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S1. Multivariate imputation by chained equations (MICE) 14 

Multivariate imputation by chained equations (MICE) is a flexible algorithm that could be combined with other 15 

statistical techniques for estimating missing values by using observed data (by performing the linear, multilinear 16 

regression or calculation of the mean/median to fill the missing) (Azur et al., 2011). The MICE algorithm employs 17 

multiple regression models, where each missing value is conditionally modeled based on the observed (non-18 

missing) values. This imputation process provides a more complete database for PMF analysis, contributing to a 19 

reduction in recommendation errors in the results (Ocepek et al., 2015).  20 

Here, the data preparation and imputation processes were implemented through 4 main steps. First, all missing 21 

values of each metal are replaced by the mean of its concentration, these replaced values are marked as "place-22 

holders". Second step, the metal that has the fewest missing values was chosen, and the "place-holder" is put back 23 

to missing (called Px). In the third step, a multiple linear regression is applied, with the chosen metal set as a 24 

criterion and the other variables are predictors. Fourth step, the missing value Px is calculated by using the slope 25 

and intercepts of multiple linear regression in the third step. The processes between the second and the fourth steps 26 

are repeated until all "place-holders" are replaced by the regression prediction value; this repeated run is called the 27 

"cycle" of imputation. The imputation cycle is iterative implemented until the difference between the 2 last cycles 28 

is minimized. MICE was implemented in Python 3.9 using the package "scikit-learn 1.2.0" (Pedregosa et al., 2011). 29 
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 30 
 31 

Figure S.1. Workflow of the MICE algorithm 32 

 33 

Table S 1. R2 between imputed and measured metals 34 

 2013 2017-2018 2020-2021 

As 0.43 0.6 0.2 

Cd 0.41 0.55 0.1 

Cr 0.32 0.34 0.38 

Cu 0.63 0.4 0.42 

Mn 0.33 0.35 0.5 

Ni 0.14 0.33 0.14 

Pb 0.33 0.31 0.15 

Sb 0.37 0.50 0.2 

V 0.41 0.27 0.52 

Zn 0.26 0.35 0.20 



 

 35 

Figure S.2. Distribution of measured and imputed metals  36 

 37 

S2. Some equations 38 

PMF equation: 39 

𝑋𝑖𝑗 = ∑ 𝐺𝑖𝑘

𝑝

𝑘=1

∗  𝐹𝑘𝑗 + 𝐸𝑖𝑗   (𝐸𝑞. (𝑆1)) 40 

𝐺𝑖𝑘 ≥ 0,  𝐹𝑖𝑘 ≥ 0 (𝐸𝑞. (𝑆2)) 41 

Where X is a (i × j) matrix of j chemical species in measured period i (daily) into p factors with a matrix (i x k) 42 

representing the source contribution (G) and a matrix (k x j) representing the factor composition (F). E is the 43 

residuals for each species. All the factor matrices G and F elements are constrained to be non-negative.  44 

 45 

Variance Inflation Factor (VIF) represent the collinearity between the PM sources, which is calculated:  46 

𝑉𝐼𝐹𝑖 =  
1

1 − 𝑅𝑖
2 , 𝑖 = 1, … , 𝑝 − 1 (𝐸𝑞. (𝑆3)) 47 

 48 

Chemical Mass Closure:  49 

  PM10 ≈ EC + OM + [sea salt]  + [nss-SO4
2-] +[dust] + [non dust]  50 



 

with: 51 

[OM] = [OC]*1.8 (Favez et al., 2010) 52 

[sea salt] = [Na+]*1.47 + [Cl-] (Putaud et al., 2010) 53 

[nss-SO42-] = [SO4
2-] – [Na+]*0.252 (Alexander et al., 2005) 54 

[dust] = 5.6 * ([Ca2+] – [Na+]/26)  (Putaud et al., 2004) 55 

[non dust] = [Cu] + [Pb] + [V] + [Zn] (Salameh et al., 2015) 56 

S3. PMF input matrices 57 

The basic chemical species to be included in the input matrices are key components for the mass balance of the 58 

PM: organic carbon (OC), element carbon (EC), major ions (nitrate, sulfate, ammonium), sea salt species (Na, Cl, 59 

Mg), and mineral dust (Al, Fe, Ti). Then the input matrices should include a set of chemical tracers that allows the 60 

discrimination of their sources. This list is very variable according to the analytical capabilities used in the research 61 

program.  62 

 63 

In other to avoid double counting of carbon mass in OC and in organic tracers added to the input data (ie 64 

levoglucosan, mannosan, MSA, polyols in the classic PMF at IGE), we calculate a variable OC* by: 65 

[OC*] = [OC] – [total mass C of organic tracers in PMF]  66 

 67 

Uncertainties of measured data 68 

A table of the uncertainties of each daily data for each chemical species should be constructed. Several ways for 69 

their calculations exist. Here, we are using the formula described in the table below, resulting from all the work 70 

developed in the SOURCE program and the post-doc work of D Salameh (published in Weber et al., 2019). 71 

Table S 2. Formula to calculate uncertainties 72 

Specie Calculation by Formula 

OC*, EC, PM10 Fixed percentage 10% 

Specie which has 

concentration < QL 

Ratio of QL 

Polissar et al. (1998) 

5 × 𝑄𝐿

6
 

Imputed metals Gianini et al., 2012 
𝜎𝑖𝑗 = 2 ∗ √𝑄𝐿𝑗

2 + (𝐶𝑉𝑗 × 𝑥𝑖𝑗)2 +  (𝑎 ×  𝑥𝑖𝑗)
2
 

The others Gianini et al., 2012 
𝜎𝑖𝑗 = √𝑄𝐿𝑗

2 + (𝐶𝑉𝑗 × 𝑥𝑖𝑗)2 +  (𝑎 ×  𝑥𝑖𝑗)
2
 

 73 

With:  74 

• QL : Quantification limit. 75 

• CV : Coefficient of variation. 76 

• a: Additional coefficient of variation 77 

• x: Species concentration. 78 

S4. PMF criteria for validation and applied constraint 79 

According to the European guide on air pollution source apportionment with receptor models (Belis et al., 2014), 80 

the validation criteria of a PMF solution include:  81 



 

(1) Evolution of Qtrue/Qrobust < 1.5: Indicate that the good result should not have more than 30% data outliers. 82 

Generally, the final solution presents a much lower ratio.  83 

(2) The chemical profile is clear: the concentration and percentage of trace species in the profile and the temporal 84 

variability should be clear enough to identify a source.  85 

(3) All factors should have a contribution > 1% to the total variable (PM10): to avoid a case where there is a source, 86 

but it has almost no impact on the study area.  87 

(4) The distribution of residuals: the distribution of residuals (differences between input data and reconstructed 88 

data) is from -3 to 3, if there is any value is out of this range, that means that the reconstruction is not valid or that 89 

there are outliers.  90 

(5) Evaluate the species reconstruction: The correlation coefficient between measured and predicted concentrations 91 

must be greater than 0.5.  92 

(6) Bootstrap test: it indicates the stability of the solution: at least 70 runs per 100 runs for all factors where the 93 

correlation between the base run and boot runs is greater than 0.6.  94 

Table S 3. The constraints applied for PMF  95 

Factor Element Type Value 

Industrial Levoglucosan Set to Zero 0 

Industrial Mannosan Set to Zero 0 

Industrial PM10 Define Limits 0.1/0.4 

MSA rich MSA Pull Up Maximally NA 

MSA rich Polyols Set to Zero 0 

Biomass burning Levoglucosan Pull Up Maximally NA 

Biomass burning Mannosan Pull Up Maximally NA 

Primary biogenic Polyols Pull Up Maximally NA 

Primary traffic Ba Pull Up Maximally NA 

Primary traffic Cu Pull Up Maximally NA 

Primary traffic OC*/EC Ratio 0.44 

Primary traffic Cu/Sb Ratio 12.6 

Primary traffic Cu/Mn Ratio 5.7 

S5. PMF results 96 

Table S 4. Qtrue/Qrobust values 97 

 10 yeas 2013-2016 2017-2020 2021-2023 

Base run 1.07 1.05 1.05 1.1 

Constraint run 1.07 1.06 1.05 1.1 

 98 

  99 



 

Table S 5. Bootstrap value before and after constraint  100 

 10 yeas 2013-2016 2017-2020 2021-2023 

 Base Constraint Base Constraint Base Constraint Base Constraint 

Aged sea salt 100 100 100 100 100 100 100 100 

Biomass burning 100 100 100 100 100 100 100 100 

Industrial 100 100 100 100 100 100 100 100 

MSA rich 100 100 97 100 100 100 93 100 

Mineral dust 100 100 93 100 98 100 85 100 

Nitrate rich 100 100 100 100 100 100 100 100 

Primary biogenic 100 100 100 100 100 100 100 100 

Primary traffic 80 98 82 96 93 100 70 88 

Chloride rich 98 100 99 100 92 100 99 100 

Sulfate rich 100 100 87 99 98 100 96 95 

 101 

Table S 6. R2 between observed and predicted by PMF of PM concentration 102 

 10 yeas 2013-2016 2017-2020 2021-2023 

Base run 0.97 0.98 0.97 0.98 

Constraint run 0.97 0.98 0.97 0.98 

 103 

Displacement run: No warning for unstable or un-useable solution for PMF performed on 10-years dataset and 104 

every 3 years datasets. 105 

 106 

 107 

Figure S.3. Chemical profiles of PM10 sources, solution 10-year 108 



 

 109 

 110 

Figure S.4. Temporal evolution of PM sources, solution 11 years 111 

 112 

 113 

Figure S.5. The absolute average contribution of sources to PM10 (%) for 11 years and every years. 114 

 115 

 116 
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 120 



 

S6. Tendency of PM10 and NOx 121 

 122 

Figure S.6. STL decomposition of PM10 123 

 124 

 125 

Figure S.7. STL decomposition of NOx 126 



 

 127 

S7. Thermal inversion analysis 128 

This analysis is conducted for the period Nov 2017 to May 2023, when the measurements on the mountain slopes 129 

are available. A good correlation is obtained between the PM10 and bulk temperature at the city level (r reaching 130 

0.6, p<<0.001) for the winter months and it is even better when considering only the persistent inversion periods 131 

(r reaching 0.7, p<<0.001) for individual years (Table S7). Interestingly, the bivariate distribution between the 132 

daily PM10 concentration and daily average ∆𝑇/∆𝑧 in winter months revealed that the majority of PM10 133 

concentration peaks (exceedances above 40 µg m-3) are from persistent inversion (Figure S8). The distribution of 134 

the day without and with persistent inversion (Figure S9) also shows that a few high PM10 concentration could be 135 

found in the days without persistent inversion, meanwhile a day with persistent inversion is not always associated 136 

to a high PM10 concentration. This result is not surprising, since the concentration of PM10 also depend on other 137 

meteorological conditions (precipitation, heat deficit) as well as variations in pollutant emissions (Carbone et al., 138 

2010; Largeron and Staquet, 2016).  139 

 140 

 141 

Figure S.8. Bivariate distribution between PM10 and bulk temperature in winter (blue contour, for the month of Dec, 142 
Jan, Feb), summer (green contour for the month of Jun, Jul, Aug) and transition season (orange contour for the 143 

remaining months). 144 

 145 

  146 



 

Table S 7. Correlation between PM and bulk temperature in winter and in persistent inversion period. The star 147 
repressing the p-value. (*** : < 0.001, **: < 0.01, * < 0.05, “ns”: non-significant) 148 

 R2 in winter R2 in persistent inversion period 

2017 0.60** 0.50** 

2018 0.19* 0.47** 

2019 0.50*** 0.33** 

2020 0.57*** 0.47*** 

2021 0.50*** 0.67** 

2022 0.30*** 0.22* 

2023 0.05 ns 0.05 ns 

 149 

Figure S.9. Daily PM10 concentration and daily average ∆𝑻/∆𝒛 in winter months (from November to March) for the 150 
period of 2017 to 2023. The red points represent the winter days when the persistent inversion is detected, and the 151 

blue points represent the other winter days. 152 

 153 

Figure S.10. Relative contribution of the different sources to PM10 for days with persistent inversion vs non-inversion 154 
days of the winters 2017-2023. 155 



 

 156 

Thermal inversion events were used to evaluate the relationship between biomass burning influence onPM10 157 

concentration and meteorological conditions. As shown in Figure S9, more than half of the high PM10 158 

concentration event is related to persistent inversion. Especially for biomass burning, which is emitted principally 159 

in winter, could be highly enlarged under the influence of inversion. Figure 7 presents the contribution of biomass 160 

burning and the bulk temperature in winter, reveals that 41% of the biomass burning contribution is explained by 161 

the temperature gradient (∆𝑇/∆𝑧) between 2017 and 2023. better than considering PM10 (R2 = 0.3). In particular, 162 

the high contribution of biomass burning (>10 µg m-3) is always found in the episodes of persistent inversion. This 163 

demonstrates that the occurrence of persistent inversion systematically decreasing the temperature in the city 164 

enhances the use of heating as well as traps the aerosol and enlarges the contribution of biomass burning. Although 165 

the relationship between persistent inversion events and biomass burning emissions is affirmed, the reduction trend 166 

of biomass burning does not completely depend on the persistent inversion events. As shown in Figure 5, the 167 

number of persistent inversions per year is nearly similar, while the contribution of biomass burning steadily 168 

decreases over the years. The average annual biomass burning sources PMF-derived is compared to the local PM10 169 

emission inventory by residential heating (tonnes), provided by the Central air quality monitoring laboratory 170 

(Atmo AuRA) to confirm the trend of biomass burning. The annual average of biomass burning is agreed with the 171 

emission inventory, demonstrating the consistency between the sources observed by the PMF model and the local 172 

inventory emission data. Since 2015, the Grenoble Metropolis has set up an air-wood bonus to encourage 173 

households to renew their individual wood-burning appliance (fireplace or stove), and aim to replace all open 174 

fireplaces with closed appliances in October 2024. The downward trend of biomass burning demonstrates the 175 

effectiveness of the region's policy in changing residential heating equipment, to improve the city's air quality. 176 

 177 

 178 

Figure S.11. Comparison of the traffic contribution and PM10 emission by the transport sector in France. 179 

 180 
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S8. OP PM10 SA result 182 

Table S 8. The appropriate model of OP SA 183 

 OPAA OPDTT 

Heteroscedasticity Yes Yes 

Collinearity No No 

The suitable model wPLS, WLS wPLS, WLS 

 184 

Table S 9. The R2, RMSE and MAE of the suitable models 185 

 OPAA OPDTT 

 wPLR WLS wPLR WLS 

R2 0.69 0.70 0.61 0.61 

RMSE 0.88 0.85 0.89 0.86 

MAE 0.49 0.47 0.63 0.62 

 186 

Tendency of OPm and OPv 187 

 188 

Figure S.12. The comparison between observed OPAA and predicted OPAA  189 

 190 

Figure S.13. The comparison between observed OPDTT and predicted OPDTT 191 

 192 

  193 



 

Table S 10. Accuracy metric of the testing and training dataset of Multiple layer perceptron (MLP) and Random 194 
Forest (RF) 195 

 MLP RF 

 Training Testing Training Testing 

R2 0.75 0.75 0.90 0.72 

RMSE 0.67 0.74 0.32 0.79 

MAE 0.36 0.39 0.17 0.41 

 196 

Table S 11. Intrinsic OPAA and intrinsic OPDTT description 197 

OPtype Source count mean std min 25% 50% 75% max IQR 

AA 

Aged sea salt 500 -0.02 0.07 -0.23 -0.06 -0.03 0.00 0.19 0.06 

Biomass burning 500 0.76 0.13 0.48 0.67 0.74 0.82 1.22 0.15 

Chloride rich 500 -0.07 0.09 -0.32 -0.09 -0.05 -0.02 0.18 0.07 

Industrial 500 0.48 0.14 -0.04 0.44 0.52 0.57 0.74 0.12 

MSA rich 500 0.20 0.04 0.03 0.18 0.20 0.23 0.30 0.05 

Mineral dust 500 -0.03 0.06 -0.17 -0.07 -0.04 0.01 0.19 0.07 

Nitrate rich 500 0.09 0.16 -0.43 0.00 0.13 0.20 0.51 0.20 

Primary biogenic 500 0.00 0.04 -0.11 -0.02 0.00 0.03 0.10 0.05 

Primary traffic 500 0.38 0.10 0.02 0.32 0.38 0.46 0.67 0.14 

Sulfate rich 500 -0.01 0.08 -0.22 -0.05 -0.02 0.04 0.23 0.09 

DTT 

Aged sea salt 500 0.03 0.02 0.00 0.02 0.03 0.05 0.13 0.02 

Biomass burning 500 0.14 0.09 0.00 0.08 0.13 0.17 0.45 0.09 

Chloride rich 500 0.01 0.02 0.00 0.00 0.00 0.00 0.12 0.00 

Industrial 500 0.52 0.08 0.31 0.47 0.51 0.55 0.86 0.08 

MSA rich 500 0.01 0.02 0.00 0.00 0.00 0.02 0.13 0.02 

Mineral dust 500 0.01 0.02 0.00 0.00 0.00 0.00 0.17 0.00 

Nitrate rich 500 0.11 0.12 0.00 0.02 0.07 0.12 0.50 0.10 

Primary biogenic 500 0.02 0.03 0.00 0.00 0.01 0.02 0.12 0.02 

Primary traffic 500 0.24 0.07 0.06 0.20 0.24 0.28 0.48 0.08 

Sulfate rich 500 0.09 0.04 0.00 0.06 0.08 0.11 0.22 0.05 

 198 

 199 



 

 200 

Figure S.14. Contribution of the different sources to OPv
AA

 (left) and OPv
DTT

 (right), for days with persistent inversion 201 
vs non-inversion days of the winters 2017-2023. 202 

 203 

Figure S.15. Yearly average relative contribution of sources to (a) OPAA
v and (b) OPDTT

v 204 

 205 

 206 
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Figure S.16. STL decomposition of OPAA
m 208 

 209 

Figure S.17. STL decomposition of OPDTT
m 210 

 211 
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