannual variability,
and fire-size distributions, as well as inter-regional differences in these characteristics. The model also has strong out-of-
sample skill when reconstructing observed variations in forest-fire activity for time periods or regions withheld from the
training data. This suggests that the model can reliably simulate western US forest-fire activity under idealized historical or

projected conditions as long as those conditions are not far beyond those that occurred during the model training period.

The model can be easily updated as additional or improved records of observed wildfires become available. Updates and
improvements of the observed fire record are enabled by our streamlined method to easily update our WUMI2024a database
with newly available wildfire data (Williams et al., 2025). Our model’s ability to produce trustworthy simulations under future,

warmer climate scenarios will likely improve over time as more climate extremes and their effects on forest fires are observed.

A unique feature of WULFFSS is that it was developed in parallel with the forest-ecosystem model, DYNAFFOREST (Hansen
et al., 2022), specifically to enable coupled simulations in which fire and forest ecosystems interact. This is important for
several reasons. First, we are motivated to simulate and understand more features of fire beyond event frequency and area
burned. By coupling with an ecosystem model, we can also simulate fire severity, biomass consumed, and ecosystem
transitions, all crucial for anticipating changes to ecosystem health, pollution, hydrology, or terrestrial carbon storage. Further,
as vegetation responds to changes in climate and fire behavior, these responses will feed back to modulate fire-climate
relations. Coupling between fire and forest-ecosystem models is therefore essential for plausible projections of western US

forest fire activity beyond the next couple decades.

Another feature of WULFFSS is its computational efficiency, which allows for large ensembles of simulations. A standard
laptop can simulate several decades of forest fire across the western US in seconds, enabling easy generation of hundreds or
thousands of simulations. This is important under climate warming because forest-fire sizes appear to respond exponentially
to positive forcings such as warming and drying, which should cause the range of internal variability of area burned to grow
under continued warming in many forested regions of the western US. Indeed, the range of modeled uncertainty in total forest-
fire area is much wider in high-VPD years (Fig. 19). Although running WULFFSS while coupled within the DYNAFFOREST
model is considerably more computationally expensive, DYNAFFOREST was also designed to facilitate large simulation
ensembles and it is feasible to run tens of century-scale coupled simulations in the matter of days on a high-performance

computer cluster. With a large ensemble of tens of historical or future coupled forest and fire simulations, one can explore the

37



965

970

975

980

mean response (e.g., aboveground biomass consumed) to a given forcing as well as the uncertainty around the mean. Further,
in an ensemble of coupled simulations where each represents a plausible realization of fire effects on forest biomass,
connectivity, etc., then these forest outputs can be used to force uncoupled WULFFSS simulations to greatly enhance the

ensemble size in terms of simulated fire frequencies and burned areas.
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Figure 19: Western US annual forest-fire area versus March—October vapor-pressure deficit (VPD). Large dots with
black outlines are observations and the black curve is the least-squares regression line relating the logarithm of observed area
burned to observed VPD. Small dots with grey outlines are outputs from an ensemble of 100 simulations under identical
forcings, including observed climate (ensemble spread due to stochastic errors added to modeled estimates of fire probabilities
and sizes). Colors correspond to years from 1985-2024.

There are a number of caveats, some of which represent opportunities for improvement while others are structural features of
our approach. Opportunities include consideration of changing road networks in the past, use of road networks to more
intelligently map the distance of forested areas to human population, and addition of aboveground utility lines and their ages.
In addition, the model’s ability to capture the effects of spatiotemporal changes in fuel characteristics is limited by a lack of
spatially continuous observational data covering the four-decade model-calibration period. For example, while the model does
account for the majority of the observed increase in western US annual forest-fire area since 1985, it systematically
overestimates burned area in the first half of the record. One likely explanation is that the DYNAFFOREST datasets we use
to parameterize WULFFSS do not fully represent fire-promoting trends in fuel amount, connectivity, and structure in recent
decades. Because DYNAFFOREST is a single-cohort model, it does not explicitly simulate understory fuels, so variables
related to vertical forest structure and ladder fuels are not currently considered by WULFFSS. As spatially continuous remotely
sensed fuels datasets, which are so far only available for smaller regions (Hudak et al., 2020), become available across the

western US, this will almost certainly improve our ability to simulate historical probability and size.
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Another limitation is that WULFFSS and DYNAFFOREST do not explicitly represent non-forest vegetation.
DYNAFFOREST assumes non-forest is grass, but does not explicitly simulate grass and shrub growth and decomposition.
Representation of non-forest fuel dynamics would likely improve our ability to simulate fire events, particularly near the dry
edges of forests and when and where simulated forest biomass is relatively sparse. This limitation appears most clearly in our
simulation of fire in the isolated forests atop the narrow and arid mountain ranges of the Great Basin. In Nevada, for example,
WULFFSS overestimates fire frequency by 70% and area burned by a factor of four. In addition to limitations caused by our
current lack of representation of non-forest fuel dynamics, overestimates of Great Basin fire activity are also probably
promoted by positive biases in our DYNAFFOREST-simulated maps of forest biomass and connectivity in the Great Basin
region. This further motivates the need for spatially continuous maps of observed (or inferred from remotely sensed imagery)
vegetation biomass across the western US that cover the time period of 1980s to near present at timesteps of annual or finer,
which could be used as forcings in WULFFSS simulations of the observational period and to improve vegetation ecosystem

models such as DYNAFFOREST.

Likewise, more mechanistic consideration of fuel-moisture dynamics would improve the realism of WULFFSS. In the current
parameterization we mechanistically model snowpack and allow this to affect our calculation of dead fuel moisture, but the
NFDRS formulations we use to estimate dead fuel moisture are relatively simple and non-mechanistic. Live fuel moisture
would likely improve model skill beyond the skill yielded from our estimates of dead moisture (Rao et al., 2023), but our
current approach instead relies on climate predictors to implicitly represent live fuel moisture. More thoroughly representing
the complexity of moisture dynamics in an internally consistent framework that can be coupled with our ecosystem simulations
would likely enhance the skill of WULFFSS. That said, fuel-moisture simulations are challenging due to the limited availability
of ground-truth measurements across the complexity of fuel moisture dynamics related to species, fuel sizes, types, ages, soil

type and geology, rooting depth, position within the vertical profile of the forest, stand density, and live versus dead status.

Another opportunity for improvement is to explicitly simulate fire spread. Currently, WULFFSS only estimates the final forest
area burned by each simulated fire. When coupled within DYNAFFOREST, the ignition of a given simulated fire is assigned
to a random 1-km forested-grid cell within the 12-km grid cell of WULFFSS and the fire spirals through adjoining or nearby
forested areas until the pre-determined fire size is achieved or no nearby forested grid cells remain. Future improvements to
WULFFSS should include estimating ignition location at sub-12-km resolution and modelling fire spread while maintaining
computational efficiency. For example, WULFFSS could make probabilistic determinations of sub-grid ignition location, sub-
month ignition date, fire-spread duration, and daily spread rate and direction. Related to processes affecting fire spread, with
the exception of our consideration of CAPE to represent likelihood for lightning or plume development, we currently only rely
on surface climate to represent potential for rapid fire spread. Future work should consider how fire spread is linked to three-

dimensional atmospheric dynamics.
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A limitation to essentially all fire models that operate across large areas, especially statistical models like WULFFSS, is that
the observations used for model parameterization inherently reflect the impacts of modern society. These impacts include non-
lightning ignitions and restricted fire sizes due to suppression, as well as the indirect effects of humans on fuels (e.g., fuel
accumulation due to fire suppression) and climate. Future improvements should include distinguishing human- versus
lightning-caused ignitions. More challenging is to estimate fire sizes in the absence of suppression or under changes to
suppression practices. The North American Fire-Scar Network, a database of historical fire scars in trees (Margolis et al.,
2022), could provide guidance as to how simulated fire sizes could be adjusted to represent a fire regime with little or no

suppression.

However, spatiotemporal differences in human behavior cause uncertainty in WULFFSS, even in the observed period. In 2020,
for example, the observed area burned in the western US was on the upper fringe of values simulated by WULFFSS (Fig. 18).
Interestingly, WULFFSS accurately simulates fire frequency in 2020, but systematically underestimates 2020 fire sizes in
CA/NV and PNW. A likely explanation is that, when a rare summertime lightning event coincided with hot and dry conditions
to produce widespread wildfire activity, coupled with the COVID-19 pandemic, suppression efforts had difficulty keeping up.
If human activities related to ignitions or suppression change in the future (e.g., California’s new ALERTCalifornia camera

network instantaneously identifies fires across the vast majority of the state; https://alertcalifornia.org), then the WULFFSS

model in its current formulation will lose accuracy. Variables more directly related to suppression capacity than population
and road density may be helpful in future modelling efforts. Notably, our use of annual maps of gross domestic product, a
variable used in some earth-system modeling schemes to serve as a proxy for suppression capacity (Li et al., 2024a), did not
contribute to model skill. Federal suppression resources may make up for much of the regional variability in wealth. Finer-
scale features such as distance to the nearest fire station or aircraft availability for aerial firefighting may prove valuable in

future efforts.

WULFFSS does not capture the important contributions of dry-lightning events, particularly near the west coast where
lightning is relatively rare and thus a single anomalous event can cause a large increase in annual fire frequency and area
burned. For example, the very high fire counts in CA/NV in 1987 and 2008 and in PNW in 2024 were due in part to anomalous
outbreaks of dry lighting. Temporal variations in lightning frequency are not currently used as predictors in WULFFSS because
we are not aware of an observational lightning dataset that spans our full model-calibration period and is not free of temporal
inconsistencies due to changes in observational methods. Ideally, lightning would be a variable that can be modelled based on
meteorological data, allowing lightning to force model simulations representing time periods or idealized scenarios beyond
the 1985-2024 period of focus here. While lightning frequency has been shown previously to be well correlated to CAPE
multiplied by precipitation total (Romps et al., 2018), the likelihood of ignition from lightning is substantially reduced if it

coincides with precipitation. We thus consider CAPE on its own as a potential proxy for dry lightning potential, but ultimately
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CAPE was not selected by our fire-probability model. Future efforts to identify meteorological proxies for dry-lightning

potential would likely enhance our model’s simulations of fire-frequency extremes.

Finally, in developing WULFFSS we made the unconventional choice to bin separately the effects of predictors whose variance
lies primarily in one of three domains: spatial, mean annual climate cycle, and lower-frequency temporal variability of climate.
Our reasoning was that spatial variations in the potential for fires to ignite and spread modulate the fire-promoting potency of
temporal variations in weather and climate. For example, climate conditions that dry out fuels are more likely to translate to
heighted potential for wildfire in areas where fuels and potential ignition sources are abundant. However, the logic behind
separating out the effects of climate into those driven by the mean annual cycle versus lower-frequency anomalies is debatable.
On one hand, there is probably not a major difference between the mechanisms that cause wildfire activity to exhibit an annual
cycle versus those that cause interannual variability, so allowing the model to represent these sources of variability as separate
mechanisms is not ideal. On the other hand, many climate variables share a similar annual cycle and climatological differences
between opposing ends of the annual cycle are often much larger than the range of climatic variability that distinguishes years
of high versus low fire potential. Thus, a statistical fire model trained on both intra- and inter-annual climate variability
simultaneously risks over-representing variables that best correlate with the mean annual cycle in fire occurrences or sizes
(e.g., solar intensity) but are not dominant drivers of interannual variability. That bias would dampen lower-frequency
variability in simulated fire activity and inhibit the diagnosis of past and future changes in western US forest-fire activity.
High-quality data on live and dead fuel moistures could ameliorate the need to simulate the drivers of intra- and inter-annual
variability separately by reducing our reliance on the multiple and covarying climate predictors that we currently use to

represent the water balance (e.g., precipitation total, wet-day frequency, FM1000, and VPD over multiple time scales).

7 Conclusions

We developed a monthly stochastic forest-fire model, WULFFSS, for the western US that operates on a 12-km resolution grid
and simulates the probabilities and sizes of large fires (>1 km? forest area burned). Predictor variables include vegetation
characteristics, topography, human population, and climate. When trained with observed data WULFFSS reliably reproduces
observed spatiotemporal variations in fire occurrence and area burned. Model performance remains high when tested in cross-
validations against out-of-sample observations. The complex nature of wildfire and its nonlinear responses to many interacting
variables has motivated efforts to model wildfire with machine-learning techniques (Wang et al., 2021; Brown et al., 2023;
Buch et al., 2023; Li et al., 2024b). These efforts are valuable, but should not wholly replace models that use conventional
statistical methods that are generally more straight-forward to interpret and understandable by more people. Models developed
using relatively simple methods provide value by establishing baselines against which machine-learning efforts can be
compared. Further, it is increasingly evident that fire needs to be simulated within ecosystem and hydrological models in order

for plausible simulations of future changes to ecosystem composition, terrestrial carbon storage, snowpack, and streamflow
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(Bowman et al., 2009; Anderegg et al., 2022; Koshkin et al., 2022; Williams et al., 2022). Statistical modeling approaches
therefore remain valuable in wildfire science, as ecosystem and land-surface modeling groups may be hesitant to adopt a
machine-learning based fire model that is difficult to implement or explain. In the case of WULFFSS, we developed it to be
coupled with our western US dynamical forest-ecosystem model, DYNAFFOREST (Hansen et al., 2022). With WULFFSS
and DYNAFFOREST, we can efficiently perform large ensembles of tens or hundreds of century-scale simulations of the
coupled forest and wildfire processes across the western US. With this coupled approach we can quantitatively address
questions about the relative contributions of human-caused climate change and fire-management practices to recent increases
in forest-fire activity, how these contributions have varied geographically, and how forest ecosystems and western US fire
regimes may evolve under future climate change. Further, fire research is often heavily focused on fire frequency and size
because these metrics are easiest to observe. Coupling WULFFSS with a forest-ecosystem model will allow for simulation of
other important fire metrics such as severity and biomass loss. Finally, WULFFSS is a long-term, evolving project.
Improvements will include simulation of fire spread, simulation of multiple tree cohorts to simulate ladder-fuel effects,
simulation of grass and shrub communities to better represent fuel continuity, distinguishing between human versus natural

fire ignitions, and explicit simulation of human effects on ignitions and fire sizes via suppression.

Appendices

Table Al. Potential predictor variables dominated by spatial variability. “P model use” indicates whether the sign of the effect
of a given variable on fire probability had to be positive (+) or negative (-), or if a given variable was not considered as a
potential predictor of fire probability (X). “Size model use” is same as “P model use” but for the fire-size model. “Round 2
only” indicates variables (X) only considered in the second round of model fitting. Variables with “in50kha” represent average
conditions within a surrounding area of approximately 50,000 ha (a 23 km x 23 km box). Variables with “logl0” are log-
transformed. See Supplementary Table S1 for variable descriptions.

Number Name P modeluse | Size modeluse | Round2only
V1_space connectivity + +
V2_space connectivity_log10 + +
V3_space connectivity_in50kha X +
V4_space connectivity_in50kha_log10 X +
V5_space forestfrac + +
V6_space forestfrac_log10 + +
V7_space forestfrac_in50kha X +
V8_space forestfrac_in50kha_log10 X +
V9_space livebiomass_total + +
V10_space livebiomass_total_log10 + +
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V11_space livebiomass_total_in50kha X
V12_space livebiomass_total_in50kha_log10 X
V13_space deadbiomass_total +
V14_space deadbiomass_total_log10 +
V15_space deadbiomass_total_in50kha X
V16_space deadbiomass_total_in50kha_log10 X
V17_space biomass_total +
V18_space biomass_total_log10 +
V19_space biomass_total_in50kha X
V20_space biomass_total_in50kha_log10 X
V21_space livebiomass_coarse +
V22_space livebiomass_coarse_log10 +
V23_space livebiomass_coarse_in50kha X
V24_space livebiomass_coarse_in50kha_log10 X
V25_space livebiomass_fine +
V26_space livebiomass_fine_log10 +
V27_space livebiomass_fine_in50kha X
V28_space livebiomass_fine_in50kha_log10 X
V29_space deadbiomass_coarse +
V30_space deadbiomass_coarse_log10 +
V31_space deadbiomass_coarse_in50kha X
V32_space deadbiomass_coarse_in50kha_log10 X
V33_space deadbiomass_fine +
V34_space deadbiomass_fine_log10 +
V35_space deadbiomass_fine_in50kha X
V36_space deadbiomass_fine_in50kha_log10 X
V37_space cohort_dbh +
V38_space cohort_dbh_log10 +
V39_space cohort_dbh_in50kha X
V40_space cohort_dbh_in50kha_log10 X
V41_space cohort_height +
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V42_space

cohort_height_log10

V43_space cohort_height_in50kha

V44_space cohort_height_in50kha_log10

V45_space spi_17to6monthsbefore_grass_shrub

V46_space spi_23to12monthsbefore_grass_shrub

V47_space spi_29to18monthsbefore_grass_shrub

V48_space spi_35to24monthsbefore_grass_shrub

V49_space unburnable X
V50_space unburnable_log10 X
V51_space unburnable_in50kha X
V52_space unburnable_in50kha_log10 X
V53_space agriculture X
V54_space agriculture_log10 X
V55_space agriculture_in50kha X
V56_space agriculture_in50kha_log10 X
V57_space | developed

V58_space developed_log10

V59_space developed_in50kha

V60_space developed_in50kha_log10

V61_space | slope

V62_space slope_log10

V63_space elevstd

V64_space elevstd_log10

V65_space | aridityindex

V66_space aridityindex_log10

V67_space hdwimaxann

V68_space hdwimaxann_log10

V69_space fm1000

V70_space fm1000_log10

V71_space fm100

V72_space fm100_log10
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V73_space

seasindex

V74_space seasindex_log10

V75_space | lightning

V76_space | lightning_log10

V77_space housedensity

V78_space housedensity_log10

V79_space housedensity_in50kha

V80_space housedensity_in50kha_log10

V81_space | distshpkm

V82_space dist5hpkm_log10

V83_space | dist50hpkm

V84_space dist50hpkm_log10

V85_space | gdp

V86_space gdp_log10

V87_space | gdp_pcap

V88_space | gdp_pcap_logl0

V89_space fracsnow_1month X
V90_space fracsnow_log10_1month X
V91_space fracsnow_1monthafter X
V92_space fracsnow_log10_1monthafter X
V93_space swemean_1lmonth X
V94_space swemean_log10_1month X
V95_space swemean_1lmonthafter X
V96_space swemean_log10_1monthafter X
V97_space roaddist_major X
V98_space roaddist_major_log10 X
V99_space roaddist_minor X
V100_space | roaddist_minor_log10 X
V101_space | roaddist_all X
V102_space | roaddist_all_log10 X
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Table A2. As in Table A1 but potential predictor variables representing the mean annual cycle. Climate predictors with “mean”
indicate the mean annual cycle of monthly values during the model calibration period (1985-2024). Variables with
“mean_scaled” are mean annual cycles linearly scaled between zero for the annual minimum and 1 for the annual maximum.

[110 Durations at the end of variable names (e.g., “3 month”) indicate that monthly values were averaged with a moving window
of the indicated duration prior to calculation of the annual cycle, with the moving window ending in the month for which the
average was assigned (e.g., the 3-month average assigned to March is calculated across January—March). Variables with
“Imonthafter” represent mean climate of the next month (e.g., the mean annual cycle value assigned to January represents that
of February). See Supplementary Table S2 for variable descriptions.

Number Name P modeluse | Size modeluse | Round2only

V1_seas aridityindex_mean_scaled_1month - -

V2_seas aridityindex_mean_scaled_2month - -

V3_seas aridityindex_mean_scaled_3month - -

V4 _seas aridityindex_mean_scaled_1monthafter X -

V5_seas prec_mean_scaled_1month - -

V6_seas prec_mean_scaled_2month - -

V7_seas prec_mean_scaled_3month - -

V8 seas prec_mean_scaled_1monthafter X -

V9_seas wetdays_mean_scaled_1month - -

V10_seas | wetdays_mean_scaled_2month - -

V11_seas | wetdays_mean_scaled_3month - -

V12_seas | wetdays_mean_scaled_1monthafter X -
V13_seas | vpd_mean_scaled_1month + +
V14_seas | vpd_mean_scaled_2month + +
V15_seas | vpd_mean_scaled_3month + +
V16_seas | vpd_mean_scaled_1monthafter X +
V17_seas | solar_mean_scaled_1month + +
V18 seas | solar_mean_scaled_2month + +
V19 seas | solar_mean_scaled_3month + +
V20 _seas | solar_mean_scaled_1monthafter X +
V21_seas | cape_mean_scaled_1month + +
V22_seas | lightning_mean_scaled_1month + X
V23 seas | hdwi_mean_scaled_1month + +
V24 seas | hdwi_mean_scaled_1monthafter X +
V25_seas | hdwi_maxlday_scaled_1month + +
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V26_seas

hdwi_max1day_scaled_1monthafter

V27_seas | hdwi_max3day_scaled_1month
V28_seas | hdwi_max3day_scaled_1monthafter
V29_seas | aridityindex_log10_mean_1month
V30_seas | aridityindex_log10_mean_2month
V31_seas | aridityindex_log10_mean_3month
V32_seas | aridityindex_log10_mean_1monthafter
V33 _seas | fm1000_mean_scaled_1month

V34 seas | fm1000_mean_scaled_1monthafter
V35 seas | fm100_mean_scaled_1month
V36_seas | fm100_mean_scaled_1monthafter
V37_seas | prec_log10_mean_1month
V38_seas | prec_log10_mean_2month
V39_seas | prec_log10_mean_3month
V40_seas | prec_log10_mean_1monthafter
V41_seas | wetdays_mean_1month

V42_seas | wetdays_mean_2month

V43_seas | wetdays_mean_3month

V44 _seas | wetdays_mean_1lmonthafter
V45_seas | vpd_mean_1month

V46_seas | vpd_mean_2month

V47_seas | vpd_mean_3month

V48_seas | vpd_mean_1lmonthafter

V49 seas | solar_mean_1month

V50_seas | solar_mean_2month

V51 _seas | solar_mean_3month

V52 _seas | solar_mean_1monthafter

V53_seas | cape_mean_1lmonth

V54 _seas | lightning_mean_1month

V55 seas | hdwi_mean_1month

V56_seas | hdwi_mean_1monthafter
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[115

[120

V57_seas | hdwi_maxlday_1month + +
V58_seas | hdwi_maxlday_1monthafter X +
V59_seas | hdwi_max3day_1month + +
V60_seas | hdwi_max3day_1monthafter X +
V61 _seas | fm1000_mean_1month - -
V62 _seas | fm1000_mean_1monthafter X -
V63_seas | fm100_mean_1month - -
V64 _seas | fm100_mean_1lmonthafter X -
V65_seas | vpdmax_mean_scaled_1month + + X
V66_seas | vpdmax_mean_scaled_2month + + X
V67_seas | vpdmax_mean_scaled_3month + + X
V68_seas | vpdmax_mean_scaled_1monthafter X + X
V69_seas | vpdmin_mean_scaled_1month + + X
V70_seas | vpdmin_mean_scaled_2month + + X
V71_seas | vpdmin_mean_scaled_3month + + X
V72_seas | vpdmin_mean_scaled_1monthafter X + X
V73_seas | vpdmax_mean_1lmonth + + X
V74_seas | vpdmax_mean_2month + + X
V75_seas | vpdmax_mean_3month + + X
V76_seas | vpdmax_mean_1lmonthafter X + X
V77_seas | vpdmin_mean_1lmonth + + X
V78_seas | vpdmin_mean_2month + + X
V79_seas | vpdmin_mean_3month + + X
V80_seas | vpdmin_mean_1lmonthafter X + X

Table A3. As in Table Al but potential predictor variables representing temporal variability at timescales beyond the mean
annual cycle. Durations at the end of variable names (e.g., “3 month”) indicate that monthly values were averaged with a
moving window of the indicated duration prior to calculation of anomalies, with the moving window ending in the month for
which the average was assigned (e.g., the 3-month average assigned to March is calculated across January—March). Variables
with “Imonthafter” represent mean climate of the next month (e.g., the mean annual cycle value assigned to January represents
that of February). Variables with “anom” are standardized such that, for each of the 12 months, the mean is zero and standard
deviation is 1 during the model calibration period of 1985-2024. See Supplementary Table S3 for variable descriptions.

Number Name P modeluse | Size modeluse Round 2 only
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V1_temporal spi_lmonth
V2_temporal spi_2month
V3_temporal spi_3month
V4_temporal spi_4month
V5_temporal spi_Smonth
V6_temporal spi_6month
V7_temporal spi_9month
V8_temporal spi_12month

V9_temporal

spi_lmonthafter

V10_temporal

spi_17toémonthsbefore

V11_temporal

spi_23to12monthsbefore

V12_temporal

spi_29to18monthsbefore

V13_temporal

spi_35to24monthsbefore

V14_temporal

wetdays_anom_1month

V15_temporal

wetdays_anom_2month

V16_temporal

wetdays_anom_1lmonthafter

V17_temporal

vpd_anom_1month

V18_temporal

vpd_anom_2month

V19_temporal

vpd_anom_3month

V20_temporal

vpd_anom_4month

V21_temporal

vpd_anom_5month

V22_temporal

vpd_anom_6month

V23_temporal

vpd_anom_9month

V24_temporal

vpd_anom_12month

V25_temporal

vpd_anom_1monthafter

V26_temporal

cape_anom_1lmonth

V27_temporal

cape_anom_maxlday_1month

V28_temporal

cape_anom_max3day_1lmonth

V29_temporal

hdwi_anom_1month

V30_temporal

hdwi_anom_1monthafter

V31_temporal

hdwi_anom_max1day_1month
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V32_temporal hdwi_anom_max1day_1monthafter X
V33_temporal hdwi_anom_max3day_1month +
V34_temporal hdwi_anom_max3day_1monthafter X
V35_temporal fm1000_anom_1month -
V36_temporal fm1000_anom_1monthafter X
V37_temporal fm1000_anom_min3day_1month -
V38_temporal fm1000_anom_min3day_1lmonthafter X
V39_temporal fm100_anom_1month -
V40_temporal fm100_anom_1monthafter X
V41_temporal fm100_anom_min3day_1month -
V42_temporal fm100_anom_min3day_1monthafter X
V43_temporal vpd_anom_max3day_1month +
V44_temporal vpd_anom_max3day_1lmonthafter X
V45_temporal fracsnow_anom_1month -
V46_temporal fracsnow_anom_1monthafter X
V47_temporal swemax_lastl2months_anom -
V48_temporal swemax_last12months - X
V49_temporal fracsnow_1month - X
V50_temporal fracsnow_log10_1month - X
V51_temporal fracsnow_1monthafter X X
V52_temporal fracsnow_log10_1monthafter X X
V53_temporal swemean_1lmonth - X
V54_temporal swemean_log10_1month - X
V55_temporal swemean_1lmonthafter X X
V56_temporal swemean_log10_1monthafter X X
V57_temporal vpdmax_anom_1lmonth + X
V58_temporal vpdmax_anom_1lmonthafter X X
V59_temporal vpdmin_anom_1month + X
V60_temporal vpdmin_anom_1monthafter X X
V61_temporal vpdmax_anom_maxlday_1lmonth + X
V62_temporal vpdmax_anom_maxlday_lmonthafter X X
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[125

130

[135

V63_temporal vpdmax_anom_max3day_1lmonth + + X
V64_temporal vpdmax_anom_max3day_1lmonthafter X + X
V65_temporal vpdmin_anom_max1day_1month + + X
V66_temporal vpdmin_anom_max1day_1lmonthafter X + X
V67_temporal vpdmin_anom_max3day_1lmonth + + X
V68_temporal vpdmin_anom_max3day_1lmonthafter X + X
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