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Abstract 13 

The identification of particulate matter (PM) sources and the quantification of their contribution to the urban 14 

environment is a necessary input for policymakers to reduce the air pollution impacts. The association between 15 

the PM sources and the oxidative potential (OP) is also a key indicator for evaluating the ability of PM sources to 16 

induce in-vivo oxidative stress and lead to adverse health effects, which becomes an emerging metric in the 17 

Directive on ambient air quality (22024/2881/EU). Most studies in Europe have focused on PM and OP sources 18 

in the short term, for only 1 or 2 years. However, the efficiency of reduction policies, trends, and epidemiological 19 

impacts cannot be properly evaluated with such short-term studies due to a lack of statistical robustness. Here, 20 

long-term PM10 filter sampling at the Grenoble (France) urban background supersite and detailed chemical 21 

analyses were used to investigate decadal trends of the main PM sources and related OP metrics. Positive matrix 22 

factorization (PMF) analyses were conducted on the corresponding 11-year dataset (Jan 2013 to May 2023, n = 23 

1570), enlightening the contributions of 10 PM sources: mineral dust, sulfate-rich, primary traffic, biomass 24 

burning, primary biogenic, nitrate-rich, MSA-rich, aged sea salt, industrial and chloride-rich. The stability of the 25 

chemical profile of these sources was validated by comparison with the profiles retrieved from shorter -term (3 26 

years) successive PMF analyses. A Seasonal-Trend using LOESS decomposition was then applied to evaluate the 27 

trends of these PM10 sources, which revealed a substantial decrease in PM10 (-0.73 µg m-3 yr-1) as well as that of 28 

many of the PM10 sources. Specifically, negative trends for primary traffic and biomass burning sources are 29 

detected, with a reduction of 0.30 and 0.11 µg m-3 yr-1, respectively. The OP PM10 source apportionment in 11 30 

years confirmed the high redox activity of the anthropogenic sources, including biomass burning, industrial, and 31 

primary traffic. Eventually, downward trends were also observed for OPAA and OPDTT , mainly driven by the 32 

reduction of residential heating and transport emissions, respectively. 33 

Keywords: PM10 source apportionment, OP PM10 source apportionment, long-term trend, Positive matrix 34 

factorization. 35 
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1. Introduction 36 

Particulate matter (PM) is the main atmospheric pollutant that significantly impacts human health, climate, and 37 

the environment (Fuzzi et al., 2015; Grantz et al., 2003; Pope and Dockery, 2006), which is emitted directly or 38 

formed through complex processes in the atmosphere from natural and anthropogenic gaseous precursors. The 39 

identification of PM sources is important to investigate their composition, contribution, and evolution, which is 40 

one necessary input for policymakers to apply strategies in reducing their impact. There are various methodologies 41 

to identify these sources, where receptor models are widely used to perform source apportionment (SA) due to 42 

their flexibility and performance. Positive Matrix factorization (PMF) is one of the most popular among these 43 

receptor models, as it has been developed to allow SA analysis without any prior information other than the 44 

measurement and uncertainty input matrices (Hopke, 2016). Scores of studies using PMF have been applied in 45 

different typologies of sites over the last 15 years, with urban areas being the most common (Hopke et al., 2020; 46 

Viana et al., 2008). 47 

The adverse health effects of PM can be assessed through different pathways, one of which uses the concept of 48 

oxidative stress within the lung (Pope and Dockery, 2006). PM has the ability to generate reactive oxygen species 49 

(ROS), which can cause an imbalance with antioxidants in the lungs, eventually causing oxidative stress. This 50 

capacity is evaluated as the oxidative potential (OP) of PM (Ayres et al., 2008; Li et al., 2008; Lodovici and 51 

Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao et al., 2018). The redox activity of PM is mainly 52 

dependent on their compositions; nevertheless, the correlation between individual components of PM and OP is 53 

probably not the best approach for understanding the impact of ambient PM because of their complex mixture 54 

preventing the quantification of all components of interest (Borlaza, 2021; Calas et al., 2018; Weber et al., 2018). 55 

Therefore, the relationship between OP and PM sources has been investigated as a more holistic approach (Bates 56 

et al., 2018; Dominutti et al., 2023; Weber et al., 2021). The implementation steps of such an approach can include, 57 

first, a PM source apportionment (SA) (usually using PMF), allowing the identification of PM sources and their 58 

contribution to PM. Then, the relationship between OP and PM sources is investigated by performing some 59 

regression techniques, potentially including linear and non-linear ones (Ngoc Thuy et al., 2024). 60 

The OP of PM is becoming an emerging metric for the European regulation on air quality, included in the new 61 

European Air Quality Directive (Directive (EU) 2024/2881) as a recommended measurement at super sites in each 62 

member state in order to improve the knowledge about the variability of the OP and eventually allow the 63 

connections with epidemiological studies. Most previous studies have focused on PM and OP sources over a 64 

relatively short period, typically less than 1 or 2 years (Borlaza et al., 2022a; Pietrodangelo et al., 2024; Weber et 65 

al., 2019). Such short-term studies assess the PM and OP sources as well as their contribution, providing 66 

information on the intrinsic OP of PM sources, allowing for the development of OP modeling (Daellenbach et al., 67 

2020; Vida et al., 2024) and eventually designing some public policies (Borlaza, 2021). However, long-term series 68 

are needed both for evaluating the efficiency of such reduction policies in connection with the evolution of 69 

contributions from sources and also for implementing epidemiological studies (Borlaza-Lacoste et al., 2024). 70 

The present study is based on a long-term measurement program conducted in the city of Grenoble (France), 71 

resulting from a sustained collaboration between the local network (Atmo AuRA), the French Reference 72 

Laboratory for Air Quality Monitoring (LCSQA), and the Institute of Environmental Geosciences (IGE) to 73 

investigate long-term evolution of PM10 sources and OP in the PM10 as well as their tendencies in the urban 74 

background of the city. Here, we assessed these source contributions from daily ambient PM10 samples obtained 75 
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from 2013 to 2023 (n = 1570) using the EPA PMF model at this site selected as one of the French urban supersites 76 

for the new EU 2024/2881 Air Quality Directive. The database was augmented using imputation techniques in 77 

order to fill some of the gaps in the data, relative to metallic trace elements. Since PMF is rarely applied to such 78 

a long-term database, several evaluations of the validity of solutions were also implemented. The PMF-derived 79 

PM10 sources were then used to perform OP SA from 2013 to 2022 (n=1570). The trend of PM10 concentration, 80 

of the PM10 sources, and the OP measurements are eventually discussed in relation to several potential factors of 81 

influence. 82 

2. Methodology  83 

2.1. Sampling site 84 

PM10 daily samples were collected at an urban background site (Grenoble - Les Frênes), in the southern area of 85 

Grenoble, France (45°09′41″ N, 5°44′07″ E). This city is known as the French Alps' capital, sprawling over 18.13 86 

km2 with about 154,000 inhabitants in 2023, but nearly 500,000 within the larger urbanized area (about 15 km 87 

radius). With an average altitude of about 200 masl, the city sits within a complex mountainous geomorphology 88 

and is surrounded by three mountain massifs: Chartreuse, Vercors, and Belledonne (Figure 1Figure 1). A pendular 89 

wind regime between the three valleys of the basin regulates the ventilation of the atmosphere, with frequent 90 

thermal inversion during cold periods, leading to the accumulation of pollutants. The air quality is monitored at 91 

several sites in Grenoble by the regional agency (Atmo AuRA), including the urban background site of this study, 92 

which is equipped with a large array of instruments. Particularly, the chemistry of PM10 collected on filters has 93 

been speciated at this site since 2008, within several programs, including the CARA program from the French 94 

Ministry of Environment (Favez et al., 2021) and several research programs such as QAMECS (Borlaza et al., 95 

2021), or SOURCES (Weber et al., 2019). Many aspects of air quality in Grenoble were reported for this site, 96 

including the characteristics of secondary anthropogenic PM fraction (Baduel et al., 2009, 2012; Favez et al., 97 

2010; Tomaz et al., 2016, 2017), of the biogenic PM components (Brighty et al., 2022; Samaké et al., 2019a, a), 98 

as well as the PM OP (Borlaza, 2021; Dominutti et al., 2023; Weber et al., 2021). Several studies of one-year PM 99 

sources apportionment were also performed in 2013 (Srivastava et al., 2018) and 2017-2018 (Borlaza et al., 2021). 100 

Despite the difference in input data and periods of the studies, similar main sources of PM were quantified in both 101 

studies, including residential heating, traffic, and secondary inorganic aerosol (SIA). 102 
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 103 
Figure 1. The sampling site is located in the Southeast of France (left figure ), surrounded by 3 mountains massifs  104 

(Vercors, Chartreuse , and Belledonne). Background map: ESRI satellites.  105 

2.2. Sampling and chemical analyses 106 

2.2.1. PM10 and their inorganic and organic composition 107 

The daily PM10 sampling was performed every third day from 02/01/2013 to 28/05/2023, on 150 mm-diameter 108 

quartz fibre filter (Tissu-quartz PALL QAT-UP 2500 diameter 150 mm) using high-volume samplers (Digitel 109 

DA80, 30 m3 h-1). A weekly PM10 sampling was conducted during the same period using a low-volume sampler 110 

(Partisol, 1 m3 h-1) onto 47mm diameter quartz fibre filters (Tissuquartz PALL QAT-UP 2500 diameter 47 mm). 111 

The processes of preparation, handling, and storing filters, in order to guarantee optimum quality for chemical 112 

analyses were presented in Borlaza et al. (2021). Field blank filters were also collected (about 8-10% of the total 113 

samples) to estimate the detection limits and evaluate the filter contamination during the overall handling and 114 

analysis processes.  115 

The daily PM10 samples (n = 1570) and field blanks were analyzed for elemental carbon (EC) and organic carbon 116 

(OC), major ions (Cl-, NO3
-, SO4

2-, Na+, NH4
+, K+, Mg2+, Ca2+), methanesulfonic acid (MSA), anhydrous sugar 117 

and saccharides (levoglucosan, mannosan, arabitol, mannitol), and trace elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, 118 

Sb, V, Zn). However, the concentrations of the daily trace elements were analyzed only in 3 periods, including: 119 

(1) from January 2nd, 2013 to December 31st, 2013 (n = 122), (2) from February 28th, 2017 to March 13th, 2018 120 

(n = 125), (3) from June 30th, 2020 to June 18th, 2021 (n=115). The weekly samples and blanks were analyzed 121 

for trace metal concentrations for the whole sampling period (n = 842). 122 

All analyses were previously described in detail (Borlaza et al., 2021). In brief, EC and OC analysis was performed 123 

using a Sunset Lab analyser with the EUSAAR2 thermo-optical protocol. The eight major ionic components and 124 

MSA were analyzed, after aqueous extraction of the filters using orbital shacking, by ionic chromatography using 125 

an ICS3000 dual-channel chromatograph (Thermo-Fisher) with a CS16 column for cation analysis and an AS11 126 

HC column for anion analysis. The anhydrous-sugar and saccharides analyses were performed on the same water 127 

extract by an HPLC method using PAD (Pulsed Amperometric Detection) (model Dionex DX500 + ED40) with 128 

Metrosep columns (Carb 1-Guard+A Supp15-150+Carb1-150) in the period before the year 2017. From 2017 to 129 
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the present, the measurement with ICS 5000 with pulsed amperometric detection (HPLC-PAD) was performed 130 

following the CEN method (European committee for standardization, 2024). The analysis is isocratic with 15% 131 

eluent of sodium hydroxide (200 mM), sodium acetate (4 mM), and 85% water at 1 mL min-1. 132 

The daily and weekly metals were measured by Inductively coupled plasma mass spectroscopy (ICP-MS) (ELAN 133 

6100 DRC II PerkinElmer or NEXION PerkinElmer). The measurement was performed on the mineralization of 134 

a 38 mm diameter punch of each filter, using 5 mL of HNO3 (70 %) and 1.25 mL of H2O2 for 30 min at 180°C in 135 

a microwave. 136 

2.2.2. OP analysis 137 

Two complementary OP assays, including the two probes ascorbic acid (AA) and dithiothreitol (DTT) were 138 

performed on the same filters with PM10 components analysis (from 02/01/2013 to 28/05/2023, n = 1570). Filter 139 

samples are extracted using a simulated lung fluid during 1h15 at 37°C, pH 7.4, as described in Calas et al. (2017), 140 

which creates a physiological environment for the extraction Filter samples are extracted using a simulated lung 141 

fluid which is the mixing of Gamble and DPPC (dipalmitoylphosphatidylcholine) solutions, during 1h15 at 37°C, 142 

pH 7.4 , creating a physiological environment for the extraction (Calas et al., 2017) . The AA method quantifies 143 

the consumption of ascorbic acid, an endogenous antioxidant in the lung, by PM and was described in Calas et al. 144 

(2017, 2018). The reaction mixture (extract + AA) was transferred to UV-transparent 96-well plates (CELLSTAR, 145 

Greiner-Bio), and the residual AA was measured at 265 nm with a TECAN Infinite M200 Pro spectrophotometer. 146 

The AA consumption rate (nmol min-1) reflects the capacity of PM₁₀ to catalyze electron transfer from AA to 147 

molecular oxygen. 148 

DTT assay relies on dithiothreitol, a chemical surrogate for cellular reducing agents, allowing for emulation of in 149 

vivo interaction among PM10 and biological reducing agents (for example, nicotinamide adenine dinucleotide 150 

(NADH), nicotinamide adenine dinucleotide phosphate oxidase (NADPH)). After incubation of the PM 151 

suspension within the lining fluid with DTT, the remaining DTT was titrated with 5,5′-dithiobis-(2-nitrobenzoic 152 

acid) (DTNB) to form 5-mercapto-2-nitrobenzoic acid (TNB). Absorbance at 412 nm (TECAN Infinite M200 Pro) 153 

in 96-well plates provided the concentration of unconsumed DTT, from which the DTT consumption rate 154 

(nmol min-1) was calculated. The batches were standardized using common external references control (lab’ 155 

rooftop filter analysis for every batch) to ensure consistency between batches. 156 

After analysis, the OP activities were blank subtracted and then normalized using the PM10 mass concentration 157 

and the sampling air volumes. The mass-normalized OP (OPm, nmol min-1 µg-1) represents the intrinsic OP of 1µg 158 

PM, while the volume-normalized OP (OPv, nmol min-1 m-3) represents PM-derived OP per m3 of air. Each sample 159 

is analyzed in triplicate for AA and triplicate for DTT, respectively. Consequently, the OP values presented in the 160 

study are the mean and the standard deviation of these replicates. 161 

2.2.3. Vertical temperature and other ancillary measurements 162 

Vertical temperature and humidity were measured every 30 minutes from November 2017 to May 2023 using 163 

Tinytag TGP-4500 from Gemini Data Loggers. A Stevenson Type Screen protects each Tinytag loggers from 164 

radiant heat (direct sunlight). Sensors are installed at a minimum of 3m from the ground. The measurements have 165 

been performed at different elevations of the Bastille hill, located a few hundred meters from the city center 166 

(5°43'37.0" E, 45°11'40.8" N), including z = 230, 309, 496, 916m altitudes.  167 
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Further, measurement of the PM10 mass was conducted (hourly) using tapered element oscillating microbalances 168 

equipped with filter dynamics measurement systems (TEOM-FDMS) at the same site as the filter collection. The 169 

PM concentration used in this study is the 24-hour average concentration, which is associated with the days of 170 

filter-based sample measurement (from 02/01/2013 to 28/05/2023). 171 

 172 

2.3. Multivariate imputation by chained equations (MICE) 173 

The daily concentration of metals was only accessed in some periods, with the number of samples being 362 of 174 

the total of 1570 samples, which would severely limit the size of the inputs for the PMF processing. We used the 175 

weekly concentration measured over the whole period to estimate the missing daily data using an imputation 176 

method. The daily concentration of metals was imputed by using the MICE algorithm implemented with 177 

multilinear regression (Azur et al., 2011). These values were modeled conditionally depending on the observed 178 

values of the daily PM10 and PM10 components concentration (i.e., weekly concentration, PM10, and PM10 179 

components concentration). These components are OC, EC, MSA, Levoglucosan, Mannosan, Polyols, NO3
-, SO4

2-180 

, Na+, NH4
+, K+, Mg2+, Cl-, Ca2+. The data preparation and imputation processes are implemented through 4 main 181 

steps, as presented in S1 and Figure S1, Supplement. The validation of this imputation is shown in Table S1 and 182 

Figure S2. 183 

2.4. Persistent inversions detection 184 

Thermal inversion occurs when the vertical temperature gradient between the ground-based and higher-altitude 185 

stations is positive. However, this constraint is restrictive and limits thermal inversion detection, especially when 186 

the calculation is on average daily temperature (Largeron and Staquet, 2016). Hence, the persistent inversion is 187 

detected, as discussed in Largeron and Staquet (2016), for days with : 188 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑇916 − 𝑇230

∆𝑧
)

𝐷𝑎𝑖𝑙𝑦
> 𝑀𝑒𝑎𝑛 (

𝑇916 − 𝑇230

∆𝑧
)

𝑊𝑖𝑛𝑡𝑒𝑟
        (1) 189 

for more than 72 consecutive hours 190 

with:  191 

𝑇916 −  𝑇230 is the difference between temperature at ground-base station (z = 230m altitude) and at high-elevation 192 

station (z = 916m); 193 

∆𝑧 is the difference between the height of high and low elevations; 194 

𝑇916− 𝑇230

∆𝑧
 : is the bulk temperature gradient between z = 230 and z = 916m; 195 

𝑀𝑒𝑎𝑛 (
𝑇916− 𝑇230

∆𝑧
)

𝑊𝑖𝑛𝑡𝑒𝑟
 : is the mean bulk temperature gradient in wintertime (from November to March). 196 

2.5. Positive Matrix Factorisation (PMF) 197 

2.5.1. PMF input 198 

EPA PMF 5.0 (Gary Norris et al., 2014) was used to identify and quantify the PM10 sources based on the observed 199 

concentrations and their related uncertainties. The concept of PMF is to use the weighted least square fit method 200 

and apply a non-negative constraint with the weight calculated based on analysis uncertainties (Paatero and 201 

Tappert, 1994) (Eq. (S1), Supplement S2). In this study, the input matrix of the PMF comprises 25 chemical 202 

species, including PM10 (set as the total variable), carbonaceous fractions (OC*, EC), ions (Cl-, NO3
-, SO4

2-, Na+, 203 
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NH4
+, K+, Mg2+, Ca2+), organic tracers (MSA, levoglucosan, mannosan, polyols) and trace metals (As, Ba, Cd, 204 

Cr, Cu, Ni, Pb, Sb, V, Zn). The trace metals were the daily measured metals in some periods (2013, 2017-2018, 205 

2020-2021) and the daily imputed metals. The OC* (=OC minus the sum of the carbon mass from the organic 206 

tracers used in the input variables) was used to avoid considering twice the mass of C atoms in organic markers. 207 

Polyols were calculated as the sum of arabitol and mannitol, supposing that their origin is similar (Samaké et al., 208 

2019a). The input uncertainties were calculated based on the concentrations and the uncertainties in the analysis 209 

(Gianini et al., 2012; Waked et al., 2014). Details on the calculation of OC* and uncertainties of PMF input are 210 

presented in Section S3, Supplement. The selection of the input variables is guided by our previous yearly PMF 211 

studies at this site (Borlaza et al., 2021; Srivastava et al., 2018; Weber et al., 2019).  212 

2.5.2. Set of constraints 213 

The application of PMF constraints is recommended in the European guide on air pollution source apportionment 214 

with receptor models (Belis et al., 2014) to avoid mixing between some factors and reduce the uncertainty of the 215 

rotational ambiguity. The constraints used in this study are also based on the previous PMF studies in Grenoble 216 

(Borlaza et al., 2021; Srivastava et al., 2018; Weber et al., 2019) and are detailed in Table S3. 217 

2.5.3. Choice of the final PMF solution 218 

Several solutions, including those from 4 to 11 factors, were investigated to determine the optimal output. This 219 

selection is based on the ratio of Qtrue /Qrobust (evaluating the outlier's effect), the clarity of the chemical profile, 220 

the contribution of factors to PM10, the correlation between measured and predicted concentration, and the stability 221 

of the solution. This stability was evaluated using the bootstrapping (BS) and displacement (DISP) methods. BS 222 

analysis randomly resamples the data observation matrix and uses it to run a new PMF. The base-run and boot-223 

run factors are matched if their correlation exceeds the threshold (generally chosen at 0.6). DISP estimates each 224 

species' uncertainty in the factor profile by fitting the model many times until this variable turns displaced (upper 225 

or lower) from its fitted value. The details of the set criteria for validation are presented in S4. 226 

To evaluate the stability of the PMF solution over time (including possible changes in the chemical profiles of the 227 

sources), we also implemented separated PMF SA for every successive period of 3 years (2013-2016, 2017-2020, 228 

2021-2023) and then we investigated the homogeneity of the chemical profiles by using the Pearson distance (PD) 229 

and standardized identity distance (SID) metrics (Belis et al., 2015). The chemical profiles of PMF solutions every 230 

3 years and 11 years, and those published in Borlaza et al. (2021) are compared to assess the homogeneity of the 231 

chemical profiles. 232 

2.6. Regression techniques for PM10 OP SA 233 

The regression technique is applied to apportion OPv (AA, DTT) and PMF-derived PM10 sources' contribution, as 234 

expressed in Eq.2. Principally, OPv (nmol min-1 m-3) is treated as a dependent variable, and PMF-derived PM10 235 

sources' contribution (µg m-3) are independent variables. The OP SA methodology in this study follows the 236 

methodology reported by Ngoc Thuy et al. (2024). 237 

𝑂𝑃𝑣 = ∑ 𝑂𝑃𝑚
𝑖 ∗ 𝑃𝑀𝑖

𝑖=1

𝑝

+ 𝑒               (2) 238 

Where:  239 
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𝑂𝑃𝑣 is the volume-normalized OP (nmol min-1 m-3) 240 

𝑝 is the number of PMF-derived PM10 sources 241 

𝑂𝑃𝑚
𝑖  is the regression slope, denoted as the intrinsic OP of source i (nmol min-1 µg-1) 242 

𝑃𝑀𝑖 is the contribution of source i to PM10 (µg m-3) 243 

𝑒 is the residual of the regression technique (nmol min-1 m-3) 244 

The appropriate regression tool is selected based on the collinearity among independent variables and the variance 245 

of regression residuals (Ngoc Thuy et al., 2024). The collinearity among PMF-derived sources was tested using 246 

the variance inflation factor (VIF), which is calculated using Eq. (S3) in Supplement S2 (Craney and Surles, 2002; 247 

O’Brien, 2007; Rosenblad, 2011). The variance of the regression residual is assessed using the Goldfeld-Quandt 248 

test (Goldfeld and Quandt, 1965) to investigate if the regression residual varies by the value of the dependent 249 

variable (OPv). The most appropriate regression method is selected among a wide choice of possible tools 250 

(including ordinary least square, weighted least square, positive least square, Ridge, Lasso, random forest, and 251 

multiple layer perceptron), following the methodology developed by Ngoc Thuy et al. (2024). It is performed with 252 

considering the characteristics of the data and comparing the accuracy metrics (R-square, root mean square error, 253 

and mean absolute error) for each of them. For instance, if the regression residual is constant (homoscedasticity), 254 

the model ordinary least square (OLS) and Positive least square (PLS) are satisfactory. On the other hand, if the 255 

regression residual varied with the dependent variable (heteroscedasticity), the models incorporating some sort of 256 

weighting are chosen (including weighted least squares (WLS) and weighted positive least squares (wPLS)), 257 

where the weighting is the standard deviation of replicated OP analyses. 258 

The most appropriate model was trained by randomly choosing 80% of the dataset and validated with the 259 

remaining 20%. The model was run 500 times to ensure the robustness of the results, especially considering the 260 

remarkable seasonality of many components in the dataset. The contribution to OP of each source is calculated 261 

by multiplying its contribution to PM10 with the arithmetic mean intrinsic OP (or regression slope) of the 500 262 

iterations. 263 

2.7. Seasonal-trend using LOESS decomposition 264 

Seasonal-trend decomposition using LOESS (SLT) was developed by RB Cleveland et al. (1990) and is a robust 265 

method for decomposing time series into trends, seasonality, and residuals. This method uses LOESS, a method 266 

for estimating the non-linear relationships to decompose a time series. In our case, we used monthly average 267 

concentration as input data in order to have a more robust data set, smoothing high variability noise. The trend 268 

component is first calculated by applying a convolution filter to the data. Then, this trend is removed from the 269 

series. Finally, the average of this detrended in each period is the seasonal component. The residuals can be 270 

explained neither by trend nor by season. The STL is an iterative model that uses LOESS to smooth seasonal and 271 

trend components to obtain the minimum residuals. Further, in STL decomposition, the outliers in the data are 272 

given less weight in the estimation of trend and season. The STL model is described in the equation below:  273 

𝑦𝑡 =  𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (𝑡 = 1, 2, . . . , 𝑛)         (3) 274 

where, in our case, 𝑦𝑡 is the monthly contribution of PMF-derived sources, 𝑆𝑡  is the seasonal component, 𝑇𝑡 is the 275 

trend component, and 𝑅𝑡 denotes the residual component. The seasonal frequency was chosen 6 months before 276 

and 6 months after the evaluated month (seasonal frequency = 13 months) to estimate the yearly trend cycle. 277 
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Hence, the first and last 6 months of the decomposition time series were removed from the results to prevent edge 278 

effects.  279 

The long-term trend of PM10 sources was accessed by applying the STL model to the monthly contribution of 280 

sources to PM10 (output of PMF). The fit line of the trend was assessed by using ordinary least squares linear 281 

(OLS). The annual rate change of the trend is the slope of the fit line multiplied by 12 months (µg m-3 yr-1/ nmol 282 

min-1 µg-1 yr-1). The STL decomposition and the fit line of the trend were performed in Python 3.9 using the 283 

package "statsmodels" (Seabold and Perktold, 2010).  284 

3. Results and discussion 285 

3.1. Evolution of PM10 concentration and chemical components 286 

The annual average concentration of PM10, considering all available daily measurements, is 19.0±10.6 µg m-3 for 287 

the whole studied period (2013-2023). The highest annual concentration is observed in 2013 (24.4±13.7 µg m-3), 288 

and the lowest is in 2021 (15.3±9.8 µg m-3). The number of days with concentrations surpassing the European 289 

standard daily thresholds (40 µg m-3) is 176 days in 11 years, representing 4.6% of the total observed days, which 290 

are principally found in the cold season (Nov, Dec, Jan, Feb, Mar). 291 

The PM10 main components are organic matter (assuming OM = 1.8*OC (Favez et al., 2010)), representing on 292 

average over the overall period 41.3±8.0% of PM10 mass concentration, followed by dust (9.6± 4.4%), nitrate 293 

(NO3
-, 7.5±6.2%), non-sea salt sulfate (nss-SO4

2-, 7.4±2.4 %), elemental carbon (EC, 5.5±2.5%), ammonium 294 

(NH4
+, 3.9±2.0%), sea salt (Na+ and Cl-, 1.7±0.8%) and other non-dust elements (Cu, Pb, V, Zn, representing 295 

0.2±0.1%). These main composition fractions are estimated using the formula as shown in S2, Eq. (S4). The 296 

monthly evolutions of PM10 and its main chemical components for the whole period are shown in Figure 2Figure 297 

2. The maximum concentration of PM10 was observed in winter months (December, January, and February), 298 

corresponding to the highest concentration of OM and EC (7.82±3.11 µg m-3 and 1.09±0.74 µg m-3, respectively). 299 

Nitrate concentrations are higher in the middle of winter and the early spring, corresponding also with the high 300 

concentrations of ammonium (1.63±1.87 and 0.78±0.62 µg m-3). The agricultural activities (especially manure 301 

spreading) could explain this high contribution in spring under humidity and temperature conditions favoring the 302 

condensation of ammonium nitrate in the particulate phase. Nss-sulfate concentrations are more abundant in the 303 

warmer season (summer), where the photochemical production is favorable. No clear seasonal pattern could be 304 

observed for other components (sea salt, dust, non-dust, estimated as described in section S2), suggesting that the 305 

emissions of these components are stable for the whole year. At first glance, decreasing trends appear visible for 306 

PM10 and OM, EC, NO3
-, NH4

+, and non-dust components, while sea salt, dust, and nss-SO4
2- do not seem to 307 

present significant trends. With chemical components coming from several emission sources, an advanced 308 

analysis, including a PMF model followed by an STL decomposition, was performed to assess the trend of PM10 309 

sources. The result of the PMF model is presented in section 3.2, and the tendencies of PM10 sources and OP are 310 

shown in sections 3.3 and 3.4, respectively. 311 
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 312 
Figure 2. The average monthly evolution of PM10 and its main components from 2013 to 2023. The line represents the 313 

monthly average concentration of PM10 measured by TEOM-FDMS. 314 

3.2. PM10 sources apportionment 315 

3.2.1. PMF chemical profiles 316 

Using a unique chemical profile for each of the sources for such a long-term period can potentially limit the 317 

assessment of its evolution (Borlaza et al., 2022a). To evaluate such a phenomenon in our case, we investigated 318 

the chemical profile and contribution of PM10 sources for three distinct periods (2013-2016, 2017-20210, 20212-319 

2023) and compared the results with those for the full 11-year period, as well as to the results presented in (Borlaza 320 

et al. (2021) for the year 2017. Particularly, we checked the similarity of the chemical profiles of these PMF 321 

solutions using PD and SID metrics (Belis et al., 2015).  322 

For each SA, the PMF solution was tested from 4 to 11 factors and validated by the criteria presented in section 323 

S4. The results of these validations (Qtrue/Qrobust, bootstrap run, displacement run, and statistical validation) are 324 

presented in S5, Tables S4, S5 and S6. The runs of 4 to 9 factors returned at least one merging factor, and the 325 

solution with 11 factors led to a factor without geochemical identity. Finally, for each PMF tested (11 years, 2013-326 

2016, 2017-2021, 2022-2023), the best solution includes 10 PM10 sources, with mineral dust, sulfate-rich, primary 327 

traffic, biomass burning, primary biogenic, nitrate-rich, MSA-rich, aged sea salt, industrial, and chloride-rich.  328 

The similarity of the chemical profiles is presented in Figure 3Figure 3. Most of the factors (i.e., aged sea salt, 329 

mineral dust, primary biogenic, biomass burning, primary traffic, industrial, nitrate-rich, and sulfate-rich) present 330 

quite homogenous chemical profiles over the 3 successive periods, indicating that these source profiles are quite 331 

stable during the full 11-year period and similar compared to sources reported in Borlaza et al. (2021). The MSA-332 

rich and chloride-rich sources are the most divergent but are still within the limit of the accepted PD and SID 333 

range; however, their standard deviations for PD are slightly higher than for the other sources (Figure 3Figure 3). 334 

This is due to differences in the contributions of SO4
2- in the chemical profile of MSA-rich, which varied from 6 335 

% to 17%, and that of Cl- (73% - 83%) in the chloride-rich factor. In a previous study, Weber et al. (2019) also 336 
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reported that the proportion of SO4
2-

 in the MSA-rich source can significantly vary across French sites, from 6% 337 

to 24%. The chloride-rich source in our study (previously named sea/road salt in Borlaza et al. (2021) is essentially 338 

composed of a high proportion of Cl-, with less than 10% of Na+ and some metals (Cu, Mn, Ni, V). This source is 339 

detected in other alpine valley environments (Glojek et al., 2024), with a similar temporal evolution as here. Since 340 

chloride depletion from the particulate phase can greatly depend on solar radiation, relative humidity, and 341 

temperature, the chemical profile of this factor can vary on different time scales. This source was also observed 342 

to be heterogeneous in the three neighboring sites investigated within 15 km in the previous study in Grenoble 343 

(Borlaza et al., 2021). Nevertheless, it should be noted that it represents only a very minor fraction of the PM10 344 

total mass (about 1%). 345 

With these stabilities of the chemical profiles over the years, the solution for the 11-year SA is considered suitable 346 

for further data analyses in this paper. In the next section (3.3.2), we investigate how the contribution of these 347 

sources to total PM10 loadings changed over time.  348 

 349 
Figure 3. Similarity plots of the chemical profiles of the solution for the 11-year SA against the 3 SA solutions every 3 350 
years, and those presented by Borlaza et al. (2021). The shaded area (in green) shows the limit of the homogeneous 351 
chemical profile. For each point, the error bars represent the standard deviation when comparing all pairs of SA 352 

solutions (number of pairs in parentheses in the legend).  353 

3.2.2. Variations of the source's contribution in the 11-year PMF SA   354 

As presented in Figure 4Figure 4, the optimal PMF solution for the 11-year time series identifies 10 PM10 sources, 355 

with the contributions of mineral dust (20.9%), sulfate-rich (19.7%), traffic (16.0%), biomass burning (13.5%), 356 

primary biogenic (10.7%), nitrate-rich (7.2%), MSA-rich (6.2%), industrial (2.2%), aged sea salt (2.5 %), and 357 

chloride-rich (1.0%). The chemical profile and contribution of each source are shown in Figures S3 and S4, 358 

respectively. Even though the chemical profiles are homogenous, the contributions of these sources show minor 359 
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differences from those reported for this same site by Borlaza et al. (2021) and Srivastava et al. (2018), partly 360 

because of the differences in the respective periods of the studies. However, the main sources are similar, i.e., SIA 361 

(nitrate and sulfate-rich), mineral dust, biomass burning, and primary traffic. Similar general results are also 362 

presented for Swiss Alpine (Ducret-stich and Tsai, 2013), French Alpine (Weber et al., 2018), and Slovenian 363 

Alpine areas (Glojek et al., 2024), showing biomass burning and secondary inorganic aerosols being the most 364 

abundant contributions to PM mass. Primary biogenic and MSA-rich sources are the biogenic sources rarely 365 

reported in the literature; however, they account together for 17% of total PM10 mass on average in our study, 366 

which is in line with those reported in urban background sites in France (Samaké et al., 2019b; Weber et al., 2019). 367 

The absolute PM10 source contributions are also compared to the average annual concentration of PM10 mass to 368 

demonstrate the ability of the PMF model to reconstruct the PM10 mass. The difference between observed and 369 

reconstructed PM10 concentrations on the 11-year average is about 1 µg m-3 (5 %), with no more than 2 µg m-3 for 370 

any single year, demonstrating that the PMF model performs well at reconstructing the PM10 concentrations. 371 

 372 
Figure 4. The absolute average contribution of sources to PM10 for every year and the 11 years (total), and the 373 

concentration of PM10 (blue circle). 374 

Significant trends in source contributions over this 11-year period are detected (and discussed in section 3.3); 375 

nevertheless, the main contributors to the total PM10 mass do not change, with mineral dust, biomass burning, 376 

sulphate-rich, nitrate-rich, and primary traffic being the main contributors to PM10. The highest PM10 377 

concentrations (observed in winter/spring 2013 and 2015) are associated with the highest contribution of SIA and 378 

biomass burning sources. On the other hand, the relative contribution of SIA and biomass burning showed a 379 

negligible difference (varied from 0.3 to 4%) between these years compared to 2014 and 2016 (Figure S5). The 380 

lowest PM10 annual concentration was detected in 2021, notably when the third COVID-19 pandemic lockdown 381 

restrictions applied in France. In addition, the relative contributions (see Figure S5) showed only small changes 382 

compared to those in other years, with an increasing contribution of primary biogenic sources in 2021 (4% 383 

compared to 2020), and only a very light decrease in the anthropogenic sources. 384 

The decrease in PM10 annual average concentrations observed since 2017 is associated with decreases in the 385 

contribution of some of the anthropogenic PM10 sources. However, using yearly averages for trend analysis may 386 

prevent a proper understanding of the variation in time and of the estimation of the trends based on monthly 387 

averages, which might be more informative, as discussed in section 3.3. 388 
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3.3. Trends in sources' contributions 389 

3.3.1. Mean rate change in the contribution of PM10 sources 390 

The source contribution trend analysis was achieved through STL deconvolution (see section 2.6).  These trends 391 

for all sources over the full period of the study are presented in Table 1Table 1. In this table, the part labeled 392 

"Rest" represents the difference between the total PM10 measured mass and the sum of the mass of all PMF-393 

derived factors in order to assess any trend of the unresolved part of PM10 within our SA study.  394 

PM10 concentrations present a downward trend from 2013 to 2023, with an average diminution of 0.73 µg m-3 yr-395 

1 (3.9%) (S6, Figure S6). Such a downward trend of PM10 in Grenoble is in line with that observed in other urban 396 

sites in Europe (Aas et al., 2024; Borlaza et al., 2022a; Caporale et al., 2021; Colette et al., 2021; Gama et al., 397 

2018; Li et al., 2018; Pandolfi et al., 2016). The reduction of PM10 in Grenoble during this period is significantly 398 

larger than that in 30 rural sites of the European Monitoring and Evaluation Programme (EMEP) from 2000 to 399 

2017, which show reductions of PM10 from -0.008 to -0.58 µg m-3
 (-1.5% to -2.5%) . However, the results of our 400 

study are highly coherent with results from Aas et al. , presenting a reduction of PM10 in 2 rural sites in France 401 

(La Tardière and Revin) of -3.5% yr-1 between 2005 and 2019. Indeed, France is amongst the EU countries with 402 

the highest reduction trend, as presented by Aas et al. . 403 

 404 

The reduction of PM10 in Grenoble during this period is significantly larger than that in 30 rural sites of the 405 

European Monitoring and Evaluation Programme (EMEP) from 2000 to 2017, which show reductions of PM10 406 

from -1.5% to -2.5% (-0.008 to -0.58 µg m-3
 ) (Colette et al., 2021). However, the results of our study are highly 407 

coherent with results from Aas et al. (2024), presenting a reduction of PM10 in 2 rural sites in France (La Tardière 408 

and Revin) of -3.5% yr-1 between 2005 and 2019. The reduction of PM in this Grenoble site, as an urban site, 409 

being higher than those at the rural sites, is due to the changes in specific emission activities at the site. While in 410 

the rural sites, the PM emission are influenced by long range transport activities, the PM at the urban site is usually 411 

largely impacted by different local activities (Borlaza et al., 2022b). Further, France is amongst the EU countries 412 

with the highest reduction trend, as presented by Aas et al. (2024). 413 

The anthropogenic sources, such as primary traffic, sulfate-rich, and biomass burning, display the highest decrease 414 

between 2013 and 2023 in Grenoble, with a reduction of 0.37, 0.25, and 0.13 µg m-3 yr-1 (12.9, 6.9, and 5.5%), 415 

respectively. The other anthropogenic sources also have a significant decreasing trend; however, they are much 416 

lower (nitrate-rich: -0.11 µg m-3 yr-1
, industrial: -0.02 µg m-3 yr-1). The downward trends of these anthropogenic 417 

sources (mainly traffic, SIA, and industrial) were also underlined for other European urban sites (Colette et al., 418 

2021; Diapouli et al., 2017; Pandolfi et al., 2016). For instance, a similar approach was followed by Pandolfi et 419 

al. (2016), investigating the Mann-Kendall trend of PMF-derived sources, and reported an almost equivalent 420 

downward trend of the sulfate-rich factor of -0.32 µg m-3 yr-1 between 2004 and 2014 in Spain. The decreasing 421 

trends of primary traffic, domestic biomass burning, and industrial emissions are potentially influenced by the 422 

reduction in primary emissions due to various abatement strategies (as discussed in the following subsections, 423 

notably in 3.3.3 and 3.3.4). 424 

The anthropogenic sources, such as primary traffic, sulfate-rich, and biomass burning, display the highest decrease 425 

between 2013 and 2023 in Grenoble, with a reduction of 12.9, 6.9, and 5.5% (0.37, 0.25, and 0.13 µg m -3 yr-1), 426 

respectively. The other anthropogenic sources also present significant decreasing trends; however, these trends 427 

are much lower (nitrate-rich: -0.11 µg m-3 yr-1, industrial: -0.02 µg m-3 yr-1). The downward trends of these 428 
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anthropogenic sources (mainly traffic, SIA, and industrial) were also underlined for other European urban sites 429 

(Colette et al., 2021; Diapouli et al., 2017; Pandolfi et al., 2016) with various approaches. For instance, a similar 430 

approach using PMF (albeit without organic markers) was followed by Pandolfi et al. (2016), investigating the 431 

Mann-Kendall trend of PMF-derived sources, and reported an almost equivalent downward trend of the sulfate-432 

rich factor of 53% (i.e., 0.53% yr-1) between 2004 and 2014 in Spain. The decreasing trends of primary traffic, 433 

domestic biomass burning, and industrial emissions are potentially influenced by the reduction in primary 434 

emissions due to various abatement strategies (as discussed in the following subsections, notably in 3.3.3 and 435 

3.3.4). 436 

Conversely, natural sources such as mineral dust and chloride-rich factors do not show any significant trend or 437 

follow a very weak one (aged sea salt, primary biogenic). MSA-rich is the only source that displays a significant 438 

upward trend, with an increase of 0.08 µg m-3 yr-1; further studies would be needed to relate this last increase to 439 

changes in precursor emissions or reactivity during transport. Finally, the low evolutions in the contributions of 440 

the natural sources demonstrate that the reduction in PM10 in Grenoble is essentially related to the reduction of 441 

anthropogenic activities, especially sources related to traffic and domestic biomass burning activities. 442 

 443 
Table 1. Trend of PM10 sources and PM10 (in µg m-3 yr-1 and % yr-1).  444 

 
Absolute trend 

(µg m-3 yr-1) 

Relative trend 

(% yr-1) 

P-values R2 

Aged sea salt -0.01 -2.50 <<0.01 0.22 

Biomass burning -0.13 -5.48 <<0.01 0.98 

Chloride rich 0.00 1.18 0.01 0.07 

Industrial -0.02 -5.36 <<0.01 0.40 

MSA rich 0.08 6.63 <<0.01 0.64 

Mineral dust 0.04 1.03 0.02 0.05 

Nitrate rich -0.11 -8.08 <<0.01 0.94 

Primary biogenic -0.01 -0.49 0.03 0.04 

Primary traffic -0.37 -12.85 <<0.01 0.94 

Sulfate rich -0.25 -6.89 <<0.01 0.70 

PM10 -0.73 -3.89 <<0.01 0.68 

Rest -0.11 -2.13 <<0.01 0.39 

 445 

3.3.2. Potential influence of meteorology  446 

The STL deconvolution is inherently constructed to separate the yearly and seasonal variations from the long-447 

term trends. While we discuss the long-term trends of the sources in other sections (3.3.1, 3.3.3, and 3.3.4), it is 448 

also interesting to evaluate the impact of the meteorology on the seasonal variations of the concentrations. It is 449 

well known that inversion layers in the lower atmosphere are extremely important for the modulation of the 450 

concentrations at the ground, particularly in the context of Alpine valleys during winter (Carbone et al., 2010; 451 

Glojek et al., 2022). In this section, we tried to better evaluate these impacts on the concentrations from the sources 452 

of PM in the case of our time series.   453 

This was considered with the measurements of temperature along the slopes of the mountains very close to the 454 

city center (as described in section 2.2.3), for the winter periods of 2017-2023. It has been previously shown by 455 

Allard et al. (2019) that such measurements are representative of the temperature in the valley, despite the potential 456 
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influence of wind slopes. We particularly considered the temperature gradient over the first 700 m above ground 457 

and the number of days with persistent inversion, as defined in section 2.2.3. 458 

The analysis of the relationship between the PM10 and bulk temperature vertical gradients (∆𝑇/∆𝑧) in winter (Nov, 459 

Dec, Jan, Feb, Mar), summer (May, June, Jul, Aug), and transition season (remaining months) reveals that thermal 460 

inversion events and high PM10 concentration are mainly occurring in winter time (Supplement S7, Figure S8) 461 

during the 5 years of the study. Periods of persistent temperature inversion were assessed based on the condition 462 

in Eq. 1, which detected 79 persistent inversion days in series from 4 to 22 consecutive days, for the winter periods 463 

2017-2023. A meaningful correlation is obtained between PM10 concentrations and bulk temperature vertical 464 

gradient (r reaching 0.60, p<<0.001) for these winter months and even better when considering only the persistent 465 

inversion periods (r reaching 0.67, p<<0.001) for individual years (Table S7).  466 

 467 
Figure 5. Daily concentrations of biomass burning to PM10 and daily temperature gradients (∆𝑻/∆𝒛) during the 468 
winter periods (from November to March) of 2017-2023. The dotted red line is the linear regression fit. The blue 469 

circle symbols denote days when persistent inversion does not occur, and the orange multiple symbol denotes days 470 
when persistent inversion occurs. 471 

 472 

The distribution between the daily PM10 concentration and daily average ∆T/∆z in winter months revealed that 473 

the majority of PM10 concentration peaks (in excess of 40 µg m-3) occur during the persistent inversion days 474 

(Figure S9). However, it also shows that a few high PM10 concentrations could be found on the days without 475 

persistent inversion; meanwhile, the days with persistent inversion do not always have high PM10 concentrations. 476 

This result is not surprising since the concentration of PM10 is not only associated with thermal inversion events 477 

but also depends on other meteorological conditions (precipitation, heat deficit) and the variation of pollutant 478 

emissions (Carbone et al., 2010; Largeron and Staquet, 2016). 479 

Interestingly, the impact of persistent inversion days on PM10 concentrations from the residential biomass burning 480 

source is larger than that for other sources or total PM10 (Figure 5), with a higher correlation (0.63). In addition, 481 

the contribution of this source is systematically lower during non-inversion days, and large concentrations are 482 

essentially made during persistent days. The large impact of the inversions on the local sources is confirmed when 483 

comparing the source contribution of the inversion days vs non-inversion days (Figure 6Figure 6). This figure 484 

shows both the large increase in average PM10 concentrations and also the contributions of the local sources 485 



16 
 

(emissions from residential biomass burning, traffic, industries, mineral dust probably from resuspension) in the 486 

cases of inversion days during winter. Conversely, long-range transport sources (sulfate-rich, nitrate-rich) tend to 487 

be less important during these inversion days. A similar pattern is observed for the relative contribution of sources 488 

to PM (Figure S.10), in which the significant contribution of biomass burning, dust, industrial, and primary traffic 489 

is detected during inversion events. The trends of the two most important local anthropogenic sources (domestic 490 

biomass burning and traffic) are further discussed in the next sections. 491 

 492 
Figure 6. Contribution of the different sources to the PM10 composition for days with persistent inversion vs non-493 

inversion days of the winters 2017-2023. 494 

3.3.3. Trend in biomass burning contributions  495 

The trend of the domestic biomass burning PM10 concentrations is investigated via an STL decomposition analysis 496 

on this PMF-derived source (Figure 7Figure 7), indicating a statistically significant decreasing trend from 2013 497 

to 2023 (p-values <<0.01). The seasonal estimate shows the highest values in the winter season (Nov, Dec, Jan), 498 

with a visual trend to a smoothing of the peak concentrations; conversely, from Mar to Sept, the seasonal variations 499 

showed constantly lowest values. Extreme residual values were detected in the winter months of 2016, 2017, and 500 

2021, explained by high-concentration episodes of PM10, where the concentration exceeded the European standard 501 

for PM10 concentration in 24 hours (PM10 concentration varied from 50 to 78 µg m-3). The linear fit line of the 502 

trend is highly significant with R2 = 0.97, with a reduction of 134 ng m-3 yr-1 (-5.5% yr-1).  503 



17 
 

 504 

 505 
Figure 7. The season-trend (STL) decomposition of biomass burning 506 

This reduction of biomass burning concentrations in Grenoble is 4 times higher than the results from a long-term 507 

study (2012 to 2020) in a French rural site - (Observatoire Pérenne de l'Environnement, OPE) (Borlaza et al., 508 

2022a) - estimated at 33 ng m-3 yr-1 over the same period. Besides the study of  Borlaza et al. (2022a), there are 509 
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no previous PMF studies describing any trend of biomass burning factors. Nevertheless, similar trends were found 510 

for concentrations of biomass burning tracers. In particular, Font et al. (2022) presented a downward trend of  511 

PM10 concentration from wood burning (a reduction from 1.5 to 3.8 % yr-1 ) in urban sites in the United Kingdom 512 

from 2010 to 2021, by calculating the emission of wood burning from aethalometer measurement. Similarly, from 513 

2002 to 2018 in Norway, a downward trend of 2.8% yr-1 was also detected for levoglucosan (Yttri et al., 514 

2021)(Espen Yttri et al., 2021). Additionally, Colette et al. (2021) modeled the trend of the emissions from 515 

different activities in Europe, showing that the trend of PM10 heating emissions was decreasing in the period 2000-516 

2017, with mean rate values varying from 0.8 to 3.3% yr-  1
 for 30 European countries (EMEP monitoring sites). 517 

Even though the chemicals and the period of these studies differ, a decreasing trend is generally observed among 518 

European cities, including the one investigated here. Interestingly, the biomass burning source in Grenoble shows 519 

the strongest decreasing trend, with a reduction of 5.5% yr-1.  520 

Since the biomass burning sources in Grenoble are related to residential heating, the observed reduction of the 521 

concentrations from this source could be linked to household behaviors (including appliance renovation) on top 522 

of the changes in meteorological conditions, lowering the overall heating demand. The average annual biomass 523 

burning sources PMF-derived is compared to the local PM10 emission inventory for residential heating (tonnes) 524 

in the Grenoble metropolis, estimated by the regional air quality monitoring agency (Atmo AuRA), to confirm 525 

the trend of biomass burning (Figure 8). This emission inventory has been available until 2022. 526 

 527 

 528 
Figure 8. Comparison between annual average PM10 emission inventory based on the quantity of wood sales (in grey) 529 

in the Grenoble metropolis and the yearly average PM10 concentrations from the PMF biomass burning factor (in 530 
green). 531 
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Except for the year 2020, the annual average of biomass burning agreed with the emission inventory, 548 

demonstrating the consistency between the sources observed by the PMF model and the local inventory emission 549 

data. Since 2015, the Grenoble metropolis has set up an air-wood bonus to encourage households to renew their 550 

individual wood-burning appliance (fireplace or stove). It aims to replace all open fireplaces with closed 551 

appliances in October 2024. The downward trend of biomass burning concentration could then be considered as 552 

partly due to the implementation of dedicated action plans at the regional scale. 553 

3.3.4. Trends in traffic exhaust emissions  554 

Similar to the time series of biomass burning concentrations, the traffic contribution was subjected to specific 555 

STL analysis (Figure 9Figure 9). A significant downward trend of the concentrations of PM from traffic emission 556 

is detected with a reduction of 374 ng m-3 yr-1 (12.9% yr-1) (p-value << 0.01). This reduction is almost 3 times 557 

larger than that of the biomass burning concentrations. Traffic concentration before 2017 also showed a clear 558 

seasonality with maxima in winter, which nearly disappeared from 2018 onward. It is striking that the same 559 

behaviors (strong downward trend and smoothing) are also observed for NOx concentration, another indicator of 560 

traffic exhaust emission, which is also observed for NOx seasonal patterns (see Supplement S6 and Figure S7). 561 

Residuals show extreme values in the same month as biomass burning in 2016 and 2017, matching the PM10 562 

episode. The traffic trend closely follows a linear regression fit line, with R2 = 0.94. 563 

Mis en forme : Titre 4 Car, Police :11 pt, Français

(France)
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564 

 565 
Figure 9. The season-trend (STL) decomposition of PMF-derived traffic source 566 

The downward traffic trend observed in this study is consistent with another long-term study (2012-2020) of a 567 

rural site in France, which showed a traffic trend of -6.5% yr-1 (58% total reduction) of -0.1 µg m-3 yr-1 (Borlaza 568 

et al., 2022a). This is aligned with other results of fossil fuel black carbon in several rural sites in France (Font et 569 

al., 2025), or EC over many rural sites in Europe (Aas et al., 2024). Additionally, our result also agrees with other 570 
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studies, like that by Pandolfi et al. (2016), which indicated a downward trend of traffic sources in an urban site in 571 

Spain, with a reduction of 0.11 µg m-3 yr-15.6% yr-1 (56% total reduction), which is lower than that of our study. 572 

Finally, the trend of traffic emission to PM10 in 30 European countries was modeled as reported by Colette et al. 573 

(2021), showing a downward trend with a reduction from 2.3 to 3.5% yr-1 from 2000 to 2017. As for biomass 574 

burning, the Grenoble supersite seems then experiencing faster reductions in primary traffic PM loadings than 575 

most of others European cities. 576 

Furthermore, the PMF-derived traffic factor was compared to the local PM10 traffic emission inventory by fuel 577 

type (provided by Atmo AuRA), revealing very similar trends (Figure 10Figure 10). In addition, this source is 578 

also compared to the PM10 emission by the transport sector (kilotonnes) over France, which was assessed from 579 

the emission inventory data of CITEPA (Figure S11), also confirming the concomitant reductions of traffic 580 

emissions and contributions to PM10 in ambient air.  581 

 582 

 583 
Figure 10. Comparison between annual average PM10 emission inventory based on the quantity of fuel sale (red bar) 584 

in the Grenoble metropolis and the yearly average PM10 concentrations from the PMF-derived traffic source 585 
contributions (black bar). 586 

This traffic trend may be separated into three parts. Between 2014 and 2016 with a slow decrease trend of -3% yr-587 

1; from 2016 to 2021, with an average reduction of 10% yr-1, and a mild increasing trend of approximately 3% yr-588 

1 in the last three years of the study. The beginning of this increase coincides with the post-lockdown period, when 589 

transportation activities were back to normal, resulting in a fairly similar contribution of traffic sources compared 590 

to that in the pre-lockdown period. 591 

Besides the implementation of the two versions of the Euro 6 emission standards (introduced in 2015 and 2018, 592 

respectively), local emission abatement strategies decided by Grenoble municipality from 2016 onwards might be 593 



22 
 

the main drivers for the observed decreasing trends (City's low emission zone 594 

https://zfe.grenoblealpesmetropole.fr/ last assessed: 21/05/2025).  595 

3.4. Trends in PM10 OP sources 596 

In this section, the sources of OP are assessed using regression techniques, which are presented in section 2.6. 597 

The most appropriate model is selected based on characteristics of PMF-derived sources and OPv, as shown in 598 

section 3.4.1. Intrinsic OP derived from the best regression model, indicating the highest redox-active PM sources, 599 

is presented in section 3.4.2. Finally, section 3.4.3 provides the trend of OP sources, highlighting which sources 600 

are the drivers of OP trends. 601 

3.4.1. Selection of the most appropriate model 602 

Following the methodology exposed in Ngoc Thuy et al. (2024), the characteristics of the dataset, including 603 

collinearity and heteroscedasticity, are tested in order to select a satisfactory inversion model for OPDTT source 604 

apportionment (SA)  and OPAA SA (Table S8). The OP SA can be applied for the 11-year PMF solution since the 605 

source profiles have been demonstrated to be homogenous over the years. Consequently, the OPm
 should be 606 

substantially homogenous over the years (Ngoc Thuy et al., 2024), and it is unnecessary to perform the OP SA 607 

for each year separately. The characteristic tests indicate that the weighted positive least squares (wPLS) and 608 

weighted least squares (WLS) could be suitable models for both OPAA and OPDTT SA. The average accuracy 609 

metrics of the testing dataset in 500 iteration runs (including R2, RMSE, MAE) of wPLS and WLS were compared 610 

to select the most appropriate model (Table S9). Finally, WLS was chosen due to the highest R2 and lowest error 611 

for both OPAA and OPDTT  prediction. The comparison between observed and predicted OPAA and OPDTT showed 612 

a good correlation between measured OP and WLS predicted OP, with R2 = 0.80 and 0.70 for OPAA and OPDTT, 613 

respectively (Figure S12 and S13), with n = 1570 for OPAA and OPDTT .  614 

In addition, the study revealed good performance of Mutiple Layer Perceptron (MLP) and Random Forest (RF) 615 

for the training and testing datasets (Table S10). These neural network models were overfitting the results of OP 616 

SA for the 6 French sites tested in Ngoc Thuy et al. (2024) since the number of samples was lower than 200 for 617 

individual sites. The present study confirmed the conclusion of Ngoc Thuy et al. (2024), demonstrating that a 618 

higher number of samples improved the performance of the neural network model. However, such non-linear 619 

models do not provide values for intrinsic OP, and cannot be selected for the final results at this stage.However, 620 

such non-linear models do not provide values for the intrinsic OP, which is basically the regression slope of the 621 

regression. Since the objectives of MLP and RF are not to define a "slope" but to better predict OP, therefore, the 622 

"slopes" of such models actually constantly vary with the input data to ensure the best performance of the model. 623 

Since the OP intrinsic is not defined, these models cannot be selected for the final results at this stage.  624 

3.4.2. Intrinsic OP of PMF-derived sources 625 

The intrinsic OP of 1µg PM10 source (OPm nmol min-1 µg-1) is investigated thanks to the WLS technique, resulting 626 

in 500 values of OPm for each source (Table 2Table 2 and Table S11). The anthropogenic sources, including 627 

biomass burning, industrial, and traffic, have the dominant intrinsic OPDTT and OPAA, which is consistent with the 628 

study in 2017-2018 in Grenoble (Borlaza, 2021) and results obtained at other French sites (Ngoc Thuy et al., 2024; 629 

Weber et al., 2021) and EU sites (Fadel et al., 2023; Veld et al., 2023). The different ranking of the intrinsic OP 630 
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of the sources according to the two assays is also aligned with previous results (Weber et al., 2021). While intrinsic 631 

OPAA of biomass burning is highest (0.76 nmol min-1 µg-1), followed by industrial (0.48 nmol min-1 µg-1) and 632 

traffic (0.38 nmol min-1 µg-1), the order of intrinsic OPDTT is industrial (0.52 nmol min-1 µg-1), traffic (0.38 nmol 633 

min-1 µg-1) and biomass burning (0.14 nmol min-1 µg-1). The intrinsic OPDTT of biomass burning is also lower than 634 

that of OPAA, as reported by Borlaza et al. (Borlaza et al., 2021), suggesting the synergistic and antagonistic effects 635 

between some elements, quinones, or bioaerosols, decreasing the overall intrinsic OPDTT of this source 636 

(Pietrogrande et al., 2022; Samake et al., 2017; Xiong et al., 2017). 637 

The other anthropogenic sources, including nitrate-rich and sulfate-rich, have lower intrinsic OP than 638 

anthropogenic sources associated with combustion (traffic and biomass burning), as reported by Daellenbach et 639 

al. (2020). The natural sources have a negligible intrinsic OP (lower than 0.03 nmol min-1 µg-1). The natural 640 

sources have a negligible intrinsic OP (lower than 0.03 nmol min-1 μg-1 for OPDTT  and 0.2 nmol min-1 μg-1 for 641 

OPAA). These findings highlight the high impact of the anthropogenic sources, verified for the overall period 2013-642 

2023. 643 

Table 2. Intrinsic OPAA and OPDTT (nmol min-1 µg-1) of PM10 sources (mean ± std of 500 iterations) 644 

Source OPAA OPDTT 

Aged sea salt -0.02 ± 0.07 0.03 ± 0.02 

Biomass burning 0.76 ± 0.13 0.14 ± 0.09 

Chloride rich -0.07 ± 0.09 0.01 ± 0.02 

Industrial 0.48 ± 0.14 0.52 ± 0.08 

MSA rich 0.20 ± 0.04 0.01 ± 0.02 

Mineral dust -0.03 ± 0.06 0.01 ± 0.02 

Nitrate rich 0.09 ± 0.16 0.11 ± 0.12 

Primary biogenic 0.00 ± 0.04 0.02 ± 0.03 

Primary traffic 0.38 ± 0.10 0.24 ± 0.07 

Sulfate rich -0.01 ± 0.08 0.09 ± 0.04 

3.4.3. Trends in OP  645 

The trend of OP is first presented by the yearly average contribution of sources to OPAA and OPDTT (Figure 4Figure 646 

4), indicating a reduction of OP values over the years. Overall, the yearly average of the OPAA
v and OPDTT

v is 647 

decreasing and reached its lowest values in 2021 (2.41 and 1.17 nmol min-1 m-3 for OPAA and OPDTT, respectively). 648 

From 2018 onward, both assays consistently exhibited lower OPv values than in preceding years. Although OPv 649 

is normalized to PM10 mass concentrationAlthough OPv is calculated using PM10 concentration, implying that a 650 

decrease in PM10 concentration generally reduces OPv, the contribution of sources to OP is different from that of 651 

PM10. While dust and sulfate-rich are dominantly contribute to PM10, biomass burning is the most important 652 

contributor to OPAA (1.87 ± 2.7 nmol min-1 m-3), and primary traffic is commonly assessed as the largest 653 

contributor to OPDTT (0.71 ± 0.70 nmol min-1 m-3). The industrial mass contribution is 10 times lower than that of 654 

the sulfate-rich. However, industrial emissions appear to contribute much more to OPAA and equally to OPDTT than 655 

the sulfate-rich factor. This finding was also observed in 2017-2018 at the same site in Grenoble (Borlaza, 2021). 656 

This significant contribution of traffic and biomass burning over the years is more evident when considering 657 

relative contribution (Figure S15). These results again emphasize the importance of considering not only the mass 658 

concentration but also its redox activity in evaluating the potential adverse health effects of a source of PM.  659 
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In addition, the temporal evolution of OPAA and OPDTT did not exactly follow PM10 trends, especially for the 660 

period of 2016-2017 and 2019-2020. Regarding the period between 2016 and 2017, a dramatic increase in PM10 661 

concentration is observed, principally due to the higher contribution of nitrate and sulfate-rich. On the other hand, 662 

OPAA and OPDTT values remained fairly unchanged between 2016 and 2017. Focus on 2019 and 2020, the PM 663 

concentration and OPv values are identical (less than 0.001 µg m-3
 and nmol min-1 m-3 of difference, respectively), 664 

while OPAA
v

 presents a remarkable difference (Δ = 0.8 nmol min-1 m-3). Indeed, the discrepancy between 2019 665 

and 2020 in OPAA
v is principally attributable to a higher contribution to biomass burning, which is the dominant 666 

driver of OPAA
v . Overall, the downward trend of OPAA and OPDTT  is different from PM10, since the driven sources 667 

of OP and PM are different. 668 

 669 
Figure 11. Yearly average contribution of sources to (a) OPAA

v and (b) OPDTT
v
 670 

The yearly average may not be properly representative of the trends of OP; therefore, a STL deconvolution was 671 

performed for OPAA
m and OPDTT

m (Figures S16, S17, respectively) to investigate the trend of OPm over the 11 672 

years of the study. Indeed, considering the trend of the intrinsic OPm confirms that the downward trend of some 673 

sources leads to a change in the trend of OPAA
m and OPDTT

m
..  674 

An insignificant linear trend is observed for OPAA
m (fit line: R2 = 0.4, p-values << 0.01), yet its average intrinsic 675 

activity still exhibits a decreasing value, with the annual mean falling by approximately 0.002 nmol min-1 m-3 676 

(2.5 %) across the study period. Interestingly, the seasonality of OPAA
m exactly matches the seasonality of 677 

biomass-burning concentrations, pointing out that the high values of OPAA
m in winter align with biomass-burning 678 

activities. The trend line of OPAA
m did not match the trend of biomass burning nor that of the traffic or industrial 679 

emissions, suggesting the synergistic effect between sources, as well as the influence of the other sources outside 680 

of the winter season, such as MSA-rich and primary biogenic, which get a high ranking of OPAA
m

 (Table 2).  681 

Conversely, the OPDTT
m

 showed a significant downward trend (R2= 0.6, p-value <<0.01), with a reduction of 0.005 682 

nmol min-1 µg-1 (6.5%) across 11 years. The seasonality of OPDTT is different from that of biomass burning and 683 

OPAA
m, since biomass burning is not the main driver of OPDTT (only ranked third), indicating a lower influence of 684 

this source on OPDTT
m compared to OPAA

m. Interestingly, a slight increase in OPDTT
m

 from 2021 onward is also 685 
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observed, which is associated with PM10 and traffic, suggesting that traffic emission could be the main driver for 686 

increasing PM10 concentration and OPDTT
m

 from 2021. Overall, the relative decrease of OPDTT
m exceeds that of 687 

OPAA
m could be explained by the 4th most important contributor to these OPs. All four leading contributors to 688 

OPDTT
m show significant reductions, whereas MSA-rich factor, one of the top four contributors to OPAA

m, has an 689 

increasing trend. These findings again underscore that trends in OPm are governed by the evolution of the sources 690 

most active in each assay. Thus, the decrease in the magnitude of the OPm depends on how its dominant redox-691 

active sources evolve over time. 692 

Considering the volume-based metrics (OPv), a downward trend is detected for OPAA and OPDTT. PM10 decreased 693 

by 3.9 % over the decade, which is consistently comparable to OPAA
v (4.9 %) and OPDTT

v (5.3 %). This good 694 

agreement partially reflects the influence of the PM mass concentration since these OPv values are normalized to 695 

PM10 mass concentration these OPv values are calculated using PM10 concentration. However, the slight 696 

difference in the relative downward trend could be related to the most driven sources of OP and PM, as discussed 697 

above. 698 

Finally, the impact of persistent inversion days on the OPv is also investigated to assess the association between 699 

the redox activity of PM sources and thermal inversion. A comparison of the source's contribution to OP v (for 700 

both AA and DTT) between the period with and without persistent inversions is carried out and shown in Figure 701 

S14. The comparison confirms the larger increases in average OPAA (85.1%) and OPDTT  (63.8 %) compared to 702 

that of PM10 (39.6%) for the persistent inversion periods. The higher values of OPAA and OPDTT  are related to the 703 

larger increases in the contribution of local anthropogenic sources, with BB impacting most the OPAA values while 704 

traffic significantly influences OPDTT.  This result again highlights the potential effect of persistent inversion on 705 

the PM10 source's contribution, but all the more of their redox-active properties, which could be associated with 706 

the health-relevant metrics (Tassel et al., 2025 in progress). 707 

Over the decade, anthropogenic sources have driven OP, with biomass burning impacting OPAA and traffic/ 708 

industrial sources dominating OPDTT. Frequent thermal inversion in Alpine valley strongly amplifies OP, which is 709 

more significant than the mass of PM10 itself. Finally, OPv and intrinsic OP trends over the decade do not align 710 

with that of PM10 mass, emphasizing the need to prioritize redox-active components over the bulk PM 711 

concentration in air quality policy. 712 

4. Conclusions 713 

Thanks to long-term PM10 observations with a detailed set of chemical markers, a comprehensive source 714 

apportionment was performed to identify the evolution of PM10 sources in Grenoble (France). This is one of the 715 

very few studies in Europe that could assess over 11 years of PM10 sources and the only study so far investigating 716 

trends in PM10-related OP. The trend of PM10 sources, especially anthropogenic sources such as biomass burning 717 

and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the 718 

trend of OPm, OPv
, and sources of OP revealed that the trend of OP depends on the source that drives OP. The 719 

analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023, 720 

and objectivates the main sources that are involved in their concentration' decrease. 721 

Nevertheless, the following methodological limitations in this long-term study shall be kept in mind: 722 

- Daily concentrations of metal elements were only analyzed for some periods (2013, 2017-2018, 2020-2021), 723 

while the remaining data were derived from weekly sampling. An imputation technique was implemented to 724 
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impute daily concentrations. The PMF result demonstrated the stability of most chemical profiles at Grenoble 725 

from 2013 to 2023, compared to those previously published (Borlaza et al., 2021), despite these uncertainties in 726 

the imputed metal concentrations.  727 

- The process of implementing such a PMF analysis strategy is not straightforward. A combined PMF approach 728 

could be used for datasets with different time resolution (Via et al., 2023). This approach would allow combining 729 

the 7-day and daily filter samples into a PMF without performing imputation. 730 

- The lack of a secondary biogenic organic aerosol tracer in long-term observations prevents the identification of 731 

the BSOA source, which could make up about 10% of the total mass of PM10 on a yearly average, as observed in 732 

previous work at the site (Borlaza et al., 2021), which used 3-MBTCA and picnic acid for the yearly period of 733 

observation. 734 

Thanks to long-term PM10 observations with a detailed set of chemical markers, a comprehensive source 735 

apportionment was performed to identify the evolution of PM10 sources in Grenoble (France). This is one of the 736 

very few studies in Europe that could assess over 11 years of PM10 sources and the only study so far investigating 737 

trends in PM10-related OP. The trend of PM10 sources, especially anthropogenic sources such as biomass burning 738 

and primary traffic, was evaluated and linked to the meteorology and emission reduction policies. In addition, the 739 

trend of OPm, OPv
, and sources of OP revealed that the trend of OP depends on the source that drives OP. The 740 

analysis of these trends confirms the improvement of the air quality at the Grenoble supersite from 2013 to 2023, 741 

and objectivates the main sources that are involved in their concentration' decrease. 742 

Overall, a total of ten sources were identified, including aged sea salt, biomass burning, chloride-rich mineral 743 

dust, MSA-rich, nitrate-rich, industrial, primary biogenic, and primary traffic. The source chemical profiles are 744 

consistent with those presented in 2017-2018 (Borlaza et al., 2021), demonstrating that the sources of PM10 in 745 

Grenoble were relatively stable during our study period. The trend of PM10 sources was investigated using STL 746 

decomposition, which reveals a downward trend for all the PM10 sources over 11 years, especially for the 747 

anthropogenic sources. Extending PMF outputs to oxidative potential apportionment showed that biomass 748 

burning, traffic, and industrial emissions dominate redox activity in both the ascorbic acid (AA) and dithiothreitol 749 

(DTT) assays. Trend analysis of volume- and mass-normalized OP metrics indicates that biomass burning governs 750 

the long-term behavior of OPAA. In contrast, traffic is the principal driver of OPDTT assay, underscoring source-751 

specific control of PM10 OP in the Grenoble atmosphere.  752 

Both of these anthropogenic sources, as well as their influences on PM10 OP, showed significant decreasing trends 753 

concomitantly to the implementation of emission reduction strategies (both at the national and regional levels) 754 

that should be reinforced to reach the goals of the European zero pollution action plan and the recently revised 755 

Directive on ambient air quality (22024/2881/EU). The continuation of these measurements will take place in the 756 

coming years, with this site being selected as one of the supersites for the new EU Air Quality directive. 757 
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