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Abstract

The identification of particulate matter (PM) sources and the quantification of their contribution to the urban
environment is a necessary input for policymakers to reduce the air pollutionimpacts. The association between
the PM sources and the oxidative potential (OP) is also akey indicator for evaluating the ability of PM sources to
induce in-vivo oxidative stress and lead to adverse health effects, which becomes an emerging metric in the
Directive on ambient air quality (22024/2881/EU). Most studies in Europe have focusedon PM and OP sources
in the short term, for only 1 or 2 years. However, the efficiency of reduction policies, trends, and epidemiological
impacts cannot be properly evaluated with such short-term studies due to a lack of statistical robustness. Here,
long-term PMyo filter sampling at the Grenoble (France) urban background supersite and detailed chemical
analyses were used to investigate decadal trends of the main PM sources and related OP metrics. Positive matrix
factorization (PMF) analyses were conducted on the corresponding 11-year dataset (Jan 2013 to May 2023,n =
1570), enlightening the contributions of 10 PM sources: mineral dust, sulfate-rich, primary traffic, biomass
burning, primary biogenic, nitrate-rich, MSA-rich, aged seasalt, industrial and chloride-rich. The stability of the
chemical profile of these sources was validated by comparison with the profiles retrieved from shorter-term (3
years) successive PMF analyses. A Seasonal-Trend using LOESS decomposition was then applied to evaluate the
trends of these PMzo sources, which revealed a substantial decrease inPMio (-0.73 pg m-2 yr-1) as well as that of
many of the PMyo sources. Specifically, negative trends for primary traffic and biomass burning sources are
detected, with a reductionof 0.30and 0.11 pg m- yr-1, respectively. The OP PMao source apportionmentin 11
years confirmed the high redox activity of the anthropogenic sources, including biomass burning, industrial, and
primary traffic. Eventually, downward trends were also observed for OP aa and OPprT, mainly driven by the
reduction of residential heating and transport emissions, respectively.

Keywords: PMio source apportionment, OP PMz1o source apportionment, long-term trend, Positive matrix

factorization.

1. Introduction

Particulate matter (PM) is the main atmospheric pollutant that significantly impacts human health, climate, and

the environment (Fuzzi et al., 2015; Grantz et al., 2003; Pope and Dockery, 2006), which is emitted directly or
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formed through complex processes inthe atmosphere from natural and anthropogenic gaseous precursors. The
identification of PM sources is important to investigate their composition, contribution, and evolution, which is
one necessary input for policymakers to apply strategies inreducingtheir impact. There are various methodologies
to identify these sources, where receptor models are widely used to perform source apportionment (SA) due to
their flexibility and performance. Positive Matrix factorization (PMF) is one of the most popular among these
receptor models, as it has been developed to allow SA analysis without any prior information other than the
measurement and uncertainty input matrices (Hopke, 2016). Scores of studies using PMF have been applied in
different typologies of sites over the last 15 years, with urban areas being the most common (Hopke et al., 2020;
Viana etal., 2008).

The adverse health effectsof PM can be assessed through different pathways, one of which uses the concept of
oxidative stress withinthe lung (Pope and Dockery, 2006). PM has the ability to generate reactive oxygen species
(ROS), which can cause an imbalance with antioxidants in the lungs, eventually causing oxidative stress. This
capacity is evaluated as the oxidative potential (OP) of PM (Ayres et al., 2008; Li et al., 2008; Lodovici and
Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao et al., 2018). The redox activity of PM is mainly
dependent on their compositions; nevertheless, the correlation between individual components of PM and OP is
probably not the best approach for understanding the impact of ambient PM because of their complex mixture
preventing the quantification of all components of interest (Borlaza, 2021; Calas et al., 2018; Weber et al., 2018).
Therefore, the relationship between OP and PM sources has been investigated as a more holistic approach (Bates
etal., 2018; Dominuttietal., 2023; Weberetal.,2021). The implementationsteps of suchan approach can include,
first,a PM source apportionment (SA) (usually using PMF), allowing the identification of PM sources and their
contribution to PM. Then, the relationship between OP and PM sources is investigated by performing some
regression techniques, potentially including linear and non-linear ones (Ngoc Thuy et al., 2024).

The OP of PM is becoming an emerging metric for the European regulation on air quality, included in the new
European Air Quality Directive (Directive (EU) 2024/2881) as arecommended measurement at super sitesineach
member state in order to improve the knowledge about the variability of the OP and eventually allow the
connections with epidemiological studies. Most previous studies have focused on PM and OP sources over a
relatively short period, typically less than 1 or 2 years (Borlazaet al., 2022a; Pietrodangelo et al., 2024 ; Weber et
al., 2019). Such short-term studies assess the PM and OP sources as well as their contribution, providing
information on the intrinsic OP of PMsources, allowing for the development of OP modeling (Daellenbachetal.,
2020;Vida etal., 2024) and eventually designing some public policies (Borlaza,2021). However, long-termseries
are needed both for evaluating the efficiency of such reduction policies in connection with the evolution of
contributions from sources and also for implementing epidemiological studies (Borlaza-Lacosteetal., 2024).
The present study is based on a long-term measurement program conducted in the city of Grenoble (France),
resulting from a sustained collaboration between the local network (Atmo AuRA), the French Reference
Laboratory for Air Quality Monitoring (LCSQA), and the Institute of Environmental Geosciences (IGE) to
investigate long-term evolution of PMzo sources and OP in the PMa1o as well as their tendencies in the urban
background of the city. Here, we assessed these source contributions from daily ambient PM1o samples obtained
from2013t02023 (n=1570) usingthe EPA PMF model at this site selectedas one of the French urban supersites
for the new EU 2024/2881 Air Quality Directive. The database was augmented using imputation techniques in

order to fill some of the gaps in the data, relative to metallic trace elements. Since PMF is rarely applied to such
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a long-term database, several evaluations of the validity of solutions were also implemented. The PMF-derived
PMuo sources were then used to perform OP SA from 2013 to 2022 (n=1570). The trend of PMzo concentration,
of the PM1o sources, and the OP measurements are eventually discussed in relation to several potential factors of

influence.

2. Methodology
2.1. Sampling site

PMy1o daily samples were collected at an urban background site (Grenoble - Les Frénes), in the southern area of
Grenoble, France (45°09'41" N, 5°44'07" E). This city is known as the French Alps' capital, sprawling over 18.13
km?2 with about 154,000 inhabitants in 2023, but nearly 500,000 within the larger urbanized area (about 15 km
radius). With an average altitude of about 200 masl, the city sits within a complex mountainous geomorphology
and is surrounded by three mountain massifs: Chartreuse, Vercors, and Belledonne (Figure 1). A pendular wind
regime between the three valleys of the basin regulates the ventilation of the atmosphere, with frequent thermal
inversion during cold periods, leading to the accumulation of pollutants. The air quality is monitored at several
sites in Grenoble by the regional agency (Atmo AuRA), including the urban background site of this study, which
is equipped with a large array of instruments. Particularly, the chemistry of PMzo collected on filters has been
speciated at this site since 2008, within several programs, including the CARA program from the French Ministry
of Environment (Favez et al., 2021) and several research programs such as QAMECS (Borlaza et al., 2021), or
SOURCES (Weber etal., 2019). Many aspects of air quality in Grenoble were reported for this site, including the
characteristics of secondary anthropogenic PM fraction (Baduel et al., 2009, 2012; Favez etal., 2010; Tomaz et
al., 2016, 2017), of the biogenic PM components (Brighty et al., 2022; Samaké et al., 20194, a), as well as the PM
OP (Borlaza, 2021; Dominutti et al., 2023; Weber et al., 2021). Seweral studies of one-year PM sources
apportionmentwere also performedin 2013 (Srivastavaet al., 2018) and2017-2018 (Borlazaetal., 2021). Despite
the difference ininput dataand periods of the studies, similar main sources of PM were quantified in both studies,

including residential heating, traffic, and secondary inorganic aerosol (SIA).

o
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Figure 1. The sampling site is located in the Southeast of France (left figure), surrounded by 3 mountains massifs
(Vercors, Chartreuse, and Belledonne). Background map: ESRI satellites.

2.2. Sampling and chemical analyses
2.2.1.PM,, and their inorganic and organic composition

The daily PM1o sampling was performed every third day from 02/01/2013 to 28/05/2023, on 150 mm-diameter
quartz fibre filter (Tissu-quartz PALL QAT-UP 2500 diameter 150 mm) using high-volume samplers (Digitel
DA80, 30 méht). A weekly PM1o sampling was conducted during the same period using a low-volume sampler
(Partisol, 1 m3h-1) onto 47mm diameter quartz fibre filters (Tissuquartz PALL QAT-UP 2500 diameter 47 mm).
The processes of preparation, handling, and storing filters, in order to guarantee optimum quality for chemical
analyses were presented in Borlaza et al. (2021). Field blank filters were also collected (about 8-10% of the total
samples) to estimate the detection limits and evaluate the filter contamination during the overall handling and
analysis processes.

The daily PMz1o samples (n=1570) and field blanks were analyzed for elemental carbon (EC) and organic carbon
(OC), major ions (Cl-, NOs-, SO42-, Na*, NHs*, K*, Mg?*, Ca?*), methanesulfonic acid (MSA), anhydrous sugar
and saccharides (levoglucosan, mannosan, arabitol, mannitol), and trace elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb,
Sh, V, Zn). However, the concentrations of the daily trace elements were analyzed only in 3 periods, including:
(1) from January 2nd, 2013 to December 31st, 2013 (n=122), (2) from February 28th, 2017 to March 13th, 2018
(n =125), (3) from June 30th, 2020 to June 18t", 2021 (n=115). The weekly samples and blanks were analyzed
for trace metal concentrations for the whole sampling period (n = 842).

All analyseswere previouslydescribedin detail (Borlazaet al., 2021). Inbrief, EC and OC analysis was performed
using a Sunset Lab analyser with the EUSAAR?2 thermo-optical protocol. The eight major ionic components and
MSA were analyzed, after aqueous extraction of the filters using orbital shacking, by ionic chromatography using
an 1CS3000 dual-channel chromatograph (Thermo-Fisher) with a CS16 column for cation analysis and an AS11
HC column for anion analysis. The anhydrous-sugar and saccharides analyses were performed on the same water
extract by an HPLC method using PAD (Pulsed Amperometric Detection) (model Dionex DX500 + ED40) with
Metrosep columns (Carb 1-Guard+A Suppl5-150+Carb1-150) in the period before the year 2017. From 2017 to
the present, the measurement with ICS 5000 with pulsed amperometric detection (HPLC-PAD) was performed
following the CEN method (European committee for standardization, 2024). The analysis is isocratic with 15%
eluent of sodium hydroxide (200 mM), sodium acetate (4 mM), and 85% water at 1 mL min-L,

The daily and weekly metals were measured by Inductively coupled plasma mass spectroscopy (ICP-MS) (ELAN
6100 DRC Il PerkinElmer or NEXION PerkinElmer). The measurement was performed on the mineralization of
a 38 mm diameter punch of each filter, using 5 mL of HNO3 (70 %) and 1.25 mL of H20> for 30 minat 180°Cin

a microwave.

2.2.2.OP analysis

Two complementary OP assays, including the two probes ascorbic acid (AA) and dithiothreitol (DTT) were
performed on the same filters with PM1o components analysis (from 02/01/2013 to 28/05/2023, n= 1570). Filter
samples are extracted using a simulated lung fluid which is the mixing of Gamble and DPPC
(dipalmitoylphosphatidylcholine) solutions, during 1h15 at 37°C, pH 7.4, creating a physiological environment
forthe extraction(Calasetal., 2017) . The AA method quantifies the consumptionofascorbic acid,an endogenous
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antioxidant in the lung, by PM and was describedin Calas etal. (2017,2018). The reaction mixture (extract + AA)
was transferred to UV-transparent 96-well plates (CELLSTAR, Greiner-Bio), and the residual AA was measured
at 265 nm with a TECAN Infinite M200 Pro spectrophotometer. The AA consumption rate (nmol min-t) reflects
the capacity of PMioto catalyze electrontransfer from AA to molecular oxygen.

DTT assay relies ondithiothreitol, achemical surrogate for cellular reducing agents, allowing for emulation of in
vivo interaction among PMuo and biological reducing agents (for example, nicotinamide adenine dinucleotide
(NADH), nicotinamide adenine dinucleotide phosphate oxidase (NADPH)). After incubation of the PM
suspension within the lining fluid with DTT, the remaining DTT was titrated with 5,5'-dithiobis-(2-nitrobenzoic
acid) (DTNB) to form5-mercapto-2-nitrobenzoic acid (TNB). Absorbance at 412 nm (TECAN Infinite M200 Pro)
in 96-well plates provided the concentration of unconsumed DTT, from which the DTT consumption rate
(nmol min) was calculated. The batches were standardized using a common control (lab’s rooftop filter analysis
for every batch) to ensure consistency between batches.

After analysis, the OP activities were blank subtracted and then normalized using the PM1o mass concentration
and the sampling air volumes. The mass-normalized OP (OP™, nmol min-! pgt) represents the intrinsic OP of 1pg
PM, while the volume-normalized OP (OPY, nmol min-t m-3) represents PM-derived OP per m? of air. Each sample
is analyzed in triplicate for AA and triplicate for DTT, respectively. Consequently, the OP values presented in the

study are the mean and the standard deviation of these replicates.

2.2.3. Vertical temperature and other ancillary measurements

Vertical temperature and humidity were measured every 30 minutes from November 2017 to May 2023 using
Tinytag TGP-4500 from Gemini Data Loggers. A Stevenson Type Screen protects each Tinytag loggers from
radiant heat (direct sunlight). Sensorsare installed at aminimum of 3m from the ground. The measurements have
been performed at different elevations of the Bastille hill, located a few hundred meters from the city center
(5°43'37.0"E, 45°11'40.8"N), including z =230, 309, 496, 916m altitudes.

Further, measurement of the PM1o mass was conducted (hourly) using tapered element oscillating microbalances
equipped with filter dynamics measurement systems (TEOM-FDMS) at the same site as the filter collection. The
PM concentration used in this study is the 24-hour average concentration, which is associated with the days of
filter-based sample measurement (from 02/01/2013 to 28/05/2023).

2.3. Multivariate imputation by chained equations (MICE)

The daily concentration of metals was only accessed in some periods, with the number of samples being 362 of
the total of 1570 samples, whichwould severely limit the size of the inputs for the PMF processing. We used the
weekly concentration measured over the whole period to estimate the missing daily data using an imputation
method. The daily concentration of metals was imputed by using the MICE algorithm implemented with
multilinear regression (Azur et al., 2011). These values were modeled conditionally depending on the observed
values of the daily PMz1o and PM1o components concentration (i.e., weekly concentration, PMzo, and PMuo
components concentration). These components are OC, EC, MSA, Levoglucosan, Mannosan, Polyols, NO3-, SO
, Na*, NH4*, K+, Mg?*, Cl-, Ca2*. The data preparationand imputation processes are implemented through 4 main
steps, as presented in S1 and Figure S1, Supplement. The validation of this imputation is shown in Table S1 and
Figure S2.
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2.4, Persistent inversions detection

Thermal inversion occurs when the vertical temperature gradient between the ground-based and higher-altitude
stations is positive. However, this constraint is restrictive and limits thermal inversion detection, especially when
the calculationis on average daily temperature (Largeronand Staquet, 2016). Hence, the persistent inversionis

detected, as discussed in Largeron and Staquet (2016), for days with :
Tog16— T, To16— T
average ( 916AZ 230)Daily > Mean( 916AZ 230)Wimer )
for more than 72 consecutive hours
with:
Ty16 — T3 iSthe difference betweentemperature at ground-base station (z = 230maltitude) and at high-elevation
station (z=916m);
Az is the difference between the height of high and low elevations;

% . is the bulk temperature gradient between z=230and z =916m;

Mean (T916_ T230

) . is the mean bulk temperature gradient in wintertime (from November to March).
Az Winter

2.5. Positive Matrix Factorisation (PMF)
2.5.1.PMF input

EPAPMF5.0 (Gary Norrisetal., 2014) was used to identifyand quantify the PM1osources based on the observed
concentrations and their related uncertainties. The concept of PMF is to use the weighted least square fit method
and apply a non-negative constraint with the weight calculated based on analysis uncertainties (Paatero and
Tappert, 1994) (Eq. (S1), Supplement S2). In this study, the input matrix of the PMF comprises 25 chemical
species, including PMyo (set as the total variable), carbonaceous fractions (OC*, EC), ions (Cl-, NOz-, SO42-, Na*,
NH4*, K*, Mg?*, Ca?*), organic tracers (MSA, levoglucosan, mannosan, polyols) and trace metals (As, Ba, Cd,
Cr, Cu, Ni, Pb, Sh, V, Zn). The trace metals were the daily measured metals in some periods (2013,2017-2018,
2020-2021) and the daily imputed metals. The OC* (=OC minus the sum of the carbon mass from the organic
tracers used in the input variables) was used to avoid considering twice the mass of C atoms in organic markers.
Polyols were calculated as the sum of arabitol and mannitol, supposing that their originis similar (Samaké et al.,
2019a). The input uncertainties were calculated based on the concentrations and the uncertainties in the analysis
(Gianini et al., 2012; Waked etal., 2014). Details on the calculation of OC* and uncertainties of PMF input are
presented in Section S3, Supplement. The selection of the input variables is guided by our previous yearly PMF
studies at this site (Borlazaetal., 2021; Srivastava etal., 2018; Weber et al., 2019).

2.5.2. Set of constraints

The application of PMF constraints is recommended in the European guide on air pollution source apportionment
with receptor models (Belisetal., 2014) to avoid mixing between some factors and reduce the uncertainty of the
rotational ambiguity. The constraints used in this study are also based on the previous PMF studies in Grenoble
(Borlazaetal., 2021; Srivastava etal., 2018; Weber etal., 2019) and are detailed in Table S3.
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2.5.3. Choice of the final PMF solution

Seweral solutions, including those from 4 to 11 factors, were investigated to determine the optimal output. This
selection is based on the ratio of Qtre /Qronust (eValuating the outlier's effect), the clarity of the chemical profile,
the contribution of factors to PMuo, the correlation between measuredand predicted concentration, and the stability
of the solution. This stability was evaluated using the bootstrapping (BS) and displacement (DISP) methods. BS
analysis randomly resamples the data observation matrix and uses it to run a new PMF. The base-run and boot-
run factors are matched if their correlation exceeds the threshold (generally chosenat 0.6). DISP estimates each
species' uncertainty in the factor profile by fitting the model many times until this variable turns displaced (upper
or lower) from its fitted value. The details of the set criteria for validation are presented in S4.

To evaluate the stability of the PMF solution over time (including possible changes in the chemical profiles of the
sources), we also implemented separated PMF SA for every successive period of 3 years (2013-2016, 2017-2020,
2021-2023) and then we investigated the homogeneity of the chemical profiles by using the Pearsondistance (PD)
and standardized identity distance (SID) metrics (Belisetal., 2015). The chemical profiles of PMFsolutions every
3 yearsand 11 years, and those published in Borlaza etal. (2021) are compared to assess the homogeneity of the

chemical profiles.

2.6. Regression techniques for PM;, OP SA

The regression technique is applied to apportion OPY (AA, DTT) and PMF-derived PM1o sources' contribution, as
expressedin Eq.2. Principally, OPY (nmol mint m-3) is treated as a dependent variable, and PMF-derived PMio
sources' contribution (ug m-3) are independent variables. The OP SA methodology in this study follows the
methodology reported by Ngoc Thuy et al. (2024).

i=1

0P, = ZOP}n*PMi o @)
14

Where:

OP, is the volume-normalized OP (nmol min-t m-3)

p is the number of PMF-derived PM1o sources

0P is the regressionslope, denoted as the intrinsic OP of source i (nmol min-t pgt)

PMt is the contribution of sourcei to PM1o (g m=3)

e is the residual of the regression technique (nmol min-t m-3)

The appropriate regressiontool is selected based on the collinearity among independent variables and the variance
of regression residuals (Ngoc Thuy et al., 2024). The collinearity among PMF-derived sources was tested using
the variance inflationfactor (VIF), which is calculatedusing Eq. (S3) in Supplement S2 (Craney and Surles,2002;
O’Brien, 2007; Rosenblad, 2011). The variance of the regression residual is assessed using the Goldfeld-Quandt
test (Goldfeldand Quandt, 1965) to investigate if the regression residual varies by the value of the dependent
variable (OPV). The most appropriate regression method is selected among a wide choice of possible tools
(including ordinary least square, weighted least square, positive least square, Ridge, Lasso, random forest, and
multiple layer perceptron), followingthe methodology developed by Ngoc Thuy etal. (2024). Itis performedwith
considering the characteristics of the dataand comparing the accuracy metrics (R-square, root mean square error,

and mean absolute error) for each of them. For instance, if the regression residual is constant (homoscedasticity),



252
253
254
255
256
257
258
259
260

261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282

283

284
285
286
287
288

the model ordinary least square (OLS) and Positive least square (PLS) are satisfactory. On the other hand, if the
regression residual varied with the dependent variable (heteroscedasticity), the models incorporating some sort of
weighting are chosen (including weighted least squares (WLS) and weighted positive least squares (WPLS)),
where the weighting is the standard deviation of replicated OP analyses.

The most appropriate model was trained by randomly choosing 80% of the dataset and validated with the
remaining 20%. The model was run 500 times to ensure the robustness of the results, especially considering the
remarkable seasonality of many components in the dataset. The contributionto OP of each source is calculated
by multiplying its contributionto PM1o with the arithmetic mean intrinsic OP (or regressionslope) of the 500

iterations.

2.7. Seasonal -trend using LOESS decomposition

Seasonal-trend decomposition using LOESS (SLT) was developed by RB Cleveland etal. (1990) and is a robust
method for decomposing time series into trends, seasonality, and residuals. This method uses LOESS, a method
for estimating the non-linear relationships to decompose a time series. In our case, we used monthly average
concentrationas input data in order to have a more robust data set, smoothing high variability noise. The trend
component is first calculated by applying a convolution filter to the data. Then, this trend is removed from the
series. Finally, the average of this detrended in each period is the seasonal component. The residuals can be
explained neither by trend nor by season. The STL is an iterative model that uses LOESS to smooth seasonal and
trend components to obtain the minimum residuals. Further, in STL decomposition, the outliers in the data are
given less weight in the estimation of trend and season. The STL model is described in the equation below:

ye= S +T,+R, (t=1,2,...,n) (3)
where, inour case, y, is the monthly contribution of PMF-derived sources, S, is the seasonal component, T; is the
trend component, and R, denotes the residual component. The seasonal frequency was chosen6 months before
and 6 months after the evaluated month (seasonal frequency = 13 months) to estimate the yearly trend cycle.
Hence, the first and last 6 months of the decomposition time series were removed from the results to prevent edge
effects.
The long-termtrend of PMzo sources was accessed by applying the STL model to the monthly contribution of
sources to PMio (output of PMF). The fit line of the trend was assessed by using ordinary least squares linear
(OLS). The annual rate change of the trend is the slope of the fit line multiplied by 12 months (g m-2 yr-t/ nmol
min-t pgt yr-t). The STL decomposition and the fit line of the trend were performed in Python 3.9 using the
package "statsmodels" (Seabold and Perktold, 2010).

3. Results and discussion
3.1. Evolution of PM,, concentration and chemical components

The annual average concentration of PM1o, considering all available daily measurements, is 19.0+10.6 ug m- for
the whole studied period (2013-2023). The highest annual concentration is observedin 2013 (24.4+13.7 ug m3),
and the lowest is in 2021 (15.31£9.8 yg m-3). The number of days with concentrations surpassing the European
standard daily thresholds (40 ug m-3) is 176 days in 11 years, representing 4.6% of the total observed days, which
are principally found in the cold season (Nov, Dec, Jan, Feb, Mar).
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The PMyo main components are organic matter (assuming OM = 1.8*OC (Fawez et al., 2010)), representing on
average over the overall period 41.3+8.0% of PM1o mass concentration, followed by dust (9.6+ 4.4%), nitrate
(NOs-, 7.5+6.2%), non-sea salt sulfate (nss-SO4%, 7.442.4 %), elemental carbon (EC, 5.5+2.5%), ammonium
(NHa4*, 3.9+2.0%), sea salt (Na* and CI-, 1.7£0.8%) and other non-dust elements (Cu, Pb, V, Zn, representing
0.2+0.1%). These main composition fractions are estimated using the formula as shown in S2, Eq. (S4). The
monthly evolutions of PM1o and its main chemical components for the whole period are shown in Figure 2. The
maximum concentration of PMio was observed in winter months (December, January, and February),
corresponding to the highest concentration of OM and EC (7.82+3.11 pyg m-3 and 1.0940.74 g m-3, respectively).
Nitrate concentrations are higher in the middle of winter and the early spring, corresponding also with the high
concentrations of ammonium (1.63£1.87 and 0.78+0.62 g m-3). The agricultural activities (especially manure
spreading) could explain this high contribution in spring under humidity and temperature conditions favoring the
condensation of ammonium nitrate in the particulate phase. Nss-sulfate concentrations are more abundant in the
warmer season (summer), where the photochemical productionis favorable. No clear seasonal pattern could be
observed for other components (seasalt, dust, non-dust, estimated as described in section S2), suggesting that the
emissions of these components are stable for the whole year. At first glance, decreasing trends appear visible for
PM1o and OM, EC, NOsz-, NH4*, and non-dust components, while sea salt, dust, and nss-SOs?- do not seem to
present significant trends. With chemical components coming from several emission sources, an advanced
analysis, including a PMF model followed by an STL decomposition, was performed to assess the trend of PMuo
sources. The result of the PMF model is presented in section 3.2, and the tendencies of PM1o sources and OP are

shown in sections 3.3 and 3.4, respectively.
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Figure 2. The average monthly evolution of PM 1o and its main components from 2013 to 2023. The line represents the
monthly average concentration of PM o measured by TEOM-FDMS.
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3.2. PMyq sources apportionment
3.2.1. PMF chemical profiles

Using a unique chemical profile for each of the sources for such a long-term period can potentially limit the
assessment of its evolution (Borlaza et al., 2022a). To evaluate such a phenomenon in our case, we investigated
the chemical profile and contribution of PMuo sources for three distinct periods (2013-2016, 2017-2020, 2021-
2023) and comparedthe results with those for the full 11-year period, aswell as to the results presentedin (Borlaza
et al. (2021) for the year 2017. Particularly, we checked the similarity of the chemical profiles of these PMF
solutions using PD and SID metrics (Belisetal., 2015).

For each SA, the PMF solution was tested from 4 to 11 factors and validated by the criteria presented in section
S4. The results of these validations (Qtrue/Qronust, boOtstrap run, displacement run, and statistical validation) are
presentedin S5, Tables S4, S5 and S6. The runs of 4 to 9 factors returned at least one merging factor, and the
solutionwith 11 factors ledto a factor without geochemical identity. Finally, foreach PMF tested (11 years, 2013-
2016,2017-2021,2022-2023), the best solutionincludes 10 PMuo sources, with mineral dust, sulfate-rich, primary
traffic, biomass burning, primary biogenic, nitrate-rich, MSA-rich, aged sea salt, industrial, and chloride-rich.
The similarity of the chemical profiles is presented in Figure 3. Most of the factors (i.e., aged sea salt, mineral
dust, primary biogenic, biomass burning, primary traffic, industrial, nitrate-rich, and sulfate-rich) present quite
homogenous chemical profiles over the 3 successive periods, indicating that these source profiles are quite stable
during the full 11-year period and similar comparedto sources reported in Borlaza et al. (2021). The MSA-rich
and chloride-rich sources are the most divergent but are still within the limit of the accepted PD and SID range;
howewer, their standard deviations for PD are slightly higher than for the other sources (Figure 3). This is due to
differences inthe contributions of SO42-in the chemical profile of MSA-rich, which varied from 6 % to 17%, and
that of ClI-(73% - 83%) in the chloride-rich factor. In a previous study, Weber et al. (2019) also reported that the
proportion of SO42-in the MSA-rich source can significantly vary across French sites, from 6% to 24%. The
chloride-rich source in our study (previously named sea/road salt in Borlaza et al. (2021) is essentially composed
of a high proportion of Cl-,with less than 10% of Na* and some metals (Cu, Mn, Ni, V). This source is detected
in other alpine valley environments (Glojek et al., 2024), with asimilar temporal evolution as here. Since chloride
depletion from the particulate phase can greatly depend onsolar radiation, relative humidity, and temperature, the
chemical profile of this factor canvary on different time scales. This source was also observedto be heterogeneous
in the three neighboring sites investigated within 15 km in the previous study in Grenoble (Borlaza et al., 2021).
Newvertheless, it should be noted that it represents only avery minor fraction of the PM3o total mass (about 1%).
With these stabilities of the chemical profiles over the years, the solutionfor the 1 1-year SA isconsideredsuitable
for further data analyses in this paper. In the next section (3.3.2), we investigate how the contribution of these

sources to total PM1o loadings changed over time.
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Figure 3. Similarity plots of the chemical profiles of the solution for the 11-year SA against the 3 SA solutions every 3
years, and those presented by Borlaza et al. (2021). The shaded area (in green) shows the limit of the homogeneous
chemical profile. For each point, the error bars represent the standard deviation when comparing all pairs of SA
solutions (number of pairs in parentheses in the legend).

3.2.2. Variations of the source’s contributionin the 11-year PMF SA

As presented in Figure 4, the optimal PMF solution for the 11-year time seriesidentifies 10 PM1o sources, with
the contributions of mineral dust (20.9%), sulfate-rich (19.7%), traffic (16.0%), biomass burning (13.5%), primary
biogenic (10.7%), nitrate-rich (7.2%), MSA-rich (6.2%), industrial (2.2%), aged sea salt (2.5 %), and chloride-
rich (1.0%). The chemical profile and contribution of each source are shown in Figures S3 and S4, respectively.
Even though the chemical profiles are homogenous, the contributions of these sources show minor differences
from those reported for this same site by Borlaza et al. (2021) and Srivastava et al. (2018), partly because of the
differences inthe respective periods of the studies. Howewver, the main sources are similar, i.e., SIA (nitrate and
sulfate-rich), mineral dust, biomass burning, and primary traffic. Similar general results are also presented for
Swiss Alpine (Ducret-stichand Tsai, 2013), French Alpine (Weber et al., 2018), and Slovenian Alpine areas
(Glojek et al., 2024), showing biomass burning and secondary inorganic aerosols being the most abundant
contributions to PM mass. Primary biogenic and MSA-rich sources are the biogenic sources rarely reported in the
literature; however, they account together for 17% of total PMz1o mass on average in our study, which is in line
with those reported in urban background sites in France (Samaké etal., 2019b; Weber et al., 2019). The absolute
PMuo source contributions are also compared to the average annual concentration of PM1o mass to demonstrate
the ability of the PMF model to reconstruct the PM1o mass. The difference between observed and reconstructed
PMao concentrations on the 11-year average is about 1 pg m-2 (5 %), with no more than 2 pg m- for any single

year, demonstrating that the PMF model performs well at reconstructing the PMz1o concentrations.
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Figure 4. The absolute average contribution of sources to PM ;o for every year and the 11 years (total), and the
concentration of PMyq (blue circle).

Significant trends in source contributions over this 11-year period are detected (and discussed in section 3.3);
nevertheless, the main contributors to the total PM1o mass do not change, with mineral dust, biomass burning,
sulphate-rich, nitrate-rich, and primary traffic being the main contributors to PMio. The highest PMuo
concentrations (observed inwinter/spring 2013 and 2015) are associated with the highest contribution of SIA and
biomass burning sources. On the other hand, the relative contribution of SIA and biomass burning showed a
negligible difference (varied from 0.3 to 4%) between these years compared to 2014 and 2016 (Figure S5). The
lowest PM1o annual concentrationwas detected in 2021, notably when the third COVID-19 pandemic lockdown
restrictions applied in France. In addition, the relative contributions (see Figure S5) showed only small changes
compared to those in other years, with an increasing contribution of primary biogenic sources in 2021 (4%
comparedto 2020), and only a very light decrease inthe anthropogenic sources.

The decrease in PMz1o annual average concentrations observed since 2017 is associated with decreases in the
contribution of some of the anthropogenic PMio sources. Howewer, using yearly averages for trend analysis may
prevent a proper understanding of the variation in time and of the estimation of the trends based on monthly

averages, which might be more informative, as discussed in section 3.3.

3.3. Trends insources' contributions
3.3.1. Mean rate change in the contribution of PM,4 sources

The source contribution trend analysis was achieved through STL deconwvolution (see section2.6). These trends
for all sources over the full period of the study are presented in Table 1. In this table, the part labeled "Rest"
represents the difference between the total PM1o measured mass and the sum of the mass of all PMF-derived
factors inorder to assess any trend of the unresolved part of PMzowithin our SA study.

PM1o concentrations present adownward trend from 2013 to 2023, with an average diminutionof 0.73 pg m-3 yr-
1(3.9%) (S6, Figure S6). Such a downward trend of PM1o in Grenoble is in line with that observed in other urban
sitesin Europe (Aas et al., 2024; Borlaza et al., 2022a; Caporale et al., 2021; Colette et al., 2021; Gama et al.,
2018; Lietal., 2018; Pandolfietal., 2016).

The reduction of PMzo in Grenoble during this period is significantly larger than that in 30 rural sites of the
European Monitoringand Evaluation Programme (EMEP) from 2000 to 2017, which show reductions of PMig
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from-1.5%t0 -2.5% (-0.0081t0 -0.58 ug m-3) (Colette etal.,2021). However, the results of our study are highly
coherent with results from Aas et al. (2024), presenting areduction of PMio in 2 rural sites in France (La Tardiere
and Revin) of -3.5% yr-! between 2005 and 2019. The reduction of PM in this Grenoble site, as an urban site,
being higher than those at the rural sites, is due to the changes in specific emission activities at the site. While in
the rural sites, the PM emissionare influenced by long range transportactivities, the PMat the urban site is usually
largely impacted by different local activities (Borlazaet al., 2022b). Further, France is amongst the EU countries
with the highest reductiontrend, as presented by Aas etal. (2024).

The anthropogenic sources, suchas primary traffic, sulfate-rich, and biomass burning, display the highest decrease
between 2013 and 2023 in Grenoble, with a reduction of 12.9,6.9, and 5.5% (0.37,0.25,and 0.13 pyg m-3 yr-1),
respectively. The other anthropogenic sources also present significant decreasing trends; however, these trends
are much lower (nitrate-rich: -0.11 pg m-3 yr-t, industrial: -0.02 pg m-3 yr-1). The downward trends of these
anthropogenic sources (mainly traffic, SIA, and industrial) were also underlined for other European urban sites
(Colette etal.,2021; Diapouli etal., 2017; Pandolfi et al., 2016) with various approaches. For instance, a similar
approach using PMF (albeit without organic markers) was followed by Pandolfi et al. (2016), investigating the
Mann-Kendall trend of PMF-derived sources, and reported an almost equivalent downward trend of the sulfate-
rich factor of 53% (i.e., 0.53% yr-1) between 2004 and 2014 in Spain. The decreasing trends of primary traffic,
domestic biomass burning, and industrial emissions are potentially influenced by the reduction in primary
emissions due to various abatement strategies (as discussed in the following subsections, notably in 3.3.3 and
3.3.4).

Conversely, natural sources such as mineral dust and chloride-rich factors do not show any significant trend or
followa very weak one (aged sea salt, primary biogenic). MSA-richis the only source that displays a significant
upward trend, with an increase of 0.08 pg m-2 yr-1; further studies would be needed to relate this last increase to
changes in precursor emissions or reactivity during transport. Finally, the low evolutions in the contributions of
the natural sources demonstrate that the reductionin PMio in Grenoble is essentially related to the reduction of

anthropogenic activities, especially sources related to traffic and domestic biomass burning activities.

Table 1. Trend of PMygsources and PMy (in pug m2 yr? and % yr?).

Absolute trend Relative trend P-values R?
(ug myr-) (% yr)

Aged sea salt -0.01 -2.50 <<0.01 0.22
Biomass burning -0.13 -5.48 <<0.01 0.98
Chloride rich 0.00 1.18 0.01 0.07
Industrial -0.02 -5.36 <<0.01 0.40
MSA rich 0.08 6.63 <<0.01 0.64
Mineral dust 0.04 1.03 0.02 0.05
Nitrate rich -0.11 -8.08 <<0.01 0.94
Primary biogenic -0.01 -0.49 0.03 0.04
Primary traffic -0.37 -12.85 <<0.01 0.94
Sulfaterich -0.25 -6.89 <<0.01 0.70
PMuo -0.73 -3.89 <<0.01 0.68
Rest -0.11 -2.13 <<0.01 0.39
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3.3.2. Potential influence of meteorology

The STL deconvolution is inherently constructedto separate the yearly and seasonal variations from the long-
termtrends. While we discuss the long-term trends of the sources inother sections (3.3.1,3.3.3,and 3.3.4), it is
also interesting to evaluate the impact of the meteorology on the seasonal variations of the concentrations. It is
well known that inversion layers in the lower atmosphere are extremely important for the modulation of the
concentrations at the ground, particularly in the context of Alpine valleys during winter (Carbone et al., 2010;
Glojeketal., 2022). Inthis section, we triedto better evaluate these impacts onthe concentrations fromthe sources
of PMin the case of our time series.

This was considered with the measurements of temperature along the slopes of the mountains very close to the
city center (as described in section 2.2.3), for the winter periods of 2017-2023. It has been previously shown by
Allard etal. (2019) that such measurements are representative of the temperature inthe valley, despite the potential
influence of wind slopes. We particularly considered the temperature gradient over the first 700 m above ground
and the number of days with persistent inversion, as defined in section2.2.3.

The analysis of the relationship betweenthe PMao and bulk temperature vertical gradients (AT /Az) in winter (Nov,
Dec,Jan, Feb, Mar), summer (May, June, Jul, Aug), and transitionseason (remaining months) reveals that thermal
inversion events and high PMzo concentration are mainly occurringin winter time (Supplement S7, Figure S8)
during the 5 years of the study. Periods of persistent temperature inversion were assessed based on the condition
inEq. 1, which detected 79 persistent inversiondays in series from4 to 22 consecutive days, for the winter periods
2017-2023. A meaningful correlation is obtained between PM1o concentrations and bulk temperature vertical
gradient (r reaching 0.60, p<<0.001) for these winter months and even better when considering only the persistent

inversion periods (r reaching 0.67, p<<0.001) for individual years (Table S7).

Biomass burning (n = 356)

17.5 q Persistent inversion 8 g g 8 R=0.63
@ No p-value = 0.0
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Figure 5. Daily concentrations of biomass burning to PMy,and daily temperature gradients (AT /Az) during the
winter periods (from November to March) of 2017-2023. The dotted red line is the linear regression fit. The blue
circle symbols denote days when persistent inversion does not occur, and the orange multiple symbol denotes days
when persistent inversion occurs.

The distribution between the daily PM1o concentration and daily average AT/Az in winter months revealed that

the majority of PMz1o concentration peaks (in excess of 40 ug m3) occur during the persistent inversion days
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(Figure S9). However, it also shows that a few high PM1o concentrations could be found on the days without
persistent inversion; meanwhile, the days with persistent inversion do not always have high PMzo concentrations.
This result is not surprising since the concentration of PM1o is not only associated with thermal inversion events
but also depends on other meteorological conditions (precipitation, heat deficit) and the variation of pollutant
emissions (Carbone et al., 2010; Largeron and Staquet, 2016).

Interestingly, the impact of persistent inversiondays on PMzo concentrations from the residential biomass burning
source is larger than that for other sources or total PMao (Figure 5), with a higher correlation (0.63). In addition,
the contribution of this source is systematically lower during non-inversion days, and large concentrations are
essentiallymade during persistentdays. The large impact of the inversions on the local sourcesis confirmedwhen
comparing the source contribution of the inversion days vs non-inversion days (Figure 6). This figure shows both
the large increase inaverage PMio concentrations and also the contributions of the local sources (emissions from
residential biomass burning, traffic, industries, mineral dust probably from resuspension) in the cases of inversion
days during winter. Conversely, long-range transport sources (sulfate-rich, nitrate-rich) tend to be less important
during these inversion days. A similar pattern is observed for the relative contribution of sources to PM (Figure
S.10), in which the significant contribution of biomass burning, dust, industrial, and primary traffic is detected
during inversion events. The trends of the two most important local anthropogenic sources (domestic biomass

burning and traffic) are further discussed in the next sections.
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Figure 6. Contribution of the different sources to the PM;, composition for days with persistent inversionvs non-
inversion days of the winters 2017-2023.

3.3.3. Trend in biomass burning contributions

The trend of the domestic biomass burning PMz1o concentrations is investigatedvia an STL decompositionanalysis
on this PMF-derived source (Figure 7), indicating a statistically significant decreasing trend from 2013 to 2023

(p-values <<0.01). The seasonal estimate shows the highest values in the winter season (Nov, Dec, Jan), with a
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visual trend to a smoothing of the peak concentrations; conversely, from Mar to Sept, the seasonal variations
showed constantly lowest values. Extreme residual values were detected in the winter months of 2016, 2017, and
2021, explainedby high-concentrationepisodesof PMuo, where the concentration exceeded the European standard
for PM1o concentrationin 24 hours (PMzo concentration varied from 50 to 78 pg m-3). The linear fit line of the

trend is highly significant with R2=0.97, with a reduction of 134 ngm= yr-1(-5.5% yr1).
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Figure 7. The season-trend (STL) decomposition of biomass burning

This reduction of biomass burning concentrations in Grenoble is 4 times higher than the results from along-term
study (2012 to 2020) in a French rural site - (Observatoire Pérenne de I'Environnement, OPE) (Borlaza et al.,
2022a) - estimated at 33 ng m3 yr-over the same period. Besides the study of Borlaza et al. (2022a), there are
no previous PMF studies describingany trend of biomass burning factors. Nevertheless, similar trends were found
for concentrations of biomass burning tracers. In particular, Font et al. (2022) presented a downward trend of
PM10 concentration fromwood burning (areduction from 1.5 t0 3.8 % yr1) inurban sites in the United Kingdom
from2010t0 2021, by calculatingthe emissionofwood burning from aethalometer measurement. Similarly, from
2002 to 2018 in Norway, a downward trend of 2.8% yr-*was also detected for levoglucosan (Yttri et al., 2021).
Additionally, Colette et al. (2021) modeled the trend of the emissions from different activities in Europe, showing
that the trend of PM1o heating emissions was decreasing in the period 2000-2017, with mean rate values varying
from 0.8 to 3.3% yr- 1 for 30 European countries (EMEP monitoring sites). Even though the chemicals and the
period of these studies differ, a decreasing trend is generally observed among European cities, including the one
investigated here. Interestingly, the biomass burning source in Grenoble shows the strongest decreasing trend,
with areductionof 5.5% yr-1.

Since the biomass burning sources in Grenoble are related to residential heating, the observed reduction of the

concentrations from this source could be linked to household behaviors (including appliance renovation) on top
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of the changes in meteorological conditions, lowering the overall heating demand. The average annual biomass
burning sources PMF-derived is compared to the local PM1o emission inventory for residential heating (tonnes)
in the Grenoble metropolis, estimated by the regional air quality monitoring agency (Atmo AuRA), to confirm

the trend of biomass burning (Figure 8). This emission inventory has been available until 2022.
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Figure 8. Comparison between annual average PM o emission inventory based on the quantity of wood sales (in grey)
in the Grenoble metropolis and the yearly average PM, concentrations from the PMF biomass burning factor (in
green).

Except for the year 2020, the annual average of biomass burning agreed with the emission inventory,
demonstrating the consistency between the sources observed by the PMF model and the local inventory emission
data. Since 2015, the Grenoble metropolis has set up an air-wood bonus to encourage households to renew their
individual wood-burning appliance (fireplace or stowe). It aims to replace all open fireplaces with closed
appliances in October 2024. The downward trend of biomass burning concentration could then be considered as

partly due to the implementation of dedicated action plans at the regional scale.

3.3.4. Trends in traffic exhaust emissions

Similar to the time series of biomass burning concentrations, the traffic contribution was subjected to specific
STL analysis (Figure 9). A significant downward trend of the concentrations of PM from traffic emission is
detected witha reduction of 374 ngm-3 yr-1 (12.9% yr (p-value << 0.01). This reduction is almost 3 times larger
than that of the biomass burning concentrations. Traffic concentration before 2017 also showeda clear seasonality
with maxima inwinter, which nearly disappeared from 2018 onward. It is striking that the same behaviors (strong
downward trend and smoothing) are also observed for NOx concentration, another indicator of traffic exhaust
emission, which is also observed for NOx seasonal patterns (see Supplement S6 and Figure S7). Residuals show
extreme values in the same month as biomass burning in 2016 and 2017, matching the PM1o episode. The traffic
trend closely follows a linear regression fit line, with R2 = 0.94.
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Figure 9. The season-trend (STL) decomposition of PMF-derived traffic source

The downward traffic trend observed in this study is consistent with another long-term study (2012-2020) of a
rural site in France, which showed a traffic trend of -6.5% yr-1 (58% total reduction) (Borlazaetal., 2022a). This
is aligned with other results of fossil fuel black carbon in several rural sites in France (Font et al., 2025), or EC
over many rural sites in Europe (Aas etal., 2024). Additionally, our result also agrees with other studies, like that
by Pandolfietal. (2016), which indicated a downward trend of traffic sources in an urban site in Spain, with a
reduction of 5.6% yr-! (56% total reduction), which is lower than that of our study. Finally, the trend of traffic
emissionto PMz1oin30 European countrieswas modeledas reportedby Colette et al. (2021), showing a downward
trend with a reductionfrom 2.3 to 3.5% yr-1 from 2000 to 2017. As for biomass burning, the Grenoble supersite
seems then experiencing faster reductions in primary traffic PM loadings than most of others European cities.

Furthermore, the PMF-derived traffic factor was compared to the local PMuo traffic emission inventory by fuel
type (provided by Atmo AuRA), rewvealing very similar trends (Figure 10). In addition, this source is also
compared to the PMz1o emission by the transport sector (kilotonnes) over France, which was assessed from the
emissioninventorydata of CITEPA (Figure S11),also confirmingthe concomitant reductions of traffic emissions

and contributions to PM1o inambient air.
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Figure 10. Comparison between annual ave rage PM o emission inventory based on the quantity of fuel sale (red bar)
in the Grenoble metropolis and the yearly average PM ;o concentrations from the PMF-derived traffic source
contributions (black bar).

This traffic trend may be separated into three parts. Between 2014 and 2016 with a slowdecrease trend of -3% yr
- from 2016 to 2021, with an average reductionof 10% yr-1, and a mild increasing trend of approximately 3% yr-
Linthe last three years of the study. The beginning of this increase coincides withthe post-lockdownperiod, when
transportation activities were back to normal, resulting in a fairly similar contribution of traffic sources compared
to that in the pre-lockdown period.

Besides the implementation of the two versions of the Euro 6 emission standards (introduced in 2015 and 2018,
respectively), local emissionabate ment strategies decided by Grenoble municipality from 2016 onwards might be
the main drivers for the observed decreasing trends (City's low emission zone
https://zfe.grenoblealpesmetropole.fr/ last assessed: 21/05/2025).

3.4. Trends in PM;, OP sources

In this section, the sources of OP are assessed using regression techniques, which are presentedin section 2.6.
The most appropriate model is selected based on characteristics of PMF-derived sources and OPv, as shown in
section3.4.1. Intrinsic OP derived fromthe bestregressionmodel, indicating the highest redox-active PM sources,
is presented in section 3.4.2. Finally, section 3.4.3 provides the trend of OP sources, highlighting which sources
are the drivers of OP trends.

3.4.1. Selection of the most appropriate model

Following the methodology exposed in Ngoc Thuy et al. (2024), the characteristics of the dataset, including
collinearity and heteroscedasticity, are tested in order to select a satisfactory inversion model for OPprr source
apportionment (SA) and OPaaSA (Table S8). The OP SA can be applied for the 11-year PMF solution since the
source profiles have been demonstrated to be homogenous over the years. Consequently, the OP™ should be
substantially homogenous over the years (Ngoc Thuy et al., 2024), and it is unnecessaryto performthe OP SA
for each year separately. The characteristic tests indicate that the weighted positive least squares (WPLS) and
weighted least squares (WLS) could be suitable models for both OPaa and OPprt SA. The average accuracy
metrics of the testing dataset in 500 iteration runs (including R2, RMSE, MAE) of wPLS and WLS were compared
to select the most appropriate model (Table S9). Finally, WLS was chosen due to the highest R? and lowest error

for both OPaa and OPprT prediction. The comparison between observed and predicted OPaa and OPprT showed
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a good correlation between measured OP and WLS predicted OP, with R2 = 0.80 and 0.70 for OPaaand OPprr,
respectively (Figure S12 and S13), with n = 1570 for OPaa and OPpr.

In addition, the study revealed good performance of Mutiple Layer Perceptron (MLP) and Random Forest
(RF) for the training and testing datasets (Table S10). These neural network modelswere overfitting the
resultsof OP SA for the 6 Frenchsitestested in Ngoc Thuy et al. (2024) since the number of samples was
lower than 200 for individual sites. The present study confirmed the conclusion of Ngoc Thuy et al. (2024),
demonstrating that a higher number of samples improved the performance of the neural network model.
However, such non-linear models do not provide values for the intrinsic OP, which is basically the
regression slope of the regression. Since the objectives of MLP and RF are not to define a *'slope’* but to
better predict OP, therefore, the "'slopes™ of such models actually constantly vary with the input data to
ensure the best performance of the model. Since the OP intrinsic is not defined, these models cannot be
selected for the final resultsat this stage. 3.4.2. Intrinsic OP of PMF-derived sources
The intrinsic OP of 1g PMziosource (OP™nmol min-t ygt) is investigated thanks to the WLS technique, resulting
in 500 values of OP™ for each source (Table 2 and Table S11). The anthropogenic sources, including biomass
burning, industrial, and traffic, have the dominant intrinsic OPprr and OP aa, which is consistent with the study in
2017-2018in Grenoble (Borlaza, 2021) and results obtained at other French sites (Ngoc Thuy et al., 2024; Weber
etal., 2021) and EU sites (Fadel et al., 2023; Veld et al., 2023). The different ranking of the intrinsic OP of the
sources according to the two assays is also aligned with previous results (Weber et al., 2021). While intrinsic
OPaa of biomass burning is highest (0.76 nmol min-t pgt), followed by industrial (0.48 nmol min-t pg!) and
traffic (0.38 nmol mint pgt), the order of intrinsic OPprris industrial (0.52 nmol mint pgt), traffic (0.38 nmol
min- pgt) and biomass burning (0.14 nmol min-t pgt). The intrinsic OPprrof biomass burning is also lower than
that of OPaa, as reported by Borlazaet al. (Borlazaetal., 2021), suggestingthe synergistic and antagonistic effects
between some elements, quinones, or bioaerosols, decreasing the owerall intrinsic OPprt of this source
(Pietrogrande et al., 2022; Samake et al., 2017; Xiongetal., 2017).
The other anthropogenic sources, including nitrate-rich and sulfate-rich, have lower intrinsic OP than
anthropogenic sources associated with combustion (traffic and biomass burning), as reported by Daellenbach et
al. (2020). The natural sources have a negligible intrinsic OP (lower than 0.03 nmol min-! ug* for OPprrand 0.2
nmol mint ug-* for OPaa). These findings highlight the high impact of the anthropogenic sources, verified for the
owerall period 2013-2023.

Table 2. Intrinsic OPAA and OPDTT (nmol min? pg?) of PMysources (mean +std of 500 ite rations)

Source OPaa OPprr
Aged sea salt -0.02+£0.07 0.03+0.02
Biomass burning 0.76£0.13 0.14+0.09
Chloride rich -0.07+£0.09 0.01+£0.02
Industrial 048+0.14 0.52+0.08
MSA rich 0.20+0.04 0.01+0.02
Mineral dust -0.03+£0.06 0.01+0.02
Nitrate rich 0.09+£0.16 0.11+0.12
Primary biogenic 0.00+0.04 0.02+0.03
Primary traffic 0.38+£0.10 0.24+£0.07
Sulfate rich -0.01+0.08 0.09+£0.04
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604 3.4.3. Trends in OP

605  The trend of OP is first presented by the yearly average contribution of sources to OPaa and OPprt (Figure 4),
606 indicating a reduction of OP values over the years. Owerall, the yearly average of the OPaa¥ and OPprtVis
607  decreasingand reached its lowestvalues in2021 (2.41and 1.17 nmol min-1 m-3 for OPaaand OPprT, respectively).
608 From 2018 onward, both assays consistently exhibited lower OPV values than in preceding years. Although OPy
609 is calculated using PM1o concentration, implying that a decrease in PM1o concentration generally reduces OPv,
610  the contribution of sources to OP is different from that of PMuo. While dust and sulfate-rich are dominantly
611 contribute to PM1o, biomass burning is the most important contributor to OP aa (1.87 = 2.7 nmol min-tm-3), and
612 primary traffic is commonly assessed as the largest contributor to OPprt(0.71 + 0.70 nmol min-t m-3). The
613 industrial mass contributionis 10 times lower than that of the sulfate-rich. However, industrial emissions appear
614  to contribute muchmoreto OPaaand equally to OPprthanthe sulfate-richfactor. This finding was also observed
615 in 2017-2018 at the same site in Grenoble (Borlaza, 2021). This significant contribution of traffic and biomass
616  burning over the years is more evident when considering relative contribution (Figure S15). These results again
617  emphasize the importance of considering not only the mass concentration but also its redox activity in evaluating
618 the potential adverse health effects of asource of PM.

619 In addition, the temporal evolution of OPaa and OPpr7 did not exactly follow PM10 trends, especially for the
620  periodof 2016-2017 and 2019-2020. Regarding the period between 2016 and 2017, a dramatic increase in PMo
621  concentration is observed, principally due to the higher contribution of nitrate and sulfate -rich. On the other hand,
622  OPaaand OPpr7Vvalues remained fairly unchanged between 2016 and 2017. Focus on 2019 and 2020, the PM
623  concentrationand OPy values are identical (lessthan 0.001 pg m-2and nmol min't m-3 of difference, respectively),
624  while OPaaY presents a remarkable difference (A= 0.8 nmol min-t m-). Indeed, the discrepancy between 2019
625 and 2020 inOPaaY is principally attributable to a higher contribution to biomass burning, which is the dominant
626 driver of OPaaY. Overall, the downward trend of OP aaand OPprr is different from PMuo, since the driven sources
627 of OP and PM are different.
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The yearly average may not be properly representative of the trends of OP; therefore, a STL deconvolutionwas
performed for OPaa™and OPprt™ (Figures S16, S17, respectively) to investigate the trend of OP™ over the 11
years of the study. Indeed, considering the trend of the intrinsic OP™ confirms that the downward trend of some
sources leads to achange in the trend of OPaa™ and OPprT™.

An insignificant linear trend is observed for OPaa™ (fit line: R? = 0.4, p-values << 0.01), yet its average intrinsic
activity still exhibits a decreasing value, with the annual mean falling by approximately 0.002 nmol min-t m-
(2.5 %) across the study period. Interestingly, the seasonality of OPaa™ exactly matches the seasonality of
biomass-burning concentrations, pointing out that the high values of OPaa™ in winter align with biomass-burning
activities. The trend line of OPaa™ did not match the trend of biomass burning nor that of the traffic or industrial
emissions, suggesting the synergistic effect between sources, as well as the influence of the other sources outside
of the winter season, such as MSA-rich and primary biogenic, which get a high ranking of OPaa™ (Table 2).
Conwersely, the OPprt™showeda significant downward trend (R?=0.6, p-value <<0.01), witha reductionof0.005
nmol min-t pg! (6.5%) across 11 years. The seasonality of OPpr is different from that of biomass burning and
OPaa™, since biomass burning is not the main driver of OPprr (only ranked third), indicating a lower influence of
this source on OPprt™comparedto OPaa™. Interestingly, a slight increase in OPprt™ from 2021 onward is also
observed, which is associated with PMzo and traffic, suggesting that traffic emission could be the main driver for
increasing PMio concentrationand OPprt™from 2021. Overall, the relative decrease of OPprt™ exceeds that of
OPaa™ could be explained by the 4t most important contributor to these OPs. All four leading contributors to
OPprt™ showsignificant reductions, whereas MSA-rich factor, one of the top four contributors to OP aa™, has an
increasing trend. These findings again underscore that trends in OP™ are governed by the evolution of the sources
most active in each assay. Thus, the decrease in the magnitude of the OPm depends on how its dominant redox-
active sources evolve over time.

Considering the volume-based metrics (OPy), adownward trend is detected for OPaa and OPprr. PMzo decreased
by 3.9 % over the decade, which is consistently comparable to OPaaY (4.9 %) and OPpr7v (5.3 %). This good
agreement partially reflects the influence of the PM mass concentrationsince these OPy values are calculated
using PM10 concentration. However, the slight difference inthe relative downward trend could be related to the
most driven sources of OP and PM, as discussed above.

Finally, the impact of persistent inversion days on the OPV is also investigated to assess the association between
the redox activity of PM sources and thermal inversion. A comparison of the source's contributionto OPV (for
both AA and DTT) between the period with and without persistent inversions is carried out and shown in Figure
S14. The comparison confirms the larger increases in average OP aa (85.1%) and OPptt (63.8 %) compared to
that of PM10 (39.6%) for the persistent inversion periods. The higher values of OPaa and OPpr are related to the
larger increases inthe contributionof local anthropogenic sources, with BB impacting most the OP aa values while
traffic significantly influences OPprr. This result again highlights the potential effect of persistent inversionon
the PM10 source's contribution, but all the more of their redox-active properties, which could be associated with
the health-relevant metrics (Tassel et al., 2025 in progress).

Ower the decade, anthropogenic sources have driven OP, with biomass burning impacting OPaa and traffic/
industrial sources dominating OPprr. Frequent thermal inversion in Alpine valley strongly amplifies OP, which is
more significant than the mass of PMyo itself. Finally, OPy and intrinsic OP trends over the decade do not align
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with that of PMz1o mass, emphasizing the need to prioritize redox-active components over the bulk PM

concentrationinair quality policy.

4. Conclusions

Thanks to long-term PMz1o observations with a detailed set of chemical markers, a comprehensive source
apportionment was performed to identify the evolution of PM1o sources in Grenoble (France). This is one of the
very few studies in Europe that could assess over 11 years of PM1o sources and the only study so far investigating
trends in PMzo-related OP. The trend of PMuo sources, especially anthropogenic sources such as biomass burning
and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the
trend of OP™, OPV and sources of OP revealed that the trend of OP depends on the source that drives OP. The
analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023,
and objectivates the main sources that are involved in their concentration' decrease.

Nevertheless, the following methodological limitations in this long-term study shall be kept in mind:

- Daily concentrations of metal elements were only analyzed for some periods (2013,2017-2018, 2020-2021),
while the remaining data were derived from weekly sampling. An imputation technique was implemented to
impute daily concentrations. The PMF result demonstrated the stability of most chemical profiles at Grenoble
from 2013 to 2023, compared to those previously published (Borlaza et al., 2021), despite these uncertainties in
the imputed metal concentrations.

- The process of implementing sucha PMF analysis strategy is not straightforward. A combined PMF approach
could be used for datasets with different time resolution (Viaetal., 2023). This approach would allow combining
the 7-day and daily filter samples into a PMF without performing imputation.

- The lack of a secondary biogenic organic aerosol tracer in long-term observations prevents the identification of
the BSOA source, which could make up about 10% of the total mass of PM1o on a yearly average, as observedin
previous work at the site (Borlazaet al., 2021), which used 3-MBTCA and picnic acid for the yearly period of
observation.

Thanks to long-term PMz1o observations with a detailed set of chemical markers, a comprehensive source
apportionment was performed to identify the evolution of PM1o sources in Grenoble (France). This is one of the
very few studies in Europe that could assess over 11 years of PM1osources and the only study so far investigating
trends in PMzo-related OP. The trend of PMuo sources, especially anthropogenic sources such as biomass burning
and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the
trend of OP™, OPV and sources of OP revealed that the trend of OP depends on the source that drives OP. The
analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023,
and objectivates the main sources that are involved in their concentration' decrease.

Owerall, a total of ten sources were identified, including aged sea salt, biomass burning, chloride-rich mineral
dust, MSA-rich, nitrate-rich, industrial, primary biogenic, and primary traffic. The source chemical profiles are
consistent with those presented in 2017-2018 (Borlaza et al., 2021), demonstrating that the sources of PMuo in
Grenoble were relatively stable during our study period. The trend of PMz1o sources was investigated using STL
decomposition, which reveals a downward trend for all the PM1o sources over 11 years, especially for the
anthropogenic sources. Extending PMF outputs to oxidative potential apportionment showed that biomass

burning, traffic, and industrial emissions dominate redox activity in both the ascorbic acid (AA) and dithiothreitol
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(DTT) assays. Trend analysis of volume- and mass-normalized OP metrics indicates that biomass burning governs
the long-term behavior of OPaa. In contrast, traffic is the principal driver of OPprr assay, underscoring source-
specific control of PM1o OP inthe Grenoble atmosphere.

Both of these anthropogenic sources, aswell as their influences onPM 10 OP, showed significant decreasingtrends
concomitantly to the implementation of emission reduction strategies (both at the national and regional levels)
that should be reinforced to reach the goals of the European zero pollutionaction plan and the recently revised
Directive onambient air quality (22024/2881/EU). The continuation of these measurements will take place in the

coming years, with this site being selected as one of the supersites for the new EU Air Quality directive.
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