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Abstract 12 

The identification of particulate matter (PM) sources and the quantification of their contribution to the urban 13 

environment is a necessary input for policymakers to reduce the air pollution impacts. The association between 14 

the PM sources and the oxidative potential (OP) is also a key indicator for evaluating the ability of PM sources to 15 

induce in-vivo oxidative stress and lead to adverse health effects, which becomes an emerging metric in the 16 

Directive on ambient air quality (22024/2881/EU). Most studies in Europe have focused on PM and OP sources 17 

in the short term, for only 1 or 2 years. However, the efficiency of reduction policies, trends, and epidemiological 18 

impacts cannot be properly evaluated with such short-term studies due to a lack of statistical robustness. Here, 19 

long-term PM10 filter sampling at the Grenoble (France) urban background supersite and detailed chemical 20 

analyses were used to investigate decadal trends of the main PM sources and related OP metrics. Positive matrix 21 

factorization (PMF) analyses were conducted on the corresponding 11-year dataset (Jan 2013 to May 2023, n = 22 

1570), enlightening the contributions of 10 PM sources: mineral dust, sulfate-rich, primary traffic, biomass 23 

burning, primary biogenic, nitrate-rich, MSA-rich, aged sea salt, industrial and chloride-rich. The stability of the 24 

chemical profile of these sources was validated by comparison with the profiles retrieved from shorter -term (3 25 

years) successive PMF analyses. A Seasonal-Trend using LOESS decomposition was then applied to evaluate the 26 

trends of these PM10 sources, which revealed a substantial decrease in PM10 (-0.73 µg m-3 yr-1) as well as that of 27 

many of the PM10 sources. Specifically, negative trends for primary traffic and biomass burning sources are 28 

detected, with a reduction of 0.30 and 0.11 µg m-3 yr-1, respectively. The OP PM10 source apportionment in 11 29 

years confirmed the high redox activity of the anthropogenic sources, including biomass burning, industrial, and 30 

primary traffic. Eventually, downward trends were also observed for OPAA and OPDTT , mainly driven by the 31 

reduction of residential heating and transport emissions, respectively. 32 

Keywords: PM10 source apportionment, OP PM10 source apportionment, long-term trend, Positive matrix 33 

factorization. 34 

1. Introduction 35 

Particulate matter (PM) is the main atmospheric pollutant that significantly impacts human health, climate, and 36 

the environment (Fuzzi et al., 2015; Grantz et al., 2003; Pope and Dockery, 2006), which is emitted directly or 37 
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formed through complex processes in the atmosphere from natural and anthropogenic gaseous precursors. The 38 

identification of PM sources is important to investigate their composition, contribution, and evolution, which is 39 

one necessary input for policymakers to apply strategies in reducing their impact. There are various methodologies 40 

to identify these sources, where receptor models are widely used to perform source apportionment (SA) due to 41 

their flexibility and performance. Positive Matrix factorization (PMF) is one of the most popular among these 42 

receptor models, as it has been developed to allow SA analysis without any prior information other than the 43 

measurement and uncertainty input matrices (Hopke, 2016). Scores of studies using PMF have been applied in 44 

different typologies of sites over the last 15 years, with urban areas being the most common (Hopke et al., 2020; 45 

Viana et al., 2008). 46 

The adverse health effects of PM can be assessed through different pathways, one of which uses the concept of 47 

oxidative stress within the lung (Pope and Dockery, 2006). PM has the ability to generate reactive oxygen species 48 

(ROS), which can cause an imbalance with antioxidants in the lungs, eventually causing oxidative stress. This 49 

capacity is evaluated as the oxidative potential (OP) of PM (Ayres et al., 2008; Li et al., 2008; Lodovici and 50 

Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao et al., 2018). The redox activity of PM is mainly 51 

dependent on their compositions; nevertheless, the correlation between individual components of PM and OP is 52 

probably not the best approach for understanding the impact of ambient PM because of their complex mixture 53 

preventing the quantification of all components of interest (Borlaza, 2021; Calas et al., 2018; Weber et al., 2018). 54 

Therefore, the relationship between OP and PM sources has been investigated as a more holistic approach (Bates 55 

et al., 2018; Dominutti et al., 2023; Weber et al., 2021). The implementation steps of such an approach can include, 56 

first, a PM source apportionment (SA) (usually using PMF), allowing the identification of PM sources and their 57 

contribution to PM. Then, the relationship between OP and PM sources is investigated by performing some 58 

regression techniques, potentially including linear and non-linear ones (Ngoc Thuy et al., 2024). 59 

The OP of PM is becoming an emerging metric for the European regulation on air quality, included in the new 60 

European Air Quality Directive (Directive (EU) 2024/2881) as a recommended measurement at super sites in each 61 

member state in order to improve the knowledge about the variability of the OP and eventually allow the 62 

connections with epidemiological studies. Most previous studies have focused on PM and OP sources over a 63 

relatively short period, typically less than 1 or 2 years (Borlaza et al., 2022a; Pietrodangelo et al., 2024; Weber et 64 

al., 2019). Such short-term studies assess the PM and OP sources as well as their contribution, providing 65 

information on the intrinsic OP of PM sources, allowing for the development of OP modeling (Daellenbach et al., 66 

2020; Vida et al., 2024) and eventually designing some public policies (Borlaza, 2021). However, long-term series 67 

are needed both for evaluating the efficiency of such reduction policies in connection with the evolution of 68 

contributions from sources and also for implementing epidemiological studies (Borlaza-Lacoste et al., 2024). 69 

The present study is based on a long-term measurement program conducted in the city of Grenoble (France), 70 

resulting from a sustained collaboration between the local network (Atmo AuRA), the French Reference 71 

Laboratory for Air Quality Monitoring (LCSQA), and the Institute of Environmental Geosciences (IGE) to 72 

investigate long-term evolution of PM10 sources and OP in the PM10 as well as their tendencies in the urban 73 

background of the city. Here, we assessed these source contributions from daily ambient PM10 samples obtained 74 

from 2013 to 2023 (n = 1570) using the EPA PMF model at this site selected as one of the French urban supersites 75 

for the new EU 2024/2881 Air Quality Directive. The database was augmented using imputation techniques in 76 

order to fill some of the gaps in the data, relative to metallic trace elements. Since PMF is rarely applied to such 77 
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a long-term database, several evaluations of the validity of solutions were also implemented. The PMF-derived 78 

PM10 sources were then used to perform OP SA from 2013 to 2022 (n=1570). The trend of PM10 concentration, 79 

of the PM10 sources, and the OP measurements are eventually discussed in relation to several potential factors of 80 

influence. 81 

2. Methodology  82 

2.1. Sampling site 83 

PM10 daily samples were collected at an urban background site (Grenoble - Les Frênes), in the southern area of 84 

Grenoble, France (45°09′41″ N, 5°44′07″ E). This city is known as the French Alps' capital, sprawling over 18.13 85 

km2 with about 154,000 inhabitants in 2023, but nearly 500,000 within the larger urbanized area (about 15 km 86 

radius). With an average altitude of about 200 masl, the city sits within a complex mountainous geomorphology 87 

and is surrounded by three mountain massifs: Chartreuse, Vercors, and Belledonne (Figure 1). A pendular wind 88 

regime between the three valleys of the basin regulates the ventilation of the atmosphere, with frequent thermal 89 

inversion during cold periods, leading to the accumulation of pollutants. The air quality is monitored at several 90 

sites in Grenoble by the regional agency (Atmo AuRA), including the urban background site of this study, which 91 

is equipped with a large array of instruments. Particularly, the chemistry of PM10 collected on filters has been 92 

speciated at this site since 2008, within several programs, including the CARA program from the French Ministry 93 

of Environment (Favez et al., 2021) and several research programs such as QAMECS (Borlaza et al., 2021), or 94 

SOURCES (Weber et al., 2019). Many aspects of air quality in Grenoble were reported for this site, including the 95 

characteristics of secondary anthropogenic PM fraction (Baduel et al., 2009, 2012; Favez et al., 2010; Tomaz et 96 

al., 2016, 2017), of the biogenic PM components (Brighty et al., 2022; Samaké et al., 2019a, a), as well as the PM 97 

OP (Borlaza, 2021; Dominutti et al., 2023; Weber et al., 2021). Several studies of one-year PM sources 98 

apportionment were also performed in 2013 (Srivastava et al., 2018) and 2017-2018 (Borlaza et al., 2021). Despite 99 

the difference in input data and periods of the studies, similar main sources of PM were quantified in both studies, 100 

including residential heating, traffic, and secondary inorganic aerosol (SIA). 101 

 102 
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Figure 1. The sampling site is located in the Southeast of France (left figure ), surrounded by 3 mountains massifs  103 
(Vercors, Chartreuse , and Belledonne). Background map: ESRI satellites.  104 

2.2. Sampling and chemical analyses 105 

2.2.1. PM10 and their inorganic and organic composition 106 

The daily PM10 sampling was performed every third day from 02/01/2013 to 28/05/2023, on 150 mm-diameter 107 

quartz fibre filter (Tissu-quartz PALL QAT-UP 2500 diameter 150 mm) using high-volume samplers (Digitel 108 

DA80, 30 m3 h-1). A weekly PM10 sampling was conducted during the same period using a low-volume sampler 109 

(Partisol, 1 m3 h-1) onto 47mm diameter quartz fibre filters (Tissuquartz PALL QAT-UP 2500 diameter 47 mm). 110 

The processes of preparation, handling, and storing filters, in order to guarantee optimum quality for chemical 111 

analyses were presented in Borlaza et al. (2021). Field blank filters were also collected (about 8-10% of the total 112 

samples) to estimate the detection limits and evaluate the filter contamination during the overall handling and 113 

analysis processes.  114 

The daily PM10 samples (n = 1570) and field blanks were analyzed for elemental carbon (EC) and organic carbon 115 

(OC), major ions (Cl-, NO3
-, SO4

2-, Na+, NH4
+, K+, Mg2+, Ca2+), methanesulfonic acid (MSA), anhydrous sugar 116 

and saccharides (levoglucosan, mannosan, arabitol, mannitol), and trace elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, 117 

Sb, V, Zn). However, the concentrations of the daily trace elements were analyzed only in 3 periods, including: 118 

(1) from January 2nd, 2013 to December 31st, 2013 (n = 122), (2) from February 28th, 2017 to March 13th, 2018 119 

(n = 125), (3) from June 30th, 2020 to June 18th, 2021 (n=115). The weekly samples and blanks were analyzed 120 

for trace metal concentrations for the whole sampling period (n = 842). 121 

All analyses were previously described in detail (Borlaza et al., 2021). In brief, EC and OC analysis was performed 122 

using a Sunset Lab analyser with the EUSAAR2 thermo-optical protocol. The eight major ionic components and 123 

MSA were analyzed, after aqueous extraction of the filters using orbital shacking, by ionic chromatography using 124 

an ICS3000 dual-channel chromatograph (Thermo-Fisher) with a CS16 column for cation analysis and an AS11 125 

HC column for anion analysis. The anhydrous-sugar and saccharides analyses were performed on the same water 126 

extract by an HPLC method using PAD (Pulsed Amperometric Detection) (model Dionex DX500 + ED40) with 127 

Metrosep columns (Carb 1-Guard+A Supp15-150+Carb1-150) in the period before the year 2017. From 2017 to 128 

the present, the measurement with ICS 5000 with pulsed amperometric detection (HPLC-PAD) was performed 129 

following the CEN method (European committee for standardization, 2024). The analysis is isocratic with 15% 130 

eluent of sodium hydroxide (200 mM), sodium acetate (4 mM), and 85% water at 1 mL min-1. 131 

The daily and weekly metals were measured by Inductively coupled plasma mass spectroscopy (ICP-MS) (ELAN 132 

6100 DRC II PerkinElmer or NEXION PerkinElmer). The measurement was performed on the mineralization of 133 

a 38 mm diameter punch of each filter, using 5 mL of HNO3 (70 %) and 1.25 mL of H2O2 for 30 min at 180°C in 134 

a microwave. 135 

2.2.2. OP analysis 136 

Two complementary OP assays, including the two probes ascorbic acid (AA) and dithiothreitol (DTT) were 137 

performed on the same filters with PM10 components analysis (from 02/01/2013 to 28/05/2023, n = 1570).  Filter 138 

samples are extracted using a simulated lung fluid which is the mixing of Gamble and DPPC 139 

(dipalmitoylphosphatidylcholine) solutions, during 1h15 at 37°C, pH 7.4 , creating a physiological environment 140 

for the extraction (Calas et al., 2017) . The AA method quantifies the consumption of ascorbic acid, an endogenous 141 
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antioxidant in the lung, by PM and was described in Calas et al. (2017, 2018). The reaction mixture (extract + AA) 142 

was transferred to UV-transparent 96-well plates (CELLSTAR, Greiner-Bio), and the residual AA was measured 143 

at 265 nm with a TECAN Infinite M200 Pro spectrophotometer. The AA consumption rate (nmol min-1) reflects 144 

the capacity of PM₁₀ to catalyze electron transfer from AA to molecular oxygen. 145 

DTT assay relies on dithiothreitol, a chemical surrogate for cellular reducing agents, allowing for emulation of in 146 

vivo interaction among PM10 and biological reducing agents (for example, nicotinamide adenine dinucleotide 147 

(NADH), nicotinamide adenine dinucleotide phosphate oxidase (NADPH)). After incubation of the PM 148 

suspension within the lining fluid with DTT, the remaining DTT was titrated with 5,5′-dithiobis-(2-nitrobenzoic 149 

acid) (DTNB) to form 5-mercapto-2-nitrobenzoic acid (TNB). Absorbance at 412 nm (TECAN Infinite M200 Pro) 150 

in 96-well plates provided the concentration of unconsumed DTT, from which the DTT consumption rate 151 

(nmol min-1) was calculated. The batches were standardized using a common control (lab’s rooftop filter analysis 152 

for every batch) to ensure consistency between batches. 153 

After analysis, the OP activities were blank subtracted and then normalized using the PM10 mass concentration 154 

and the sampling air volumes. The mass-normalized OP (OPm, nmol min-1 µg-1) represents the intrinsic OP of 1µg 155 

PM, while the volume-normalized OP (OPv, nmol min-1 m-3) represents PM-derived OP per m3 of air. Each sample 156 

is analyzed in triplicate for AA and triplicate for DTT, respectively. Consequently, the OP values presented in the 157 

study are the mean and the standard deviation of these replicates. 158 

2.2.3. Vertical temperature and other ancillary measurements 159 

Vertical temperature and humidity were measured every 30 minutes from November 2017 to May 2023 using 160 

Tinytag TGP-4500 from Gemini Data Loggers. A Stevenson Type Screen protects each Tinytag loggers from 161 

radiant heat (direct sunlight). Sensors are installed at a minimum of 3m from the ground. The measurements have 162 

been performed at different elevations of the Bastille hill, located a few hundred meters from the city center 163 

(5°43'37.0" E, 45°11'40.8" N), including z = 230, 309, 496, 916m altitudes.  164 

Further, measurement of the PM10 mass was conducted (hourly) using tapered element oscillating microbalances 165 

equipped with filter dynamics measurement systems (TEOM-FDMS) at the same site as the filter collection. The 166 

PM concentration used in this study is the 24-hour average concentration, which is associated with the days of 167 

filter-based sample measurement (from 02/01/2013 to 28/05/2023). 168 

 169 

2.3. Multivariate imputation by chained equations (MICE) 170 

The daily concentration of metals was only accessed in some periods, with the number of samples being 362 of 171 

the total of 1570 samples, which would severely limit the size of the inputs for the PMF processing. We used the 172 

weekly concentration measured over the whole period to estimate the missing daily data using an imputation 173 

method. The daily concentration of metals was imputed by using the MICE algorithm implemented with 174 

multilinear regression (Azur et al., 2011). These values were modeled conditionally depending on the observed 175 

values of the daily PM10 and PM10 components concentration (i.e., weekly concentration, PM10, and PM10 176 

components concentration). These components are OC, EC, MSA, Levoglucosan, Mannosan, Polyols, NO3
-, SO4

2-177 

, Na+, NH4
+, K+, Mg2+, Cl-, Ca2+. The data preparation and imputation processes are implemented through 4 main 178 

steps, as presented in S1 and Figure S1, Supplement. The validation of this imputation is shown in Table S1 and 179 

Figure S2. 180 
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2.4. Persistent inversions detection 181 

Thermal inversion occurs when the vertical temperature gradient between the ground-based and higher-altitude 182 

stations is positive. However, this constraint is restrictive and limits thermal inversion detection, especially when 183 

the calculation is on average daily temperature (Largeron and Staquet, 2016). Hence, the persistent inversion is 184 

detected, as discussed in Largeron and Staquet (2016), for days with : 185 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑇916 − 𝑇230

∆𝑧
)

𝐷𝑎𝑖𝑙𝑦
> 𝑀𝑒𝑎𝑛 (

𝑇916 − 𝑇230

∆𝑧
)

𝑊𝑖𝑛𝑡𝑒𝑟
        (1) 186 

for more than 72 consecutive hours 187 

with:  188 

𝑇916 −  𝑇230 is the difference between temperature at ground-base station (z = 230m altitude) and at high-elevation 189 

station (z = 916m); 190 

∆𝑧 is the difference between the height of high and low elevations; 191 

𝑇916− 𝑇230

∆𝑧
 : is the bulk temperature gradient between z = 230 and z = 916m; 192 

𝑀𝑒𝑎𝑛 (
𝑇916− 𝑇230

∆𝑧
)

𝑊𝑖𝑛𝑡𝑒𝑟
 : is the mean bulk temperature gradient in wintertime (from November to March). 193 

2.5. Positive Matrix Factorisation (PMF) 194 

2.5.1. PMF input 195 

EPA PMF 5.0 (Gary Norris et al., 2014) was used to identify and quantify the PM10 sources based on the observed 196 

concentrations and their related uncertainties. The concept of PMF is to use the weighted least square fit method 197 

and apply a non-negative constraint with the weight calculated based on analysis uncertainties (Paatero and 198 

Tappert, 1994) (Eq. (S1), Supplement S2). In this study, the input matrix of the PMF comprises 25 chemical 199 

species, including PM10 (set as the total variable), carbonaceous fractions (OC*, EC), ions (Cl-, NO3
-, SO4

2-, Na+, 200 

NH4
+, K+, Mg2+, Ca2+), organic tracers (MSA, levoglucosan, mannosan, polyols) and trace metals (As, Ba, Cd, 201 

Cr, Cu, Ni, Pb, Sb, V, Zn). The trace metals were the daily measured metals in some periods (2013, 2017-2018, 202 

2020-2021) and the daily imputed metals. The OC* (=OC minus the sum of the carbon mass from the organic 203 

tracers used in the input variables) was used to avoid considering twice the mass of C atoms in organic markers. 204 

Polyols were calculated as the sum of arabitol and mannitol, supposing that their origin is similar (Samaké et al., 205 

2019a). The input uncertainties were calculated based on the concentrations and the uncertainties in the analysis 206 

(Gianini et al., 2012; Waked et al., 2014). Details on the calculation of OC* and uncertainties of PMF input are 207 

presented in Section S3, Supplement. The selection of the input variables is guided by our previous yearly PMF 208 

studies at this site (Borlaza et al., 2021; Srivastava et al., 2018; Weber et al., 2019).  209 

2.5.2. Set of constraints 210 

The application of PMF constraints is recommended in the European guide on air pollution source apportionment 211 

with receptor models (Belis et al., 2014) to avoid mixing between some factors and reduce the uncertainty of the 212 

rotational ambiguity. The constraints used in this study are also based on the previous PMF studies in Grenoble 213 

(Borlaza et al., 2021; Srivastava et al., 2018; Weber et al., 2019) and are detailed in Table S3. 214 
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2.5.3. Choice of the final PMF solution 215 

Several solutions, including those from 4 to 11 factors, were investigated to determine the optimal output. This 216 

selection is based on the ratio of Qtrue /Qrobust (evaluating the outlier's effect), the clarity of the chemical profile, 217 

the contribution of factors to PM10, the correlation between measured and predicted concentration, and the stability 218 

of the solution. This stability was evaluated using the bootstrapping (BS) and displacement (DISP) methods. BS 219 

analysis randomly resamples the data observation matrix and uses it to run a new PMF. The base-run and boot-220 

run factors are matched if their correlation exceeds the threshold (generally chosen at 0.6). DISP estimates each 221 

species' uncertainty in the factor profile by fitting the model many times until this variable turns displaced (upper 222 

or lower) from its fitted value. The details of the set criteria for validation are presented in S4. 223 

To evaluate the stability of the PMF solution over time (including possible changes in the chemical profiles of the 224 

sources), we also implemented separated PMF SA for every successive period of 3 years (2013-2016, 2017-2020, 225 

2021-2023) and then we investigated the homogeneity of the chemical profiles by using the Pearson distance (PD) 226 

and standardized identity distance (SID) metrics (Belis et al., 2015). The chemical profiles of PMF solutions every 227 

3 years and 11 years, and those published in Borlaza et al. (2021) are compared to assess the homogeneity of the 228 

chemical profiles. 229 

2.6. Regression techniques for PM10 OP SA 230 

The regression technique is applied to apportion OPv (AA, DTT) and PMF-derived PM10 sources' contribution, as 231 

expressed in Eq.2. Principally, OPv (nmol min-1 m-3) is treated as a dependent variable, and PMF-derived PM10 232 

sources' contribution (µg m-3) are independent variables. The OP SA methodology in this study follows the 233 

methodology reported by Ngoc Thuy et al. (2024). 234 

𝑂𝑃𝑣 = ∑ 𝑂𝑃𝑚
𝑖 ∗ 𝑃𝑀𝑖

𝑖=1

𝑝

+ 𝑒               (2) 235 

Where:  236 

𝑂𝑃𝑣 is the volume-normalized OP (nmol min-1 m-3) 237 

𝑝 is the number of PMF-derived PM10 sources 238 

𝑂𝑃𝑚
𝑖  is the regression slope, denoted as the intrinsic OP of source i (nmol min-1 µg-1) 239 

𝑃𝑀𝑖 is the contribution of source i to PM10 (µg m-3) 240 

𝑒 is the residual of the regression technique (nmol min-1 m-3) 241 

The appropriate regression tool is selected based on the collinearity among independent variables and the variance 242 

of regression residuals (Ngoc Thuy et al., 2024). The collinearity among PMF-derived sources was tested using 243 

the variance inflation factor (VIF), which is calculated using Eq. (S3) in Supplement S2 (Craney and Surles, 2002; 244 

O’Brien, 2007; Rosenblad, 2011). The variance of the regression residual is assessed using the Goldfeld-Quandt 245 

test (Goldfeld and Quandt, 1965) to investigate if the regression residual varies by the value of the dependent 246 

variable (OPv). The most appropriate regression method is selected among a wide choice of possible tools 247 

(including ordinary least square, weighted least square, positive least square, Ridge, Lasso, random forest, and 248 

multiple layer perceptron), following the methodology developed by Ngoc Thuy et al. (2024). It is performed with 249 

considering the characteristics of the data and comparing the accuracy metrics (R-square, root mean square error, 250 

and mean absolute error) for each of them. For instance, if the regression residual is constant (homoscedasticity), 251 
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the model ordinary least square (OLS) and Positive least square (PLS) are satisfactory. On the other hand, if the 252 

regression residual varied with the dependent variable (heteroscedasticity), the models incorporating some sort of 253 

weighting are chosen (including weighted least squares (WLS) and weighted positive least squares (wPLS)), 254 

where the weighting is the standard deviation of replicated OP analyses. 255 

The most appropriate model was trained by randomly choosing 80% of the dataset and validated with the 256 

remaining 20%. The model was run 500 times to ensure the robustness of the results, especially considering the 257 

remarkable seasonality of many components in the dataset. The contribution to OP of each source is calculated 258 

by multiplying its contribution to PM10 with the arithmetic mean intrinsic OP (or regression slope) of the 500 259 

iterations. 260 

2.7. Seasonal-trend using LOESS decomposition 261 

Seasonal-trend decomposition using LOESS (SLT) was developed by RB Cleveland et al. (1990) and is a robust 262 

method for decomposing time series into trends, seasonality, and residuals. This method uses LOESS, a method 263 

for estimating the non-linear relationships to decompose a time series. In our case, we used monthly average 264 

concentration as input data in order to have a more robust data set, smoothing high variability noise. The trend 265 

component is first calculated by applying a convolution filter to the data. Then, this trend is removed from the 266 

series. Finally, the average of this detrended in each period is the seasonal component. The residuals can be 267 

explained neither by trend nor by season. The STL is an iterative model that uses LOESS to smooth seasonal and 268 

trend components to obtain the minimum residuals. Further, in STL decomposition, the outliers in the data are 269 

given less weight in the estimation of trend and season. The STL model is described in the equation below:  270 

𝑦𝑡 =  𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (𝑡 = 1, 2, . . . , 𝑛)         (3) 271 

where, in our case, 𝑦𝑡 is the monthly contribution of PMF-derived sources, 𝑆𝑡  is the seasonal component, 𝑇𝑡 is the 272 

trend component, and 𝑅𝑡 denotes the residual component. The seasonal frequency was chosen 6 months before 273 

and 6 months after the evaluated month (seasonal frequency = 13 months) to estimate the yearly trend cycle. 274 

Hence, the first and last 6 months of the decomposition time series were removed from the results to prevent edge 275 

effects.  276 

The long-term trend of PM10 sources was accessed by applying the STL model to the monthly contribution of 277 

sources to PM10 (output of PMF). The fit line of the trend was assessed by using ordinary least squares linear 278 

(OLS). The annual rate change of the trend is the slope of the fit line multiplied by 12 months (µg m-3 yr-1/ nmol 279 

min-1 µg-1 yr-1). The STL decomposition and the fit line of the trend were performed in Python 3.9 using the 280 

package "statsmodels" (Seabold and Perktold, 2010).  281 

3. Results and discussion 282 

3.1. Evolution of PM10 concentration and chemical components 283 

The annual average concentration of PM10, considering all available daily measurements, is 19.0±10.6 µg m-3 for 284 

the whole studied period (2013-2023). The highest annual concentration is observed in 2013 (24.4±13.7 µg m-3), 285 

and the lowest is in 2021 (15.3±9.8 µg m-3). The number of days with concentrations surpassing the European 286 

standard daily thresholds (40 µg m-3) is 176 days in 11 years, representing 4.6% of the total observed days, which 287 

are principally found in the cold season (Nov, Dec, Jan, Feb, Mar). 288 
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The PM10 main components are organic matter (assuming OM = 1.8*OC (Favez et al., 2010)), representing on 289 

average over the overall period 41.3±8.0% of PM10 mass concentration, followed by dust (9.6± 4.4%), nitrate 290 

(NO3
-, 7.5±6.2%), non-sea salt sulfate (nss-SO4

2-, 7.4±2.4 %), elemental carbon (EC, 5.5±2.5%), ammonium 291 

(NH4
+, 3.9±2.0%), sea salt (Na+ and Cl-, 1.7±0.8%) and other non-dust elements (Cu, Pb, V, Zn, representing 292 

0.2±0.1%). These main composition fractions are estimated using the formula as shown in S2, Eq. (S4). The 293 

monthly evolutions of PM10 and its main chemical components for the whole period are shown in Figure 2. The 294 

maximum concentration of PM10 was observed in winter months (December, January, and February), 295 

corresponding to the highest concentration of OM and EC (7.82±3.11 µg m-3 and 1.09±0.74 µg m-3, respectively). 296 

Nitrate concentrations are higher in the middle of winter and the early spring, corresponding also with the high 297 

concentrations of ammonium (1.63±1.87 and 0.78±0.62 µg m-3). The agricultural activities (especially manure 298 

spreading) could explain this high contribution in spring under humidity and temperature conditions favoring the 299 

condensation of ammonium nitrate in the particulate phase. Nss-sulfate concentrations are more abundant in the 300 

warmer season (summer), where the photochemical production is favorable. No clear seasonal pattern could be 301 

observed for other components (sea salt, dust, non-dust, estimated as described in section S2), suggesting that the 302 

emissions of these components are stable for the whole year. At first glance, decreasing trends appear visible for 303 

PM10 and OM, EC, NO3
-, NH4

+, and non-dust components, while sea salt, dust, and nss-SO4
2- do not seem to 304 

present significant trends. With chemical components coming from several emission sources, an advanced 305 

analysis, including a PMF model followed by an STL decomposition, was performed to assess the trend of PM10 306 

sources. The result of the PMF model is presented in section 3.2, and the tendencies of PM10 sources and OP are 307 

shown in sections 3.3 and 3.4, respectively. 308 

 309 
Figure 2. The average monthly evolution of PM10 and its main components from 2013 to 2023. The line represents the 310 

monthly average concentration of PM10 measured by TEOM-FDMS. 311 
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3.2. PM10 sources apportionment 312 

3.2.1. PMF chemical profiles 313 

Using a unique chemical profile for each of the sources for such a long-term period can potentially limit the 314 

assessment of its evolution (Borlaza et al., 2022a). To evaluate such a phenomenon in our case, we investigated 315 

the chemical profile and contribution of PM10 sources for three distinct periods (2013-2016, 2017-2020, 2021-316 

2023) and compared the results with those for the full 11-year period, as well as to the results presented in (Borlaza 317 

et al. (2021) for the year 2017. Particularly, we checked the similarity of the chemical profiles of these PMF 318 

solutions using PD and SID metrics (Belis et al., 2015).  319 

For each SA, the PMF solution was tested from 4 to 11 factors and validated by the criteria presented in section 320 

S4. The results of these validations (Qtrue/Qrobust, bootstrap run, displacement run, and statistical validation) are 321 

presented in S5, Tables S4, S5 and S6. The runs of 4 to 9 factors returned at least one merging factor, and the 322 

solution with 11 factors led to a factor without geochemical identity. Finally, for each PMF tested (11 years, 2013-323 

2016, 2017-2021, 2022-2023), the best solution includes 10 PM10 sources, with mineral dust, sulfate-rich, primary 324 

traffic, biomass burning, primary biogenic, nitrate-rich, MSA-rich, aged sea salt, industrial, and chloride-rich.  325 

The similarity of the chemical profiles is presented in Figure 3. Most of the factors (i.e., aged sea salt, mineral 326 

dust, primary biogenic, biomass burning, primary traffic, industrial, nitrate-rich, and sulfate-rich) present quite 327 

homogenous chemical profiles over the 3 successive periods, indicating that these source profiles are quite stable 328 

during the full 11-year period and similar compared to sources reported in Borlaza et al. (2021). The MSA-rich 329 

and chloride-rich sources are the most divergent but are still within the limit of the accepted PD and SID range; 330 

however, their standard deviations for PD are slightly higher than for the other sources (Figure 3). This is due to 331 

differences in the contributions of SO4
2- in the chemical profile of MSA-rich, which varied from 6 % to 17%, and 332 

that of Cl- (73% - 83%) in the chloride-rich factor. In a previous study, Weber et al. (2019) also reported that the 333 

proportion of SO4
2-

 in the MSA-rich source can significantly vary across French sites, from 6% to 24%. The 334 

chloride-rich source in our study (previously named sea/road salt in Borlaza et al. (2021) is essentially composed 335 

of a high proportion of Cl-, with less than 10% of Na+ and some metals (Cu, Mn, Ni, V). This source is detected 336 

in other alpine valley environments (Glojek et al., 2024), with a similar temporal evolution as here. Since chloride 337 

depletion from the particulate phase can greatly depend on solar radiation, relative humidity, and temperature, the 338 

chemical profile of this factor can vary on different time scales. This source was also observed to be heterogeneous 339 

in the three neighboring sites investigated within 15 km in the previous study in Grenoble (Borlaza et al., 2021). 340 

Nevertheless, it should be noted that it represents only a very minor fraction of the PM10 total mass (about 1%). 341 

With these stabilities of the chemical profiles over the years, the solution for the 11-year SA is considered suitable 342 

for further data analyses in this paper. In the next section (3.3.2), we investigate how the contribution of these 343 

sources to total PM10 loadings changed over time.  344 
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 345 
Figure 3. Similarity plots of the chemical profiles of the solution for the 11-year SA against the 3 SA solutions every 3 346 
years, and those presented by Borlaza et al. (2021). The shaded area (in green) shows the limit of the homogeneous 347 
chemical profile. For each point, the error bars represent the standard deviation when comparing all pairs of SA 348 

solutions (number of pairs in parentheses in the legend).  349 

3.2.2. Variations of the source's contribution in the 11-year PMF SA   350 

As presented in Figure 4, the optimal PMF solution for the 11-year time series identifies 10 PM10 sources, with 351 

the contributions of mineral dust (20.9%), sulfate-rich (19.7%), traffic (16.0%), biomass burning (13.5%), primary 352 

biogenic (10.7%), nitrate-rich (7.2%), MSA-rich (6.2%), industrial (2.2%), aged sea salt (2.5 %), and chloride-353 

rich (1.0%). The chemical profile and contribution of each source are shown in Figures S3 and S4, respectively. 354 

Even though the chemical profiles are homogenous, the contributions of these sources show minor differences 355 

from those reported for this same site by Borlaza et al. (2021) and Srivastava et al. (2018), partly because of the 356 

differences in the respective periods of the studies. However, the main sources are similar, i.e., SIA (nitrate and 357 

sulfate-rich), mineral dust, biomass burning, and primary traffic. Similar general results are also presented for 358 

Swiss Alpine (Ducret-stich and Tsai, 2013), French Alpine (Weber et al., 2018), and Slovenian Alpine areas 359 

(Glojek et al., 2024), showing biomass burning and secondary inorganic aerosols being the most abundant 360 

contributions to PM mass. Primary biogenic and MSA-rich sources are the biogenic sources rarely reported in the 361 

literature; however, they account together for 17% of total PM10 mass on average in our study, which is in line 362 

with those reported in urban background sites in France (Samaké et al., 2019b; Weber et al., 2019). The absolute 363 

PM10 source contributions are also compared to the average annual concentration of PM10 mass to demonstrate 364 

the ability of the PMF model to reconstruct the PM10 mass. The difference between observed and reconstructed 365 

PM10 concentrations on the 11-year average is about 1 µg m-3 (5 %), with no more than 2 µg m-3 for any single 366 

year, demonstrating that the PMF model performs well at reconstructing the PM10 concentrations. 367 
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 368 
Figure 4. The absolute average contribution of sources to PM 10 for every year and the 11 years (total), and the 369 

concentration of PM10 (blue circle). 370 

Significant trends in source contributions over this 11-year period are detected (and discussed in section 3.3); 371 

nevertheless, the main contributors to the total PM10 mass do not change, with mineral dust, biomass burning, 372 

sulphate-rich, nitrate-rich, and primary traffic being the main contributors to PM10. The highest PM10 373 

concentrations (observed in winter/spring 2013 and 2015) are associated with the highest contribution of SIA and 374 

biomass burning sources. On the other hand, the relative contribution of SIA and biomass burning showed a 375 

negligible difference (varied from 0.3 to 4%) between these years compared to 2014 and 2016 (Figure S5). The 376 

lowest PM10 annual concentration was detected in 2021, notably when the third COVID-19 pandemic lockdown 377 

restrictions applied in France. In addition, the relative contributions (see Figure S5) showed only small changes 378 

compared to those in other years, with an increasing contribution of primary biogenic sources in 2021 (4% 379 

compared to 2020), and only a very light decrease in the anthropogenic sources. 380 

The decrease in PM10 annual average concentrations observed since 2017 is associated with decreases in the 381 

contribution of some of the anthropogenic PM10 sources. However, using yearly averages for trend analysis may 382 

prevent a proper understanding of the variation in time and of the estimation of the trends  based on monthly 383 

averages, which might be more informative, as discussed in section 3.3. 384 

3.3. Trends in sources' contributions 385 

3.3.1. Mean rate change in the contribution of PM10 sources 386 

The source contribution trend analysis was achieved through STL deconvolution (see section 2.6).  These trends 387 

for all sources over the full period of the study are presented in Table 1. In this table, the part labeled "Rest" 388 

represents the difference between the total PM10 measured mass and the sum of the mass of all PMF-derived 389 

factors in order to assess any trend of the unresolved part of PM10 within our SA study.  390 

PM10 concentrations present a downward trend from 2013 to 2023, with an average diminution of 0.73 µg m-3 yr-391 

1 (3.9%) (S6, Figure S6). Such a downward trend of PM10 in Grenoble is in line with that observed in other urban 392 

sites in Europe (Aas et al., 2024; Borlaza et al., 2022a; Caporale et al., 2021; Colette et al., 2021; Gama et al., 393 

2018; Li et al., 2018; Pandolfi et al., 2016).  394 

The reduction of PM10 in Grenoble during this period is significantly larger than that in 30 rural sites of the 395 

European Monitoring and Evaluation Programme (EMEP) from 2000 to 2017, which show reductions of PM10 396 
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from -1.5% to -2.5% (-0.008 to -0.58 µg m-3
 ) (Colette et al., 2021). However, the results of our study are highly 397 

coherent with results from Aas et al. (2024), presenting a reduction of PM10 in 2 rural sites in France (La Tardière 398 

and Revin) of -3.5% yr-1 between 2005 and 2019. The reduction of PM in this Grenoble site, as an urban site, 399 

being higher than those at the rural sites, is due to the changes in specific emission activities at the site. While in 400 

the rural sites, the PM emission are influenced by long range transport activities, the PM at the urban site is usually 401 

largely impacted by different local activities (Borlaza et al., 2022b). Further, France is amongst the EU countries 402 

with the highest reduction trend, as presented by Aas et al. (2024). 403 

The anthropogenic sources, such as primary traffic, sulfate-rich, and biomass burning, display the highest decrease 404 

between 2013 and 2023 in Grenoble, with a reduction of 12.9, 6.9, and 5.5% (0.37, 0.25, and 0.13 µg m-3 yr-1), 405 

respectively. The other anthropogenic sources also present significant decreasing trends; however, these trends 406 

are much lower (nitrate-rich: -0.11 µg m-3 yr-1, industrial: -0.02 µg m-3 yr-1). The downward trends of these 407 

anthropogenic sources (mainly traffic, SIA, and industrial) were also underlined for other European urban sites 408 

(Colette et al., 2021; Diapouli et al., 2017; Pandolfi et al., 2016) with various approaches. For instance, a similar 409 

approach using PMF (albeit without organic markers) was followed by Pandolfi et al. (2016), investigating the 410 

Mann-Kendall trend of PMF-derived sources, and reported an almost equivalent downward trend of the sulfate-411 

rich factor of 53% (i.e., 0.53% yr-1) between 2004 and 2014 in Spain. The decreasing trends of primary traffic, 412 

domestic biomass burning, and industrial emissions are potentially influenced by the reduction in primary 413 

emissions due to various abatement strategies (as discussed in the following subsections, notably in 3.3.3 and 414 

3.3.4). 415 

Conversely, natural sources such as mineral dust and chloride-rich factors do not show any significant trend or 416 

follow a very weak one (aged sea salt, primary biogenic). MSA-rich is the only source that displays a significant 417 

upward trend, with an increase of 0.08 µg m-3 yr-1; further studies would be needed to relate this last increase to 418 

changes in precursor emissions or reactivity during transport. Finally, the low evolutions in the contributions of 419 

the natural sources demonstrate that the reduction in PM10 in Grenoble is essentially related to the reduction of 420 

anthropogenic activities, especially sources related to traffic and domestic biomass burning activities. 421 

 422 
Table 1. Trend of PM10 sources and PM10 (in µg m-3 yr-1 and % yr-1).  423 

 
Absolute trend 

(µg m-3 yr-1) 
Relative trend 

(% yr-1) 
P-values R2 

Aged sea salt -0.01 -2.50 <<0.01 0.22 

Biomass burning -0.13 -5.48 <<0.01 0.98 

Chloride rich 0.00 1.18 0.01 0.07 

Industrial -0.02 -5.36 <<0.01 0.40 

MSA rich 0.08 6.63 <<0.01 0.64 

Mineral dust 0.04 1.03 0.02 0.05 

Nitrate rich -0.11 -8.08 <<0.01 0.94 

Primary biogenic -0.01 -0.49 0.03 0.04 

Primary traffic -0.37 -12.85 <<0.01 0.94 

Sulfate rich -0.25 -6.89 <<0.01 0.70 

PM10 -0.73 -3.89 <<0.01 0.68 

Rest -0.11 -2.13 <<0.01 0.39 

 424 
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3.3.2. Potential influence of meteorology  425 

The STL deconvolution is inherently constructed to separate the yearly and seasonal variations from the long-426 

term trends. While we discuss the long-term trends of the sources in other sections (3.3.1, 3.3.3, and 3.3.4), it is 427 

also interesting to evaluate the impact of the meteorology on the seasonal variations of the concentrations. It is 428 

well known that inversion layers in the lower atmosphere are extremely important for the modulation of the 429 

concentrations at the ground, particularly in the context of Alpine valleys during winter (Carbone et al., 2010; 430 

Glojek et al., 2022). In this section, we tried to better evaluate these impacts on the concentrations from the sources 431 

of PM in the case of our time series.   432 

This was considered with the measurements of temperature along the slopes of the mountains very close to the 433 

city center (as described in section 2.2.3), for the winter periods of 2017-2023. It has been previously shown by 434 

Allard et al. (2019) that such measurements are representative of the temperature in the valley, despite the potential 435 

influence of wind slopes. We particularly considered the temperature gradient over the first 700 m above ground 436 

and the number of days with persistent inversion, as defined in section 2.2.3. 437 

The analysis of the relationship between the PM10 and bulk temperature vertical gradients (∆𝑇/∆𝑧) in winter (Nov, 438 

Dec, Jan, Feb, Mar), summer (May, June, Jul, Aug), and transition season (remaining months) reveals that thermal 439 

inversion events and high PM10 concentration are mainly occurring in winter time (Supplement S7, Figure S8) 440 

during the 5 years of the study. Periods of persistent temperature inversion were assessed based on the condition 441 

in Eq. 1, which detected 79 persistent inversion days in series from 4 to 22 consecutive days, for the winter periods 442 

2017-2023. A meaningful correlation is obtained between PM10 concentrations and bulk temperature vertical 443 

gradient (r reaching 0.60, p<<0.001) for these winter months and even better when considering only the persistent 444 

inversion periods (r reaching 0.67, p<<0.001) for individual years (Table S7).  445 

 446 
Figure 5. Daily concentrations of biomass burning to PM10 and daily temperature gradients (∆𝑻/∆𝒛) during the 447 
winter periods (from November to March) of 2017-2023. The dotted red line is the linear regression fit. The blue 448 

circle symbols denote days when persistent inversion does not occur, and the orange multiple symbol denotes days 449 
when persistent inversion occurs. 450 

 451 

The distribution between the daily PM10 concentration and daily average ∆T/∆z in winter months revealed that 452 

the majority of PM10 concentration peaks (in excess of 40 µg m-3) occur during the persistent inversion days 453 
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(Figure S9). However, it also shows that a few high PM10 concentrations could be found on the days without 454 

persistent inversion; meanwhile, the days with persistent inversion do not always have high PM10 concentrations. 455 

This result is not surprising since the concentration of PM10 is not only associated with thermal inversion events 456 

but also depends on other meteorological conditions (precipitation, heat deficit) and the variation of pollutant 457 

emissions (Carbone et al., 2010; Largeron and Staquet, 2016). 458 

Interestingly, the impact of persistent inversion days on PM10 concentrations from the residential biomass burning 459 

source is larger than that for other sources or total PM10 (Figure 5), with a higher correlation (0.63). In addition, 460 

the contribution of this source is systematically lower during non-inversion days, and large concentrations are 461 

essentially made during persistent days. The large impact of the inversions on the local sources is confirmed when 462 

comparing the source contribution of the inversion days vs non-inversion days (Figure 6). This figure shows both 463 

the large increase in average PM10 concentrations and also the contributions of the local sources (emissions from 464 

residential biomass burning, traffic, industries, mineral dust probably from resuspension) in the cases of inversion 465 

days during winter. Conversely, long-range transport sources (sulfate-rich, nitrate-rich) tend to be less important 466 

during these inversion days. A similar pattern is observed for the relative contribution of sources to PM (Figure 467 

S.10), in which the significant contribution of biomass burning, dust, industrial, and primary traffic is detected 468 

during inversion events. The trends of the two most important local anthropogenic sources (domestic biomass 469 

burning and traffic) are further discussed in the next sections. 470 

 471 
Figure 6. Contribution of the different sources to the PM10 composition for days with persistent inversion vs non-472 

inversion days of the winters 2017-2023. 473 

3.3.3. Trend in biomass burning contributions  474 

The trend of the domestic biomass burning PM10 concentrations is investigated via an STL decomposition analysis 475 

on this PMF-derived source (Figure 7), indicating a statistically significant decreasing trend from 2013 to 2023 476 

(p-values <<0.01). The seasonal estimate shows the highest values in the winter season (Nov, Dec, Jan), with a 477 
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visual trend to a smoothing of the peak concentrations; conversely, from Mar to Sept, the seasonal variations 478 

showed constantly lowest values. Extreme residual values were detected in the winter months of 2016, 2017, and 479 

2021, explained by high-concentration episodes of PM10, where the concentration exceeded the European standard 480 

for PM10 concentration in 24 hours (PM10 concentration varied from 50 to 78 µg m-3). The linear fit line of the 481 

trend is highly significant with R2 = 0.97, with a reduction of 134 ng m-3 yr-1 (-5.5% yr-1).  482 

 483 

 484 
Figure 7. The season-trend (STL) decomposition of biomass burning 485 

This reduction of biomass burning concentrations in Grenoble is 4 times higher than the results from a long-term 486 

study (2012 to 2020) in a French rural site - (Observatoire Pérenne de l'Environnement, OPE) (Borlaza et al., 487 

2022a) - estimated at 33 ng m-3 yr-1 over the same period. Besides the study of  Borlaza et al. (2022a), there are 488 

no previous PMF studies describing any trend of biomass burning factors. Nevertheless, similar trends were found 489 

for concentrations of biomass burning tracers. In particular, Font et al. (2022) presented a downward trend of  490 

PM10 concentration from wood burning (a reduction from 1.5 to 3.8 % yr-1 ) in urban sites in the United Kingdom 491 

from 2010 to 2021, by calculating the emission of wood burning from aethalometer measurement. Similarly, from 492 

2002 to 2018 in Norway, a downward trend of 2.8% yr-1 was also detected for levoglucosan (Yttri et al., 2021). 493 

Additionally, Colette et al. (2021) modeled the trend of the emissions from different activities in Europe, showing 494 

that the trend of PM10 heating emissions was decreasing in the period 2000-2017, with mean rate values varying 495 

from 0.8 to 3.3% yr-  1
 for 30 European countries (EMEP monitoring sites). Even though the chemicals and the 496 

period of these studies differ, a decreasing trend is generally observed among European cities, including the one 497 

investigated here. Interestingly, the biomass burning source in Grenoble shows the strongest decreasing trend, 498 

with a reduction of 5.5% yr-1.  499 

Since the biomass burning sources in Grenoble are related to residential heating, the observed reduction of the 500 

concentrations from this source could be linked to household behaviors (including appliance renovation) on top 501 



17 
 

of the changes in meteorological conditions, lowering the overall heating demand. The average annual biomass 502 

burning sources PMF-derived is compared to the local PM10 emission inventory for residential heating (tonnes) 503 

in the Grenoble metropolis, estimated by the regional air quality monitoring agency (Atmo AuRA), to confirm 504 

the trend of biomass burning (Figure 8). This emission inventory has been available until 2022. 505 

 506 

 507 
Figure 8. Comparison between annual average PM10 emission inventory based on the quantity of wood sales (in grey) 508 

in the Grenoble metropolis and the yearly average PM10 concentrations from the PMF biomass burning factor (in 509 
green). 510 

Except for the year 2020, the annual average of biomass burning agreed with the emission inventory, 511 

demonstrating the consistency between the sources observed by the PMF model and the local inventory emission 512 

data. Since 2015, the Grenoble metropolis has set up an air-wood bonus to encourage households to renew their 513 

individual wood-burning appliance (fireplace or stove). It aims to replace all open fireplaces with closed 514 

appliances in October 2024. The downward trend of biomass burning concentration could then be considered as 515 

partly due to the implementation of dedicated action plans at the regional scale. 516 

3.3.4. Trends in traffic exhaust emissions  517 

Similar to the time series of biomass burning concentrations, the traffic contribution was subjected to specific 518 

STL analysis (Figure 9). A significant downward trend of the concentrations of PM from traffic emission is 519 

detected with a reduction of 374 ng m-3 yr-1 (12.9% yr-1) (p-value << 0.01). This reduction is almost 3 times larger 520 

than that of the biomass burning concentrations. Traffic concentration before 2017 also showed a clear seasonality 521 

with maxima in winter, which nearly disappeared from 2018 onward. It is striking that the same behaviors (strong 522 

downward trend and smoothing) are also observed for NOx concentration, another indicator of traffic exhaust 523 

emission, which is also observed for NOx seasonal patterns (see Supplement S6 and Figure S7). Residuals show 524 

extreme values in the same month as biomass burning in 2016 and 2017, matching the PM10 episode. The traffic 525 

trend closely follows a linear regression fit line, with R2 = 0.94. 526 
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 527 
Figure 9. The season-trend (STL) decomposition of PMF-derived traffic source 528 

The downward traffic trend observed in this study is consistent with another long-term study (2012-2020) of a 529 

rural site in France, which showed a traffic trend of -6.5% yr-1 (58% total reduction) (Borlaza et al., 2022a). This 530 

is aligned with other results of fossil fuel black carbon in several rural sites in France (Font et al., 2025), or EC 531 

over many rural sites in Europe (Aas et al., 2024). Additionally, our result also agrees with other studies, like that 532 

by Pandolfi et al. (2016), which indicated a downward trend of traffic sources in an urban site in Spain, with a 533 

reduction of 5.6% yr-1 (56% total reduction), which is lower than that of our study. Finally, the trend of traffic 534 

emission to PM10 in 30 European countries was modeled as reported by Colette et al. (2021), showing a downward 535 

trend with a reduction from 2.3 to 3.5% yr-1 from 2000 to 2017. As for biomass burning, the Grenoble supersite 536 

seems then experiencing faster reductions in primary traffic PM loadings than most of others European cities. 537 

Furthermore, the PMF-derived traffic factor was compared to the local PM10 traffic emission inventory by fuel 538 

type (provided by Atmo AuRA), revealing very similar trends (Figure 10). In addition, this source is also 539 

compared to the PM10 emission by the transport sector (kilotonnes) over France, which was assessed from the 540 

emission inventory data of CITEPA (Figure S11), also confirming the concomitant reductions of traffic emissions 541 

and contributions to PM10 in ambient air.  542 

 543 
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 544 
Figure 10. Comparison between annual average PM10 emission inventory based on the quantity of fuel sale (red bar) 545 

in the Grenoble metropolis and the yearly average PM10 concentrations from the PMF-derived traffic source 546 
contributions (black bar). 547 

This traffic trend may be separated into three parts. Between 2014 and 2016 with a slow decrease trend of -3% yr-548 

1; from 2016 to 2021, with an average reduction of 10% yr-1, and a mild increasing trend of approximately 3% yr-549 

1 in the last three years of the study. The beginning of this increase coincides with the post-lockdown period, when 550 

transportation activities were back to normal, resulting in a fairly similar contribution of traffic sources compared 551 

to that in the pre-lockdown period. 552 

Besides the implementation of the two versions of the Euro 6 emission standards (introduced in 2015 and 2018, 553 

respectively), local emission abatement strategies decided by Grenoble municipality from 2016 onwards might be 554 

the main drivers for the observed decreasing trends (City's low emission zone 555 

https://zfe.grenoblealpesmetropole.fr/ last assessed: 21/05/2025).  556 

3.4. Trends in PM10 OP sources 557 

In this section, the sources of OP are assessed using regression techniques, which are presented in section 2.6. 558 

The most appropriate model is selected based on characteristics of PMF-derived sources and OPv, as shown in 559 

section 3.4.1. Intrinsic OP derived from the best regression model, indicating the highest redox-active PM sources, 560 

is presented in section 3.4.2. Finally, section 3.4.3 provides the trend of OP sources, highlighting which sources 561 

are the drivers of OP trends. 562 

3.4.1. Selection of the most appropriate model 563 

Following the methodology exposed in Ngoc Thuy et al. (2024), the characteristics of the dataset, including 564 

collinearity and heteroscedasticity, are tested in order to select a satisfactory inversion model for OPDTT source 565 

apportionment (SA)  and OPAA SA (Table S8). The OP SA can be applied for the 11-year PMF solution since the 566 

source profiles have been demonstrated to be homogenous over the years. Consequently, the OPm
 should be 567 

substantially homogenous over the years (Ngoc Thuy et al., 2024), and it is unnecessary to perform the OP SA 568 

for each year separately. The characteristic tests indicate that the weighted positive least squares (wPLS) and 569 

weighted least squares (WLS) could be suitable models for both OPAA and OPDTT SA. The average accuracy 570 

metrics of the testing dataset in 500 iteration runs (including R2, RMSE, MAE) of wPLS and WLS were compared 571 

to select the most appropriate model (Table S9). Finally, WLS was chosen due to the highest R2 and lowest error 572 

for both OPAA and OPDTT  prediction. The comparison between observed and predicted OPAA and OPDTT showed 573 
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a good correlation between measured OP and WLS predicted OP, with R2 = 0.80 and 0.70 for OPAA and OPDTT, 574 

respectively (Figure S12 and S13), with n = 1570 for OPAA and OPDTT .  575 

In addition, the study revealed good performance of Mutiple Layer Perceptron (MLP) and Random Forest 576 

(RF) for the training and testing datasets (Table S10). These neural network models were overfitting the 577 
results of OP SA for the 6 French sites tested in Ngoc Thuy et al. (2024) since the number of samples was 578 
lower than 200 for individual sites. The present study confirmed the conclusion of Ngoc Thuy et al. (2024), 579 
demonstrating that a higher number of samples improved the performance of the neural network model. 580 
However, such non-linear models do not provide values for the intrinsic OP, which is basically the 581 
regression slope of the regression. Since the objectives of MLP and RF are not to define a "slope" but to 582 

better predict OP, therefore, the "slopes" of such models actually constantly vary with the input data to 583 
ensure the best performance of the model. Since the OP intrinsic is not defined, these models cannot be 584 

selected for the final results at this stage. 3.4.2. Intrinsic OP of PMF-derived sources 585 

The intrinsic OP of 1µg PM10 source (OPm nmol min-1 µg-1) is investigated thanks to the WLS technique, resulting 586 

in 500 values of OPm for each source (Table 2 and Table S11). The anthropogenic sources, including biomass 587 

burning, industrial, and traffic, have the dominant intrinsic OPDTT and OPAA, which is consistent with the study in 588 

2017-2018 in Grenoble (Borlaza, 2021) and results obtained at other French sites (Ngoc Thuy et al., 2024; Weber 589 

et al., 2021) and EU sites (Fadel et al., 2023; Veld et al., 2023). The different ranking of the intrinsic OP of the 590 

sources according to the two assays is also aligned with previous results (Weber et al., 2021). While intrinsic 591 

OPAA of biomass burning is highest (0.76 nmol min-1 µg-1), followed by industrial (0.48 nmol min-1 µg-1) and 592 

traffic (0.38 nmol min-1 µg-1), the order of intrinsic OPDTT is industrial (0.52 nmol min-1 µg-1), traffic (0.38 nmol 593 

min-1 µg-1) and biomass burning (0.14 nmol min-1 µg-1). The intrinsic OPDTT of biomass burning is also lower than 594 

that of OPAA, as reported by Borlaza et al. (Borlaza et al., 2021), suggesting the synergistic and antagonistic effects 595 

between some elements, quinones, or bioaerosols, decreasing the overall intrinsic OPDTT of this source 596 

(Pietrogrande et al., 2022; Samake et al., 2017; Xiong et al., 2017). 597 

The other anthropogenic sources, including nitrate-rich and sulfate-rich, have lower intrinsic OP than 598 

anthropogenic sources associated with combustion (traffic and biomass burning), as reported by Daellenbach et 599 

al. (2020). The natural sources have a negligible intrinsic OP (lower than 0.03 nmol min-1 μg-1 for OPDTT and 0.2 600 

nmol min-1 μg-1 for OPAA). These findings highlight the high impact of the anthropogenic sources, verified for the 601 

overall period 2013-2023. 602 

Table 2. Intrinsic OPAA and OPDTT (nmol min-1 µg-1) of PM10 sources (mean ± std of 500 iterations) 603 

Source OPAA OPDTT 

Aged sea salt -0.02 ± 0.07 0.03 ± 0.02 

Biomass burning 0.76 ± 0.13 0.14 ± 0.09 

Chloride rich -0.07 ± 0.09 0.01 ± 0.02 

Industrial 0.48 ± 0.14 0.52 ± 0.08 

MSA rich 0.20 ± 0.04 0.01 ± 0.02 

Mineral dust -0.03 ± 0.06 0.01 ± 0.02 

Nitrate rich 0.09 ± 0.16 0.11 ± 0.12 

Primary biogenic 0.00 ± 0.04 0.02 ± 0.03 

Primary traffic 0.38 ± 0.10 0.24 ± 0.07 

Sulfate rich -0.01 ± 0.08 0.09 ± 0.04 
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3.4.3. Trends in OP  604 

The trend of OP is first presented by the yearly average contribution of sources to OPAA and OPDTT  (Figure 4), 605 

indicating a reduction of OP values over the years. Overall, the yearly average of the OPAA
v and OPDTT

v is 606 

decreasing and reached its lowest values in 2021 (2.41 and 1.17 nmol min-1 m-3 for OPAA and OPDTT, respectively). 607 

From 2018 onward, both assays consistently exhibited lower OPv values than in preceding years. Although OPv 608 

is calculated using PM10 concentration, implying that a decrease in PM10 concentration generally reduces OPv, 609 

the contribution of sources to OP is different from that of PM10. While dust and sulfate-rich are dominantly 610 

contribute to PM10, biomass burning is the most important contributor to OPAA (1.87 ± 2.7 nmol min-1 m-3), and 611 

primary traffic is commonly assessed as the largest contributor to OPDTT (0.71 ± 0.70 nmol min-1 m-3). The 612 

industrial mass contribution is 10 times lower than that of the sulfate-rich. However, industrial emissions appear 613 

to contribute much more to OPAA and equally to OPDTT than the sulfate-rich factor. This finding was also observed 614 

in 2017-2018 at the same site in Grenoble (Borlaza, 2021). This significant contribution of traffic and biomass 615 

burning over the years is more evident when considering relative contribution (Figure S15). These results again 616 

emphasize the importance of considering not only the mass concentration but also its redox activity in evaluating 617 

the potential adverse health effects of a source of PM.  618 

In addition, the temporal evolution of OPAA and OPDTT did not exactly follow PM10 trends, especially for the 619 

period of 2016-2017 and 2019-2020. Regarding the period between 2016 and 2017, a dramatic increase in PM10 620 

concentration is observed, principally due to the higher contribution of nitrate and sulfate-rich. On the other hand, 621 

OPAA and OPDTT values remained fairly unchanged between 2016 and 2017. Focus on 2019 and 2020, the PM 622 

concentration and OPv values are identical (less than 0.001 µg m-3
 and nmol min-1 m-3 of difference, respectively), 623 

while OPAA
v

 presents a remarkable difference (Δ = 0.8 nmol min-1 m-3). Indeed, the discrepancy between 2019 624 

and 2020 in OPAA
v is principally attributable to a higher contribution to biomass burning, which is the dominant 625 

driver of OPAA
v . Overall, the downward trend of OPAA and OPDTT  is different from PM10, since the driven sources 626 

of OP and PM are different. 627 

 628 
Figure 11. Yearly average contribution of sources to (a) OPAA

v and (b) OPDTT
v
 629 
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The yearly average may not be properly representative of the trends of OP; therefore, a STL deconvolution was 630 

performed for OPAA
m and OPDTT

m (Figures S16, S17, respectively) to investigate the trend of OPm over the 11 631 

years of the study. Indeed, considering the trend of the intrinsic OPm confirms that the downward trend of some 632 

sources leads to a change in the trend of OPAA
m and OPDTT

m
.. 633 

An insignificant linear trend is observed for OPAA
m (fit line: R2 = 0.4, p-values << 0.01), yet its average intrinsic 634 

activity still exhibits a decreasing value, with the annual mean falling by approximately 0.002 nmol min-1 m-3 635 

(2.5 %) across the study period. Interestingly, the seasonality of OPAA
m exactly matches the seasonality of 636 

biomass-burning concentrations, pointing out that the high values of OPAA
m in winter align with biomass-burning 637 

activities. The trend line of OPAA
m did not match the trend of biomass burning nor that of the traffic or industrial 638 

emissions, suggesting the synergistic effect between sources, as well as the influence of the other sources outside 639 

of the winter season, such as MSA-rich and primary biogenic, which get a high ranking of OPAA
m

 (Table 2).  640 

Conversely, the OPDTT
m

 showed a significant downward trend (R2= 0.6, p-value <<0.01), with a reduction of 0.005 641 

nmol min-1 µg-1 (6.5%) across 11 years. The seasonality of OPDTT is different from that of biomass burning and 642 

OPAA
m, since biomass burning is not the main driver of OPDTT (only ranked third), indicating a lower influence of 643 

this source on OPDTT
m compared to OPAA

m. Interestingly, a slight increase in OPDTT
m

 from 2021 onward is also 644 

observed, which is associated with PM10 and traffic, suggesting that traffic emission could be the main driver for 645 

increasing PM10 concentration and OPDTT
m

 from 2021. Overall, the relative decrease of OPDTT
m exceeds that of 646 

OPAA
m could be explained by the 4th most important contributor to these OPs. All four leading contributors to 647 

OPDTT
m show significant reductions, whereas MSA-rich factor, one of the top four contributors to OPAA

m, has an 648 

increasing trend. These findings again underscore that trends in OPm are governed by the evolution of the sources 649 

most active in each assay. Thus, the decrease in the magnitude of the OPm depends on how its dominant redox-650 

active sources evolve over time. 651 

Considering the volume-based metrics (OPv), a downward trend is detected for OPAA and OPDTT. PM10 decreased 652 

by 3.9 % over the decade, which is consistently comparable to OPAA
v (4.9 %) and OPDTT

v (5.3 %). This good 653 

agreement partially reflects the influence of the PM mass concentration since  these OPv values are calculated 654 

using PM10 concentration. However, the slight difference in the relative downward trend could be related to the 655 

most driven sources of OP and PM, as discussed above. 656 

Finally, the impact of persistent inversion days on the OPv is also investigated to assess the association between 657 

the redox activity of PM sources and thermal inversion. A comparison of the source's contribution to OP v (for 658 

both AA and DTT) between the period with and without persistent inversions is carried out and shown in Figure 659 

S14. The comparison confirms the larger increases in average OPAA (85.1%) and OPDTT  (63.8 %) compared to 660 

that of PM10 (39.6%) for the persistent inversion periods. The higher values of OPAA and OPDTT  are related to the 661 

larger increases in the contribution of local anthropogenic sources, with BB impacting most the OPAA values while 662 

traffic significantly influences OPDTT.  This result again highlights the potential effect of persistent inversion on 663 

the PM10 source's contribution, but all the more of their redox-active properties, which could be associated with 664 

the health-relevant metrics (Tassel et al., 2025 in progress). 665 

Over the decade, anthropogenic sources have driven OP, with biomass burning impacting OPAA and traffic/ 666 

industrial sources dominating OPDTT. Frequent thermal inversion in Alpine valley strongly amplifies OP, which is 667 

more significant than the mass of PM10 itself. Finally, OPv and intrinsic OP trends over the decade do not align 668 
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with that of PM10 mass, emphasizing the need to prioritize redox-active components over the bulk PM 669 

concentration in air quality policy. 670 

4. Conclusions 671 

Thanks to long-term PM10 observations with a detailed set of chemical markers, a comprehensive source 672 

apportionment was performed to identify the evolution of PM10 sources in Grenoble (France). This is one of the 673 

very few studies in Europe that could assess over 11 years of PM10 sources and the only study so far investigating 674 

trends in PM10-related OP. The trend of PM10 sources, especially anthropogenic sources such as biomass burning 675 

and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the 676 

trend of OPm, OPv
, and sources of OP revealed that the trend of OP depends on the source that drives OP. The 677 

analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023, 678 

and objectivates the main sources that are involved in their concentration' decrease. 679 

Nevertheless, the following methodological limitations in this long-term study shall be kept in mind: 680 

- Daily concentrations of metal elements were only analyzed for some periods (2013, 2017-2018, 2020-2021), 681 

while the remaining data were derived from weekly sampling. An imputation technique was implemented to 682 

impute daily concentrations. The PMF result demonstrated the stability of most chemical profiles at Grenoble 683 

from 2013 to 2023, compared to those previously published (Borlaza et al., 2021), despite these uncertainties in 684 

the imputed metal concentrations.  685 

- The process of implementing such a PMF analysis strategy is not straightforward. A combined PMF approach 686 

could be used for datasets with different time resolution (Via et al., 2023). This approach would allow combining 687 

the 7-day and daily filter samples into a PMF without performing imputation. 688 

- The lack of a secondary biogenic organic aerosol tracer in long-term observations prevents the identification of 689 

the BSOA source, which could make up about 10% of the total mass of PM10 on a yearly average, as observed in 690 

previous work at the site (Borlaza et al., 2021), which used 3-MBTCA and picnic acid for the yearly period of 691 

observation. 692 

Thanks to long-term PM10 observations with a detailed set of chemical markers, a comprehensive source 693 

apportionment was performed to identify the evolution of PM10 sources in Grenoble (France). This is one of the 694 

very few studies in Europe that could assess over 11 years of PM10 sources and the only study so far investigating 695 

trends in PM10-related OP. The trend of PM10 sources, especially anthropogenic sources such as biomass burning 696 

and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the 697 

trend of OPm, OPv
, and sources of OP revealed that the trend of OP depends on the source that drives OP. The 698 

analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023, 699 

and objectivates the main sources that are involved in their concentration' decrease. 700 

Overall, a total of ten sources were identified, including aged sea salt, biomass burning, chloride-rich mineral 701 

dust, MSA-rich, nitrate-rich, industrial, primary biogenic, and primary traffic. The source chemical profiles are 702 

consistent with those presented in 2017-2018 (Borlaza et al., 2021), demonstrating that the sources of PM10 in 703 

Grenoble were relatively stable during our study period. The trend of PM10 sources was investigated using STL 704 

decomposition, which reveals a downward trend for all the PM10 sources over 11 years, especially for the 705 

anthropogenic sources. Extending PMF outputs to oxidative potential apportionment showed that biomass 706 

burning, traffic, and industrial emissions dominate redox activity in both the ascorbic acid (AA) and dithiothreitol 707 
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(DTT) assays. Trend analysis of volume- and mass-normalized OP metrics indicates that biomass burning governs 708 

the long-term behavior of OPAA. In contrast, traffic is the principal driver of OPDTT assay, underscoring source-709 

specific control of PM10 OP in the Grenoble atmosphere.  710 

Both of these anthropogenic sources, as well as their influences on PM10 OP, showed significant decreasing trends 711 

concomitantly to the implementation of emission reduction strategies (both at the national and regional levels) 712 

that should be reinforced to reach the goals of the European zero pollution action plan and the recently revised 713 

Directive on ambient air quality (22024/2881/EU). The continuation of these measurements will take place in the 714 

coming years, with this site being selected as one of the supersites for the new EU Air Quality directive. 715 
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