
Response to reviewer 2 

Thank you for carefully reviewing our manuscript. We address each point below, quo=ng the 

comments and providing our responses. All changes to the manuscript are indicated with 

sec=on/line references. 

Methods: 

1. Reviewer Comment: More details are needed on the Gram-Schmidt orthogonalisation 
method, it is too vague for now. Among questions and points that I would like to see 
explained: Can you explain what it does and how you applied it? Can you expand the 
motivation for this (or what would happen without this step)? Could you be missing signal 
or information by doing that (special attention to ENSO here)? And if this is a common 
approach / which other studies have done this before? 

Response: We have substan=ally expanded the explana=on of Gram–Schmidt orthogonaliza=on in 

the Sta=s=cal analyses (Sec=on 2.2). Specifically, Gram–Schmidt orthogonaliza=on is a standard 

technique in linear algebra that provides a straighSorward framework for transforming a set of 

poten=ally correlated variables into an orthogonal (uncorrelated) set by sequen=ally projec=ng 

each variable onto the orthogonal space of the previously processed ones (Giraud et al., 2005). 

This approach was applied to remove the linear ENSO (Niño 3.4) signal from our climate indices 

before further analyses. It ensures that subsequent correla=on and regression analyses isolate the 

Indian Ocean effects independently of ENSO. 

We acknowledge that Gram-Schmidt orthogonaliza=on has poten=al limita=ons, such as its 

dependence on the ordering of variables and sensi=vity to numerical instability in the presence of 

mul=collinearity. However, since we only orthogonalized ENSO, the ordering issue is minimized. 

Nevertheless, we note that the method guarantees independence only at zero lag, so lead-lag 

interac=ons between ENSO and Indian Ocean warming may not be fully removed. To establish 

precedent, we also refer to recent studies that adopted this approach to control for ENSO 

influences in climate analyses (Hou et al., 2024). 

Manuscript changes: In Sec=on 2.2 (Lines 97–99), we revised the text as follows: 

B Before conduc=ng the specific analyses, we employed Gram–Schmidt orthogonaliza=on to 

remove the linear influence of ENSO (represented by Niño3.4) from the IOB index, other climate 

indices, meteorological factors, and large-scale circula=on fields. This method transforms 

correlated variables into orthogonal sets by sequen=ally projec=ng each target variable onto the 

space orthogonal to ENSO. The ENSO-independent component of a variable Χ was calculated as: 

Χ!" = Χ − $
〈Χ, Ε〉
〈Ε, Ε〉) 	Ε	

(5) 



Where Χ  is the original variable, Ε  the ENSO signal, and 〈·,·〉  denotes the inner product. 

Through this procedure, only the variability linearly independent of ENSO is retained, enabling a 

clearer aaribu=on of Indian Ocean–related effects. We note that while this approach ensures zero-

lag sta=s=cal independence from ENSO, lead–lag influences cannot be fully eliminated, as ENSO 

and Indian Ocean warming oben co-evolve and interact across seasons. Similar approaches have 

been applied in recent climate studies (Hou et al., 2024). 

 

2. Reviewer Comment: Can you explain and justify the initial choice of meteorological 
variables? Is this based on previous studies, do similar studies select the same variables? 
It reads a bit unclear and arbitrary right now. 

Response: The meteorological variables were selected based on previous agronomic and climate-

yield studies that consistently highlight temperature (including its diurnal range, DTR), precipita=on, 

radia=on, soil moisture, and humidity as the dominant drivers of soybean yield variability (Gaupp 

et al., 2020; Hamed et al., 2021; Joshi et al., 2021; Otkin et al., 2016; Ray et al., 2015; Schauberger 

et al., 2017). In addi=on, vapor pressure deficit (VPD) has been widely used as a proxy for 

atmospheric dryness and crop stress (Ergo et al., 2018). To provide transparency, we now include 

a summary of all variables, their defini=ons, sources, and suppor=ng references in the 

Supplementary Material (Table S1). 

We also note that, in addi=on to the widely recognized variables, we included cloud cover (Cld) as 

an exploratory factor. This variable is less commonly studied in soybean yield analyses, but we 

considered it relevant due to its poten=al to affect surface energy balance and crop growth. This 

ra=onale is now clarified in the revised manuscript and Supplementary Table S1. 

Manuscript changes: In Sec=on 2.1 (Lines 81–92), we rewrote the paragraph as:  

To assess the impact of meteorological factors on soybean yields in the United States, we selected 

ten key variables from the Clima=c Research Unit (CRU) TS v4.07 dataset and the ERA5 reanalysis 

(Harris et al., 2020; Hersbach et al., 2020). These include temperature [maximum (Tmx, °C), mean 

(Tmp, °C), minimum (Tmn, °C), diurnal temperature range (DTR, °C)], precipita=on (Pre, mm·d⁻¹), 

wet day frequency (Wet, days), cloud cover (Cld, %), downward shortwave radia=on flux (DSRF, 

W·m⁻²), root-zone soil moisture (SMroot, m³·m⁻³; Layer 2, 7–28 cm depth), and vapor pressure 

deficit (VPD, hPa). Eight of these variables were obtained from CRU, which provides monthly mean 

gridded data at 0.25° × 0.25° resolu=on, while SMroot was obtained from ERA5 as a proxy for 

soybean root water uptake. The choice of variables is consistent with previous studies highligh=ng 

the role of temperature, precipita=on, radia=on, soil moisture, and humidity in soybean yields 

(Gaupp et al., 2020; Gobin and Van de Vyver, 2021; Hamed et al., 2021; Joshi et al., 2021; Leng and 

Hall, 2019; Ray et al., 2015; Schauberger et al., 2017), with VPD included as an addi=onal dryness 

indicator (Ergo et al., 2018). VPD was calculated using the following formulas: 



𝑒# = 6.108exp 5
17.27 × Tmp
Tmp+237.3

9 (	3) 

VPD = 𝑒# − 𝑒$ (4) 

Where Tmp is the monthly average temperature (°C), and ea is the average actual vapor pressure 

(hPa), both from the CRU dataset. e0 represents the monthly mean saturated vapor pressure (hPa). 

A summary of all variables and references, including units, is provided in Table S1 in the 

Supplementary. 

 

3. Reviewer Comment: It is not clear in the text to me how root zone soil moisture is 
obtained or calculated. You refer to the ERA5 dataset, but as far as I am aware, this 
variable is not available on the ERA5 repository. 

Response: In the original manuscript, we referred to “root-zone soil moisture” (SMroot) but did 

not provide sufficient detail. SMroot was directly obtained from the ERA5 reanalysis dataset as the 

volumetric soil water content (m³·m⁻³). ERA5 provides soil moisture for four layers (0–7 cm, 7–28 

cm, 28–100 cm, and 100–289 cm). For this study, we used Layer 2 (7–28 cm depth), which 

corresponds to the major root water uptake zone for soybean crops. Previous agronomic studies 

indicate that soybean roots extract most water from the top 30 cm of soil, especially during the 

reproduc=ve phase, making Layer 2 a reasonable proxy for root-zone soil moisture(Fan et al., 2016; 

Zhang et al., 2024).  

Manuscript changes: In Sec=on 2.1 (Lines 85–87), we rewrote the soil moisture descrip=on as: “In 

addi=on, root zone soil moisture (SMroot, m3·m-3) was obtained from the ERA5 reanalysis 

dataset(Hersbach et al., 2020), using Layer 2 (7–28 cm depth) as a proxy for soybean root water 

uptake.” 

 

4. Reviewer Comment: When comparing IOB with meteorological variables, you extract SLP 
from CRU but geopotential height at 200 hPa, and wind components at 925 hPa from ERA5. 
ERA5 also has SLP, so is there a reason for this? I would argue that having all variables 
from the same source would guarantee consistency. If you decide to keep SLP from CRU, 
it should be shown how similar it behaves between the two sources. 

Response: We thank the reviewer for carefully checking this point. We would like to clarify that in 

our analysis, SLP was in fact obtained from ERA5, not from CRU. The reference to CRU in the 

Methods was a wri=ng error. In the revised manuscript, we have corrected this and now state 

explicitly that all circula=on variables (SLP, GPH200, and wind components) were consistently 

obtained from ERA5 (Sec=on 2.1). We apologize for the oversight and thank the reviewer for 

helping us improve the clarity of the manuscript. 



Manuscript changes: We corrected the descrip=on of the data source in Sec=on 2.1 (line 95). The 

sentence has been revised to: “All variables were obtained from the ERA5 reanalysis dataset 

(Hersbach et al., 2020).” 

 

5. Reviewer Comment: The last paragraph of the section 2.2 is confusing. On line 104, 
number (1), you distinguish between meteorological factors and atmospheric circulation 
patterns? What exactly do you refer to when you mention atmospheric circulation 
patterns, this has not been introduced before. Would this be the SLP, GPH200 and the 
wind components? If so, SLP is not an atmospheric circulation variable, and needs to be 
corrected. If not, then it would need to be better explained or rewritten to improve clarity. 

Response: We agree that our terminology was not sufficiently clear in the original manuscript. In 

the revised manuscript, we have clarified this terminology. Specifically, we now explicitly define:  

Meteorological factors as local surface climate variables that directly affect crop growth (e.g., 

temperature, precipita=on, soil moisture, radia=on, and humidity).  

Atmospheric circula=on paaerns as large-scale circula=on fields that characterize regional and 

hemispheric circula=on variability (e.g., sea-level pressure, geopoten=al height, and winds). 

Although we acknowledge that sea-level pressure (SLP) is some=mes grouped as a surface variable, 

in this study we treat SLP as part of the large-scale circula=on fields because it reflects broad-scale 

pressure systems and circula=on anomalies. This dis=nc=on is now clearly stated in the Methods 

sec=on to avoid confusion. 

Manuscript changes: In Sec=on 2.2, we added a sentence: “For clarity, in this study, we define 

meteorological factors as local surface climate variables that directly affect crop growth (e.g., Tmx, 

Pre, SMroot, DSRF, and VPD). In contrast, we define atmospheric circula=on paaerns as large-scale 

circula=on fields that characterize regional and hemispheric variability, including SLP, GPH200, and 

925 hPa winds.”  

 

Results & Discussion: 

1. Reviewer Comment: The results section combines both actual results and 
contextualisation aspects that should go into the discussion. And as a consequence, the 
discussion section is rather small and underdeveloped, looking more like a conclusion than 
a discussion. Based on that, I would suggest to have the discussion considerably expanded, 
with the main findings properly contextualised there. For example, the authors find DTR 
to be important for soybean yield using the ridge regression, which is a statistical 
approach. I’d like to see potential physical explanations for that (after all, DTR is the 
difference between two other variables, which could mean many things). Also, have other 



studies found similar or diverging relations between DTR and soybean yields in the area 
of study? These aspects should be properly discussed (you could move some of the small 
contextualisation points from the results to the discussion and expand them there into a 
coherent text). 

Response: We have extensively revised the Discussion. We expanded it to include: 

(1) A detailed interpreta=on of the meteorological predictors Tmax and SMroot, 

explaining their complementary roles in capturing atmospheric heat stress, soil 

water availability, and nigh~me temperature effects. 

(2) A discussion of the importance of DTR for soybean yield assessments. 

These addi=ons strengthen the physical and agronomic interpreta=on of our results. 

 

2. Reviewer Comment: I also missed the theoretical implications of the findings: what does 

it mean to have IOB index influencing soybean variability (beyond the practical point of 

using it to monitor it in advance)? For instance, can it have any interactions with other 

major climate phenomena, such as climate change? While this is not the focus of the 

paper, it could still be briefly discussed. Ex: What are the future projections for the IOB 

index? What are the future projections for soybean production in the US? Could we see a 

compounding interaction between both of them? These could be part of a “future work 

recommendation” section of what could be done next from these findings. 

Response: We have expanded the Discussion in response to your comment. The revised text 

discusses the following points: 

(1) Indian Ocean warming. Although our study focuses on interannual IOB variability, 

we note that climate change is projected to cause con=nued and spa=ally 

heterogeneous warming of the tropical Indian Ocean, which may alter IOB 

variability and strengthen its teleconnec=ons (Cai et al., 2014; Gopika et al., 2025; 

Rao et al., 2012; Sharma et al., 2023). 

(2) Soybean yield projec=ons. We added discussion of projected U.S. soybean yield 

declines, with losses of 30-40% by the end of the century even under low-

emission scenarios (Schlenker and Roberts, 2009) and further reduc=ons under a 

high-emissions scenario (Hultgren et al., 2025). 

(3) Compounding interac=ons. We highlight the possibility that enhanced IOB 

variability may interact with a more drought-prone U.S. climate, crea=ng 

compound risks for soybean produc=on. 

(4) Future research. We suggest using coupled climate-crop models to assess these 

interac=ons and emphasize adapta=on strategies, as well as integra=ng IOB 

monitoring into early-warning systems. 



 

3. Reviewer Comment: Finally, I would suggest for the code to be made openly available. 

Response: We will make the code openly available and provide the access link in the Data 

Availability sec=on of the revised manuscript. 

 

Minor comments: 

Line 26: According to FAOSTAT, Brazil has been the main soybean producer for the past years. 

We agree that, according to FAOSTAT, Brazil has been the leading soybean producer in recent 
years, particularly after 2018. However, our study focuses on the period 1978–2019, during 
which the United States consistently remained the largest soybean producer until Brazil’s recent 
overtaking. To avoid confusion, we have added a figure (Supplementary Figure S1) comparing 
U.S. and Brazilian soybean production trends, which highlights that the U.S. was the dominant 
producer throughout most of our study period, with Brazil surpassing only in the very last years. 

 

Line 56: there are different verbal tenses on the same paragraph (past and present), I recommend 
sticking to one for consistency. 

We have revised this paragraph. 

 

Line 58: a matter of personal taste, but I find adjectives like “valuable” unnecessary in a scientific 
article. 

We have removed this word. 

 

Line 59 "food securety" 

We have revised this word. 

 

Line 84: This is a matter of personal preference, but it’s more common to define precipitation as 
“Pr” or “Precip” than “Pre” 

We have revised the notaSon and now use “Precip” to represent precipitaSon throughout the 
manuscript for consistency. 



 

Line 128: can you explain explicitly in the text the logical jump (coefficient of determination (R²)) 
between the -0.41 corr and the 16% variability? 

In the original text, we reported that the correlation coefficient of –0.41 corresponds to 16% of 
the variability. This comes from the relationship 𝑹𝟐 = 𝒓𝟐 in simple linear regression, where 
𝒓 = −𝟎. 𝟒𝟏 gives 𝑹𝟐 = 𝟎. 𝟏𝟔𝟖𝟏 ≈ 𝟎. 𝟏𝟔. To be more precise, we have revised the manuscript 
to report the exact value of 16.8% instead of the rounded 16%. 

 

Figure 2: Y axis “Values” is not informative enough. 

We have updated the y-axis label in Figure 2 to “Yield Change (% per σ)” to provide a clear and 
informaSve descripSon of the plo_ed values. 

 

Line 213: Can you improve the clarity of the correlation sentence? 

We have revised this sentence. 
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