Supplementary Material Enhancing the advection module performance in the EPICC-Model V1.0 via GPU-HADVPPM4HIP V1.0 coupling and GPU-optimized strategies Kai Cao¹, Qizhong Wu², Xiao Tang^{1,3}, Jinxi Li¹, Xueshun Chen^{1,3}, Huansheng Chen¹, Wending Wang¹, Huangjian Wu¹, Lei Kong¹, Jie Li^{1,3}, Jiang Zhu^{1,3}, and Zifa Wang^{1,3} ¹State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ²College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China ³College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn); Xiao Tang (tangxiao@mail.iap.ac.cn) 1. The formulas for calculating the root mean square error (RMSE) and correlation coefficient are: $$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M_i - O_i)^2}$$ $$R = \frac{\sum_{i=1}^{n} (M_i - \overline{M})(O_i - \overline{O})}{\sqrt{\sum_{i=1}^{n} (M_i - \overline{M})^2} \sqrt{\sum_{i=1}^{n} (O_i - \overline{O})^2}}$$ where M_i and O_i are simulated and observed concentrations, respectively; \overline{M} and \overline{O} are the simulated and observed mean concentrations, respectively; and n is the total number of individual observations.