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Abstract. Accurate retrieval of cloud optical and microphysical properties (COMP) at 

night is important for monitoring changes in weather and climate systems. The 

nighttime cloud optical and microphysical properties (NCOMP) retrieval is enhanced 

by integrating data from hyperspectral infrared sounder and high-resolution imager on 

the same geostationary platform with a machine learning framework. Using 35 

geostationary satellite imager broadband thermal infrared (TIR) channels along with 

dozens of optimally selected hyperspectral IR (HIR) channels, we demonstrate 

substantial improvements over traditional TIR-channel-based methods. The HIR 

channels enhance sensitivity to cloud effective radius (CER) and optical thickness 

(COT), particularly for optically thin clouds, reducing retrieval errors to 9.73 μm and 40 

6.09, respectively, with an approximate 10% accuracy improvement. The ML-based 

model preserves strong day-night continuity in COMP retrievals and assures the 

diurnal information for clouds, although challenges remain for thick clouds. This 

work highlights the importance of GEO-satellite-based HIR sounders, which provide 

critical spectral information that complements imager data for cloud optical and 45 

microphysical property retrievals. Middle-wave IR (MWIR) channels significantly 

improve COT retrieval. The proposed fusion approach offers a flexible retrieval 

framework applicable to future geostationary satellite systems for enhancing the cloud 

property retrievals containing diurnal information.  

 50 

Keywords: Geostationary Infrared Hyperspectral Sounder; Cloud Optical and 

Microphysical Properties; Deep Learning. 
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1 Introduction 

Clouds constitute essential components of the Earth-atmosphere system, 55 

profoundly modulating both the planetary radiation budget and hydrological cycling 

(Ramanathan et al., 2007; Stevens and Bony, 2013; Arias, 2023). Cloud optical and 

microphysical properties (COMP), notably cloud optical thickness (COT) and cloud 

effective radius (CER), quantify two critical dimensions: COT represents the 

integrated extinction coefficient of cloud particles, while CER characterizes the 60 

dominant particle size distribution (Nakajima and King, 1990; Liu et al., 2014; Wang 

et al., 2016). These parameters are pivotal for quantifying cloud radiative forcing 

mechanisms, as they govern the scattering and absorption efficiencies for solar 

shortwave and terrestrial longwave radiation, thereby directly regulating Earth's net 

radiative equilibrium (Miller et al., 2018; Teng et al., 2023; Tana et al., 2023).  65 

Satellite remote sensing has become the primary method for COMP retrieval due 

to its unique combination of large spatial coverage and high temporal resolution 

capabilities. The foundational work of Nakajima and King (1990) established the 

physical retrieval framework for deriving daytime COT and CER from solar reflective 

channels (Nakajima and King, 1990). In this approach, the VIS/NIR channels 70 

(0.65/0.86 μm) primarily respond to COT with negligible cloud absorption, whereas 

the SWIR channels (1.61/2.13 μm) exhibit sensitivity to both COT and CER due to 

substantial cloud absorption (Platnick et al., 2003). This classical physically-based 

methodology has since become the standard for operational COMP products retrieved 

by major satellite data application centers, including NASA Earth Observing System - 75 

Moderate Resolution Imaging Spectroradiometer (EOS-MODIS) and the 

EUMETSAT Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 

(Salomonson et al., 2002; Thies et al., 2008), delivering global COMP such as 

Terra/Aqua MODIS for the past few decades (Platnick et al., 2017). Simultaneously, 

current geostationary meteorological satellite systems, such as the GOES-R 80 

(Geostationary Operational Environmental Satellite - R series), Himawari-8/-9, and 

FY-4 (Fengyun-4) series, etc., offer 10/15-minute-scale COMP retrievals with 2-4 km 

spatial resolution, enabling new opportunities for investigating rapidly evolving cloud 

systems and their diurnal variations (Andi et al., 2013; Min et al., 2017; Letu et al., 

2022). 85 
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However, the aforementioned COMP algorithm is limited during the daytime (or 

called as DCOMP), as it relies on information from visible light scattering and 

near-infrared absorption. Without solar radiation at night, estimating the COMP 

becomes a challenging task (Gong et al., 2018). To address this issue, the 

split-window method has been proposed for retrieving COMP during the nighttime 90 

(Inoue, 1985; Heidinger and Pavolonis, 2009). This method, which relies solely on 

information from thermal infrared (TIR) channels, is applicable only to the detection 

of optically thin clouds (COT<5) at night due to the lack of spectral sensitivity of TIR 

channels to optically thick clouds (Heidinger and Pavolonis, 2009; Minnis et al., 2011; 

Iwabuchi et al., 2014). Compared to the operational DCOMP algorithm, the nighttime 95 

cloud optical and microphysical properties (NCOMP) algorithm produces estimates of 

COT that significantly lower than Daytime, makes it challenging to study the diurnal 

variation of cloud properties (Minnis and Heck, 2020; Y. Li et al., 2022). Recent 

advancements address this limitation by utilizing lunar reflectance from the 

Day/Night Band (DNB) and 3.9 μm channel emissivity. However, challenges persist 100 

in urban areas, where background city light signals may interfere with accurate 

retrievals (Walther et al., 2013; Min et al., 2021). 

Recently, with the rise of artificial intelligent (AI) technology, which is capable 

of extracting complex relationships between multiple features, significant progress 

has been made in cloud properties retrieval (Minnis et al., 2016; Håkansson et al., 105 

2018; Wieland et al., 2019; Min et al., 2020; Yang et al., 2022). By constructing the 

relationship between thermal infrared (TIR) channels and daytime cloud optical and 

microphysical properties, NCOMP can be estimated using the TIR channels. Minnis 

et al., (2016) developed a neural network algorithm to estimate the nocturnal COT of 

opaque ice clouds using 3.7, 6.7, 11.0, and 12.0 µm infrared channels. The algorithm 110 

shows a high degree of consistency in validation results and extends the ice cloud 

COT estimate range to 150 (Minnis et al., 2016). Wang et al. (2022) introduced a 

convolutional neural network (CNN) model to retrieve COT, CER, and cloud top 

height (CTH). Based on MODIS TIR channels, this method extends COT and CER 

retrievals into the nighttime and outperforms the traditional TIR -based method, the 115 

validation results show a good correlation for CTH (R = 0.95), CER (R = 0.85) and 

COT (R = 0.79) (Wang et al., 2022). Zhao et al., (2023) developed a new 

ResUnet-model-based algorithm for retrieving cloud phase (CLP), COT, CER, and 
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CTH. With geostationary satellite imager multichannel brightness temperature (BT) 

data to input, this model provides reliable and comparable COMP estimates within the 120 

COT range of 0-60, the RMSEs (root-mean-square error) of the CER and COT are 

7.14 µm and 9.01, with higher accuracy at values under 20 (Zhao et al., 2023). 

Furthermore, Charles et al. (2024) trained multiple neural network models for 

emulating CER and COT using only TIR channels from the GOES-16 ABI 

(Advanced Baseline Imager). This ML-based approach significantly improves 125 

NCOMP estimation compared to the operational NCOMP product and particularly 

reduces artifacts associated with the day/night terminator. 

Hyperspectral infrared (HIR) sounders, such as the Infrared Atmospheric 

Sounding Interferometer (IASI), the Atmospheric Infrared Sounder (AIRS), and the 

Cross-track Infrared Sounder (CrIS), offers significant advantages in retrieving the 130 

vertical structure of atmospheric temperature, humidity, and trace gases (Menzel et al., 

2018). The high spectral resolution of HIR sounders also makes them well suited to 

the retrieval of cloud properties (Li et al., 2004, 2005). Through radiative transfer 

simulations, Huang et al., (2004) demonstrated that the IR spectrum between 790-960 

cm-1 is sensitive to the CER, while the 1050-1250 cm-1 range is sensitive to the COT. 135 

Based on these spectral features, a method for retrieving COMP from ice clouds using 

HIR data was proposed, which applied one-dimensional variational (1DVAR) and 

minimum-residual (MR) methods to retrieve COMP from the AIRS longwave 

window region (Li et al., 2005). In addition, Liu et al., (2009) also converted IASI 

channel radiance spectra into super-channels and used a Principal Component-based 140 

Radiative Transfer Model (PCRTM) to retrieve atmospheric temperature, moisture, 

and cloud optical properties (Liu et al., 2009). 

The Geostationary Interferometric Infrared Sounder (GIIRS) - the first 

hyperspectral infrared (HIR) sounder on a geostationary platform, provides 

significantly higher temporal resolution for vertical atmospheric profiling than 145 

polar-orbiting hyperspectral instruments, enabling real-time monitoring of rapidly 

evolving weather systems on a regional scale (Yang et al., 2017; Li et al., 2022; 

Kalluri, 2022; Li et al., 2025). This provides a valuable opportunity to further explore 

the benefits of combining both HIR sounders and imagers onboard a GEO satellite for 

retrieving COMP. Guo et al., (2024) developed a cloud macro-physical properties 150 

retrieval algorithm by integrating data from the Advanced Geosynchronous Radiation 

Imager (AGRI) and GIIRS. Their results demonstrate that GIIRS significantly 
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improves the accuracy of cloud phase, CTH, and cloud base height (CBH) retrievals, 

marking the first validation of HIR's capability for probing cloud vertical structures 

(Guo et al., 2024). With Europe, Japan, and the United States planning 155 

next-generation GEO HIR deployments (Bessho et al., 2021; Holmlund et al., 2021), 

operational applications of GEO HIR data (particularly for diurnal cloud/wind field 

products) have become a critical research frontier in atmospheric science (Lindsey et 

al., 2024). 

Therefore, the primary goal of this study is to answer the following two key 160 

scientific questions: (1) What is the advantage of a GEO HIR sounder over a GEO IR 

imager for NCOMP retrieval? (2) How does a combined GEO satellite 

imager/sounder improve current imager-TIR-channel-based NCOMP algorithms? To 

answer these two scientific questions, we propose a new NCOMP retrieval framework 

that utilizes a combined IR imager and HIR sounder onboard a GEO FY-4B satellite 165 

platform and machine-learning-based algorithm. The specific effect of FY-4B HIR 

observations in NCOMP retrieval is quantitatively analyzed and evaluated. The 

subsequent sections are organized as follows: Section 2 provides a comprehensive 

description of the data and methodology employed; Section 3 evaluates the 

contribution of GIIRS channels to COMP retrieval and validates the accuracy of the 170 

COMP retrieval algorithm; Section 4 presents the conclusion and discussion. 

2 Data and Method 

2.1 Data Collection 

AGRI is one of the key sensors on board the FY-4B geostationary 

meteorological satellite, which was successfully launched in June 2021. AGRI 175 

provided a full disk image of the Eastern Hemisphere every 15 minutes, with a total of 

15 channels: visible/near infrared (VIS/IR) channels (0.47 - 0.825 μm), shortwave 

infrared (SWIR) channels (1.379 - 2.25 μm) and TIR channels (3.75 - 13.3 μm). Of 

these, the reflectance observations provided by 0.64 μm and 2.25 μm channels are 

mainly used to generate the DCOMP product. Since the VIS/IR channels are 180 

unavailable during nighttime and to minimize the effects of sun glint over ocean 

surfaces, we selected the TIR channels (channels 9–15) along with the satellite 

viewing zenith angle (VZA) as input features for developing the NCOMP retrieval 
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algorithm. Additionally, the AGRI Level-2 (L2) cloud products (CLP, CER, and COT) 

were employed as target outputs for the model (Wang et al., 2024a). 185 

GIIRS is the first hyperspectral IR sounder on board a geostationary satellite. 

Compared to its predecessor FY-4A/GIIRS, FY-4B/GIIRS improves the spatial 

resolution from 16 km to 12 km at nadir and extends the spectral range in longwave 

infrared (LWIR) channels (from 700-1130 cm-1 to 680-1130 cm-1) (Di et al., 2021). 

Besides, evaluations show that FY-4B/GIIRS also enhances calibration stability and 190 

accuracy compared to FY-4A/GIIRS, particularly in reducing errors within CO₂ and 

O₃ absorption channels (Niu et al., 2023; Wang et al., 2024b). In this study, we 

quantitatively evaluate the sensitivity of GIIRS LWIR and MWIR to COMP and 

further explore the hyperspectral IR sounder gain in NCOMP retrieval. Note that on 

March 4, 2024, FY-4B underwent an orbital drift, adjusting its orbital nadir position 195 

from 133°E to 105°E, to succeed FY-4A and enhance its operational monitoring 

services. In this study, data from March and July 2024 are utilized for ML model 

training, while five days of data from March, June, and July have been selected for 

independent model validation. Table 1 summarizes the relevant variables used in ML 

model training and prediction. 200 

2.2 Data Prepossessing 

To maintain spatiotemporal consistency between input features and targets, we 

collocated each GIIRS pixel with multiple simultaneous AGRI observations, with the 

final output resolution is consistent with AGRI (4 km). The criterion of matching is 

that the distance is within 4 km and the temporal difference is less than 15 minutes 205 

(Di et al., 2023). FY-4B/GIIRS performs sequential scanning of individual granules 

from top to bottom at 15-minute intervals, completing a full scan of the China region 

through 7 granules per scanning cycle. Meanwhile, FY-4B/AGRI conducts full-disk 

scans every 15 minutes. Therefore, in each scanning cycle, the synchronized matching 

data from GIIRS and AGRI are also divided into 7 independent granules. We 210 

implemented comprehensive quality control for the matched dataset: (1) exclusion of 

observations with solar zenith angles larger than 65° (limiting analysis to daytime 

COMP retrievals), and (2) removal of data with viewing zenith angles larger than 65° 

(Andi et al., 2013). To speed up model training while reducing the impact of outliers 

on model training, we also used the z-score method to normalize the data, 215 
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transforming the model input data into a standard normal distribution with mean 0 and 

standard deviation 1. During ML-based model training, all input data were partitioned 

into 32×32 pixels regions (corresponding to 128 km×128 km). This processing 

yielded 256, 8230 samples for training and 49, 2153 samples for testing and 

validation. 220 

2.3 Machine-Learning-Based Algorithm 

ML models based on the advanced Unet architecture have become prevalent in 

medical imaging, remote sensing, and natural image processing (Ronneberger et al., 

2015). In recent years, researchers have made various improvements based on Unet, 

to further enhance its performance in complex scenes (Zhou et al., 2018; Diakogiannis 225 

et al., 2019). Sun et al., (2023) proposed the DA-TransUnet (Dual-Attention 

Transformer Unet) architecture, which incorporates dual-attention mechanisms for 

positional and channel information processing, achieving improved segmentation 

efficiency without compromising performance (Sun et al., 2023). 

2.3.1 Model Architecture 230 

Inspirating from Sun et al., (2023) we developed an architecture for 

FY-4B/AGRI COMP retrieval, named HIR-COMP-Unet, the detailed model 

architecture is shown in Figure 1. The model is mainly composed of five parts: input 

layer, encoder layer, decoder layer, CLP enhanced layer, and output layer. In the input 

layer, AGRI BTs, VZA (view zenith angle), and GIIRS BTs are loaded with a size of 235 

32×32 in a batch, considering the spatial resolution of the GIIRS BTs is coarser than 

AGRI BTs, the gaussian filter is used to smooth the GIIRS BTs. The encoder layer of 

the model consists of multiple convolutional blocks, each followed by a dual attention 

(DA) block and a 2×2 max-pooling layer to progressively downsample the feature 

maps while extracting positional and channel features. The convolutional blocks, 240 

improved by the ConvNext architecture, are designed to enhance feature extraction 

efficiency, while the DA blocks excel in both position-based and channel-based 

feature extraction, ensuring robust feature learning. In the bottleneck of the encoder is 

a Transformer block, which employs self-attention mechanisms to capture long-range 

dependencies and global contextual information, further enriching the feature 245 

representations. The decoder part mirrors the encoder structure but uses upsampling 

layers instead of pooling to gradually restore the spatial resolution of the feature maps. 
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Each decoder layer combines upsampled features with skip connections from the 

corresponding encoder layer, enabling the model to retain fine-grained spatial details. 

After decoder, the initial classification and regression results are output with a size of 250 

Batchsize(B)×7×32×32, while 5 channels represent the predicted probabilities of the 

five cloud phase classifications, the other 2 channels represent the initial predictions 

of CER and COT. The CLP feature maps are processed by convolutional layers and 

batch normalization, followed by ReLU activation, to enhance the regression 

prediction result of CER and COT. Finally, the 5 channels classification predicted 255 

probabilities are softmax to CLP, the other 2 channels are CER and COT, 

respectively. 

2.3.2 Loss Function 
The loss function is used to quantify the difference between the model ’s 

predictions and the targets, and the model gradually adjusts the parameters to become 260 

optimal as it minimizes the loss function. As the model performs both regression and 

classification tasks, the overall loss function is defined as follows: 

 𝐿(𝑇𝑜𝑡𝑎𝑙) = 𝐿(CLP) + 𝐿(CER) + 𝐿(COT),  (1) 

where 𝐿 represents the loss function, the total loss function is composed of the 

loss functions of CLP, CER and COT. The Mean Squared Error (MSE) is used to 265 

calculate the loss functions of CER and COT, while the Binary Cross-Entropy (BCE) 

is used to calculate the loss function of CLP. 

2.3.3 Training Strategies 
Each ML-based model is trained in a batch of size B×C×32×32, where B and C 

represent the batch size and channel number, respectively, and 32×32 represents the 270 

pixel size of each image. We choose a batch size of 64 to capture as many local 

COMP features as possible. The channel number depends on the number of GIIRS 

channels we choose to add, a control experiment is set up to test the accuracy of 

COMP retrieval with different numbers of GIIRS channels to add, which mainly 

includes the following four scenarios: no GIIRS added (AGRI only), limit GIIRS 275 

LWIR, limit GIIRS MWIR, and both GIIRS LWIR and LWIR. To improve the 

robustness of the ML model, the sample augmentation strategy is used during the 

training process, which means in each batch of model training, the training images are 

randomly rotated by 90°, 180° or 270° as input.  
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To facilitate rapid convergence during model training and to mitigate the risk of 280 

gradient explosion, we implemented several optimization strategies, including 

gradient clipping and adaptive learning rate scheduling. With an initial learning rate of 

1.0e-3, the scheduler reduces the learning rate by a factor of 0.5 when no 

improvement in validation loss is observed for 10 consecutive epochs, with a 

minimum learning rate set at 1.0e-6. Each model is trained on a platform with an Intel 285 

Xeon(R) Gold 5318Y CPU (2.10 GHz, 96 cores) and two NVIDIA GeForce RTX 

4090 GPUs with 300 epochs. 

3 Results and Validation 

3.1 Sensitivities of GIIRS radiances to COMP retrieval 

Given that the FY-4B/GIIRS comprises over 1600 spectral channels, direct 290 

incorporation of all channels into ML-based COMP retrieval models would reduce 

computational efficiency and may be counterproductive. Therefore, a systematic 

channel selection approach is essential to identify: (1) channels exhibiting optimal 

sensitivity to COMP, and (2) channels demonstrating minimal radiometric calibration 

errors. This selective utilization of hyperspectral data ensures computational 295 

efficiency while maintaining the physical interpretability of the ML-based retrieval 

system. 

The Radiative Transfer for TOVS (RTTOV) model, developed by the European 

Centre for Medium-Range Weather Forecasts (ECMWF), offers significant 

advantages for hyperspectral infrared simulations due to its computational efficiency 300 

and well-validated gas absorption parameterization schemes (Saunders et al., 2018). 

In this work, we employ RTTOV version 13.2 to systematically evaluate the 

sensitivity of GIIRS LWIR and MWIR spectral channels to COMP. Our simulation 

framework examines two fundamental cloud scenarios: liquid-phase and ice-phase 

clouds, a controlled experiment is designed where we systematically vary either CER 305 

or COT while holding other cloud parameters (cloud height, cloud top pressure and 

cloud fraction) constant. The quantitative relationship or sensitivity (Sen) between 

GIIRS radiance and COMP variations is established through the following equation: 

 Sen = 7 ∆"#/"#
∆%&'(/%&'(

7,  (2) 
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where ∆COMP represents variations in CER and COT. The symbol of ∆BT 310 

denotes the corresponding changes in GIIRS brightness temperature (BT) due to these 

variations.  

For liquid water clouds, Figure 2 reveals distinct spectral sensitivity 

characteristics to CER when COT is fixed at 1. The LWIR channels (750-1000 cm-1 

and 1080-1130 cm-1) demonstrate a strong sensitivity of approximately 0.4 -to droplet 315 

sizes of 2-20 μm, while MWIR channels (1800-2200 cm-1) exhibit a moderate 

sensitivity of approximately 0.2 for 4-20 μm droplets. When analyzing COT 

sensitivity with CER fixed at 10 μm (Figure S1), the LWIR channels demonstrate a 

strong sensitivity of approximately 0.7, particularly for COT values below 10. 

Although MWIR channels show relatively weaker response to COT variations 320 

compared to LWIR, they retain significant sensitivity (about 0.5) in the 1800-2200 

cm-1 range for optically thin clouds.  

For ice clouds, the spectral sensitivity to CER displays different patterns (Figure 

S2). The LWIR channels (900-1000 cm-1 and 1080-1130 cm-1) maintain a strong 

sensitivity of approximately 0.4 to particle sizes of 10-20 μm, while MWIR channels 325 

show minimal response to CER variations overall. In COT sensitivity analysis 

(CER=20 μm), LWIR channels (750-1000 cm-1 and 1080-1130 cm-1) again 

demonstrate a strong sensitivity of approximately 0.6 for COT values below 3, with 

MWIR channels exhibiting reduced but measurable sensitivity in the 1950-2200 cm-1 

range (Figure S3). 330 

We further calculate the average sensitivity of the GIIRS LWIR and MWIR 

channels to liquid-phase and ice-phase clouds CER and COT under RTTOV 

simulations (Figure 3(a), (b)). The LWIR channels exhibit a strong sensitivity of 

approximately -0.3 to COT variations in spectral band of range 750-950 cm⁻¹ and 

1080-1130 cm⁻¹, while showing a maximum but relatively weak CER sensitivity of 335 

approximately -0.15 in the 900-1000 cm⁻¹ range. Following the previous work by 

Wang et al., (2024), the radiometric calibration performance of FY-4B/GIIRS was 

evaluated using IASI observations and RTTOV simulations as benchmarks (Figure 

3(c), (d)). The results demonstrate that GIIRS exhibits greater sensitivity to COT than 

to CER, with the most responsive spectral channels located at 700-1000 cm⁻¹ and 340 

1080-1130 cm⁻¹ in the LWIR region and 2100-2170 cm⁻¹ in the MWIR region. 

Comparative analysis reveals that in the LWIR channels, GIIRS maintains a mean 
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bias within 0.5 K relative to IASI with a standard deviation (STD) of approximately 

1.5 K, while showing maximum COMP sensitivity in the 700-1000 cm⁻¹ and 

1080-1130 cm⁻¹ channels. In contrast, MWIR channel performance is comparatively 345 

weaker, with errors reaching 2 K in the 1650-1850 cm⁻¹ and 2200-2250 cm⁻¹ ranges, 

the latter also showing a higher STD (Wang et al., 2024b). 

In order to identify high-quality GIIRS channels with optimal sensitivity to 

COMP, we established the following selection criteria: (1) the median COMP 

sensitivity for each selected channel must exceed 0.2; (2) the STD of calibration 350 

uncertainty must be less than 1.5 K; and (3) the absolute bias must remain below 0.5 

K. Based on these stringent requirements, we ultimately selected 149 LWIR channels 

and 40 MWIR channels. As shown in Figure 4(a), the chosen LWIR channels are 

predominantly clustered in the 720-900 cm⁻¹ and 1000-1060 cm⁻¹ spectral channels, 

while the MWIR channels are primarily concentrated in the 2100-2180 cm⁻¹ band. 355 

Analysis of the temperature and water vapor mixing ratio Jacobians for these selected 

channels (Figure 4(b), (c)) reveals that they contain valuable temperature and water 

vapor information across different atmospheric layers, which provides theoretical 

basis for subsequent COMP retrieval. The selected GIIRS channels were prioritized 

based on their Principal Component Analysis (PCA) scores, determined through the 360 

following formula:  

 Importance) = ∑ (𝑣*)E𝜆*)+,
*-. ,  (3) 

where k denotes the number of retained principal components, 𝑣*) represents 

the eigenvector coefficient of the j-th channel for the i-th principal component, 𝜆* 

represents the eigenvalue associated with the i-th principal component. We ranked all 365 

selected LWIR and MWIR channels according to their importance scores. In COMP 

retrieval control experiments with different numbers of GIIRS channels input, 

channels with high importance scores are prioritized. 

3.2 COMP retrieval and comparisons 

To investigate the role of HIR in COMP retrieval and determine the optimal 370 

observation channel scheme for HIR-COMP-Unet, we trained models using four 

primary channel selection strategies: (1) AGRI IR only, (2) AGRI IR + GIIRS LWIR, 

(3) AGRI IR + GIIRS MWIR, and (4) AGRI IR + both GIIRS LWIR and MWIR (The 

specific channel selection is shown in Figure S4). Additionally, to further evaluate the 

influence of the number of GIIRS input channels on COMP retrieval accuracy, we 375 
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conducted a tiered experiment with varying numbers of input channels, prioritizing 

those with the highest importance. 

Table 2 presents the COMP retrieval accuracy across different channel schemes 

using FY-4B/AGRI L2 daytime COMP product as reference (Wang et al., 2024a). For 

CER retrieval, RMSE, MAE and MBE of 12.85 μm, 8.32 μm and -3.30 μm as only 380 

using 7 FY-4B/AGRI TIR channels. While adding 10 LWIR channels initially 

increased the RMSE to 13.36 μm, further channel inclusion (up to 50 channels) 

improved the accuracy to 12.74 μm. In contrast, incorporating MWIR channels 

negatively impacted the CER retrieval performance. For COT retrieval, using AGRI 

TIR channels alone resulted in RMSE, MAE, and MBE values of 8.96, 4.55, and 385 

-0.89, respectively. Introducing LWIR channels initially raised the RMSE to 9.87 with 

10 channels, but subsequently reduced it to 9.07 with 50 channels. Conversely, 

MWIR channels significantly improved the COT retrieval, reducing the RMSE to 

7.71 when using 30 channels. An optimal balance was achieved by combining 30 

LWIR and 10 MWIR channels, yielding an RMSE of 13.13 μm for CER and 7.84 for 390 

COT, thus enhancing COT retrieval while maintaining CER accuracy. 

FY-4B/AGRI L2 daytime COMP product from June 2024 is used for independent 

validation, focusing on cases with CER below 60 μm and COT below 60 (covering 

99.3% of samples). Using only AGRI IR channels (Figure 5), HIR-COMP-Unet 

achieved cloud classification accuracies of 73.98% (clear), 89.09% (water), 94.28% 395 

(supercooled), 87.80% (mixed), and 97.05% (ice). The model showed relative 

difficulty distinguishing clear sky from water clouds (26.01% misclassification) while 

excelling in ice-phase cloud identification (>94% accuracy). For CER retrieval, the 

RMSE, MAE and MBE are 9.72 μm, 7.20 μm and -2.05 μm respectively, with most 

cases in the 10-40 μm range. The probability density function (PDF) (Figure 5(c)) 400 

analysis shows an overestimation of the lower CER values and an underestimation of 

the higher values, increased probabilities for 28-34 μm and decreased probabilities for 

36-60 μm compared to AGRI L2 cloud product. Compared to CER, the retrieval of 

COT demonstrated better agreement, with RMSE, MAE, and MBE values of 6.71, 

4.14, and -0.46, respectively. Although the PDF distribution (Figure 5(e)) indicated 405 

slight deviations for optically thin clouds within the ranges of 0-2 and 4-6, the overall 

agreement with the reference data remained good. 

For comparison, Figure 6 evaluates the HIR-COMP-Unet model performance 

using 30 LWIR + 10 MWIR GIIRS channels as additional inputs. The inclusion of 
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GIIRS data leads to slight but consistent improvements: clear-sky detection accuracy 410 

increases to 74.85%, water cloud identification reaches 89.10%, while ice-phase cloud 

accuracy remains high (>94%). For CER retrieval, the model maintains similar 

precision to AGRI-IR-only inputs (RMSE=9.73 μm, MAE=7.20 μm) but with reduced 

bias (MBE improves from -2.05 to -0.91). PDF distributions (Figure 6(c)) confirm 

better agreement with AGRI L2 products, indicating mitigated systematic errors in 415 

CER estimation. More significantly, COT retrieval shows marked improvement, with 

error metrics decreasing by -10% (RMSE = 6.09, MAE = 3.62, MBE = -0.62) and 

PDF analysis (Figure 6(e)) demonstrating excellent alignment with reference data. 

The comparison was also performed with the VIIRS L2 COMP product as a reference, 

and the results also confirmed the contribution of the GIIRS LWIR and MWIR 420 

channels for improving COMP retrieval accuracy (The comparison is shown in Figure 

S5, S6). 

To quantify the benefits of GIIRS for COMP retrieval, Figure 7 evaluates 

HIR-COMP-Unet model performance across different COT regimes using various 

GIIRS channel combinations. For thin clouds (0.1 ≤ COT < 1), the CER retrieval 425 

RMSE ranged from 12 to 20 μm, with GIIRS channels providing slight improvement 

by approximately 0.5 μm, while COT retrieval demonstrates more significant 

enhancement (RMSE decreasing from 1.0-2.2 to 0.5-1.7). This improvement reflects 

the enhanced sensitivity of GIIRS LWIR/MWIR channels to optically thin clouds, 

consistent with conclusions from Section 3.1. For medium clouds (1 ≤ COT < 10), 430 

CER errors decrease naturally from 25 μm to 8 μm with increasing COT, showing 

limited response to GIIRS inputs. However, GIIRS LWIR channels reduce COT 

retrieval accuracy (RMSE increasing by about 1), although the combined 

LWIR+MWIR configuration yields modest improvements for COT 7-10. For thick 

clouds (10 ≤ COT < 100), GIIRS LWIR channels improve CER retrieval (reducing 435 

RMSE by 1.0-1.5 μm) but exhibit minimal positive effect on COT retrieval, where 

errors exceed 30 for COT > 60 due to TIR channel sensitivity constraints. 

Figure 8 presents the retrieval performance across different cloud droplet size 

categories. For small droplets (5 ≤ CER < 20 μm), the baseline CER retrieval 

RMSE of 8-10 μm improves to 7-9 μm with GIIRS channel inputs. The COT retrieval 440 

shows comparable enhancement, with MWIR channels reducing RMSE by 1-2. For 
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medium droplets (20 ≤ CER < 50 μm) and large droplets (50 ≤ CER < 100 μm), 

GIIRS channels do not significantly improve CER retrieval accuracy. Instead, MWIR 

channels increases the error in CER retrieval. However, for COT retrieval, the 

incorporation of MWIR channels reduces RMSE by 1-2, demonstrating their positive 445 

impact on COT estimation for medium and large cloud droplets. 

In conclusion, the addition of GIIRS LWIR and MWIR channels enhances the 

accuracy of the COMP retrieval. For COT retrieval, GIIRS channels mainly improve 

accuracy for optically thin clouds with COT values less than 10, with MWIR channels 

significantly enhancing retrieval for large grain sizes, especially ice clouds. In contrast, 450 

for CER retrieval, GIIRS channels show only a slight improvement for optically thin 

clouds, while MWIR channels tend to increase retrieval errors for medium to large 

cloud particles. Overall, combining both LWIR and MWIR channels proves most 

effective, leading to a modest improvement in CER retrieval for small particle sizes 

and a 10% overall increase in COT retrieval accuracy. The HIR-COMP-Unet model, 455 

using 30 LWIR and 10 MWIR GIIRS channels, was ultimately chosen as the optimal 

model, which also proved the importance of both LWIR and MWIR in COMP 

retrieval. 

3.3 Case analysis 

As an image-based cloud retrieval approach, this study evaluates the 460 

HIR-COMP-Unet's capability to reproduce spatial patterns of cloud attributes through 

regional case studies. Figure 9 presents a comprehensive comparison of satellite 

observations, L2 cloud products, and HIR-COMP-Unet model retrievals for a target 

region (99°E-132°E, 20°N-40°N) on 30 June 2024 at 03:15 UTC. The 0.64 μm visible 

channel reflectance, crucial for DCOMP retrieval, effectively captures cloud spatial 465 

distribution, while the 8.55 μm and 13.3 μm thermal infrared channels, exhibiting 

reduced BTs in cloudy areas, primarily provide cloud-top information. The analyzed 

scene features a prominent southwest-northeast oriented cirrus system with 

surrounding thin cumulus clouds. HIR-COMP-Unet model demonstrates exceptional 

performance in cloud phase classification, accurately distinguishing between liquid, 470 

ice, and mixed-phase clouds while correctly identifying clear-sky regions. Regarding 

CER retrieval, the model shows particular strength for high-level clouds, producing 

reliable estimates in the 20-40 μm range. The retrieved cloud textures exhibit strong 

correspondence with the derived ice water path (IWP) and liquid water path (LWP) 
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distributions. However, the model tends to underestimate CER values for large 475 

droplets in low-level water clouds and supercooled clouds. Comparison with L2 

products reveals generally high agreement, with HIR-COMP-Unet model showing 

improved COT estimation for optically thick clouds (COT > 60). Nevertheless, the 

model displays a systematic underestimation in regions where COT exceeds 70, 

suggesting potential limitations of ML-based algorithm in retrieving extremely thick 480 

cloud conditions. 

Figure 10 illustrates a representative case of complex cloud distribution within a 

smaller area (92°E-100°E, 6°N-11°N), featuring coexisting cirrus, cumulus, and 

mixed-phase clouds. The visible channel observations reveal intricate textural patterns 

in the cloud system, while the thermal infrared channels partially resolve cloud-top 485 

features but lack detailed structural information. The scene exhibits a punctate 

distribution of pure ice and water clouds, interspersed with regions of transitional 

cloud phases. HIR-COMP-Unet model demonstrates strong performance in cloud 

phase classification, particularly in distinguishing ice and mixed-phase clouds. 

However, the algorithm shows minor limitations in detecting small clear-sky regions 490 

spanning only a few pixels. Regarding COMP, the retrieved CER and COT 

distributions show good overall consistency with the IWP and LWP edge contours. 

The CER values are predominantly clustered in the 30-40 μm range, where the model 

provides accurate estimates, though some structural details are lost in central portions 

of the scene. Notably, the model tends to overestimate CER values (5-10 μm range) 495 

for mixed-phase clouds containing small droplets. For COT retrieval, 

HIR-COMP-Unet model achieves high spatial correspondence with reference data, 

effectively capturing fine-scale features within the 0-20 optical thickness range. The 

model successfully reproduces the spatial variability of cloud optical properties while 

maintaining physically realistic distributions. 500 

3.4 Nocturnal features of COMP 

Traditional DCOMP retrieval algorithms face limitations at night due to the 

absence of visible light observations, hindering the capture of complete diurnal 

variations in cloud optical and microphysical properties (COMP). In contrast, thermal 

infrared (TIR)-channel-based COMP retrieval methods are unaffected by solar 505 

illumination conditions, effectively compensating for this shortcoming of 

VIS/NIR-dependent approaches. To further assess the ability of the HIR-COMP-Unet 
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model developed in this study to capture diurnal COMP variations, we analyzed a 

case study region (110°E-115°E, 25°N-30°N) within the GIIRS scanning range 

(Figure 10 (a)). At 11:00 UTC on 29 June 2024, the unavailability of DCOMP 510 

products prevented validation against reference cloud phase (CLP) data. However, 

operational CLP and cloud-top height references indicated a cloud system primarily 

composed of extensive cirrus, with localized cumulus in the northwest. Despite a 

minor misclassification of clear-sky pixels as liquid clouds in the northwest, the 

HIR-COMP-Unet model accurately reproduced the spatial distribution of cloud 515 

phases. For both CER and COT retrievals, the model produced consistent edge 

textures across various CLP and CTH regimes, indicating that AGRI and GIIRS TIR 

observations alone provide sufficient data for the HIR-COMP-Unet model to 

characterize COMP distributions, both day and night, without the need for additional 

CLP/CTH inputs. 520 

To further validate the nocturnal COMP retrievals from HIR-COMP-Unet model, 

we compared its hourly outputs with ERA5 reanalysis cloud water (CLW) data by 

applying the COT-CER-CLW relationship from Minnis (1998) (showing in the 

supplementary materials). Figure 12 illustrates the diurnal variations of CLW, CER, 

and COT on 29 June 2024, highlighting clear daytime and nighttime trends. During 525 

the day (local time), both CER and COT slightly decreased, reflecting reduced CLW, 

with HIR-COMP-Unet model retrievals closely matching reference values. At night, 

CER exhibited a characteristic dip-and-recovery pattern, while COT remained stable, 

together driving CLW variations that were consistently validated by ERA5 data. This 

confirms the model's ability to accurately capture diurnal COMP cycles. 530 

4 Conclusion and Discussion  

This study introduces a novel approach to enhance COMP retrieval using 

hyperspectral infrared channel observations. We develop a ML-based model, 

HIR-COMP-Unet model, incorporating FY-4B/AGRI TIR channels alongside varying 

numbers of FY-4B/GIIRS LWIR and MWIR channels, selected for their sensitivity to 535 

COMP variations. The impact of different GIIRS spectral channel combinations on 

COMP retrieval is specifically evaluated, while also addressing the two questions 

raised at the beginning of this work. Key findings are summarized below: 
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(1) GIIRS LWIR (720-900 cm⁻¹ and 1000-1060 cm⁻¹) and MWIR (2100-2180 

cm⁻¹) channels in TIR-channel-based NCOMP algorithms are sensitive to variations 540 

in CER and COT in both liquid and ice-phase clouds. This sensitivity offers additional 

information that improves COMP retrieval, especially for optically thin clouds. 

(2) Combining GIIRS and AGRI enhances NCOMP retrieval accuracy compared 

to AGRI-only retrievals. For COT retrieval, GIIRS channels mainly improve accuracy 

for optically thin clouds (COT < 10). For CER retrieval, the improvements are 545 

marginal for similar clouds. The best performance is achieved using 30 LWIR and 10 

MWIR GIIRS channels, reducing RMSE to 9.73 μm for CER and 6.09 for COT, with 

an approximate 10% improvement in COT retrieval accuracy. 

(3) HIR-COMP-Unet model efficiently integrates the features of each input 

channel, providing spatially consistent retrievals compared to reference data. However, 550 

challenges remain for higher CER (CER > 60 μm) and COT (COT > 60) cases. The 

model also maintains strong continuity between retrieved nighttime and daytime 

COMP, allowing for reliable monitoring of diurnal COMP variations at regional 

scales. 

In summary, this study offers a comprehensive evaluation of HIR’s role in COMP 555 

retrieval, providing valuable insights for the development of future GEO HIR 

missions. Unlike previous approaches that rely on HIR LWIR window channels, we 

carefully select GIIRS LWIR and MWIR channels sensitive to COMP variations, 

showing that MWIR observations significantly improve COT retrieval accuracy. The 

retrieval error for COT is significantly lower compared to only TIR-channel-based 560 

inversions, highlighting the added value of hyperspectral data for characterizing cloud 

microphysical and optical properties. Additionally, if the radiometric calibration 

performance of FY-4B/GIIRS improves further, the inversion accuracy is also likely 

to increase. The fusion of GEO imagers and HIR sounders in our proposed method 

not only enhances FY-4B satellite COMP retrieval but also provides a scalable 565 

framework applicable to other GEO platforms with HIR sounders (e.g., 

next-generation GEO satellites or successors of GOES-R, MTG). 
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 815 

Tables and Figures 
 

Table 1. Data descriptions 

Sensor Variable 
Description Spatial/Temporal 

Resolution 

AGRI 

Channel 9 
Central wavelength 6.25 µm 

Infrared 

4km/15min 

Channel 10 
Central wavelength 6.95 µm 

Infrared 

4km/15min 

Channel 11 
Central wavelength 7.42 µm 

Infrared 

4km/15min 

Channel 12 
Central wavelength 8.55 µm 

Infrared 

4km/15min 

Channel 13 Central wavelength 10.80 µm 

Infrared 

4km/15min 

Channel 14 Central wavelength 12.00 µm 

Infrared 

4km/15min 

Channel 15 Central wavelength 13.3 µm 

Infrared 

4km/15min 

VZA Observational zenith angle 4km/15min 

L2 CLP AGRI cloud phase product 4km/15min 

L2 CER 
AGRI cloud effective radius 

product 

4km/15min 

L2 COT 
AGRI cloud optical thickness 

product 

4km/15min 

GIIRS 

LWIR 

Channels 

Long-wave Infrared channels 

(680-1130 cm-1) 

12km/1.5h (China 

region) 

MWIR 

Channels 

Mid-wave Infrared channels 

(1650-2250 cm-1) 

12km/1.5h (China 

region) 

 

 820 
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Table 2. Comparison of COMP retrieval accuracy with different numbers of GIIRS 825 

channels are added. The configurations include: IR-only (using only AGRI infrared 

channels without GIIRS inputs), LWnum (using only num selected LWIR channels 

from GIIRS), MWnum (using only num selected MWIR channels from GIIRS), and 

LWnum1MWnum2 (combined use of num1 LWIR and num2 MWIR channels from 

GIIRS). 830 

Channels 

Input 

Evaluation 

Indicators 
IR-only LW10 LW30 LW50 MW10 MW30 

LW30 

MW10 

LW50 

MW10 

 RMSE 12.85 13.36 13.12 12.74 13.73 14.08 13.13 13.70 

CER MAE 8.32 8.81 8.64 8.35 8.77 8.93 8.48 8.83 

 MBE -3.30 -3.15 -2.82 -3.33 -4.09 -4.95 -2.34 -3.76 

 RMSE 8.96 9.87 9.55 9.07 7.91 7.71 7.84 7.86 

COT MAE 4.55 5.52 5.32 4.67 4.01 3.96 3.90 4.02 

 MBE -0.89 -0.26 0.06 -0.96 -0.53 -0.26 -0.91 -0.53 
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Figure 1. (a) Architecture of the HIR-COMP-Unet. (b) Transformer block. (c) Dual 835 

attention block, consist of position attention module (PAM) and channel attention 

module (CAM). Further details can be found in the supplementary materials. 
 

 

 840 
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Figure 2. BT response of GIIRS channels to liquid cloud properties: (a) LWIR 

(680-1130 cm⁻¹) and (b) MWIR (1650-2250 cm⁻¹) spectral channels for varying CER; 

(c) LWIR and (d) MWIR sensitivity to CER variations.  
 845 

 
Figure 3. The average sensitivity of FY-4B/GIIRS LWIR (a) and MWIR (b) spectral 

channels to COMP variations. Bias (solid line) and STD (shaded area) of GIIRS 

LWIR (c) and MWIR (d) taking IASI BT (red) and RTTOV simulation (blue) as 

baselines, respectively. 850 
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Figure 4. Channel selection of FY-4B/GIIRS LWIR (red vertical lines) and MWIR 

(blue vertical lines) after screening (a). The temperature Jacobian of channels (b), and 855 

the water vapor mixing ratio (lnq) Jacobians (c) of GIIRS channels we selected. 
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Figure 5. Independent validation of HIR-COMP-Unet (Unet) retrieval performance 

using only AGRI channels compared to baseline AGRI L2 COMP products during 860 
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daytime conditions: (a) Confusion matrix for CLP identification showing 

classification accuracy; (b, d) Density scatter plots comparing retrieved versus 

reference CER and COT, with 1:1 line (black solid) and regression fit (red solid); (c, e) 

Probability density functions s of CER and COT. 
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 865 

Figure 6. Independent validation of HIR-COMP-Unet retrieval performance using 30 

selected GIIRS LWIR and 10 MWIR channels compared to baseline AGRI L2 COMP 
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products during daytime conditions: (a) Confusion matrix for CLP identification 

showing classification accuracy; (b, d) Density scatter plots comparing retrieved 

versus reference CER and COT, with 1:1 line (black solid) and regression fit (red 870 

solid); (c, e) Probability density functions s of CER and COT. 
 

 
Figure 7. RMSE of CER (a, b, c) and COT (d, e, f) retrievals using varying numbers 

of GIIRS channel inputs, stratified by COT values: thin (COT = 0.1-1), medium (COT 875 

= 1-10), and thick (COT = 10-100) clouds. 
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 890 

 

 

 
Figure 8. RMSE of CER (a, b, c) and COT (d, e, f) retrievals using varying numbers 

of GIIRS channel inputs, stratified by CER values: Small (5-20), medium (20-50), and 895 

thick (50-100) cloud droplets. 
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 905 
Figure 9. Comparative demonstration of cloud property retrievals between 

FY-4B/AGRI L2 products (true) and the HIR-COMP-Unet model retrievals (pred) for 

a daytime case (03:15 UTC, 30 June 2024). (a, b, c) show AGRI imagery for the 0.64 

µm, 8.55 µm, and 13.3 µm channels respectively. (d, e, f) show the CTH, ice water 

path and cloud water path products from DCOMP. (g, h, i) show the CLP (0, 1, 2, 3, 4 910 

represent clear, water, super cooled, mixed and ice phase cloud, respectively), CER 

and COT from AGRI L2 products. (j, k, l) show the CLP, CER and COT from 

HIR-COMP-Unet retrievals. 
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 915 

Figure 10. Same as Figure 9, but for another daytime case (04:15 UTC, 10 April 

2024). 
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Figure 11. Nighttime cloud property retrievals from HIR-COMP-Unet over the study 920 

region (a) (centered at 27.5°N, 112°E) at 11:00 UTC on 29 June 2024. (b, c) AGRI L2 

operational products showing cloud phase (CLP) and cloud top height (CTH), and (d, 

e, f) HIR-COMP-Unet retrievals of CLP, CER, and COT. 
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 925 

Figure 12. Diurnal cycle of cloud water path (CWP), CER, and COT distributions 

over the study region (see Figure 11) during 29 June 2024: (a) Comparison of CLW 

quantiles (25th, median, 75th) between ERA5 reanalysis and HIR-COMP-Unet model 

retrievals; (b) CER and (c) COT quantile comparisons between operational 

FY-4B/AGRI L2 products and HIR-COMP-Unet model. Gray shading indicates 930 

nighttime periods (UTC+8), during which all retrievals derive from HIR-COMP-Unet 

due to the limitations of DCOMP operational algorithm. 
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