
1 
 

The Western United States Large Forest-Fire Stochastic Simulator 
(WULFFSS) 1.0: A monthly gridded forest-fire model using 
interpretable statistics 
 
A. Park Williams1,2, Winslow D. Hansen3, Caroline S. Juang4, John T. Abatzoglou5, Volker C. Radeloff6, 5 
Bowen Wang7, Jazlynn Hall3, Jatan Buch8, Gavin D. Madakumbura1 
1Department of Geography; University of California, Los Angeles; Los Angeles, CA; USA 
2Department of Atmospheric and Oceanic Sciences; University of California, Los Angeles; Los Angeles, CA; USA 
3Cary Institute of Ecosystem Studies; Millbrook, NY; USA 
4Department of Earth and Environmental Sciences; Columbia University; New York, NY; USA 10 
5Management of Complex Systems Department; University of California, Merced; Merced, CA; USA 
6SILVIS Lab; Department of Forest and Wildlife Ecology; University of Wisconsin, Madison; Madison, Wisconsin; USA 
7Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA; USA 
8Department of Earth and Environmental Engineering; Columbia University; New York, NY; USA 

Correspondence to: A. Park Williams (williams@geog.ucla.edu) 15 

Abstract. We developed WULFFSS, a new stochastic monthly gridded forest-fire model for the western United States (US). 

Operating at 12-km resolution, WULFFSS calculates monthly probabilities of fires that burn at least 100 ha of forest area as 

well as the forest area burned per fire. The model is forced by variables related to vegetation, topographic, anthropogenic, and 

climate factors, organized into three indices representing spatial, annual-cycle, and lower frequency temporal domains. These 

indices can interact, so variables promoting fire in one domain amplify fire-promoting effects in another. Fire probability and 20 

size models use multiple logistic and linear regression, respectively, and can be easily updated as new data or ideas emerge. 

During its training period of 1985–2024, WULFFSS captures 71% and 86% of observed interannual variability in western US 

forest-fire frequency and area, respectively. It reproduces regional differences in seasonal timing, frequencies, and sizes of 

fires, and performs well in cross-validation exercises that test the model’s accuracy in years or regions not considered during 

model training. While lacking fine-scale fire dynamics, WULFFSS’ use of classic statistics promotes interpretability and 25 

efficient ensemble generation. Designed to run within a vegetation ecosystem model, bidirectional feedbacks between 

vegetation and fire can identify how ecosystem changes have altered or will alter fire-climate relationships across the western 

US. The model's predictive power should improve with increasingly accurate and extensive observational data, and its 

approach can be extended to other regions. Here we provide a thorough description of the WULFFSS model, including the 

motivation underlying its development, caveats to our approach, and areas for future improvement. 30 
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1 Introduction 

In the western United States (US), the annual wildfire area increased by approximately 250% from 1985–2024, largely because 

annual forest-fire extent increased 10-fold (902%) during this time (Fig. 1a). These rapid increases in annual area burned over 

the last few decades occurred despite consistent efforts to suppress wildfire (Fig. 1b), signifying a break from the ease with 

which fires were contained through most of the 20th century. Importantly, the frequency of western US forest fires has not 35 

increased in recent decades (Syphard et al., 2025), so it is the growing sizes of fires rather than their numbers that are 

responsible for the rapid increases in area burned (Juang et al., 2022). Severe, stand-replacing forest fires also appear to have 

been more prevalent in recent decades than in previous centuries (Parks and Abatzoglou, 2020; Hagmann et al., 2021; Higuera 

et al., 2021; Parks et al., 2023; Williams et al., 2023). Thus, even though western US fires are still less common than during 

pre-European centuries (Parks et al., 2025), the rapid recent increase in fire activity has often not been ecologically restorative 40 

(Coop et al., 2020). Further, carbon emissions from increasingly large and severe fires work against carbon-neutrality targets 

for climate change mitigation (Anderegg et al., 2022, 2024; Jones et al., 2024). Growing sizes and spread rates (Balch et al., 

2024) of severe forest fires in the western US have also combined with growing human populations in fire-prone areas 

(Radeloff et al., 2023) to increasingly put people and property in harm’s way (Higuera et al., 2023), including via air pollution 

far from the flames themselves (Burke et al., 2023). Continued growth in forest-fire sizes and severities may also alter mountain 45 

hydrology, with cascading impacts on water resources and flood risk (Kampf et al., 2022; Williams et al., 2022). These trends 

motivate improved understanding of, and capability to model, past and future changes to western US forest-fire activity. 

 

 
Figure 1: Annual western US wildfire extent and suppression expenditures. (a) Time series of annual western US (grey) 50 
total wildfire area, (green) forest area burned, and (brown) non-forest area burned from 1985–2024. Bold lines show the Theil-
Sen trends in the logarithm of area burned. Delta (D) values indicate the relative change from the first to last year of each trend 
and p-values indicate trend significance assessed with one-tailed block (2-year) bootstrap. (b) Scatterplot of annual federal fire 
suppression cost versus forest-fire area (colors correspond to year) from 1985–2023 (suppression cost unavailable for 2024). 
Federal suppression costs from www.nifc.gov/fire-information/statistics/suppression-costs and inflation-adjusted to 2024 US 55 
dollars. Fire dataset described in section 3.1. 
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Drying and warming have been primary drivers of the increase in western US forest area burned in recent decades (Westerling 

et al., 2006; Abatzoglou and Williams, 2016; Holden et al., 2018; Williams et al., 2019; Brown et al., 2023). Precipitation 

declines from the early 1980s to the early 2020s were promoted by trends toward the cool states of the El Niño-Southern 60 

Oscillation and Pacific Decadal Variability (Lehner et al., 2018), which were probably mostly due to natural climate variability 

but potentially also promoted by anthropogenic forcing (Hwang et al., 2024; Jiang et al., 2024). The linkage between 

anthropogenic forcing and warming is clearer and likely to continue (Vose et al., 2017). Warming primarily reduces forest fuel 

moisture by enhancing the atmosphere’s evaporative demand, melting snow earlier in the year, and extending the season of 

vegetation water use. Temperature drives atmospheric moisture demand through its exponential impact on the vapor pressure 65 

deficit (VPD), and this variable is strongly correlated with annual forest-fire area in the western US (He et al., 2025) (Fig. 2, 

left side). Fuel moisture and wildfire activity are also critically affected by other climate variables, including precipitation 

total, precipitation frequency, and dry windiness (Abatzoglou and Kolden, 2013; Williams et al., 2015; Holden et al., 2018; 

Brey et al., 2021). Considering a number of methods to quantify fuel aridity, Abatzoglou and Williams (2016) attributed 

approximately half of the western US forest area burned from 1984–2015 to anthropogenic climate trends. However, that 70 

study’s analysis was not spatially explicit, it focused exclusively on area burned, and it did not consider contributions from 

other human impacts on fire, such as through land use, fire suppression, or ignitions. 

 

Fuel characteristics are also key determinants of wildfire activity, in part because they modulate the sensitivity of fire to climate 

(Bradstock, 2010; Littell et al., 2018). As long there are sufficient lightning or human ignitions, increased abundance and 75 

connectivity of flammable fuels will make fire activity more responsive to aridity (Fig. 2). In non-forested areas of the western 

US, where fuels are generally more limiting due to less biomass and connectivity, the relationship between area burned and 

aridity is considerably weaker than in forested areas (Fig. 2) despite non-forest areas on average being warmer, drier, and 

therefore more likely to burn based on fuel moisture alone. 

 80 



4 
 

 
Figure 2: Annual wildfire area versus atmospheric aridity. Regressions are shown for forested (circles with green outlines) 
and non-forested (squares with brown outlines) areas of the western US. The vapor-pressure deficit (VPD) is a measure of the 
aridity of the atmosphere and March–October (Mar-Oct) is a time period when VPD is particularly strongly correlated with 
annual area burned. Fire and climate data described in sections 3.1 and 3.3. 85 
 

Fuel characteristics also modulate how fire responds to climate within forests, and thus fire activity in a given region and time 

period may be strongly affected by that region’s fire history. In a meta-analysis of >1,000 western US forest fires, Parks et al. 

(2015) found a self-regulating effect of fire, where fuel reductions caused by past fires tended to limit subsequent fire spread 

for 5–20 years. In other meta-analyses, Parks et al. (2018a) and Hakkenberg et al. (2024) found that pre-fire fuel abundance, 90 

and ladder fuels in particular, strongly affect fire severity. 

 

The US practice of fire exclusion has led to artificially high levels of vegetation biomass, spatial continuity, and understory 

vegetation in many western US forests (Hagmann et al., 2021). This has been especially detrimental for semi-arid forests where 

pre-European fire frequencies were on the order of 5–30 years (Swetnam, 1993; Swetnam and Baisan, 1996; Van de Water 95 

and Safford, 2011). In these forests, a century or more of little-to-no fire represents a dramatic departure from a historical fire 

regime typified by frequent, low-intensity surface fires. Resultant fuel accumulation has been conducive to vertical movement 

of fire into forest canopies (Steel et al., 2015; Hagmann et al., 2021). Accordingly, in many semi-arid western US forests, fire 

exclusion is partly responsible for the strength of the positive response of annual forest-fire area to warming and drying.  

 100 

In the coming decades, continued changes to western US forest ecosystems due to changes in climate, fire regimes, and human 

activities will feed back to modify how fire sizes, frequencies, severities are affected by subsequent fluctuations and trends in 

climate (Williams and Abatzoglou, 2016; Littell et al., 2018; Buotte et al., 2019). For example, a continued rapid increase in 
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forest-fire area may become increasingly self-regulating as fuel loads and connectivity decline (Parks et al., 2015, 2018b). 

Forecasting the timing, magnitude, and geography of this effect requires understanding of complex fire-induced mortality and 105 

succession (Harvey et al., 2016). In simulations with the LANDIS-II model, Hurteau et al. (2019) found that both coupled and 

uncoupled simulations resulted in large increases in area burned and fire emissions, but the coupled simulations had a small 

self-regulating effect that reduced projected trends by 10–15%. However, LANDIS-II is computationally intensive and this 

study was confined to three representative transects within the Sierra Nevada, rather than the whole Sierra Nevada. In addition, 

Hurteau et al. (2019) made simplifying assumptions that fire ignitions are randomly distributed across the landscape and fire 110 

effects on biomass only last for 10 years. Taking a much simpler approach, Abatzoglou et al. (2021) performed simulations 

treating the entire western US forest area as essentially a single model grid cell to assess how sensitive future western US 

trends in forest-fire area should be to the strength of fire’s self-regulating effect. Even simulations that assumed a very strong 

self-regulating effect projected continued rapid increases in forest fire area, though at only half the rate as simulations assuming 

no self-regulation. In addition to not considering spatial variability, Abatzoglou et al. (2021) focused solely on area burned 115 

and the simulations lacked ecological dynamics. As such, they modeled only until 2050 and did not assess whether the self-

regulating effect of larger fires may be more pronounced for other variables such as fire intensity, severity, or biomass 

combusted.  

 

Most wildfire impacts are caused by a relatively small number of fires (Moritz et al., 2005) and approximately 90% of the total 120 

area burned in the western US is accounted for by fewer than 10% of wildfires (Short, 2022). Given that larger fires tend to 

burn at higher severity (Cova et al., 2023), realistic simulation of future fire-vegetation coupling requires modeling extreme 

fire events. For realistic simulations of complex processes, a mechanistic modeling approach that explicitly simulates fine-

scale processes such as combustion and energy transfer is ideal. However, the temporal and spatial scales at which fine-scale 

mechanistic fire models can be run are severely limited by computational constraints. For example, coupled atmosphere/fire 125 

models such as HIGRAD/FIRETEC (Linn, 1997; Linn et al., 2012), CAWFE (Coen, 2013) and WRF-Fire (Muñoz‐Esparza et 

al., 2018) can only feasibly operate at a scale of tens of kilometers at most, insufficient to understand the drivers of historical 

and future wildfire activity across the large scale of the western US. One model designed for efficient simulation of fire 

dynamics across regions as large as the western US is SPITFIRE (Thonicke et al., 2010; Lasslop et al., 2014), which is 

described as process-based because it simulates fire intensity and wind-driven fire spread following Rothermel’s equations 130 

(Rothermel, 1972; Andrews, 2018). However, the rules that govern ignitions and whether fuels are abundant and dry enough 

to burn are empirically parameterized. An advantage of mechanistic, or process-based, models is that they are deterministic; a 

given set of predictor conditions will always lead to the same fire outcome, making them diagnosable and replicable. Their 

disadvantage is that at the relatively low spatial and temporal resolutions necessary for decadal to centennial simulations across 

a large region like the western US, a model like SPITFIRE is likely to underrepresent variability and extremes. 135 
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Due to the limitations of all other forest-fire models, we developed a new stochastic forest-fire model for the western US, 

WULFFSS. We designed this model to operate in a coupled framework within a forest ecosystem model, the Dynamic 

Temperate and Boreal Fire and Forest-Ecosystem Simulator (DYNAFFOREST) (Hansen et al., 2022). The WULFFSS 

simulates the monthly occurrences and sizes of forest fires ≥1 km2 in size on a 12-km resolution grid. Fire probabilities and 140 

sizes are determined as functions of fuel characteristics, topography, human population, and climate/weather. WULFFSS 

reproduces realistic spatiotemporal variations in fire frequency and area burned under historical conditions, and its use of 

conventional statistics promotes interpretability of model behavior and outputs. The model’s computational efficiency and 

stochastic nature allow for many simulations of monthly forest-fire activity across the western US for decades or centuries at 

a time. Implementation of WULFFSS within a forest ecosystem-model such as DYAFFOREST will allow for simulation of 145 

the coupled interactions between fire and ecosystems that will ultimately shape how the western US forest-fire regime evolves 

under anthropogenic climate change. While WULFFSS was built to be coupled with DYNAFFOREST, it is designed in a 

modular fashion where coupling with other vegetation models should be relatively straight forward. 

2 Geographic domain 

Our study area is the forested domain of the eleven westernmost states of the coterminous US: Arizona, California, Colorado, 150 

Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming. Consistent with other work in the region 

(Buotte et al., 2019; Hansen et al., 2022), we determine the forested domain from the 250-m forest map from Ruefenacht et al. 

(2008), from which we calculate a 1-km resolution map of fractional forest coverage. We classify a given 1-km grid cell as 

forested if ≥50% of the 250-m grid cells are forest. From this 1-km forest map, we determine our 12-km resolution model 

domain to include all 12-km grid cells containing at least one forested 1-km grid cell. We remove 12-km grid cells immediately 155 

south of the Canadian border because some of our landcover- and population-related predictor variables require information 

from surrounding grid cells. In total, there are 11,132 12-km grid cells within our forested western US study domain (Fig. 3). 

In assessments of regional model performance we consider the four quadrant regions mapped in Fig. 3: Pacific Northwest 

(PNW), Northern Rockies (N Rockies), California and Nevada (CA/NV), and the four-corner states (4 Corners). 

 160 
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Figure 3: The western US study domain. Grey contour outlines the western US forested study region. Shades from white to 
green: fractional forest cover in each 12-km grid cell within the forested study region according to the Ruefenacht et al. (2008) 
forest map. Orange dots: ignition locations of forest fires ≥100 ha in the study region from 1985–2024. Yellow: non-forested 
areas of the western US. Grey: outside the western US. Colored boundaries identify the four quadrant regions considered in 165 
regional analyses: Pacific Northwest (red, PNW), Northern Rockies (blue, N Rockies), California and Nevada (green, CA/NV), 
and the four-corner states (purple, 4 Corners). 

3 Data 

3.1 Forest fire 

To parameterize the fire model we use the Western US MTBS-Interagency (WUMI2024a) database of observed wildfires from 170 

1984–2024 (Williams et al., 2025). Like its predecessor described by Juang et al. (2022), the WUMI2024a was developed by 

harmonizing several public US government sources and it does not include fires <1 km2 in size. The WUMI2024a contains a 

list of western US wildfire events, including ignition date, ignition location, and final fire size, as well as a 1-km resolution 

map of the area burned by each fire. See Williams et al. (2025) for details about the data sources and the methods underlying 

the WUMI2024a. We constrain calibration of the WULFFSS to 1985–2024 due to a suspicious absence of fires from Wyoming 175 

and New Mexico in 1984.  
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We estimate forest area burned by each fire in the WUMI2024a and only retain fires that burned ≥1 km2 of forest area. To 

estimate the forest area burned by each fire, we multiply each 1-km grid cell of fractional area burned by the fractional forest 

area and then sum. Of the 21,570 wildfires represented in the WUMI2024a in 1985–2024, 7,639 have ≥1 km2 forest area 180 

burned. However, a number of wildfires are identified in the WUMI2024a as ‘parent fires’ composed of smaller sub-fires. This 

occurs because, although the most accurate dataset feeding into the WUMI2024a is the MTBS, that dataset sometimes 

attributes burned areas from multiple fires to a single event. The WUMI2024a notes these cases, and we replace parent fires 

with their associated sub-fires. To keep burned areas consistent with the high-quality calculations from MTBS, we re-scale the 

forest area burned by each set of sub-fires so that they sum to the parent fire’s value. In cases where a sub-fire’s ignition 185 

location is not within a 1-km forested grid cell that burned, we reassign the ignition location to the nearest grid cell with forest 

area that burned. We find 56 parent fires composed of at least two sub-fires with ≥1 km2 forest area burned after rescaling. 

After replacing parent fires with their sub-fires, our dataset consists of 7,799 wildfires with ≥1 km2 forest area burned from 

1985–2024. This number is reduced to 7,635 after removing fires ignited in areas outside our western US study domain shown 

in Fig. 3 because they ignited near the Canadian or Mexican border or in a 12-km grid cell containing no 1-km grids with 190 

≥50% forest area. 

3.2 Topography 

We calculate topographic predictors from the 1-km digital elevation model produced by the NOAA GLOBE project (Hastings 

and Dunbar, 1998). From the 1-km grid of mean elevation we calculate 1-km grids of slope and aspect. We then calculate 12-

km grids of mean slope to represent steepness as well as the standard deviation of 1-km elevation values to represent terrain 195 

ruggedness. 

3.3 Climate 

3.3.1 Daily 1/24° gridded climate 

We calculate climate predictors from daily gridded climate data with 1/24° (~4 km) geographic resolution for January 1951 – 

December 2024. This period begins in 1951 rather than coincident with our 1985–2024 study period because the longer climate 200 

record is used to spin-up our forest simulations (section 3.4). Daily variables are precipitation total (prec, mm), maximum 

temperature (tmax, °C), minimum temperature (tmin, °C), vapor pressure (ea, hPa), mean downwelling solar radiation at the 

surface (solar, W m-2), and mean 2-m wind speed (wind, m s-1). For prec, tmax, and tmin, data come from the 1/24°-resolution 

nClimGrid Daily dataset produced by the National Oceanic and Atmospheric Administration (Durre et al., 2022), which covers 

1951–present. For ea we apply the Clausius Clapeyron formulation to the daily 1/24°-resolution dew point (tdew, °C) dataset 205 

from the PRISM group at Oregon State University (Daly et al., 2021). This dataset is better than reanalysis products because 

it is based on station observations. However, the daily PRISM dataset starts in 1981. For 1951–1980, we use a dynamically-
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downscaled version of the ERA5 reanalysis for the western US (Rahimi et al., 2022). This reanalysis has 9-km spatial 

resolution and covers September 1950 – April 2025. We use daily outputs of mean specific humidity (q, m3 m-3) and surface 

pressure (p, hPa) to estimate ea: pq/(0.622+0.378q). We then bilinearly interpolate to 1/24° resolution and use quantile 210 

mapping to bias correct the Rahimi et al. data such that, for each grid cell and each of the 12 months, the distributions of daily 

ea estimated from Rahimi et al. match those estimated from PRISM during their period of overlap. For solar and wind, we 

prioritize the daily outputs from Rahimi et al. because there are no long-term spatially continuous records of direct observations 

of these variables and the Rahimi et al. data have uniquely high spatial resolution and long temporal coverage. We downscale 

the Rahimi et al. solar and wind data to 1/24° resolution using bilinear interpolation.  215 

 

For solar, we account for the effect of slope and aspect on incident solar angle (e.g., solar intensity is higher on south-facing 

slopes). The Rahimi et al. reanalysis accounts for the effect of elevation on solar intensity, but not the effect of slope and 

aspect. To do this, we use 1-km resolution maps of slope and aspect, calculated from the 1-km maps of mean elevation from 

NOAA GLOBE (Hastings and Dunbar, 1998). Our method is to, for each day in a generic 365-day year and assuming a top-220 

of-atmosphere solar constant of 1367 W m-2, use the method developed by Kumar er al. (1997) to estimate the mean 

downwelling solar intensity at the surface at 1-km resolution for two scenarios: one with observed elevation, slope, and aspect 

(solar_topo) and another with observed elevation but assuming topography within each 1-km grid cell is flat (solar_flat). For 

each day we then calculate an adjustment factor representing the fractional effect of slope and aspect on incident solar radiation 

at the surface as solar_adj = solar_topo/solar_flat. We then upscale the daily grids of solar_adj to 1/24° resolution and 225 

calculate a topography-adjusted version of solar (solar_topo) by multiplying each daily map of solar by its corresponding map 

of solar_adj. 

 

We use the 1/24° daily climate maps described above to calculate a number of fire-relevant derived variables. We calculate 

daily mean VPD as the average of the daily maximum and minimum VPD (VPDmax and VPDmin, respectively), where 230 

VPDmax is calculated as the saturation vapor pressure (es) at tmax minus ea and VPDmin is calculated using es at tmin. As a 

metric representing daily atmospheric fire weather, we use a modified version of the hot-dry-windy index (HDWI, hPa m s-1) 

representing surface conditions. The standard formulation of the HDWI (Srock et al., 2018) multiplies wind by VPD at multiple 

vertical levels within the bottom 500 m of the atmosphere on a sub-daily time scale (e.g., 6 hourly), and then defines each 

day’s HDWI value as the maximum among all values from at any vertical level or time step. Our simplified approach is to 235 

estimate daily HDWI as VPDmax multiplied by wind. 

 

To represent the effect of snowpack we use the 4-km daily gridded climate data to simulate daily mean snow-water equivalent 

(SWE, mm) using the SnowClim model (Lute et al., 2022), which is designed for efficient simulation of western US snow 

dynamics in response to gridded forcing data at a daily or sub-daily time step. 240 
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To represent fuel moisture we calculate the daily 100- and 1,000-hour dead fuel moisture content (FM100 and FM1000, 

respectively, %) following the method of the National Fire Danger Rating System (NFDRS) (Cohen and Deeming, 1985). The 

100-hour and 1,000-hour fuel classes represent woody fuels 25–76 mm and 76–203 mm in diameter, respectively, and the 

names of the fuel classes represent the approximate e-folding time required for moisture content to equilibrate with the 245 

atmosphere. We include the effect of simulated snow in our calculations by setting relative humidity to 100% when the snow 

depth is ≥5 mm and by withholding precipitation that increases the water content of the snowpack until it melts out of the 

snowpack.  

3.3.2 Monthly 12-km climate predictors 

We calculate nearly all monthly climate predictors from the daily 1/24° grids described above. In addition to monthly means 250 

we also consider variables representing fire-relevant sub-monthly quantities (e.g., maximum 1- or 3-day mean HDWI or VPD, 

maximum single-day SWE of the past 12 months) as well as variables representing the integration of climate conditions over 

multiple months (e.g., 3-, 6-, 9-, or 12-month mean VPD).  

 

In addition to 12-km climate predictors derived from our daily 1/24° dataset, we also consider lightning frequency using the 255 

0.1°-resolution daily maps of lightning-strike density from the National Lightning Detection Network (NLDN, 

https://www.ncei.noaa.gov/pub/data/swdi/). This dataset begins in 1987 and we aggregate to monthly maps of 12-km lightning 

frequency for 1987–2024. However, NLDN methodology changed over time so we only use maps of long-term and monthly 

climatological mean lightning frequencies as predictors. To account for temporal variability in lightning potential on 

interannual timescales, we consider monthly mean convective available potential energy (CAPE) as well as maximum 1- and 260 

3-day mean CAPE from Rahimi et al. (2022), which we upscale to 12-km resolution using bilinear interpolation.  

3.4 Landcover 

Due to a lack of spatially continuous and temporally evolving observational maps of fire-relevant forest biomass variables 

throughout our study period, we simulate forest biomass during our study period using the Dynamic Temperate and Boreal 

Fire and Forest-Ecosystem Simulator (DYNAFFOREST) (Hansen et al., 2022). DYNAFFOREST is a process-based forest 265 

ecosystem model designed to efficiently simulate forest dynamics across the western US at a medium spatial resolution (grid 

cell size of 1 km2). The model represents 11 forest types and one grass/shrub type, runs at an annual time step, and simulates 

a suite of variables representing various stand structure characteristics and ecosystem functions. DYNAFFOREST is a cohort 

based model. In each forested 1-km grid cell, a single tree representing one forest type is simulated. Simulated metrics from 

the single tree are then used to estimate stand structural characteristics for each grid-year, such as stand age, density, basal 270 

area, mean canopy height, and diameter at 1.35 m above the ground. DYNAFFOREST tracks 3 live and 3 dead above-ground 
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biomass pools: stem, branch, and foliage, and standing snags, downed coarse wood, and forest floor litter. Cohort mortality 

occurs probabilistically as a function of background causes, drought, and fire.  

 

When a fire occurs, DYNAFFOREST estimates percent crown kill of the cohort as a function of fuel aridity, tree size, and 275 

forest-type specific crown dimensions. Probability of mortality is estimated as a function of crown kill and bark thickness. 

Following a fire, forest establishment and recovery is simulated in DYNAFFOREST probabilistically based on the fecundity 

of the surrounding forest types, dispersal distance in the target grid cell and surrounding grid cells, and the effects of climate 

on seed germination and establishment. Key functional traits related to postfire recovery, like cone serotiny and asexual 

resprouting, are included. If stand-replacing fire occurs and postfire establishment does not occur the next year, then the 280 

landcover is assumed to convert to grass/shrub, though forest can return when seed supplies and climate conditions allow. 

 

Because DYNAFFOREST outputs are not observational, our empirically parameterized fire model will not perfectly represent 

how observed forest characteristics affect the probabilities and sizes of forest fires. However, DYNAFFOREST has been well 

benchmarked across large diverse forest types of the western US (Hansen et al., 2022) and used to simulate coupled fire-forest 285 

relations in the context of fuels management (Daum et al., 2024). Additionally, we find reasonable representation of 

ecoregional differences in most above-ground biomass pools when we compare DYNAFFOREST outputs with the US Forest 

Service’s Forest Inventory and Analysis survey data (USDA Forest Service, 2019). Further, in the DYNAFFOREST simulation 

used to produce the 1985–2024 forest maps that we use to parameterize the fire model, we apply the observed 1-km maps of 

forest area burned from WUMI2024a. By allowing DYNAFFOREST to simulate forest responses to known fires, our 290 

parameterization reflects not just the effects of naturally occurring, long lasting gradients in forest condition on fire, but also 

more transient, sharper gradients caused by prior fires. 

 

To assure realistic and stable forest dynamics leading into the 1985–2024 parameterization period, we conduct a >334-year 

spin-up using WULFFSS coupled with DYNAFFOREST. For the first 300 years (1651–1950), we force DYNAFFOREST 295 

with detrended climate data from 1901–1950 and climate years are randomly selected with replacement. For 1951–1984, we 

observed climate so that forest condition in the WULFFSS parameterization can reflect the legacies of recent climate 

variations. With the exception of the variables used to force WULFFSS, the climate variables used by DYNAFFOREST are 

mean June–August 0–100 cm soil moisture and annual forest-type specific temperature metrics such as growing-degree days 

and freezing-degree days. Monthly 0–100 cm moisture is modeled from monthly 12-km climate data from 1901–2024 300 

following Williams et al. (2017, 2020) and bilinearly interpolated to 1-km resolution. The temperature metrics are calculated 

from monthly 1/24° grids of mean of tmax and tmin. We downscale the 1/24° grids to 1-km resolution guided by the TopoWx 

dataset (Oyler et al., 2015). Specifically, TopoWx provides monthly grids of tmax and tmin from 1948–2016 with resolutions 

of 1/24° and 1/120° (~800 m). For each month and variable, we use the 1/120° (~800 m) version to calculate a mean 1980–

2016 climatology with 1-km resolution (estimating 1-km values from the 1/120° grid using nearest-neighbor interpolation) 305 
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and then produce a 1-km map of offsets that relate each 1-km climatological mean value to its overlying 1/24°-resolution value 

from the same years. We apply the offsets to the monthly mean tmax and tmin from NOAA nClimGrid (Vose et al., 2014) to 

produce 1-km maps of monthly mean tmax and tmin from 1901–2024. Thus, we force the non-fire portion of the 

DYNAFFOREST simulations with observed climate data for the 1901–2024 period.  

 310 

Due to lack of fine-scale data on forest ecosystems from the pre-spin-up period, we initialize the spin-up using a 1-km 

resolution map of observed modern forest types that we derived from the 250-m map of Ruefenacht et al. (2008) forest types. 

Initial fuel loads are representative of the 11 forest types and the biomass pools stabilize after approximately 250 years of spin-

up. 

 315 

For landcover variables not simulated by DYNAFFOREST, we use the maps of land-cover type from the US Geological 

Survey’s National Land Cover Database (NLCD; https://www.usgs.gov/centers/eros/science/annual-national-land-cover-

database). The NLCD provides annual maps of landcover classifications at 30-m resolution across the US for 1985–2023. 

Because these the NLCD map for a given year often reflects the effects of fires during that year, and we do not wish to mistake 

the effects of fires for their causes, we consider each year’s landcover to be represented by the prior year’s NLCD map (for 320 

1951–1985 we assign the 1985 landcover). From these 30-m maps of landcover we calculate 1-km maps of fractional coverage 

for four non-forest landcover categories: unburnable (water, ice, wetland, barren), developed (low, medium, high intensity), 

agriculture (cultivated, pasture, developed open space), and grass/shrub (grass/herb, shrub/scrub). For each year from 1951–

2024 we then rescale these fractional coverages so that, for grid-years where the DYNAFFOREST simulation does not indicate 

forest coverage, these non-forest classes sum to full coverage. Likewise, for grid-years where DYNAFFOREST simulates 325 

forest coverage, we set the non-forest types to zero. 

 

In addition to 1-km maps of aboveground forest biomass density (in distinct pools and in total), mean canopy height, mean 

diameter at breast height, and fractional coverage by landcover type, we also calculate 1-km maps of forest connectivity. We 

define this as, for each 1-km grid cell, the fraction of adjoining grid cells with ≥10,000 kg ha-1 live biomass density, which 330 

corresponds to approximately the 5th percentile of all simulated 1-km2 live biomass density values for 1985–2024. Specifically, 

for each 1-km grid cell with ≥10,000 kg ha-1 live biomass we calculate the number of consecutive adjoining grid cells in each 

of the 8 directions radiating away from central grid cell that also have ≥10,000 kg ha-1 live biomass. In each of the four 

directions radiating north, south, east, and west, we consider the 6 nearest grid cells. In each of the four diagonal directions we 

consider the nearest 4 grid cells. We then calculate connectivity as 1 (for the central grid cell) plus the sum of the total number 335 

of adjoined grid cells with ≥10,000 kg ha-1 grid cells the 8 directions divided by the number of grid cells considered (41). This 

approach allows for efficient recalculations of connectivity when simulations are run in coupled mode with DYNAFFOREST 

and the size of the area represented is roughly aligned with that of a large wildfire 10,000 ha in size. 
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From the 1-km grids of annual forest properties and fractional coverage by landcover type described above we calculate 12-340 

km maps of averages within each 12-km grid cell. Given that fire sizes can also be influenced by landcover beyond the ignition 

location, we also consider variables that represent spatial averages within the area of a very large 500 km2 (50,000 ha) fire, 

which we approximate as a 23 x 23 km square. Likewise, our use of sub-12-km landcover data to produce landcover predictors 

allows our modelling to include the effects of within-grid heterogeneity of fuel conditions, which is important given that most 

fires are smaller than 144 km2. 345 

3.5 Human population and roads 

Humans cause approximately half of all ignitions (Balch et al., 2017) and suppressing almost all wildfires in the western US. 

We therefore include predictor variables related to population density and distance to populated areas. Because the US Census 

changed how it provides population information in 2020, so that reported numbers are sometimes swapped among Census 

units (‘blocks’) to maintain confidentiality, we work with census-based housing-unit density instead. Specifically, we use the 350 

shapefiles of census-based, block-level housing density in 2000, 2010, and 2020 developed by the SILVIS Lab 

(https://silvis.forest.wisc.edu/data/wui-change/) (Radeloff et al., 2018, 2023). For 1950–1990 we use decadal hindcast maps 

of housing density produced by the SILVIS Lab using partial block-group level census data. For 2030, which is used with 

2020 to interpolate housing density for 2021–2024, we use a projection based on county-level forecasts of housing density 

from Woods & Poole Economics (https://www.woodsandpoole.com/our-databases/united-states/), which is downscaled to the 355 

block level by the SILVIS Lab based on 2020 housing density patterns. For each decade we rasterize the polygon data to a 1-

km grid of housing density. We then produce annual maps of 1-km housing density for 1951–2024 by linearly interpolating 

between the decadal maps. 

 

From the annual 1-km maps of housing density we produce two sets of 1-km maps to represent distance from populated areas. 360 

In the first, we map the distance to the nearest grid cell with ≥5 housing units km-2 to represent distance to a relatively sparsely 

populated community. In the second we map the distance to the nearest grid cell with ≥50 housing units km-2 to represent 

distance from a more heavily urbanized area. 

 

Related to population, we also consider spatiotemporal variations in total and per-capita gross domestic product (GDP) as 365 

proxies for variations in fire-suppression capacity. We use the annual 0.5°-resolution maps of GPD and GDP per capita from 

1990–2022 from Kummu et al. (2025) and bilinearly downscale to 12-km resolution. 

 

The geographic distribution of ignitions and fire-suppression activities also depend on roads. We use the 2013 Global Roads 

Open Access Data Set, Version 1 (gROADSv1; https://search.earthdata.nasa.gov/search/granules?p=C1000000202-SEDAC. 370 

This dataset specifies for each road segment a Functional Class: Highway, Primary, Secondary, Tertiary, Local/Urban, Trail, 
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Private, or Unspecified. We aggregate these into two classes: major (Highway and Primary) and minor roads (all others). We 

then produce 1-km maps of the distance to the nearest major road, distance to nearest minor road, and distance to nearest road 

of any class. We treat the road network as static in time due to unavailability of construction or closure dates.  

 375 

Finally, we calculate 12-km maps of mean 1-km housing density, distance to nearest location with ≥5 or ≥50 housing units 

km-2, and distance to nearest major road, minor road, or any road as predictor variables in the forest-fire model. 

4 Model description 

The WULFFSS model has a spatial resolution of 12 km across the forested domain of the western US (Fig. 3) and operates 

monthly. The model is parameterized on the dataset of 7,635 forest-fire locations and sizes described in section 3.1. A 380 

schematic that visualizes the general framework of WULFFSS is provided in Figure 4. 

 

 
Figure 4: Flowchart outlining the general framework of the WULFFSS. 
 385 

WULFFSS consists of three statistical models, loosely following Westerling et al. (2011). The general framework is that first 

model estimates, for each grid-month, the probability of ≥1 wildfire (P) from a multi-variate logistic regression with predictor 

variables representing landcover, topography, humans, and climate. To account for the possibility of >1 wildfire in a given 

grid-month, the second model then uses P as a single predictor in a logistic regression to estimate the probability that any given 

number of wildfires occurs in each grid-month (N). The third model is a fire-size model that uses multi-variate regression to 390 
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estimate the forest area burned (A) by each wildfire as a function of landcover, topography, humans, and climate, similar to 

the P model. 

 

The P and A models each consist of three components representing spatial variability (S), the mean annual cycle (C), and 

temporal anomalies (T), as well as interactions between these components (SC, ST, and CT). The S component is constructed 395 

first to capture the how variations in fire activity are driven by factors that are far more variable in space than in time, as these 

factors (e.g., forest biomass, lightning frequency, variables related to human population and fire suppression) are likely to 

modulate the sensitivity of fire activity to temporal variables. The C component is then constructed to account for variations 

in fire activity that are due to the mean annual climate cycle. Finally, the T component is constructed to account for effects of 

interannual climate variability, which are likely to be strongly modulated by the effects of the S and C variables already 400 

accounted for. 

 

The S component represents drivers of forest-fire occurrence or size that are most variable in the spatial domain, such as 

topographic slope, fuel availability, human population, mean annual lightning frequency, and long-term mean aridity, all of 

which may directly influence fire occurrence and also modulate the effects of C and T. Each potential S predictor is 405 

standardized such that all grid-month values in the study domain have a mean of 0 and standard deviation of 1 for the calibration 

period (1985–2024). Many S predictors represent alternate expressions of a single predictor, for example house density, 

log10(house density), mean house density within 50 kha, and log10(mean house density within 50 kha). Logarithmic 

transformations are made on many of the S variables to give these variables more Gaussian distributions. 

 410 

The C component represents climatological drivers of forest-fire occurrence or size that are most variable in the domain of the 

mean annual cycle, such as long-term means of each month’s lightning frequency as well as variables that influence the 

seasonality of fuel moisture such as prec, solar, and VPD. For all potential C predictors, mean annual cycles are calculated 

based on the calibration period. As for S, most potential C variables are permutations of common variables. For example, the 

effects of climate variables related to fuel moisture may accumulate over several months, so the annual cycle of each climate 415 

variable is considered as 1-, 2-, 3-, 4-, and 5-month running means. Further, two versions of most C variables are considered. 

In the first, each grid cell’s mean annual cycle is scaled from 0–1, where 0 and 1 represent the mean annual minimum and 

maximum, respectively, so all spatial variability is due to variability in the timing of the annual cycle. In the second, mean 

annual cycles are not scaled and these variables retain spatial differences in each month’s mean conditions. For each of these 

unscaled C variables, values are standardized relative to all calibration-period grid-months. 420 

 

The T component represents climatological drivers of forest-fire occurrence or size that are most variable in the temporal 

domain of interannual and longer. Potential T predictors include the standardized precipitation index (SPI) (McKee et al., 

1993), frequency of wet days with ≥2.54 mm prec (Holden et al., 2018), FM1000, FM100, VPD, solar, HDWI, CAPE, and 
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SWE. As for C, many potential T variables are permutations to represent cumulative effects over various ranges of months. In 425 

addition, monthly measures of some sub-monthly meteorological conditions are considered such as the highest 1- or 3-day 

mean VPD within a month. Because T is meant to represent climate variability beyond the annual cycle, T variables are 

standardized so that for a given variable in a given grid cell, values have a mean of 0 and standard deviation of 1 for each of 

the 12 months during the calibration period. 

 430 

In both the P and A models, each of the three components is represented by a single composite index that expresses the 

combined effect of multiple predictor variables. The variables that contribute to each of the three components (S, C, and T) are 

selected stepwise and only retained if they contribute significantly to model skill (see section 4.1). Thus, each model ultimately 

uses only a subset of the potential predictors. Lists of all potential predictors are listed in Tables A1–A3 (see Tables S1–S3 for 

variable descriptions). For some variables, it is logical that the effect on P or A should be only positive or negative. For 435 

example, the direct effect of fuel availability on fire occurrence and size is far more likely to be positive than negative, but a 

statistical model may detect a hump-shaped or even negative relationship due to the co-occurring influences of moisture on 

fuel availability (positive) and flammability (negative) (Bradstock, 2010; Krawchuk and Moritz, 2011). To avoid including 

unrealistic effects due to co-linearities or model overfitting, we do not allow some predictors to be included if the sign of their 

effects are inconsistent with our understanding of western US forest fire (see Tables A1–A3).  440 

4.1 Model framework 

We use stepwise multiple regression to build the P and A models. We use multiple logistic regression to calculate our estimates 

of P (Pest): 

 

Pest = 1 / (1 + exp(-XPbP)),           (1) 445 

 

where bP is a vector of logistic regression coefficients and XP is a matrix of the three S, C, and T composite predictors (SP, CP, 

and TP, respectively), as well and their interaction terms (SPCP, SP,TP, and CP,TP), such that 

 

XPbP = bP0 + bP1SP + bP2CP + bP3TP + bP4SPCP + bP5SPTP + bP6CPTP.      (2) 450 

 

Each of the three composite predictors, SP, CP, and TP, represents contributions from a number of S, C, and T variables, where 

each S, C, and T variable included has been selected in a stepwise process and transformed to linearize its relationship with P 

following methods to be described below. 

 455 
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To model A, we follow a similar approach as for P except that we use multiple linear, rather than logistic, regression to estimate 

size-weighted and normalized anomalies of A (Azw; details in section 4.4): 

 

Azw = XAbA,            (3) 

 460 

where bA is a vector of linear regression coefficients and XA is a matrix of S, C, and T composite variables (SA, CA, and TA, 

respectively) and their interactions (SACA, SA,TA, and CA,TA) such that 

 

XAbA = bA0 + bA1SA + bA2CA + bA3TA + bA4SACA + bA5SATA + bA6CATA.      (4) 

 465 

Notably, we considered including three-way interactions between the S, C, and T predictors in the P and A models but doing 

so did not improve model skill. In the rest of this subsection we describe the parts of the model-building framework that are 

common to the P and A models. Details specific to just the P or A model will be described in sections 4.2 and 4.4, respectively. 

 

Both models are built sequentially, first constructing the spatial composite predictor (Sx, where subscript x is P for the P model 470 

or A for the A model). Next the annual cycle composite predictor (Cx) and its interaction with Sx (SxCx) are built. Finally the 

temporal anomaly predictor (Tx) as and its interactions with Sx and Cx (SxTx and CxTx, respectively) are built. 

 

To construct Sx, we first assess the general shape and strength of the relationship between each potential S predictor and the 

variable we are modeling, x, using a binned regression. We sort each potential Sx predictor into equally sized bins (45 the Px 475 

model and 25 for the Ax model), and calculate the mean of x for each bin. For each potential predictor we then regress the 

binned mean x values against the means of the binned predictor values and quantify the relationship using linear, quadratic, 

and cubic fits. The accuracy of each fit is assessed with the Akaike Information Criterion with a correction for low sample size 

(AICc) (Akaike, 1974; Hurvich and Tsai, 1989) and penalty for higher-order fits. Curve fits resulting in AICc>0 are 

immediately dismissed. Among the remaining curve fits, a Monte Carlo significance test is conducted in which x is randomized 480 

and re-binned 100 times for the P model and 200 times for the A model. Curve fits are only considered if the actual AICc is 

more negative than at least 95% of the AICc values from the Monte Carlo test. Finally, the variable and curve fit combination 

with the most negative AICc is tentatively accepted as the initial predictor (VS1) to represent Sx. Specifically, VS1 is calculated 

by applying the selected curve fit to all the values of the selected variable and then Sx is calculated by standardizing VS1 relative 

to a mean of 0 and standard deviation of 1. An initial version of the model is then developed by applying Sx as the single 485 

variable to estimate x. Model accuracy is assessed as correlation between modeled and observed values of x (see sections 4.2 

and 4.4 for details about the correlation tests specific to the P and A estimates). At this point in the model-building process, 

the model coefficients and correlation values are recalculated 100 times when VS1 values are randomly reordered (200 times 

for the A model). If the model’s correlation value is not >95% of the alternative correlation values, then the variable under 
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consideration is dismissed and we consider the potential predictor that led to the next lowest AICc value in the binned 490 

regression analysis. 

 

After Sx is initially created from a single variable, we calculate residuals in x and explore whether additional S variables should 

be included within Sx. We do this by regressing binned means of the residuals, representing variance in x not yet accounted for 

by the model, against the binned values for all potential Sx predictors still under consideration. Notably, if the predictor variable 495 

selected in the previous step has a log10 counterpart, or vice versa, the counterpart is not considered in subsequent model-

building steps. As before, only curve fits resulting in a negative AICc and satisfying the Monte Carlo significance test are 

considered. If ≥1 curve fits satisfy these criteria, the variable and curve fit with the most negative AICc is passed on for further 

consideration as VS2 by updating the calculation of S by adding VS2 to VS1 and re-standardizing. We then re-fit the regression 

equation using Sx to estimate the predictand and calculate an updated correlation between model estimates and observations. 500 

If the updated correlation is more positive than the previous correlation and is also more positive than 95% of the Monte-Carlo 

generated correlations calculated with randomized VS2 values, then the model is updated using VS1 and VS2. If these correlation 

criteria are not satisfied, the variable and curve fit that resulted in the next most negative AICc value is considered as a potential 

VS2. This process is repeated until no additional variable and curve fit satisfies the above criteria for inclusion in Sx. 

 505 

Next, the Cx component is added, constructed in the same stepwise manner as Sx, where a C variable is only included in Cx if 

(1) the binned regression with residuals leads to a negative AICc that is lower than 95% of values produced when residuals are 

randomized in the Monte Carlo repetitions and (2) model estimates of x correlate more positively with observations than did 

the previous model’s estimates and also more positively than 95% of Monte Carlo correlations calculated when the C variable 

under consideration is scrambled randomly. A difference from construction of Sx is that now the model is a multivariate 510 

regression with three predictors: Sx, Cx, and their interaction, SxCx. To avoid nonsensical interactions in SxCx where two negative 

predictor anomalies would have the same effect as two positive anomalies, we positive-shift all Sx and Cx values by subtracting 

each predictor variable’s minimum value before multiplying them. For the P model, we subtract the lowest SP and CP values 

to occur among all grid-months in the calibration period. For the A model, we subtract the lowest SA and CA values among 

grid-months that cooccurred with calibration-period fire. We then calculate SxCx as the standardized product of the positive-515 

shifted Sx and Cx predictors such that the values of SxCx have a mean of 0 and standard deviation of 1.  

 

Finally, the same methods are used to construct Tx to capture temporal variability not accounted for by Sx and Cx. With Tx 

included, the matrix of normalized predictors (X) includes all 6 predictor variables shown in Equations 2 and 4 (Sx, Cx, Tx, and 

3 interactions).  520 

 

Following parameterization of the initial models, we found that some potential predictor variables not selected initially could 

contribute significantly if considered in a second pass. This was unsurprising because each stepwise improvement to one 
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component of the model affects the influence of the other components through interactions. We thus perform a second pass in 

the model-building process in which S, C, and T variables that were not selected in the original construction of Sx, Cx, and Tx 525 

are given another opportunity for inclusion. In addition, we consider a small number of variables that were not considered in 

the first pass. For example, some variables such as temporally varying SWE and fractional snow coverage do not fall cleanly 

into one of the three categories. Snow may be viewed as a landcover feature that inhibits fire spread or modulates the ability 

of climate anomalies to affect fuel moisture, in which case S is appropriate, but snow presence and amount are highly variable 

in time. Breaking snow qualities into monthly climatologies and standardized anomalies about those climatologies is not ideal, 530 

however, as SWE and fractional coverage are highly non-normal and dominated by zeros. We therefore allow, in the second 

round of stepwise model fitting, for monthly SWE and fractional snow coverage to be considered as both S and T variables. 

We also consider some additional S variables representing distance from road as well as landcover characteristics that are not 

outputs from the DYNAFFOREST model. These variables are only considered in the second round because (1) we do not have 

a temporally varying dataset of road networks and (2) we prefer that the effect of landcover on modeled fire is dominated by 535 

variables that we can simulate with DYNAFFOREST as coupled interactors with fire. Tables A1–A3 specify the variables we 

only consider in the second rounds model fitting. 

4.2 The forest-fire probability model 

To model P, we use all available grid-months in the observed 1985–2024 forest-fire dataset to fit a logistic regression 

(equations 1 and 2). During this period, forest fires occurred in 7,394 unique grid-months. For more efficient model 540 

parameterization and to avoid biasing the model with conditions under which large forest fires are exceedingly improbable, 

we exclude grid-months from our logistic regression where mean daily SWE exceeds the 99th percentile (0.76 mm) of values, 

coinciding with the 7,318 forest fires. Excluding the 20% of calibration-period grid-months when mean SWE exceeds this 

value leaves a sample size of 4,286,622 grid-months with which to parameterize the P model. Among these grid-months, the 

observed frequency of ≥1 forest fire is 0.0017. 545 

 

We assess the accuracy of the logistic P model using the Matthew’s correlation coefficient (MCC) (Matthews, 1975), which 

rewards correct positive and negative classifications and penalizes against incorrect classifications. Because Pest is scalar (0–

1), we convert Pest to 500 potential predictions of binary fire occurrence by, for each grid-month, drawing 500 random, 

uniformly distributed numbers from 0–1, predicting fire occurrence (1) in all cases where the random number is less than Pest, 550 

and predicting no fire (0) when the random number is greater than Pest. This allows for calculation of 500 MCC values and we 

consider the mean value to represent the MCC of the model. 

 

To construct the Sp component we consider 54 potential predictors initially and 14 additional predictors in the second pass 

(Table A1). Variables and curve fits selected by the stepwise process to build the composite Sp predictor are shown in Fig. 5a. 555 
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Variables not included in the original round of model fitting but added in the subsequent round are indicated by “2nd round” in 

Fig. 5. The construction of Sp indicates that Pest is promoted by topographic slope, lightning frequency, high fractional forest 

coverage and forest connectivity, and high prior-year precipitation total where grass and shrub cover is abundant. Pest is reduced 

in areas of high housing density, near roads, in areas with high unburnable cover (barren land and water), and where the mean 

climatology is very wet (mean annual aridity index >2 standard deviations above the mean). 560 

 

To construct Cp, we consider 48 potential predictors initially and 16 additional predictors in the second pass (Table A2, Fig. 

5b). The annual cycle of Pest is dominated by annual cycles in fire weather (high HDWI), fuel moisture (as represented by wet-

day frequency, VPD, and solar radiation), and lightning frequency. 

 565 

To construct Tp, we consider 25 potential T predictors initially and 12 additional predictors in the second pass (Table A3, Fig. 

5c). High Pest is promoted when FM100 is low, VPD has been anomalously high over the past 8–9 months, and in months with 

high HDWI and infrequent precipitation, but Pest can be suppressed if precipitation totals were anomalously low between 1.5 

and 0.5 years ago. 

 570 
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Figure 5: Predictor variables and associated curve fits in the fire-probability (P) model. Variables are in three categories: 
spatial (Sp), mean annual climate cycle (Cp), and temporal climate anomalies (Tp). Y-axis values in each panel indicate observed 
fire probabilities (Pobs; x10-3) not already accounted for prior to inclusion of that panel’s predictor variable. Bars indicate the 
mean residual Pobs values among grid-months for which the predictor variable falls within each of 45 evenly spaced bins. Red 575 
lines/curves indicate the linear, quadratic, or cubic fit used to approximate the response of Pobs residuals to each predictor 
variable. With the exception of some Cp predictor variables, which are scaled from 0–1, predictors are expressed as z-scores 
(standard-deviations from the mean). Statistics indicate each curve fit’s low-sample-size Akaike Information Criterion (AICc) 
and the fraction of fits that produced a more negative AICc when the values being predicted are randomly scrambled prior to 
binning (p). Variable names are provided above each panel and are defined in Tables A1–A3. Panels representing variables 580 
selected in the second round of model fitting have grey text: “2nd round.” 
 

The spatiotemporal distribution of Pest generally agrees well with observations (Fig. 6). However, there is a positive bias of 

Pest among very low values. In particular, among the grid-months that we excluded from model calibration due to mean daily 

SWE exceeding the 99th percentile, Pobs was 28.20% of Pest. We therefore apply a bias adjustment to all grid-months with SWE 585 

exceeding the above threshold by multiplying Pest in these grid-months by 0.2820. Despite the bias correction for snowy grid-

months, our model still systematically overestimates Pest among grid months with low values of Pobs (Fig. 6a). Among the 50% 

of 1985–2024 grid-months where Pest is below the median (1.19x10-4), the mean Pobs is 52% of modeled. This positive bias 

among very low values of Pest is strongest in PNW (Fig. 6a). We do not apply a further correction to account for this because 

the positive bias among low Pest values is of little consequence to the accuracy of the P model. The vast majority of fires are 590 

simulated to occur under higher Pest conditions; 96% of simulated fires occur where Pest is above the median. Among these 

grid-months, Pest scales well with Pobs (Fig. 6a). This finding of consistently strong model skill where Pest is above-median 

generally holds true at the regional scale as well (colored dots in Fig. 6a represent the 4 regions mapped onto Fig. 6b). Figure 

6b further shows a realistic geographic distribution of mean Pest. Our model captures known areas of particularly high fire 

densities such as in California’s Sierra Nevada and North Coast ranges, the mountainous areas of southern Arizona and New 595 

Mexico, and a relatively remote portion of the northern Rocky Mountains in central Idaho. 

 

 
Figure 6: Fire probability estimates. (a) Mean observed  and estimated probabilities of grid-months with ≥1 fire (Pobs and 
Pest, respectively) within each of 12 bins of Pest. Y-axis values correspond to the mean Pest within each bin. Filled black dots: 600 
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mean observed versus simulated frequency of all grid-months in the full western US forested domain. Empty colored dots: 
analysis for each of the four quadrant regions mapped in panel (b). Dashed black line: 1-to-1 line. Model estimates shown on 
y-axis to aid visual interpretation of model errors. (b) Map of modeled monthly Pest averaged over May–September 1985–2024 
with boundaries of the four regions. 

4.3 Modeling number of forest fires per month 605 

Following Westerling et al. (2011), we use the modeled probability of ≥1 forest fire occurring in a grid-month (Pest) as a single 

predictor in a logistic regression to estimate the probability that the number of fires in a given grid-month equals or exceeds 

N, where N can be 1, 2, or 3. For each possible N, a logistic regression is fit using Pest from the 7,393 grid-months with ≥1 

forest fire. PN is calculated as: 

 610 

PN = 1 / (1 + exp(-bN0 - bN1Pest)),          (5) 

 

where N varies from 1–3 and the bN values are empirically fit logistic regression coefficients associated with each value of N. 

By design, PN = 1 when N = 1 and PN reduces as N increases (Fig. 7). The maximum N we consider is 3 because there are very 

few occurrences of grid-months in the observed dataset with >3 fires. To prevent unrealistically large numbers of fires in a 615 

grid-month, PN is not allowed to exceed the largest PN value that was associated with N fires during model calibration. 

 

 
Figure 7: Probability of more than one wildfire. Given that ≥1 forest fire occurs in a given grid-month, the probability that 
the number of forest fires equals or exceeds 2 or 3 as a function of the modeled probability of ≥1 forest fire (Pest). The maximum 620 
number of fires in a grid-month is 3 because there are very few (<10) cases of a given grid-month having >3 fires in the 
observed dataset. 

4.4 Area-burned modeling 

To model each fire’s forested area burned (A), we fit a multi-variate linear regression based on spatial (SA), annual cycle (CA), 

and temporal anomaly (TA) predictor variables to estimate transformed values of A for the 7,635 forest fires (eqn. 3 and 4). 625 
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Because fire sizes have a highly skewed distribution with large fires disproportionately dominating the total area burned, we 

statistically transform the observed values of A to quantiles and then convert the quantile values to standardized anomalies (s) 

with a normal distribution (Az).  

 

Because of the disproportionate influence of large fires, we weight Az values by the logarithm of forest area burned, linearly 630 

scaled from zero to one (Azw). Thus we refer to the model estimating Azw values as the Azw model. Weights of zero (100 ha 

forest area burned) were reassigned the next lowest weight. To assess accuracy of the Azw model, we use a weighted Pearson’s 

correlation (r). 

 

In fitting the Azw model, we initially consider 82 potential SA predictors, 58 potential CA predictors, and 47 potential TA 635 

predictors (Tables A1–A3). Because fires often burn over multiple months and may not reach large-fire (≥100 ha) status in the 

ignition month, the potential predictor variables for CA and TA include climate conditions in the month following the starts date 

of fires. In the second round we consider 22, 0, and 21 additional variables for SA, CA, and TA, respectively. The predictor 

variables and curve fits selected for the Azw model are shown in Figure 8. The variables selected for SA indicate that large fire 

size is promoted where forest biomass and topographic slope are high, the long-term average climate is not too wet, and roads 640 

and population centers are far away (Fig. 8a). Variables selected for CA indicate the annual cycle in fire size is driven by the 

annual cycles of fuel moisture and fire weather (Fig. 8b). Variables selected for TA indicate temporal variations in fire sizes 

are also dominated by fuel moisture, as represented by low FM1000, high VPD, and anomalously low precipitation totals over 

the prior year and a half, and high fire-weather conditions in the month of or following ignition (Fig. 8c). 

 645 
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Figure 8: Predictor variables and associated curve fits in the size-weighted area burned (Azw) model. Variables are in 
three categories: spatial (SA), mean annual climate cycle (CA), and temporal climate anomalies (TA). Y-axis values in each panel 
indicate residual Azw not already accounted for prior to inclusion of that panel’s predictor variable. Most residual values are 
negative because the weighted regression prioritizes estimation of large fire sizes, so Azw predictions are biased positive. Bars 650 
indicate the mean residual Azw among observed forest fires for which the predictor variable was split into 25 evenly spaced 
bins. Red lines/curves indicate the linear, quadratic, or cubic fit used to approximate the response of Azw to each predictor 
variable. Statistics indicate each curve fit’s low-sample-size Akaike Information Criterion (AICc) and the fraction of fits that 
produced a more negative AICc when the values being predicted are randomly scrambled prior to binning (p). With the 
exception of some C predictor variables that are scaled from 0–1, units of x-axis predictors are in standard-deviations from the 655 
mean. Variable names are provided above each panel and are defined in Tables A1–A3. 

4.4.1 Bias-correction of Az and transformation to forest area burned 

Modeled values of Azw are biased positive by an average of 0.653 s relative to observed Az (Azobs) (Fig. 9a). This is expected 

because the weighted regression preferentially represents larger fires. We find no systematic tendency for the bias to vary 

seasonally or geographically. We apply a bias correction to calculate our model estimates of Az (Azest) as Azest = Azw – 0.653 660 

s. Although our fire-size model does not account for the majority of variability among individual Azobs values, it captures the 

underlying variability in mean Azobs among larger groups of fires. For each of 10 Azest bins, each representing an equal share 



26 
 

of observed fires, the mean of the corresponding Azobs values is very near the mean of the Azest values (Fig. 9b). The alignment 

of the colored dots around the 1-to-1 line indicates that these results generally hold at the regional scale, though with tendencies 

to underestimate fire sizes in N Rockies and overestimate in CA/NV. Figure 9c maps the simulated distribution of the potential 665 

for large fires, highlighting California’s Sierra Nevada and Coast Range and the eastern Cascades as particularly conducive to 

large forest fires. 

 

 
Figure 9: Fire-size estimates. Scatter plot of modeled, area-weighted normalized fire size anomalies (Azw) versus observations 670 
(Azobs). Redder colors indicate a higher density of sample points. The rw and r values in the top-left correspond to the weighted 
and unweighted correlations between Azobs and Azw. The y-axis position of the green vertical line and the green bias value 
correspond to the mean of Azw minus Azobs. (b) Scatter plot of binned means of modeled Az values after subtraction of the bias 
in Azw (Azest) versus the means of corresponding Azobs values. Each black dot represents an Azest decile for the full western US 
domain, with the x- and y-axis locations representing the mean Azobs and Azest values, respectively. Horizontal extents of the 675 
corresponding boxes bound the interquartile values of Azobs and the vertical black line within each box is the median Azobs. 
Colored circles show binned means of Azest and Azobs when the analysis was repeated for each of the four regions (PNW: Pacific 
Northwest, N Rockies: Northern Rockies, CA/NV: California and Nevada, 4 Corners: the four-corner states). Black diagonal 
dashed line: 1-to-1 line. In (a and b), grey vertical and horizontal dashed lines cross through the zero intercepts to aid visual 
interpretation. We show model estimates on the y-axis to aid interpretation of model errors. (c) Map of each grid cell’s 95th 680 
percentile of May–Sep Azest during 1985–2024 to show geographic variability in the potential for an existing fire to grow very 
large. 

4.5 Accounting for stochastic variability 

Across the western US and within the four regional quadrants, interannual variations in modeled P and mean Az generally 

correlate well with observations, but simulated interannual variability is systematically muted relative to observations (Fig. 685 

10). This is expected, as the occurrences and sizes of individual fires are highly stochastic. For more realistic representation of 

variability in our simulations of fire occurrences and sizes, we add semi-random variability to each modeled value of Pest and 

Azest. The distributions of random variations are constrained empirically by the distributions of errors in Pest and Azest. 
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 690 
Figure 10: Interannual variability. Scatter plots of annual modeled versus observed forest-fire probability (P) and 
normalized fire-size anomalies (Az) for the western US and each of the four quadrant regions, 1985–2024. (a–e) Modeled 
annual sum of P across all grid-months (SPest) versus observed annual sum of grid-months with ≥1 forest fire (SPobs). (f–j) 
Modeled annual mean of Az (Azest) corresponding to the grid-months of the observed fires versus observed annual mean of Az 
(Azobs). Diagonal dashed lines are 1-to-1 lines. Model estimates shown on y-axes to aid interpretation of model error. 695 
Correlation (r) indicates Pearson’s correlation between observed and modeled time series. The sy/sx values express the 
standard deviation of the modeled time series as a percentage of the standard deviation of the observed time series. 

4.5.1 Stochastic variations in fire probability 

The distribution of uncertainty around any value of Pest is difficult to characterize because fire probability in a given grid-

month can only be observed as binary, and errors in Pest can only be assessed by comparing mean values of Pest to Pobs across 700 

many grid-months. However, quantification of error in Pest averaged across many grid-months does not provide direct guidance 

as to the distribution of errors surrounding any single grid-month’s Pest value. In exploratory analysis we found that the 

distribution of Pest uncertainty does not scale predictably as a function of Pest (e.g., errors are not systematically larger for larger 

Pest values) so we include stochasticity in our modeling of P by simply adjusting Pest with observed sequences of regionally 

averaged errors.  705 

 

To identify regions where temporal variability in Pest is relatively coherent, we perform a rotated principal components analysis 

(PCA) on monthly regional errors. Initially, we divide our western US forested study domain into 64 regions based on the map 

of coterminous US pyromes from Short et al. (2020). To reduce the number of regions, we merge each of the 59 pyromes that 

averaged fewer than seven fires/year during 1985–2024 with the nearest pyrome, producing 10 forested regions with adequate 710 

fire frequencies for characterization of monthly error in Pest. For each region we calculate monthly sums of Pest and Pobs, 

calculate 3-month running means centered on the middle month (Pest3 and Pobs3) to reduce the effects of extreme Pobs outliers, 
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and define the monthly error (Perror) as Pobs3/Pest3. We then perform a PCA on the 10 time series of Perror, and retain the five 

principal components (PCs) with eigenvalues ≥1 as distinct modes of variability. The loadings associated with these PCs are 

rotated using the varimax method and multiplied against Perror to reproject the original Perror variance onto the five new rotated 715 

PC time series (PCr). The 10 original pyrome groups are combined into five new groups of relatively coherent Perror variability 

based on correlation between Perror and PCr (Fig. 11). 

 

 
Figure 11: Intra-annual error in modeled fire probability by pyrome group. Time series of 3-month running means of the 720 
modeled (red; Pest3) and observed (blue; Pobs3) monthly sums of grid cells with ≥1 forest fire in each of five pyrome groups. 
Each group is composed of a group of pyromes (Short et al., 2020) with similar time series of monthly error in modeled fire 
probability (Perror = Pobs3/Pest3). In each panel, the red area in the map indicates the pyrome group represented by the time series 
and the other groups are infilled with lighter colors. 
 725 

To include stochastic variability in our model simulations, we calculate an adjusted version of Pest (Pestadj) by multiplying each 

simulated calendar year of Pest values by a randomly drawn year of Perror from the 40-year model calibration period, where 

each month’ map of Perror represents the regions shown in Fig. 11 (to avoid extreme values we bound Perror between 0.33 and 

3). This approach preserves realistic Perror autocorrelation both spatially and between months. To demonstrate the effectiveness 

of this approach at eliminating the bias toward too little temporal variability in Pest (shown previously in Fig. 10a–e), we 730 

produce a 1,000-member ensemble of Pestadj (Fig. 12). Including errors in our simulation successfully gives Pestadj (middle box 

plots in Fig. 12) a wider distribution than Pest (left box plots) that is generally better aligned with observations (right box plots). 

The percentage value above each set of box plots in Fig. 12 indicates how the median standard deviation of annual simulated 

sums of Pestadj compares to the observed standard deviation. These values are no longer systematically below 100% (compare 

to percentage values in Fig. 10a–e), indicating that our approach improves the realism of temporal variability in simulated P. 735 
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Figure 12. Distributions of modeled and observed interannual fire probability. Box plots of annual observed and modeled 
annual sums of the probability of ≥1 fire/month (P) averaged across all forested grid cells (mean(SP)) in the West US study 
region and the four quadrant regions. For each region, the light-colored boxplot on the left represents the distribution of the 740 
originally modeled time series of P (Pest): thick line is median annual SP, box bounds interquartiles, whiskers bound inner 
90% range. The boxplot in the middle represents the mean distribution across 1,000 simulated time series of Pest after 
adjustments to include random errors (Pestadj). The white box plot on the right represents the distribution of observed sums of 
mean P (Pobs). Percentage numbers indicate the magnitude of the mean standard deviation of the 1,000 simulated time series 
of annual SPestadj relative to the standard deviation of the observed time series. Differences between these values and the 745 
percentages provided in Fig. 10a–e are due to inclusion of error in the 1,000 simulations represented here. Values of annual 
SP are averaged across all grid cells for each region to reduce the influence of large regional differences in SP in the figure. 

4.5.2 Stochastic variations in fire size 

The distribution of uncertainty around estimates of Azest is easier to assess than that of Pest because error in Azest (eAzest) can be 

quantified for each fire. In addition, eAzest values are normally distributed and increase as a function of Azest (Fig. 9b). As Azest 750 

increases, the spread among corresponding eAzest values widens and remains symmetrical. When we bin Azest into deciles, the 

standard deviation among eAzest values increases linearly with Azest (Fig. 13). The relationship detected at the large scale of the 

western US also remains generally consistent at the regional scale, though the slope of the eAzest versus Azest relationship is 

higher than the west-wide mean in CA/NV and lower in N Rockies. Overall, we conclude that we can characterize the 

uncertainty Azest with reasonable accuracy by simply treating it as a linear function of Azest itself, though future work should 755 

diagnose and ideally resolve regional variations in mean eAzest. 
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Figure 13: Variability among modeled fire-size errors. Standard deviation of error in estimates of normalized fire-size 
anomalies (eAzest) as a function of Azest for (white dots, black regression line) the entire western US forested domain and the 760 
four quadrant regions within: (red) Pacific Northwest (PNW), (blue) Northern Rockies (N Rockeis), (green) California and 
Nevada (CA/NV), and (purple) Four Corners (4 Corners). eAzest is the observed normalized fires-size anomaly (Azobs) minus 
Azest. For each domain, Azest values associated with observed fires are binned into deciles and, for each decile, the standard 
deviation of eAzest is plotted against mean Azest. Regression lines show the least-squares fit for each domain and the grey area 
bounds the 95% confidence interval around the black regression line for the full West US domain, which corresponds to the 765 
equation at the bottom of plot. 
 

For each simulated value of Azest we calculate an adjusted Az estimate (Azestadj) by adding an error value drawn from a normal 

distribution with a mean of zero and a standard deviation of eAzest, where eAzest is calculated as a linear function of Azest 

following the equation in Fig. 13. Based on a 1,000-member ensemble of simulated Azestadj, this method of widening the 770 

distribution of Azest aligns the distribution of Azestadj with observations (Fig. 14). 

 

 
Figure 14: Effect of adding errors on the distribution of modeled fire sizes. Cumulative distribution functions of observed 
and modeled normalized fire-size anomalies (Az) for (a) the whole western US domain and (b–e) the quadrant regions. Thin 775 
solid lines represent observed Az (Azobs). Dashed lines represent simulated Az before including error (Azest). Grey areas 
represent 1,000 simulations of Az after adjustment to include errors (Azestadj). 
 

Adding error to Azest enhances the interannual variability of mean Azestadj (Fig. 15). However, there is still a tendency toward 

too-little variation in Azestadj. This is likely because errors in our estimates of Az (eAzest) are spatially and temporally 780 
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autocorrelated. We do not account for this because imposing realistic spatiotemporal covariance among eAzest values would 

risk overfitting the model and reducing its interpretability. 

 

 
Figure 15: Distributions of modeled and observed interannual variability in mean standardized fire size. Box plots of 785 
modeled and observed annual means of normalized fire-size anomalies (Az) in the western US (grey) and the four quadrant 
regions (colors). For each region, the light-colored boxplot on the left represents the distribution of the originally modeled time 
series of Az (Azest). The middle boxplot represents the average distribution among 1,000 simulated time series of Azest after the 
adjustments to include random errors (Azestadj). The white box plots on the right represent the annual time series of observed 
Az (Azobs). Boxes bound inter quartiles, whiskers bound 5th and 95th percentiles, and thick black bars represent medians of 790 
annual values. Percentages indicate the magnitude of the mean standard deviation among the 1,000 simulated time series of 
mean(Azestadj) relative to the standard deviation of the time series of mean (Azobs). Differences between these values and the 
percentages in Fig. 10f–j are due to inclusion of error in the 1,000 simulations represented here. 

4.6 Transformation of normalized fire-size anomalies to area burned 

Previous work has shown that fire sizes can be effectively approximated by a positively-skewed generalized pareto (GP) 795 

distribution (Buch et al., 2023; Preisler et al., 2011; Westerling et al., 2011). We transform all values of Azestadj to hectares of 

forest area burned (Agpest) by assuming that fire sizes follow a GP distribution with the shape and scale parameters estimated 

from the observed forest fire sizes. However, a comparison of the distribution of observed A (Aobs) versus the GP-transformed 

values calculated by back-transforming Azobs using the empirical GP distribution parameters (Agpobs) reveals a bias in the 

Agpobs distribution because the GP is an imperfect representation of the true distribution of Aobs (Fig. 16a). We quantify the 800 

observed bias (Agp_bias_log10) as log10(Agpobs) minus log10(Aobs), which we plot as a function of log10(Aobs) in Fig. 16b. Much 

of the bias arises because the Aobs distribution has a lower bound of 100 ha (Fig. 16a), which causes the most frequent, small 

values of Agpobs to be too small and the least frequent, largest values of Agpobs to be too large. 

 

To reduce shortcomings of the GP distribution we bias correct such that the bias-corrected observed fire sizes (Abcobs) take on 805 

the distribution more consistent with that of Aobs (Fig. 16c). This is done by estimating Agp_bias_log10 (Agp_bias_log10_est) 

as a 4th-order function of log10(Agpobs) for small fires (Agpobs < 223 ha) and as a 5th-order function of log10(Agpobs) for larger 

fires (Fig. 16b). Specifically, Abcobs is calculated by subtracting Agp_bias_log10 from log10(Agpobs) and transforming the log10 
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values back to normal, thereby restoring Abcobs to nearly the original distribution of Aobs. In simulations, bias-corrected fire 

sizes (Abcest) are calculated in the same way except Agp_bias_log10_est is calculated as a function of log10(Agpest) rather than 810 

log10(Agpobs). The grey shading behind the blue and red points in Fig. 16c represents an ensemble of 1,000 simulations of 

Abcest, where in each simulation we estimate all values of Aobs. The strong overlap between the grey, blue, and red CDFs in 

Fig. 16c indicates that our method produces realistic fire-size distributions. To prevent unrealistically large bias estimates in 

simulations, values of Agp_bias_log10_est should not be allowed to exceed the empirically calculated range of 

Agp_bias_log10 values. 815 

 

 
Figure 16. Bias correction of fire-size distributions. (a) Cumulative distribution function (CDF) of the observed fire sizes 
(red, Aobs) and the same observed fire sizes after being turned into quantiles and then back-transformed to hectares (ha) based 
on the observed generalized pareto (GP) distribution parameters (blue, Agpobs). (b) Scatter plot of the bias in Agpobs caused by 820 
the imperfect match between the actual fire-size distribution and that estimated by the GP. For small fires <223 ha, the green 
curve represents a 4th-order curve of the Agp bias as a function of Aobs. For larger fires, the orange curve represents a 5th-order 
fit. (c) Comparison of the CDFs of (red) observed fire sizes (Aobs; same as in panel (a)) and (blue) bias-corrected observed fire 
sizes (Abcobs), where, Aobs values were first converted to normalized fire size anomalies (Azobs), then back transformed to 
hectares assuming a generalized pareto distribution (Agpobs), and finally bias corrected based on the curve fits in (b). The CDFs 825 
of Aobs and Abcobs are overlaid on the range of CDFs produced from 1,000 simulations of modeled fire sizes (grey, Abcest), 
where, in each simulation, the model is used to estimate the observed fire sizes. 

4.7 Cross-validation 

To assure the skill of WULFFSS is not due to overfitting, we perform temporal and spatial cross-validations. In the temporal 

cross validation, we retrain the models 13 times, each time withholding a period of 3–4 consecutive years such that each year 830 

in the 1985–2024 calibration period is withheld once from the training period. We then use each of the 13 models to simulate 

fire for the withheld periods. For the spatial cross-validation we again produce 13 models, now withholding from each 

calibration a contiguous region approximately 500 x 500 km in area. Each model is then used to simulate 1985–2024 fire for 

its withheld region. For each cross-validation approach, a full set of out-of-sample simulation outputs are produced for the 

western US for 1985–2024 and correlated against observations for assessment of out-of-sample skill. 835 
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5 Model Performance 

The WULFFSS simulations of frequency and extent of western US forest fires are generally highly skilled. Figures 17 and 18 

show observed versus simulated time series of forest-fire frequency and forest area burned at the full scale of the western US 

as well as for each of the four regions. See Figs. S1 and S2 for plots representing each of the 11 western US states. The mean 

of a 100-member ensemble of simulations accounts for 71% (r=0.84) of the observed interannual variability in western US 840 

forest-fire frequency (Fig. 17a, left side). Model performance remains high out-of-sample. In the 13-fold temporal cross-

validation, the cross-validated correlation between observed and ensemble-mean simulated annual fire frequency remains high 

at 0.81. The model performs similarly well  in the 13-fold spatial cross-validation (r=0.83). WULFFSS also accurately 

simulates the mean annual cycle of forest-fire frequency. Correlation between the full monthly time series of observed and 

modeled fire frequency is strong (r≥0.90) (Fig. 17a, right side). 845 

 

The model generally performs well at the regional level, accounting for ≥66% of variability in annual fire frequency in PNW 

(r≥0.81; Fig. 17b), ≥71% in N Rockies (r≥0.84; Fig. 17c), and ≥50% in 4 Corners (r≥0.71; Fig. 17e). The CA/NV region is an 

exception to the strong model performance (Fig. 17d), where the ensemble-mean accounts for just 16–21% of interannual fire-

frequency variability (r=0.40–0.46), due mostly to large underestimates in 1987 and 2008 as well as recent overestimates in 850 

2021–2022 and 2024. Reasons for model underperformance in CA/NV are numerous. In California (Fig. S1c), the large 

observed fire frequencies in 1987 and 2008 were due to anomalous dry lightning events (Kalashnikov et al., 2022), which are 

not adequately represented in WULFFSS. The more recent overestimates in California fire frequency may be due to increased 

resources for fire detection and suppression in California, increased public and corporate awareness of fire hazards, and 

reductions in fuel continuity due to drought and related bark-beetle outbreaks that our modeling does not capture. Nevada also 855 

contributes to the relatively low model skill in CA/NV (Fig. S1g); WULFFSS overestimates mean fire frequency by 

approximately 70% in Nevada, a far larger mean bias than for any other state. The overestimates of fire activity in Nevada’s 

sparse and isolated Great Basin forests suggest that our approach underestimates the ability of low biomass and vegetation 

connectivity to limit fire activity and/or that our DYNAFFOREST-based estimates of biomass and connectivity are too high 

there. In addition, while our model indicates that fire frequency is positively related to remoteness from human population 860 

(Fig. 5), ignitions may be a limiting factor in forested areas of Nevada with especially light human footprints. The model also 

majorly underestimates 2024 fire frequency in PNW due to a failure to capture the large number of fires in Oregon and 

southwest Idaho that ignited from outbreaks of dry lightning in mid and late July (Fig. S1e,i). While WULFFSS does consider 

long-term mean patterns of lighting activity, it does not model fire as a function of temporal variability in lightning because 

the only long-term lighting dataset we are aware of (from the NLDN, 1987–present) has temporal instabilities due to 865 

instrumental changes and it does not cover the full model-calibration period. While CAPE is considered to be a T variable due 

to its coincidence with lightning and atmospheric instability, high CAPE is also associated with precipitation, limiting its value 

as a proxy for dry lightning. 
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The model does generally well at capturing regional differences in the mean annual cycle of fire frequency (Fig. 17, right-hand 870 

panels). For example, the model correctly simulates that peak monthly fire frequency occurs in August in PNW and N Rockies 

but in June–July in 4 Corners (Fig. 17b–e). WULFFSS accurately simulates regional differences in the timing of onset and 

termination of the mean annual fire starts. On the other hand, the spatial cross-validation reveals that when training data are 

withheld from 4 Corners, the model underestimates fire frequencies in that region (Fig. 17e). 

 875 

 
Figure 17: Modeled versus observed forest-fire frequency. Plots for (a) the western US and each of the four quadrant 
regions: (b) Pacific Northwest (PNW), (c) Northern Rockies (N Rockies), (d) California and Nevada (CA/NV), and (e) 4 
Corners. Panels on the left show annual frequency of (black) observed and (colored) modeled forest fire. Panels on left show 
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annual values and panels on right show the mean annual cycle of monthly values. The three colored lines indicate 100-member 880 
ensemble means from (dots) the fully calibrated model, (squares) the 13-fold temporally cross-validated models (CVtime), 
and (triangles) the 13-fold spatially cross-validated models (CVspace). Colored shading bounds the inner 95% of ensemble 
members of the fully-calibrated model. In each panel, the three correlation values (r) indicate Pearson’s correlation between 
(r) observations and the ensemble means from the fully calibrated model, the 13-fold temporally cross-validated models, and 
the 13-fold spatially cross-validated models, respectively. In the annual-cycle panels on the right, correlation values indicate 885 
correlation between the full observed and modeled time series of monthly fire-frequency over 1985–2024, not the mean annual 
cycle.  
 

Model performance is also strong in terms of area burned, accounting for 86% (r = 0.93) of interannual variability in the 

logarithm of area burned when fully calibrated and ≥76% (r≥0.87) in our cross-validated exercises (Fig. 18a). At the regional 890 

scale, model performance remains strong, accounting for 55–81% of cross-validated variability in the four regions. The model 

also reproduces observed regional differences in nuanced characteristics of annual area burned. For example, the model 

captures the tendency for interannual burned-area variability to be dominated by extreme years in N Rockies and 4 Corners, 

but for interannual variability to be more evenly distributed in PNW and CA/NV (Fig. 18b–e). The model also generally 

captures the mean annual cycles and sub-annual variations in area burned, though in CA/NV our model consistently over-895 

estimates burned areas throughout the fire season (Fig. 18d). In our state-specific analysis we find that overestimates of area 

burned in CA/NV are apparent in both California and Nevada, but the bias is more severe and systematic in Nevada, where 

WULFFSS models nearly four times more area burned than is observed (Fig. S2). This is the largest such bias among the 11 

states, followed by Utah where estimates of area burned exceed observations by a factor of two. Consistent overestimates of 

area burned in these states, home to the relatively dry and spatially discontinuous forests of the Great Basin, further implicates 900 

fuel limitation in sparsely forested areas as a cause of error for WULFFSS.  

 

The years with the largest errors in regional area burned are 2020 and 2024, both years when observed forest-fire extent 

exceeded simulations. In 2020, WULFFSS grossly underestimates area burned in PNW, and to a lesser extent in CA/NV (Fig. 

18b,d). Potential contributing factors include rare lightning storms from tropical storm Fausto in August 2020, two extreme 905 

heat waves in the days to weeks immediately following the lightning storms, and overstretched suppression resources due to a 

high concentration of large forest fires in California and Oregon and the COVID-19 pandemic. In 2024, the large underestimate 

of fire frequency in PNW noted above (Fig. 17b), in Oregon and Idaho specifically (Fig. S1), translated to underestimates in 

total area burned (Figs. 18b, S2). However, it is likely that our observational record of area burned is biased high in 2024, as 

MTBS maps are not yet available for most large wildfires in that year, so the currently available maps of many of that year’s 910 

largest fires do not represent within-fire spatial heterogeneity in area burned. On average, MTBS maps indicate that 

approximately 20% of area within forest-fire perimeters is unburned, consistent with Meddens et al. (2016), so it is likely that 

our underestimate of area burned in 2024 will be lessened somewhat once MTBS data become available. 
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 915 
Figure 18: Modeled versus observed forest-fire area. Plots for (a) the western US and each of the four quadrant regions: (b) 
Pacific Northwest (PNW), (c) Northern Rockies (N Rockies), (d) California and Nevada (CA/NV), and (e) 4 Corners. Panels 
on the left show annual (black) observed and (colored) modeled forest area burned. Panels on left show annual values and 
panels on right show the mean annual cycle of monthly values. The three colored lines indicate 100-member ensemble means 
from (dots) the fully calibrated model, (squares) the 13-fold temporally cross-validated models (CVtime), and (triangles) the 920 
13-fold spatially cross-validated models (CVspace). Colored shading bounds the inner 95% of ensemble members of the fully-
calibrated model. In each panel, the three correlation values (r) indicate Pearson’s correlation between (r) observations and the 
ensemble means from the fully calibrated model, the 13-fold temporally cross-validated models, and the 13-fold spatially 
cross-validated models, respectively. In the annual-cycle panels on the right, correlation values are for the full observed versus 
modeled time series of monthly forest area burned over 1985–2024, not the mean annual cycle.  925 

6 Discussion, strengths, and limitations 
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The WULFFSS simulates the monthly gridded probabilities and sizes of forest fires in the western US as a function of land 

cover, topography, human population, and climate. The model uses standard regression-based statistical methods, which 

constrains flexibility but enhances interpretability and reproducibility. The skill of our model should serve as a benchmark for 

more complex but methodologically opaque modeling efforts. 930 

 

Our model has high skill. It simulates realistic characteristics of fire such as annual cycles, ranges of interannual variability, 

and fire-size distributions, as well as inter-regional differences in these characteristics. The model also has strong out-of-

sample skill when reconstructing observed variations in forest-fire activity for time periods or regions withheld from the 

training data. This suggests that the model can reliably simulate western US forest-fire activity under idealized historical or 935 

projected conditions as long as those conditions are not far beyond those that occurred during the model training period. 

 

The model can be easily updated as additional or improved records of observed wildfires become available. Updates and 

improvements of the observed fire record are enabled by our streamlined method to easily update our WUMI2024a database 

with newly available wildfire data (Williams et al., 2025). Our model’s ability to produce trustworthy simulations under future, 940 

warmer climate scenarios will likely improve over time as more climate extremes and their effects on forest fires are observed. 

 

A unique feature of WULFFSS is that it was developed in parallel with the forest-ecosystem model, DYNAFFOREST (Hansen 

et al., 2022), specifically to enable coupled simulations in which fire and forest ecosystems interact. This is important for 

several reasons. First, we are motivated to simulate and understand more features of fire beyond event frequency and area 945 

burned. By coupling with an ecosystem model, we can also simulate fire severity, biomass consumed, and ecosystem 

transitions, all crucial for anticipating changes to ecosystem health, pollution, hydrology, or terrestrial carbon storage. Further, 

as vegetation responds to changes in climate and fire behavior, these responses will feed back to modulate fire-climate 

relations. Coupling between fire and forest-ecosystem models is therefore essential for plausible projections of western US 

forest fire activity beyond the next couple decades.  950 

 

Another feature of WULFFSS is its computational efficiency, which allows for large ensembles of simulations. A standard 

laptop can simulate several decades of forest fire across the western US in seconds, enabling easy generation of hundreds or 

thousands of simulations. This is important under climate warming because forest-fire sizes appear to respond exponentially 

to positive forcings such as warming and drying, which should cause the range of internal variability of area burned to grow 955 

under continued warming in many forested regions of the western US. Indeed, the range of modeled uncertainty in total forest-

fire area is much wider in high-VPD years (Fig. 19). Although running WULFFSS while coupled within the DYNAFFOREST 

model is considerably more computationally expensive, DYNAFFOREST was also designed to facilitate large simulation 

ensembles and it is feasible to run tens of century-scale coupled simulations in the matter of days on a high-performance 

computer cluster. With a large ensemble of tens of historical or future coupled forest and fire simulations, one can explore the 960 
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mean response (e.g., aboveground biomass consumed) to a given forcing as well as the uncertainty around the mean. Further, 

in an ensemble of coupled simulations where each represents a plausible realization of fire effects on forest biomass, 

connectivity, etc., then these forest outputs can be used to force uncoupled WULFFSS simulations to greatly enhance the 

ensemble size in terms of simulated fire frequencies and burned areas. 

 965 

 
Figure 19: Western US annual forest-fire area versus March–October vapor-pressure deficit (VPD). Large dots with 
black outlines are observations and the black curve is the least-squares regression line relating the logarithm of observed area 
burned to observed VPD. Small dots with grey outlines are outputs from an ensemble of 100 simulations under identical 
forcings, including observed climate (ensemble spread due to stochastic errors added to modeled estimates of fire probabilities 970 
and sizes). Colors correspond to years from 1985–2024. 
 

There are a number of caveats, some of which represent opportunities for improvement while others are structural features of 

our approach. Opportunities include consideration of changing road networks in the past, use of road networks to more 

intelligently map the distance of forested areas to human population, and addition of aboveground utility lines and their ages. 975 

In addition, the model’s ability to capture the effects of spatiotemporal changes in fuel characteristics is limited by a lack of 

spatially continuous observational data covering the four-decade model-calibration period. For example, while the model does 

account for the majority of the observed increase in western US annual forest-fire area since 1985, it systematically 

overestimates burned area in the first half of the record. One likely explanation is that the DYNAFFOREST datasets we use 

to parameterize WULFFSS do not fully represent fire-promoting trends in fuel amount, connectivity, and structure in recent 980 

decades. Because DYNAFFOREST is a single-cohort model, it does not explicitly simulate understory fuels, so variables 

related to vertical forest structure and ladder fuels are not currently considered by WULFFSS. As spatially continuous remotely 

sensed fuels datasets, which are so far only available for smaller regions (Hudak et al., 2020), become available across the 

western US, this will almost certainly improve our ability to simulate historical probability and size. 
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 985 

Another limitation is that WULFFSS and DYNAFFOREST do not explicitly represent non-forest vegetation. 

DYNAFFOREST assumes non-forest is grass, but does not explicitly simulate grass and shrub growth and decomposition. 

Representation of non-forest fuel dynamics would likely improve our ability to simulate fire events, particularly near the dry 

edges of forests and when and where simulated forest biomass is relatively sparse. This limitation appears most clearly in our 

simulation of fire in the isolated forests atop the narrow and arid mountain ranges of the Great Basin. In Nevada, for example, 990 

WULFFSS overestimates fire frequency by 70% and area burned by a factor of four. In addition to limitations caused by our 

current lack of representation of non-forest fuel dynamics, overestimates of Great Basin fire activity are also probably 

promoted by positive biases in our DYNAFFOREST-simulated maps of forest biomass and connectivity in the Great Basin 

region. This further motivates the need for spatially continuous maps of observed (or inferred from remotely sensed imagery) 

vegetation biomass across the western US that cover the time period of 1980s to near present at timesteps of annual or finer, 995 

which could be used as forcings in WULFFSS simulations of the observational period and to improve vegetation ecosystem 

models such as DYNAFFOREST. 

 

Likewise, more mechanistic consideration of fuel-moisture dynamics would improve the realism of WULFFSS. In the current 

parameterization we mechanistically model snowpack and allow this to affect our calculation of dead fuel moisture, but the 1000 

NFDRS formulations we use to estimate dead fuel moisture are relatively simple and non-mechanistic. Live fuel moisture 

would likely improve model skill beyond the skill yielded from our estimates of dead moisture (Rao et al., 2023), but our 

current approach instead relies on climate predictors to implicitly represent live fuel moisture. More thoroughly representing 

the complexity of moisture dynamics in an internally consistent framework that can be coupled with our ecosystem simulations 

would likely enhance the skill of WULFFSS. That said, fuel-moisture simulations are challenging due to the limited availability 1005 

of ground-truth measurements across the complexity of fuel moisture dynamics related to species, fuel sizes, types, ages, soil 

type and geology, rooting depth, position within the vertical profile of the forest, stand density, and live versus dead status. 

 

Another opportunity for improvement is to explicitly simulate fire spread. Currently, WULFFSS only estimates the final forest 

area burned by each simulated fire. When coupled within DYNAFFOREST, the ignition of a given simulated fire is assigned 1010 

to a random 1-km forested-grid cell within the 12-km grid cell of WULFFSS and the fire spirals through adjoining or nearby 

forested areas until the pre-determined fire size is achieved or no nearby forested grid cells remain. Future improvements to 

WULFFSS should include estimating ignition location at sub-12-km resolution and modelling fire spread while maintaining 

computational efficiency. For example, WULFFSS could make probabilistic determinations of sub-grid ignition location, sub-

month ignition date, fire-spread duration, and daily spread rate and direction. Related to processes affecting fire spread, with 1015 

the exception of our consideration of CAPE to represent likelihood for lightning or plume development, we currently only rely 

on surface climate to represent potential for rapid fire spread. Future work should consider how fire spread is linked to three-

dimensional atmospheric dynamics. 



40 
 

 

A limitation to essentially all fire models that operate across large areas, especially statistical models like WULFFSS, is that 1020 

the observations used for model parameterization inherently reflect the impacts of modern society. These impacts include non-

lightning ignitions and restricted fire sizes due to suppression, as well as the indirect effects of humans on fuels (e.g., fuel 

accumulation due to fire suppression) and climate. Future improvements should include distinguishing human- versus 

lightning-caused ignitions. More challenging is to estimate fire sizes in the absence of suppression or under changes to 

suppression practices. The North American Fire-Scar Network, a database of historical fire scars in trees (Margolis et al., 1025 

2022), could provide guidance as to how simulated fire sizes could be adjusted to represent a fire regime with little or no 

suppression.  

 

However, spatiotemporal differences in human behavior cause uncertainty in WULFFSS, even in the observed period. In 2020, 

for example, the observed area burned in the western US was on the upper fringe of values simulated by WULFFSS (Fig. 18). 1030 

Interestingly, WULFFSS accurately simulates fire frequency in 2020, but systematically underestimates 2020 fire sizes in 

CA/NV and PNW. A likely explanation is that, when a rare summertime lightning event coincided with hot and dry conditions 

to produce widespread wildfire activity, coupled with the COVID-19 pandemic, suppression efforts had difficulty keeping up. 

If human activities related to ignitions or suppression change in the future (e.g., California’s new ALERTCalifornia camera 

network instantaneously identifies fires across the vast majority of the state; https://alertcalifornia.org), then the WULFFSS 1035 

model in its current formulation will lose accuracy. Variables more directly related to suppression capacity than population 

and road density may be helpful in future modelling efforts. Notably, our use of annual maps of gross domestic product, a 

variable used in some earth-system modeling schemes to serve as a proxy for suppression capacity (Li et al., 2024a), did not 

contribute to model skill. Federal suppression resources may make up for much of the regional variability in wealth. Finer-

scale features such as distance to the nearest fire station or aircraft availability for aerial firefighting may prove valuable in 1040 

future efforts.  

 

WULFFSS does not capture the important contributions of dry-lightning events, particularly near the west coast where 

lightning is relatively rare and thus a single anomalous event can cause a large increase in annual fire frequency and area 

burned. For example, the very high fire counts in CA/NV in 1987 and 2008 and in PNW in 2024 were due in part to anomalous 1045 

outbreaks of dry lighting. Temporal variations in lightning frequency are not currently used as predictors in WULFFSS because 

we are not aware of an observational lightning dataset that spans our full model-calibration period and is not free of temporal 

inconsistencies due to changes in observational methods. Ideally, lightning would be a variable that can be modelled based on 

meteorological data, allowing lightning to force model simulations representing time periods or idealized scenarios beyond 

the 1985–2024 period of focus here. While lightning frequency has been shown previously to be well correlated to CAPE 1050 

multiplied by precipitation total (Romps et al., 2018), the likelihood of ignition from lightning is substantially reduced if it 

coincides with precipitation. We thus consider CAPE on its own as a potential proxy for dry lightning potential, but ultimately 
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CAPE was not selected by our fire-probability model. Future efforts to identify meteorological proxies for dry-lightning 

potential would likely enhance our model’s simulations of fire-frequency extremes.  

 1055 

Finally, in developing WULFFSS we made the unconventional choice to bin separately the effects of predictors whose variance 

lies primarily in one of three domains: spatial, mean annual climate cycle, and lower-frequency temporal variability of climate. 

Our reasoning was that spatial variations in the potential for fires to ignite and spread modulate the fire-promoting potency of 

temporal variations in weather and climate. For example, climate conditions that dry out fuels are more likely to translate to 

heighted potential for wildfire in areas where fuels and potential ignition sources are abundant. However, the logic behind 1060 

separating out the effects of climate into those driven by the mean annual cycle versus lower-frequency anomalies is debatable. 

On one hand, there is probably not a major difference between the mechanisms that cause wildfire activity to exhibit an annual 

cycle versus those that cause interannual variability, so allowing the model to represent these sources of variability as separate 

mechanisms is not ideal. On the other hand, many climate variables share a similar annual cycle and climatological differences 

between opposing ends of the annual cycle are often much larger than the range of climatic variability that distinguishes years 1065 

of high versus low fire potential. Thus, a statistical fire model trained on both intra- and inter-annual climate variability 

simultaneously risks over-representing variables that best correlate with the mean annual cycle in fire occurrences or sizes 

(e.g., solar intensity) but are not dominant drivers of interannual variability. That bias would dampen lower-frequency 

variability in simulated fire activity and inhibit the diagnosis of past and future changes in western US forest-fire activity. 

High-quality data on live and dead fuel moistures could ameliorate the need to simulate the drivers of intra- and inter-annual 1070 

variability separately by reducing our reliance on the multiple and covarying climate predictors that we currently use to 

represent the water balance (e.g., precipitation total, wet-day frequency, FM1000, and VPD over multiple time scales). 

7 Conclusions 

We developed a monthly stochastic forest-fire model, WULFFSS, for the western US that operates on a 12-km resolution grid 

and simulates the probabilities and sizes of large fires (≥1 km2 forest area burned). Predictor variables include vegetation 1075 

characteristics, topography, human population, and climate. When trained with observed data WULFFSS reliably reproduces 

observed spatiotemporal variations in fire occurrence and area burned. Model performance remains high when tested in cross-

validations against out-of-sample observations. The complex nature of wildfire and its nonlinear responses to many interacting 

variables has motivated efforts to model wildfire with machine-learning techniques (Wang et al., 2021; Brown et al., 2023; 

Buch et al., 2023; Li et al., 2024b). These efforts are valuable, but should not wholly replace models that use conventional 1080 

statistical methods that are generally more straight-forward to interpret and understandable by more people. Models developed 

using relatively simple methods provide value by establishing baselines against which machine-learning efforts can be 

compared. Further, it is increasingly evident that fire needs to be simulated within ecosystem and hydrological models in order 

for plausible simulations of future changes to ecosystem composition, terrestrial carbon storage, snowpack, and streamflow 
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(Bowman et al., 2009; Anderegg et al., 2022; Koshkin et al., 2022; Williams et al., 2022). Statistical modeling approaches 1085 

therefore remain valuable in wildfire science, as ecosystem and land-surface modeling groups may be hesitant to adopt a 

machine-learning based fire model that is difficult to implement or explain. In the case of WULFFSS, we developed it to be 

coupled with our western US dynamical forest-ecosystem model, DYNAFFOREST (Hansen et al., 2022). With WULFFSS 

and DYNAFFOREST, we can efficiently perform large ensembles of tens or hundreds of century-scale simulations of the 

coupled forest and wildfire processes across the western US. With this coupled approach we can quantitatively address 1090 

questions about the relative contributions of human-caused climate change and fire-management practices to recent increases 

in forest-fire activity, how these contributions have varied geographically, and how forest ecosystems and western US fire 

regimes may evolve under future climate change. Further, fire research is often heavily focused on fire frequency and size 

because these metrics are easiest to observe. Coupling WULFFSS with a forest-ecosystem model will allow for simulation of 

other important fire metrics such as severity and biomass loss. Finally, WULFFSS is a long-term, evolving project. 1095 

Improvements will include simulation of fire spread, simulation of multiple tree cohorts to simulate ladder-fuel effects, 

simulation of grass and shrub communities to better represent fuel continuity, distinguishing between human versus natural 

fire ignitions, and explicit simulation of human effects on ignitions and fire sizes via suppression. 

Appendices 

Table A1. Potential predictor variables dominated by spatial variability. “P model use” indicates whether the sign of the effect 1100 
of a given variable on fire probability had to be positive (+) or negative (-), or if a given variable was not considered as a 
potential predictor of fire probability (X). “Size model use” is same as “P model use” but for the fire-size model. “Round 2 
only” indicates variables (X) only considered in the second round of model fitting. Variables with “in50kha” represent average 
conditions within a surrounding area of approximately 50,000 ha (a 23 km x 23 km box). Variables with “log10” are log-
transformed. See Supplementary Table S1 for variable descriptions. 1105 

Number Name P model use Size model use Round 2 only 

V1_space connectivity + +  

V2_space connectivity_log10 + +  

V3_space connectivity_in50kha X +  

V4_space connectivity_in50kha_log10 X +  

V5_space forestfrac + +  

V6_space forestfrac_log10 + +  

V7_space forestfrac_in50kha X +  

V8_space forestfrac_in50kha_log10 X +  

V9_space livebiomass_total + +  

V10_space livebiomass_total_log10 + +  
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V11_space livebiomass_total_in50kha X +  

V12_space livebiomass_total_in50kha_log10 X +  

V13_space deadbiomass_total + +  

V14_space deadbiomass_total_log10 + +  

V15_space deadbiomass_total_in50kha X +  

V16_space deadbiomass_total_in50kha_log10 X +  

V17_space biomass_total + +  

V18_space biomass_total_log10 + +  

V19_space biomass_total_in50kha X +  

V20_space biomass_total_in50kha_log10 X +  

V21_space livebiomass_coarse + +  

V22_space livebiomass_coarse_log10 + +  

V23_space livebiomass_coarse_in50kha X +  

V24_space livebiomass_coarse_in50kha_log10 X +  

V25_space livebiomass_fine + +  

V26_space livebiomass_fine_log10 + +  

V27_space livebiomass_fine_in50kha X +  

V28_space livebiomass_fine_in50kha_log10 X +  

V29_space deadbiomass_coarse + +  

V30_space deadbiomass_coarse_log10 + +  

V31_space deadbiomass_coarse_in50kha X +  

V32_space deadbiomass_coarse_in50kha_log10 X +  

V33_space deadbiomass_fine + +  

V34_space deadbiomass_fine_log10 + +  

V35_space deadbiomass_fine_in50kha X +  

V36_space deadbiomass_fine_in50kha_log10 X +  

V37_space cohort_dbh + +  

V38_space cohort_dbh_log10 + +  

V39_space cohort_dbh_in50kha X +  

V40_space cohort_dbh_in50kha_log10 X +  

V41_space cohort_height + +  
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V42_space cohort_height_log10 + +  

V43_space cohort_height_in50kha X +  

V44_space cohort_height_in50kha_log10 X +  

V45_space spi_17to6monthsbefore_grass_shrub    

V46_space spi_23to12monthsbefore_grass_shrub    

V47_space spi_29to18monthsbefore_grass_shrub    

V48_space spi_35to24monthsbefore_grass_shrub    

V49_space unburnable - - X 

V50_space unburnable_log10 - - X 

V51_space unburnable_in50kha X - X 

V52_space unburnable_in50kha_log10 X - X 

V53_space agriculture  - X 

V54_space agriculture_log10  - X 

V55_space agriculture_in50kha X - X 

V56_space agriculture_in50kha_log10 X - X 

V57_space developed    

V58_space developed_log10    

V59_space developed_in50kha X   

V60_space developed_in50kha_log10 X   

V61_space slope  +  

V62_space slope_log10  +  

V63_space elevstd    

V64_space elevstd_log10    

V65_space aridityindex - -  

V66_space aridityindex_log10 - -  

V67_space hdwimaxann + +  

V68_space hdwimaxann_log10 + +  

V69_space fm1000 - -  

V70_space fm1000_log10 - -  

V71_space fm100 - -  

V72_space fm100_log10 - -  
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V73_space seasindex + +  

V74_space seasindex_log10 + +  

V75_space lightning + X  

V76_space lightning_log10 + X  

V77_space housedensity    

V78_space housedensity_log10    

V79_space housedensity_in50kha X   

V80_space housedensity_in50kha_log10 X   

V81_space dist5hpkm    

V82_space dist5hpkm_log10    

V83_space dist50hpkm    

V84_space dist50hpkm_log10    

V85_space gdp - -  

V86_space gdp_log10 - -  

V87_space gdp_pcap - -  

V88_space gdp_pcap_log10 - -  

V89_space fracsnow_1month - - X 

V90_space fracsnow_log10_1month - - X 

V91_space fracsnow_1monthafter - - X 

V92_space fracsnow_log10_1monthafter - - X 

V93_space swemean_1month - - X 

V94_space swemean_log10_1month - - X 

V95_space swemean_1monthafter - - X 

V96_space swemean_log10_1monthafter - - X 

V97_space roaddist_major   X 

V98_space roaddist_major_log10   X 

V99_space roaddist_minor   X 

V100_space roaddist_minor_log10   X 

V101_space roaddist_all   X 

V102_space roaddist_all_log10   X 
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Table A2. As in Table A1 but potential predictor variables representing the mean annual cycle. Climate predictors with “mean” 
indicate the mean annual cycle of monthly values during the model calibration period (1985–2024). Variables with 
“mean_scaled” are mean annual cycles linearly scaled between zero for the annual minimum and 1 for the annual maximum. 
Durations at the end of variable names (e.g., “3 month”) indicate that monthly values were averaged with a moving window 1110 
of the indicated duration prior to calculation of the annual cycle, with the moving window ending in the month for which the 
average was assigned (e.g., the 3-month average assigned to March is calculated across January–March). Variables with 
“1monthafter” represent mean climate of the next month (e.g., the mean annual cycle value assigned to January represents that 
of February). See Supplementary Table S2 for variable descriptions. 

Number Name P model use Size model use Round 2 only 

V1_seas aridityindex_mean_scaled_1month - - 
 

V2_seas aridityindex_mean_scaled_2month - - 
 

V3_seas aridityindex_mean_scaled_3month - - 
 

V4_seas aridityindex_mean_scaled_1monthafter X - 
 

V5_seas prec_mean_scaled_1month - - 
 

V6_seas prec_mean_scaled_2month - - 
 

V7_seas prec_mean_scaled_3month - - 
 

V8_seas prec_mean_scaled_1monthafter X - 
 

V9_seas wetdays_mean_scaled_1month - - 
 

V10_seas wetdays_mean_scaled_2month - - 
 

V11_seas wetdays_mean_scaled_3month - - 
 

V12_seas wetdays_mean_scaled_1monthafter X - 
 

V13_seas vpd_mean_scaled_1month + + 
 

V14_seas vpd_mean_scaled_2month + + 
 

V15_seas vpd_mean_scaled_3month + + 
 

V16_seas vpd_mean_scaled_1monthafter X + 
 

V17_seas solar_mean_scaled_1month + + 
 

V18_seas solar_mean_scaled_2month + + 
 

V19_seas solar_mean_scaled_3month + + 
 

V20_seas solar_mean_scaled_1monthafter X + 
 

V21_seas cape_mean_scaled_1month + + 
 

V22_seas lightning_mean_scaled_1month + X 
 

V23_seas hdwi_mean_scaled_1month + + 
 

V24_seas hdwi_mean_scaled_1monthafter X + 
 

V25_seas hdwi_max1day_scaled_1month + + 
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V26_seas hdwi_max1day_scaled_1monthafter X + 
 

V27_seas hdwi_max3day_scaled_1month + + 
 

V28_seas hdwi_max3day_scaled_1monthafter X + 
 

V29_seas aridityindex_log10_mean_1month - - 
 

V30_seas aridityindex_log10_mean_2month - - 
 

V31_seas aridityindex_log10_mean_3month - - 
 

V32_seas aridityindex_log10_mean_1monthafter X - 
 

V33_seas fm1000_mean_scaled_1month - - 
 

V34_seas fm1000_mean_scaled_1monthafter X - 
 

V35_seas fm100_mean_scaled_1month - - 
 

V36_seas fm100_mean_scaled_1monthafter X - 
 

V37_seas prec_log10_mean_1month - - 
 

V38_seas prec_log10_mean_2month - - 
 

V39_seas prec_log10_mean_3month - - 
 

V40_seas prec_log10_mean_1monthafter X - 
 

V41_seas wetdays_mean_1month - - 
 

V42_seas wetdays_mean_2month - - 
 

V43_seas wetdays_mean_3month - - 
 

V44_seas wetdays_mean_1monthafter X - 
 

V45_seas vpd_mean_1month + + 
 

V46_seas vpd_mean_2month + + 
 

V47_seas vpd_mean_3month + + 
 

V48_seas vpd_mean_1monthafter X + 
 

V49_seas solar_mean_1month + + 
 

V50_seas solar_mean_2month + + 
 

V51_seas solar_mean_3month + + 
 

V52_seas solar_mean_1monthafter X + 
 

V53_seas cape_mean_1month + + 
 

V54_seas lightning_mean_1month + X 
 

V55_seas hdwi_mean_1month + + 
 

V56_seas hdwi_mean_1monthafter X + 
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V57_seas hdwi_max1day_1month + + 
 

V58_seas hdwi_max1day_1monthafter X + 
 

V59_seas hdwi_max3day_1month + + 
 

V60_seas hdwi_max3day_1monthafter X + 
 

V61_seas fm1000_mean_1month - - 
 

V62_seas fm1000_mean_1monthafter X - 
 

V63_seas fm100_mean_1month - - 
 

V64_seas fm100_mean_1monthafter X - 
 

V65_seas vpdmax_mean_scaled_1month + + X 

V66_seas vpdmax_mean_scaled_2month + + X 

V67_seas vpdmax_mean_scaled_3month + + X 

V68_seas vpdmax_mean_scaled_1monthafter X + X 

V69_seas vpdmin_mean_scaled_1month + + X 

V70_seas vpdmin_mean_scaled_2month + + X 

V71_seas vpdmin_mean_scaled_3month + + X 

V72_seas vpdmin_mean_scaled_1monthafter X + X 

V73_seas vpdmax_mean_1month + + X 

V74_seas vpdmax_mean_2month + + X 

V75_seas vpdmax_mean_3month + + X 

V76_seas vpdmax_mean_1monthafter X + X 

V77_seas vpdmin_mean_1month + + X 

V78_seas vpdmin_mean_2month + + X 

V79_seas vpdmin_mean_3month + + X 

V80_seas vpdmin_mean_1monthafter X + X 

 1115 

Table A3. As in Table A1 but potential predictor variables representing temporal variability at timescales beyond the mean 
annual cycle. Durations at the end of variable names (e.g., “3 month”) indicate that monthly values were averaged with a 
moving window of the indicated duration prior to calculation of anomalies, with the moving window ending in the month for 
which the average was assigned (e.g., the 3-month average assigned to March is calculated across January–March). Variables 
with “1monthafter” represent mean climate of the next month (e.g., the mean annual cycle value assigned to January represents 1120 
that of February). Variables with “anom” are standardized such that, for each of the 12 months, the mean is zero and standard 
deviation is 1 during the model calibration period of 1985–2024. See Supplementary Table S3 for variable descriptions. 

Number Name P model use Size model use Round 2 only 
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V1_temporal spi_1month - - 
 

V2_temporal spi_2month - - 
 

V3_temporal spi_3month - - 
 

V4_temporal spi_4month 
   

V5_temporal spi_5month 
   

V6_temporal spi_6month 
   

V7_temporal spi_9month 
   

V8_temporal spi_12month 
   

V9_temporal spi_1monthafter X - 
 

V10_temporal spi_17to6monthsbefore 
   

V11_temporal spi_23to12monthsbefore 
   

V12_temporal spi_29to18monthsbefore 
   

V13_temporal spi_35to24monthsbefore 
   

V14_temporal wetdays_anom_1month 
 

- 
 

V15_temporal wetdays_anom_2month 
 

- 
 

V16_temporal wetdays_anom_1monthafter X - 
 

V17_temporal vpd_anom_1month + + 
 

V18_temporal vpd_anom_2month + + 
 

V19_temporal vpd_anom_3month + + 
 

V20_temporal vpd_anom_4month + + 
 

V21_temporal vpd_anom_5month + + 
 

V22_temporal vpd_anom_6month + + 
 

V23_temporal vpd_anom_9month + + 
 

V24_temporal vpd_anom_12month + + 
 

V25_temporal vpd_anom_1monthafter X + 
 

V26_temporal cape_anom_1month + + 
 

V27_temporal cape_anom_max1day_1month + + 
 

V28_temporal cape_anom_max3day_1month + + 
 

V29_temporal hdwi_anom_1month + + 
 

V30_temporal hdwi_anom_1monthafter X + 
 

V31_temporal hdwi_anom_max1day_1month + + 
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V32_temporal hdwi_anom_max1day_1monthafter X + 
 

V33_temporal hdwi_anom_max3day_1month + + 
 

V34_temporal hdwi_anom_max3day_1monthafter X + 
 

V35_temporal fm1000_anom_1month - - 
 

V36_temporal fm1000_anom_1monthafter X - 
 

V37_temporal fm1000_anom_min3day_1month - - 
 

V38_temporal fm1000_anom_min3day_1monthafter X - 
 

V39_temporal fm100_anom_1month - - 
 

V40_temporal fm100_anom_1monthafter X - 
 

V41_temporal fm100_anom_min3day_1month - - 
 

V42_temporal fm100_anom_min3day_1monthafter X - 
 

V43_temporal vpd_anom_max3day_1month + + 
 

V44_temporal vpd_anom_max3day_1monthafter X + 
 

V45_temporal fracsnow_anom_1month - - 
 

V46_temporal fracsnow_anom_1monthafter X - 
 

V47_temporal swemax_last12months_anom - - 
 

V48_temporal swemax_last12months - - X 

V49_temporal fracsnow_1month - - X 

V50_temporal fracsnow_log10_1month - - X 

V51_temporal fracsnow_1monthafter X - X 

V52_temporal fracsnow_log10_1monthafter X - X 

V53_temporal swemean_1month - - X 

V54_temporal swemean_log10_1month - - X 

V55_temporal swemean_1monthafter X - X 

V56_temporal swemean_log10_1monthafter X - X 

V57_temporal vpdmax_anom_1month + + X 

V58_temporal vpdmax_anom_1monthafter X + X 

V59_temporal vpdmin_anom_1month + + X 

V60_temporal vpdmin_anom_1monthafter X + X 

V61_temporal vpdmax_anom_max1day_1month + + X 

V62_temporal vpdmax_anom_max1day_1monthafter X + X 
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V63_temporal vpdmax_anom_max3day_1month + + X 

V64_temporal vpdmax_anom_max3day_1monthafter X + X 

V65_temporal vpdmin_anom_max1day_1month + + X 

V66_temporal vpdmin_anom_max1day_1monthafter X + X 

V67_temporal vpdmin_anom_max3day_1month + + X 

V68_temporal vpdmin_anom_max3day_1monthafter X + X 

Code and data availability 

The datasets and the code used to produce the WULFFSS are available at https://doi.org/10.5061/dryad.63xsj3vdb (Williams, 

2025). The datasets and model code were developed using Matlab version 2024a. 1125 
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