
To the editor and reviewers: In addition to the revisions we made in light of reviewer comments, 
we have updated the fire model using an updated version of the WUMI2024a database of 
observed wildfires as well as updated climate data. The paper describing the WUMI2024a 
database has now been accepted at Earth System Science Data and the revisions to the database 
were made in response to reviewer comments on that paper. The revisions to the climate datasets 
were made because the version of the dynamically downscaled ERA5 climate dataset that we 
used previously ended in August 2023 but that dataset has since been updated through April 
2025. So, in all cases where we previously extended the dynamically-downscaled ERA5 data 
with bias-corrected values from other datasets, we now use the dynamically-downscaled ERA5 
for the full study period for consistency. These improvements to the observed fire and climate 
datasets did not cause major changes to the model but nonetheless represent an improvement in 
the approach. 
 
Reviewer #1 
Summary: 
 
This paper introduces WULFFSS, a newly developed statistical model designed to simulate the 
monthly probability and size of large forest fires (size ≥100 ha) across the western US, on a 12-
km spatial resolution. The modeling framework consists of 3 statistical models that are called 
stepwise, forced by climate, vegetation, topographic, and anthropogenic variables. Two of the 
three models each consist of three components representing different groups of predictor 
variables, as well as interactions in between them. The modeling framework features its 
stochastic nature and interpretability, and computational efficiency. The framework is designed 
to be couple with forest ecosystem model (such as DYNAFFOREST) to allow bidirectional 
feedbacks between the vegetation and fire events. The application of the framework for 1985-
2024 is able to capture the majority interannual variability of forest fires in the studied western 
US with some limitation.  
 
Comments: 
 
The authors did a good job in building the statistical modeling framework to estimate fire 
probability and sizes in western US from multiple influencing groups of variables. Allowing the 
model to couple with an forest ecosystem model for feedbacks indeed promotes its future 
potential. However, there are questions about methodological choices and performance analysis 
that further explanation needs to be made to clarify the robustness of this paper. 
We thank the reviewer for their thorough and constructive review. We are grateful in particular 
for the motivation to include GDP as a predictor variable and to dig further into the model’s 
underperformance in the CA/NV region. We have revised the paper in light of the reviewer’s 
comments/suggestions and we provide point-by-point responses in blue font below.  
 
1. The modeling framework consists of three stepwisely connected statistical models, how 
sensitive is the final simulation to the prior step variables? 
The model’s behavior would definitely be sensitive to changes in the order in which the spatial, 
seasonal, and temporal components are constructed. This is by design. We describe the logic 
behind our approach in response to the reviewer’s next comment, as well as a revision we made 
to the text. 



 
2. For model P and A, each consists of the three component groups of predictor variables. The 
variables are categorized into spatial, annual cycle and temporal domains to be examined. This is 
quite different from the more conventional method. Why took this approach, instead of treating 
all predictors in the same single pool? Is there quantitative consideration that the three-domain 
method better than the standard multi-variable regression? 
The order in which each model is developed, first spatial, then seasonal, then temporal is 
motivated by our understanding that factors related to fuel availability and ignitions, which are 
highly variable spatially, strongly modulate the influence of climate. In particular, if fuel 
variables are not accounted for first, then a regression of fire activity against variables related to 
moisture/aridity would likely indicate a hump-shaped response, where fire appears to be 
promoted by additional moisture among places where moisture average balance is relatively dry 
or moderate (e.g., Bradstock 2010; Krawchuk and Moritz, 2011). However, this positive 
response of fire to moisture is due to the positive effect of moisture on fuel abundance, so 
accounting for the positive effect of fuels at the outset allows for more accurate subsequent 
detection of the negative effect of moisture on fire via reductions in flammability. 
 
Further, in statistical analyses of the spatiotemporal drivers of fire across large and diverse 
regions throughout the year, variability in fire activity is far greater across space and seasonally 
than interannually. Thus, a statistical modeling approach aimed at simply minimizing errors 
would prioritize predictors that correlate best with fire variability in the spatial and seasonal 
domains. However, a main motivation of our work is to develop a model that can be used to 
explore temporal changes in fire activity at timescales of interannual and longer. This explains 
our choice to account for variations in fire activity associated with the mean annual climate cycle 
before accounting for variations at longer temporal scales. 
 
Notably, we did acknowledge the uniqueness of our 3-component modeling approach and 
describe the logic behind it in the final paragraph of section 6 (Discussion, strengths, and 
limitations) or our original submission. That paragraph remains in our revised paper and we also 
now better describe the logic behind our unique modeling approach when it is first introduced in 
section 4 (Model description). The new text reads: 
 
L394–401 “The S component is constructed first to capture the how variations in fire activity are 
driven by factors that are far more variable in space than in time, as these factors (e.g., forest 
biomass, lightning frequency, variables related to human population and fire suppression) are 
likely to modulate the sensitivity of fire activity to temporal variables. The C component is then 
constructed to account for variations in fire activity that are due to the mean annual climate 
cycle. Finally, the T component is constructed to account for effects of interannual climate 
variability, which are likely to be strongly modulated by the effects of the S and C variables 
already accounted for.” 
 
Bradstock, R. A. “A Biogeographic Model of Fire Regimes in Australia: Current and Future 
Implications.” Global Ecology and Biogeography 19, no. 2 (2010): 145–58. 
https://doi.org/10.1111/j.1466-8238.2009.00512.x. 
 



Krawchuk, M. A., and M. A. Moritz. “Constraints on Global Fire Activity Vary across a 
Resource Gradient.” Ecology 92, no. 1 (2011): 121–32. https://doi.org/10.1890/09-1843.1. 
 
3. When presenting the landcover data in the model, the author uses 41 grid cells from 8 
directions surrounding the target grid cell to calculate the forest connectivity. Is there specific 
reason how the chosen area (or, the number of the grid cells) is set? 
This question pertains to our calculation of the forest connectivity variable, which we calculate at 
a 1-km resolution based on connectedness of forest in the nearest 6 grid cells radiating from the 
central grid cell in the 4 cardinal directions and the 4 grid cells radiating in 4 the diagonal 
directions. The logic behind these numbers is that we wanted the area represented to be aligned 
with that of a fairly large fire, approximately 10,000 ha. We also wanted the connectivity metric 
to be a fast calculation so that it can be easily recalculated at the 1-km scale on an annual basis in 
coupled simulations where a forest-ecosystem model is interacting with the fire model and the 
landcover metrics are constantly being recalculated. Thus, we chose to represent connectivity in 
a relatively simple way, considering just the 8 directions radiating from the central grid cell 
rather than across all grid cells in a circle. In this case, a circular area represented on a 1-km grid 
and centered symmetrically around a central 1-km grid cell would have a diameter of 11-13 grid 
cells in the cardinal directions and 9 cells in the diagonals. We have added the following 
sentence to section 3.4 (Landcover) to clarify the logic: 
 
L334–339: “This approach allows for efficient recalculations of connectivity when simulations 
are run in coupled mode with DYNAFFOREST and the size of the area represented is roughly 
aligned with that of a large wildfire 10,000 ha in size.” 
 
4. When introducing the human factor in the model, the author uses population density and 
distance to road, as predictors. Could the author please explain why some other widely used 
predictors, such as GDP or fire agency availability, are not included in the domain, relating to 
suppression capability?  
This question motivated us to add GDP into the list of potential spatial predictors considered. In 
the Discussion section (2nd to last paragraph) we had previously indicated this as a variable that 
we should consider in future. In the current model-building process we consider the 0.5-degree 
maps of annual GDP and GDP per capita produced by Kummu et al. (2025), as well as log-
transformations of these variables. However, the GDP variables were not selected as predictors 
of fire probability or size in our step-wise model building process, as distance from populations 
and roads provided more model skill. The reason why GPD did not contribute important unique 
information about fire probability and size may be that federal suppression resources are used for 
many forest fires, which may work to dampen the effects of regional variability in wealth. We 
believe finer-scale features related to local availability of suppression resources, as the reviewer 
suggests, may be more important determinants of suppression capacity and effectiveness but we 
have not yet identified suitable databases that would allow us to represent how local resources, 
for example, fire-station density or availability of nearby aircraft for aerial attack, have changed 
over our study period.  
 
In addition to the additional Methods text describing the GDP data we have revised the portion 
of the Discussion section that previously indicated how future modeling efforts should consider 
use of GDP as a predictor: 



 
L1036–1041: “Variables more directly related to suppression capacity than population and road 
density may be helpful in future modelling efforts. Notably, our use of annual maps of gross 
domestic product, a variable used in some earth-system modeling schemes to serve as a proxy 
for suppression capacity (Li et al., 2024a), did not contribute to model skill. Federal suppression 
resources may make up for much of the regional variability in wealth. Finer-scale features such 
as distance to the nearest fire station or aircraft availability for aerial firefighting may prove 
valuable in future efforts.” 
 
Kummu, M., M. Kosonen, and S. Masoumzadeh Sayyar. “Downscaled Gridded Global Dataset 
for Gross Domestic Product (GDP) per Capita PPP over 1990–2022, Scientific Data, 12, 178.” 
Scientific Data 12 (2025): 178. https://doi.org/10.1038/s41597-025-04487-x. 
 
Li, F., X. Song, S. P. Harrison, et al. “Evaluation of Global Fire Simulations in CMIP6 Earth 
System Models.” Geoscientific Model Development Discussions 17 (2024): 1–37. 
https://doi.org/10.5194/gmd-2024-85. 
 
5. The model yields quite good simulations for the other regions in the western US, yet it 
evidently underperforms in the CA/NV region on both annual frequency and forest area burned 
(Fig. 16d and Fig. 17d). Apart from the potential reasons listed, did author analyse as to where 
the discrepancy comes from, was it mainly caused by ignition probability, or together with fire 
size? What is the dominant driver for this bias? 
This reviewer comment motivated us to take a deeper dive by evaluating model performance at 
the sub-regional level. New supplementary Figures S1 and S2 that show observed versus 
modeled time series of fire frequency and area burned for each of the 11 western US states. In 
Figure R1 below we show just the California and Nevada panels relevant to this question. 
 
First, fire frequency rather than fire size is the main driver of the model underperformance in the 
CA/NV region, as correlations between observed and modeled fire frequencies in CA/NV are 
substantially worse than in the other regions, while correlations for area burned are in better 
alignment with the other regions. 
 
Of the two states, California has approximately four times more forest fires and approximately 
17 times more forest area burned than Nevada, so the CA/NV time series shown in Figs 16 and 
17 (now 17 and 18) are dominated by California, and California is mostly responsible for the 
poor correlation between observed versus modeled fire frequency. The low correlation for fire 
frequency in California is driven in part by very high fire counts in 1987 and 2008 caused by 
anomalous outbreaks of dry lightning that are not adequately represented in our modeling 
approach. We mentioned this in the previous submission, but stress this limitation more 
explicitly in the revision (more on this below), and now attribute these problematic years 
specifically to California in light of our state-specific analysis. We also noted in the previous 
submission that the model overestimated CA/NV fire frequencies in 2021, 2022, and 2024 and 
we maintain our explanation that these over-estimates may be due to a combination of factors 
including increased suppression capacity and public/corporate awareness of fire hazards as well 
as fire-and drought-related reductions in fuel continuity that our modeling may not capture. 



Nonetheless, the new Figure S2 and the right side of Fig. R1 below show that simulations of total 
area burned in California are quite skillful, more so even than in a number of other states. 
 
Even though California dominates the CA/NV regional record, our state-by-state analysis 
highlights that model limitations in Nevada also reduce skill in CA/NV. Our model 
systematically overestimates fire frequencies in Nevada by approximately 70%, and then 
overestimates area burned by nearly a factor of four. We believe there are two main reasons for 
this. First, we believe our model underrepresents the role that fuel limitation plays in Nevada’s 
relatively sparse and narrow forested corridors. This is likely due to positive biases in the fuel 
loads and fuel connectivity simulated by our DYNAFFOREST model, and a related under-
representation of the importance of climate-driven interannual variations in non-forest fuels. In 
addition, WULFFSS only detects a positive association between distance from humans and fire 
frequency, but this fails to adequately represent areas like the remotest forested areas of Nevada 
where there is little-to-no human footprint and thus essentially zero human-caused fires. Of these 
two limitations, we believe the fuel-limitation issue is more consequential to our simulations in 
Nevada, as the positive bias in simulated fire activity becomes even more serious when it comes 
to fire size. Our model simulates nearly four times more area burned in Nevada than is observed. 
When it comes to fire sizes, the effect of remoteness from human access should only be positive, 
and yet observed fires are systematically smaller than those that we simulate in Nevada. 
 
In light of the above, we have made a number of a revisions to the paper: 
 
In the part of section 5 (Model performance) that describes the skill of our fire-frequency 
estimates we have greatly expanded our description and explanation of the relatively low skill in 
CA/NV: 
 
L851–861: “Reasons for model underperformance in CA/NV are numerous. In California (Fig. 
S1c), the large observed fire frequencies in 1987 and 2008 were due to anomalous dry lightning 
events (Kalashnikov et al., 2022), which are not adequately represented in WULFFSS. The more 
recent overestimates in California fire frequency may be due to increased resources for fire 
detection and suppression in California, increased public and corporate awareness of fire 
hazards, and reductions in fuel continuity due to drought and related bark-beetle outbreaks that 
our modeling does not capture. Nevada also contributes to the relatively low model skill in 
CA/NV (Fig. S1g); WULFFSS overestimates mean fire frequency by approximately 70% in 
Nevada, a far larger mean bias than for any other state. The overestimates of fire activity in 
Nevada’s sparse and isolated Great Basin forests suggest that our approach underestimates the 
ability of low biomass and vegetation connectivity to limit fire activity and/or that our 
DYNAFFOREST-based estimates of biomass and connectivity are too high there. In addition, 
while our model indicates that fire frequency is positively related to remoteness from human 
population (Fig. 5), ignitions may be a limiting factor in forested areas of Nevada with 
especially light human footprints.” 
 
In the next part of section 5 describing the skill of our area-burned estimates we have added: 
 
L896–901: “In our state-specific analysis we find that overestimates of area burned in CA/NV 
are apparent in both California and Nevada, but the bias is more severe and systematic in 



Nevada, where WULFFSS models nearly four times more area burned than is observed (Fig. 
S2). This is the largest such bias among the 11 states, followed by Utah where estimates of area 
burned exceed observations by a factor of two. Consistent overestimates of area burned in these 
states, home to the relatively dry and spatially discontinuous forests of the Great Basin, further 
implicates fuel limitation in sparsely forested areas as a cause of error for WULFFSS.” 
 
Finally, we expanded on the fuel-limitation issue highlighted by the Nevada biases in the 
Discussion section: 
 
L989–997: “This limitation appears most clearly in our simulation of fire in the isolated forests 
atop the narrow and arid mountain ranges of the Great Basin. In Nevada, for example, 
WULFFSS overestimates fire frequency by 70% and area burned by a factor of four. In addition 
to limitations caused by our current lack of representation of non-forest fuel dynamics, 
overestimates of Great Basin fire activity are also probably promoted by positive biases in our 
DYNAFFOREST-simulated maps of forest biomass and connectivity in the Great Basin region. 
This further motivates the need for spatially continuous maps of observed (or inferred from 
remotely sensed imagery) vegetation biomass across the western US that cover the time period of 
1980s to near present at timesteps of annual or finer, which could be used as forcings in 
WULFFSS simulations of the observational period and to improve vegetation ecosystem models 
such as DYNAFFOREST.” 
 

 
Fig. R1. Alternative versions of Figures 17 and 18 in the main paper, but here focusing on the 
California/Nevada (CA/NV) region as well as California and Nevada separately. See the new 
Supplementary Figures S1 and S2 for similar plots for each of the 11 states in the western US 
domain. 
 
6. The model significantly underestimates the extreme fire events in year 2020 and 2024 (in 
terms of fire size), does this imply that the model systematically lack the ability to capture fire 
events induced by extreme weather conditions accurately? Can author suggest ways to improve 
this? 
The underestimates of area burned in 2020 and 2024 are driven by the PNW and CA/NV 



regions, though the 2020 estimate is improved some degree in CA/NV in the new submission 
and the underestimate in 2024 was and still is entirely driven by PNW. In our original 
submission we noted the 2020 and 2024 underestimates and discussed their likely causes. Below 
we describe how these underestimates were described in the original submission and we then 
describe a new paragraph that we have added to the Discussion section to further highlight what 
can be learned from these events. 
 
2020: In our previous submission, section 5 (Model performance) described the combination of 
unique circumstances that were likely contributors to the underestimated area burned in 2020. In 
final paragraph of that section, we wrote: “In 2020, however, WULFFSS grossly underestimates 
CA/NV area burned, and to a lesser extent in PNW (Fig. 17b,d). Potential contributing factors 
include rare lightning storms from tropical storm Fausto in August 2020, two extreme heat 
waves in the days to weeks immediately following the lightning storms, and overstretched 
suppression resources due to a high concentration of large forest fires in California and Oregon 
and the COVID-19 pandemic.” In the Discussion section we then followed up with “A likely 
explanation is that when a rare summertime lightning event coincided with hot and dry 
conditions to produce widespread wildfire activity, coupled with the COVID-19 pandemic, 
suppression efforts had difficulty keeping up.” 
 
Notably, the underestimates in CA/NV area burned in 2020 are somewhat improved in the 
revised version of the model because of the inclusion of convective available potential energy 
(CAPE) in the new fire-size model, which was observed to encourage extreme plume 
development and fire weather that promoted rapid fire growth in California in 2020 (e.g., Lee et 
al. 2023). The reason the new model incorporates CAPE is likely because of improved accuracy 
of our CAPE dataset. Previously the dynamically-downscaled version of daily ERA5 CAPE was 
only available through August 2023, so we had to use daily CAPE from the North American 
Regional Reanalysis to extend through 2024. Now, the downscaled ERA5 data are available 
through April 2025, allowing for our full model-calibration period to be covered by that high-
quality dataset. 
 
2024: As for the underestimates in area burned in 2024 in the PNW region, our original 
manuscript indicated in section 5 (Model performance) that this was largely driven by a large 
underestimate in the number of fires in that year. The 2024 forest-fire frequency in PNW was 
nearly highest on record and we indicated in the original submission that our underestimate was 
“due to a failure to capture the large number of fires in Oregon and southwest Idaho that ignited 
from outbreaks of dry lightning in mid and late July.” We went on to describe that our model 
does not use lightning as a predictor due to lack of an observational dataset that is free of major 
temporal inconsistencies and that, “while CAPE is considered as a potential predictor of fire 
frequency due to its association with lightning, high CAPE is also associated with precipitation, 
limiting its value as a proxy for dry lightning.” 
 
A lesson from the above years, as well as some of the other shortcomings in the CA/NV region 
discussed in response to the reviewer’s previous comment, is that the lack of explicit 
representation of lighting events is an important limitation. As we note in section 5, “While 
WULFFSS does consider long-term mean patterns of lighting activity, it does not model fire as a 
function of temporal variability in lightning because the only long-term lighting dataset we are 



aware of (from the NLDN, 1987–present) has temporal instabilities due to instrumental changes 
and it does not cover the full model-calibration period. While CAPE is considered to be a T 
variable due to its coincidence with lightning and atmospheric instability, high CAPE is also 
associated with precipitation, limiting its value as a proxy for dry lightning.” 
 
In the new submission, we have added a new paragraph to the Discussion section that directly 
describes the limitations caused by lack of explicit representation of temporal variations in 
lightning frequency, and dry-lightning in particular: 
 
L1043–1054: “WULFFSS does not capture the important contributions of dry-lightning events, 
particularly near the west coast where lightning is relatively rare and thus a single anomalous 
event can cause a large increase in annual fire frequency and area burned. For example, the 
very high fire counts in CA/NV in 1987 and 2008 and in PNW in 2024 were due in part to 
anomalous outbreaks of dry lighting. Temporal variations in lightning frequency are not 
currently used as predictors in WULFFSS because we are not aware of an observational 
lightning dataset that spans our full model-calibration period and is not free of temporal 
inconsistencies due to changes in observational methods. Ideally, lightning would be a variable 
that can be modelled based on meteorological data, allowing lightning to force model 
simulations representing time periods or idealized scenarios beyond the 1985–2024 period of 
focus here. While lightning frequency has been shown previously to be well correlated to CAPE 
multiplied by precipitation total (Romps et al., 2018), the likelihood of ignition from lightning is 
substantially reduced if it coincides with precipitation. We thus consider CAPE on its own as a 
potential proxy for dry lightning potential, but ultimately CAPE was not selected by our fire-
probability model. Future efforts to identify meteorological proxies for dry-lightning potential 
would likely enhance our model’s simulations of fire-frequency extremes.” 
 
In addition, we also now highlight at the end of the final paragraph of section 5 that some of the 
apparent underestimate in 2024 area burned is caused by an observational bias associated with a 
lack of MTBS data for that year. We now explain: 
 
L907–913: “In 2024, the large underestimate of fire frequency in PNW noted above (Fig. 17b), 
in Oregon and Idaho specifically (Fig. S1), translated to underestimates in total area burned 
(Figs. 18b, S2). However, it is likely that our observational record of area burned is biased high 
in 2024, as MTBS maps are not yet available for most large wildfires in that year, so the 
currently available maps of many of that year’s largest fires do not represent within-fire spatial 
heterogeneity in area burned. On average, MTBS maps indicate that approximately 20% of area 
within forest-fire perimeters is unburned, so it is likely that our underestimate of area burned in 
2024 will be lessened somewhat once MTBS data become available.” 
 
Lee, J. M., J. D. Mirocha, N. P. Lareau, et al. “Sensitivity of Pyrocumulus Convection to Tree 
Mortality during the 2020 Creek Fire in California.” Geophysical Research Letters 50, no. 16 
(2023): e2023GL104193. https://doi.org/10.1029/2023GL104193. 
 
Romps, D. M., A. B. Charn, R. H. Holzworth, W. E. Lawrence, J. Molinari, and D. Vollaro. 
“CAPE Times P Explains Lightning over Land but Not the Land‐ocean Contrast.” Geophysical 
Research Letters 45, no. 22 (2018): 12–623. https://doi.org/10.1029/2018GL080267. 



 
7. By introducing self-regulation effect that reduces fuels from previous fires, will this 
“saturation” effect limit the model performance in future projection, considering that the climate 
change and ecosystem feedbacks may alter its self-regulation point? 
If we understand the reviewer’s question correctly, the desire to make plausible simulations of 
future fire under scenarios of changing fuel availability represents one of the main motivations 
behind the creation of this model specifically as a fire module that can be incorporated into an 
ecosystem model. That is, we have good reason to believe that, if forest fires continue to grow 
larger and more severe, they should also become increasingly self-regulating and thus 
relationships between climate and forest-fire metrics such as frequency or area burned should 
become weaker. Our modeling framework is specifically designed to allow for simulation of this 
process, as when coupled to an ecosystem model such as DYNAFFOREST, fuel characteristics 
are simulated to change in response to fire, and these changes then alter the predictor variables 
used in the fire model such that subsequent fire-climate relationships are modulated. This 
motivation was and still is explained in final three paragraphs of the Introduction and the 4th 
paragraph of the Discussion section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #2 
General comments 
This manuscript presents the development and evaluation of WULFFSS, a novel stochastic 
monthly gridded model for simulating large forest fires in the western United States. The model 
operates at a 12-km resolution and leverages interpretable statistical methods to estimate fire 
probability and size. Its key strengths include the integration of spatial, annual cycle and 
temporal anomaly components that can interact, high computational efficiency enabling large 
ensembles, and its design for coupling with the DYNAFFOREST ecosystem model to simulate 
vegetation-fire feedbacks. The model demonstrates considerable skill in capturing frequency and 
extent of western US forest fires, as validated through rigorous temporal and spatial cross-
validation. The manuscript is thorough, well-structured, and describes the model, data, and 
validation procedures in significant detail. The work represents a valuable contribution to the 
field of fire modeling. However, the text is somewhat lengthy, and there is room for 
improvement. Therefore, I recommend that this manuscript be accepted with minor revisions. 
We thank the reviewer for the thorough and constructive review. We are especially glad that this 
review motivated us to add a diagram of the general model structure and also to look into the 
effects of including 3-way interactions between the spatial, mean annual climate cycle, and 
temporal climate anomaly components of the model. Although including this term did not 
improve model performance and we thus chose to not keep it, we suspect this would have been a 
common question among readers and we now explicitly note that the 3-way interaction was 
considered but not included because it did not contribute additional skill. We also appreciate the 
reviewer’s concern shared above regarding the length of the paper. In light of that comment we 
carefully went over the writing with conciseness in mind. The clearest opportunities for 
streamlining were in the Introduction and the revised Introduction is approximately 200 words 
shorter than the original. We also appreciate the reviewer’s suggestion to include a diagram 
illustrating the general model framework and we now include such a figure. Notably, most 
reviewer requests were for additional details, so ultimately the revised paper is longer than the 
original despite our work to shorten the original text. We have revised the paper in light of the 
reviewer’s comments and suggestions and we provide point-by-point responses in blue font 
below. 
 
Specific comments 
 
1. The model operates at a 12-km resolution, and it is possible that within a grid cell, the actual 
burned area constitutes only a small fraction. A key concern is the issue of intra-grid-cell 
heterogeneity and the representativeness of the predictor variables. It would be valuable if the 
authors could discuss the potential implications of this scaling issue. 
We agree that the probability and size of a fire occurring in a given 12-km grid cell should be 
sensitive to heterogeneity at the sub-12-km scale. We do use landcover at sub-12-km resolution 
to calculate the 12-km predictor values for many of the spatial variables. For example, fractional 
forest coverage and forest biomass comes from our 1-km resolution forest-ecosystem model 
(DYNAFFOREST) and the fractional cover of other landcover types such as barren, water, and 
grass/shrub are calculated from 30-m maps. We have added a sentence in this vein to the end of 
the methods section 3.4 about landcover: 
 



L343–345: “Likewise, our use of sub-12-km landcover data to produce landcover predictors 
allows our modelling to include the effects of within-grid heterogeneity of fuel conditions, which 
is important given that most fires are smaller than 144 km2.” 
 
In addition, we have added the following note to the paragraph about fire spread in the 
Discussion section: 
 
Finally, the previous version of the Discussion did indicate how fire-spread is simulated within 
our forest-ecosystem model at the sub-12-km level as well as opportunities for more 
improvements of sub-grid processes. We have modified that text and it now reads: 
 
L1009–1014: “Another opportunity for improvement is to explicitly simulate fire spread. 
Currently, WULFFSS only estimates the final forest area burned by each simulated fire. When 
coupled within DYNAFFOREST, the ignition of a given simulated fire is assigned to a random 1-
km forested-grid cell within the 12-km grid cell of WULFFSS and the fire spirals through 
adjoining or nearby forested areas until the pre-determined fire size is achieved or no nearby 
forested grid cells remain. Future improvements to WULFFSS should include estimating ignition 
location at sub-12-km resolution and modelling fire spread while maintaining computational 
efficiency.” 

 
2. The authors have considered a comprehensive list of potential predictors for constructing the 
Sp, Cp, and Tp components. However, the rationale or guiding principles for assigning specific 
variables to each of these three domains (Spatial, Annual-cycle, Temporal anomaly) is not 
sufficiently elaborated. A clearer explanation of the criteria used to categorize predictors into S, 
C, or T would significantly enhance the methodological transparency and reproducibility. 
This comment is similar to the second comment from Reviewer #1 and we agree that the original 
submission fell short in describing the logic behind splitting the variables into the three 
components and we expanded the second paragraph of section 4 (Model description) to state:  
 
L395–401: “The S component is constructed first to capture the how variations in fire activity 
are driven by factors that are far more variable in space than in time, as these factors (e.g., 
forest biomass, lightning frequency, variables related to human population and fire suppression) 
are likely to modulate the sensitivity of fire activity to temporal variables. The C component is 
then constructed to account for variations in fire activity that are due to the mean annual climate 
cycle. Finally, the T component is constructed to account for effects of interannual climate 
variability, which are likely to be strongly modulated by the effects of the S and C variables 
already accounted for.” 
 
We also note that the original submission did describe the guiding principles in terms of how it 
was determined how it was determined which domain a given variable would be assigned to. In 
section 4, this is what was stated for each domain, now with slight revisions to clarify that the 
mean annual cycle (C) and temporal anomaly (T) components are composed of climate variables. 
 
Spatial (S): L403–405: “The S component represents drivers of forest-fire occurrence or size that 
are most variable in the spatial domain, such as topographic slope, fuel availability, human 



population, mean annual lightning frequency, and long-term mean aridity, all of which may 
directly influence fire occurrence and also modulate the effects of C and T.” 
 
Mean annual cycle (C): L411–415: “The C component represents climatological drivers of 
forest-fire occurrence or size that are most variable in the domain of the mean annual cycle, 
such as long-term means of each month’s lightning frequency as well as variables that influence 
the seasonality of fuel moisture such as prec, solar, and VPD.” 
 
Temporal anomalies (T): L422–429: “The T component represents climatological drivers of 
forest-fire occurrence or size that are most variable in the temporal domain of interannual and 
longer. … Because T is meant to represent climate variability beyond the annual cycle, T 
variables are standardized so that for a given variable in a given grid cell, values have a mean 
of 0 and standard deviation of 1 for each of the 12 months during the calibration period.” 
 
3. The model commendably incorporates interaction terms between the S, C, and T composite 
predictors, but these are limited to pairwise (two-way) interactions. The potential three-way 
interaction (S×C×T) is not considered. Could the authors please justify this methodological 
choice? 
This comment motivated us to produce an alternative version of the model that includes 3-way 
interactions between S, C, and T variables. Our choice to not do so originally was simply to limit 
the computational cost of parameterizing the fire-probability model as well as some worry that 
SxCxT interactions could produce occasional extreme simulation outcomes that are unrealistic. 
When we introduced the 3-way interactions in light of this reviewer comment, we found the 
performance of the new model was virtually identical to that of the old. Below in Fig. R2 we 
provide alternative versions of Figures 17 and 18, where we show how the new simulations that 
include 3-way interactions compare to observations in terms of annual and monthly fire 
frequencies and areas burned at the scales of the western US and regionally. Comparing these to 
Figures 17 and 18 in the resubmitted paper indicates that the alternative model with 3-way 
interactions performs virtually identically to, and not better than, the original model. Notably, we 
evaluated the behavior and performance of the alternative model with more depth than simply 
generating the alternative versions of Figs. 17 and 18 below. We found that allowing for 3-way 
interactions does generally lead to slightly more variables being included in the construction of 
the S, C, and T predictors, but these additional variables have minimal impact because the most 
impactful variables were consistently selected in the same order and with the same relationships 
to fire probability/size regardless of whether the 3-way interactions were included or excluded. 
Thus, we have decided to not include 3-way interactions in the final version of the model. We 
have added the following sentence to section 4.1 (Model framework): 
 
L466–467: “Notably, we considered including three-way interactions between the S, C, and T 
predictors in the P and A models but doing so did not improve model skill.” 
 



 
Fig R2. Alternative versions of Fig. 17 (left) and Fig. 18. (right) where the probability and size 
models each include a 3-way interaction term between the spatial, seasonal, and temporal 
predictors. Comparison to Figs. 17 and 18 in the resubmitted paper indicates that model 
performance is minimally influenced, and not systematically positively, but inclusion of the 
additional interaction term. 
 
4. I recommend including a schematic diagram illustrating the general framework of WULFFSS. 
This figure should visually depict the relationships between the three core statistical models (P, 
N, A), their required input data streams (landcover, topography, climate, etc.), the key data 
processing steps (e.g., resampling), and the bidirectional coupling relationship between 
WULFFSS and the DYNAFFOREST model. 
We agree that a diagram illustrating the general model framework would be helpful. We have 
added such a figure (now Figure 4 in the manuscript) and we provide it below as Figure R3. 
 



 
Figure R3: Flowchart outlining the general framework of the WULFFSS. 
 
Figure 3: Adding text labels (e.g., "Pacific Northwest" or “PNW”) onto the map for the four 
quadrant regions would improve its immediacy and clarity. 
We have added a legend to Figure 3 to clarify the names of the regions. 
 
Figure 4: Providing quantitative goodness-of-fit metrics for the curve fits in each panel would be 
welcome. Furthermore, the relationship for some predictors (e.g., wetds_mean_1mo in panel b) 
appears weak or poorly captured by the fitted curve. 
We now include the AICc and p-values associated with each curve fits shown in the figure 
showing P model predictors (now Fig. 5) as well as the figure showing A model predictors (now 
Fig. 8). 
 
Line 37: “fire” to “fires” 
We fixed this typo and thank the reviewer for pointing it out. 
 


