
I have read the conflicting policies on open-source requirements between the authors and 

GMD. I hope this issue will be resolved soon.  

Response: Thanks for your kind reminder. In our manuscript, we cited the model description 

about the EPICC-Model in "EPICC-Model Working Group.: Description and evaluation of the 

Emission and atmospheric Processes Integrated and Coupled Community (EPICC) Model version 

1.0. Adv. Atmos. Sci., https://www.iapjournals.ac.cn/aas/article/doi/10.1007/s00376-025-4384-y", 

which the only author is "EPICC-Model Working Group" with the corresponding email, not the 

authors list or model developer members lists. In the user agreement of EPICC-Model, we are 

“strictly prohibited from transferring, selling, or sharing the EPICC-Model software or Zenodo 

account credentials, whether for profit or free of charge, to any third party”, that is the reason why 

we can’t upload the EPICC-Model codes into the zenodo with the model module  "GPU-

HADVPPM4HIP V1.0" (https://zenodo.org/records/16916413). And the model users or anyone, 

who is interesting in this model, can email to Working-Group@EPICC-Model.cn and return 

the signed user agreement, and then he can get the model codes of EPICC-Model.  

Therefore, the model module "GPU-HADVPPM4HIP V1.0" we contributed had been uploaded to 

Zenodo (https://zenodo.org/records/16916413), which includes the codes and test datasets, and 

can be downloaded without restrictions, and provided the official download link 

(https://earthlab.iap.ac.cn/resdown/info_388.html) and the Zenodo download link 

(https://doi.org/10.5281/zenodo.17071574) for the EPICC-Model.  

We believe this procedure aligns with GMD’s code and data policy, which states: "Where the 

authors cannot, for reasons beyond their control, publicly archive part or all of the code and 

data associated with a paper, they must clearly state the restrictions. They must also provide 

confidential access to the code and data for the editor and reviewers in order to enable peer 

review." For details of the relevant policy, please refer to: https://www.geoscientific-model-

development.net/policies/code_and_data_policy.html. 

 

The manuscript presents a method to accelerate the EPICC air quality model (EPICC-

Model v1.0) using China GPU-like accelerators. The authors port the advection module, one 

of the most computationally expensive components, onto the GPU to reduce the 

computational burden. They demonstrate that the offline module achieves several orders of 



magnitude speed up relative to the CPU alone version and 1.5x faster when integrating 

GPU-HADVPPM4HP into the EPICC model. GPU acceleration of numerical models is in an 

early stage of development, and no mature GPU-enabled models are yet widely used in air 

quality forecasting. I highly appreciate the authors’ technical effort, including rewriting 

the model from Fortran to C and then to a GPU language.  

Response: We appreciate the editor for reviewing our manuscript and for the valuable suggestions, 

which we will address point by point in the following. 

 

Major comments  

n Run the original model (CPU alone version) EPICC-GPU with the same inputs and 

configurations. Compare outputs (e.g., NOx, NH3, O3, PM2.5, and PM10) and calculate 

the relative differences between the two versions.  

Response: Thanks for the constructive comment. Accordingly, we have supplemented a set of 

comparative experiments. Using identical input data and model configurations, the differences in 

simulation results between the HIP-Opt2 version and the original Fortran version were evaluated 

in a real-world case study. The HIP-Opt2 version refers to the heterogeneous parallel version 

formed by coupling GPU-HADVPPM4HIP V1.0 into the EPICC-Model, along with optimizations 

in communication, thread and block coordinated indexing, and hybrid parallelization. In these 

comparative experiments, the model's input data and configurations were set as described in 

Section 4.1, with the simulation period covering 24 hours from 00:00 to 23:00 UTC on July 1, 

2021. 

Figures 1 and 2 present the simulated results of gases (e.g., HONO, SO2, NO2, NH3) and 

aerosols (e.g., BC, PM2.5, ASO4, ANH4) after a 24-hour integration by both the HIP-Opt2. and the 

original Fortran versions, along with the absolute errors (AEs) between the two model versions. 

As visually evident from the figures, the results from HIP-Opt2 after the 24-hour integration 

closely match those from the original Fortran version. For the vast majority of grid points, the AEs 

for gases and aerosols are within ±0.1 ppbV or ±0.1 µg·m⁻³. 

To assess the scientific applicability of HIP-Opt2, we followed the methodologies of Wang et 

al. (2021) and Cao et al. (2024) by introducing two metrics: the root mean square error (RMSE) 

and the standard deviation (std). The ratio of RMSE to std was calculated to evaluate the scientific 



usability of HIP-Opt2. Here, RMSE represents the error between HIP-Opt2 and the original 

Fortran version for different species, while std denotes the standard deviation of the respective 

species in the Fortran version. Taking NO₂ as an example, if the RMSE/std ratio is very small, it 

indicates that the computational deviation introduced by heterogeneous parallel acceleration is 

negligible compared to the intrinsic spatial variability of NO₂ itself. This suggests that such minor 

computational errors do not affect the model's utility in scientific research. Table 1 lists the RMSE, 

std, and their ratios for gases (e.g., HONO, SO₂, NO₂, NH₃) and aerosols (e.g., BC, PM2.5, ASO₄, 

ANH₄). The RMSE/std ratios for these species range from 10⁻⁵% to 10⁻²%. Specifically, BC 

exhibits the smallest ratio at 4.8×10⁻⁵%, while ASO₄ shows the largest ratio, yet only at 

7.0×10⁻²%. The RMSE/std ratios for all species in HIP-Opt2. are comparable to those reported by 

Cao et al. (2024), demonstrating that the simulation results from the HIP-Opt2 version are fully 

suitable for scientific research. We have modified this part in lines 449-489, which are as follows: 

By coupling GPU-HADVPPM4HIP V1.0 into the EPICC-Model and implementing 

optimizations—such as reducing the communication frequency between CPUs and domestic 

GPUs, adopting thread and block coordinated indexing, and employing "MPI+HIP" hybrid 

parallelization—we developed the HIP-Opt2 version. Using identical input data and model 

configurations, the differences in simulation results between the HIP-Opt2 version and the 

original Fortran version were compared in a real-world case study. The model input data and 

configurations were set as described in Section 4.1, with the simulation period covering 24 hours 

from 00:00 to 23:00 UTC on July 1, 2021. 

Figures 1 and 2 present the simulated concentrations of gases (e.g., HONO, SO2, NO2, NH3) 

and aerosols (e.g., BC, PM2.5, ASO4, ANH4) after a 24-hour integration by both the HIP-Opt2. and 

the original Fortran versions, along with the Absolute Errors (AEs) between the two model 

versions. As visually evident from the figures, the results from HIP-Opt2. after the 24-hour 

integration are in close agreement with those from the original Fortran version. For the vast 

majority of grid points, the AEs for gases and aerosols remain within ±0.1 ppbV or ±0.1 µg·m⁻³. 

To further evaluate the suitability of HIP-Opt2. for scientific research, we followed the 

methodologies of Wang et al. (2021) and Cao et al. (2024) by introducing two metrics: the root 

mean square error (RMSE) and the standard deviation (std). The ratio of RMSE to std was 

calculated to quantify the scientific applicability of HIP-Opt2. Here, RMSE represents the error 



between HIP-Opt2. and the original Fortran version for different species, while std denotes the 

standard deviation of each species in the Fortran version. Taking NO₂ as an example, a very small 

RMSE/std ratio indicates that the computational deviation introduced by heterogeneous parallel 

acceleration is negligible compared to the inherent spatial variability of NO₂. This implies that 

such minor computational errors do not compromise the model’s utility in scientific research. 

Table 1 lists the RMSE, std, and their ratios for the aforementioned gases and aerosols. The 

RMSE/std ratios for these species range from 10⁻⁵% to 10⁻² %. Specifically, BC exhibits the 

smallest ratio at 4.8×10⁻⁵ %, while ASO₄ shows the largest ratio, yet only at 7.0×10⁻² %. The 

RMSE/std ratios for all species in HIP-Opt2 are comparable to those reported by Cao et al. 

(2024), demonstrating that the simulation results from the HIP-Opt2 version are fully suitable for 

scientific applications. 

 

Figure 1. HONO, SO2, NO2, and NH3 concentrations outputted by the EPICC-Model for the 



Fortran and HIP-Opt2. versions. Panels (a), (d), (g), and (j) are from the Fortran version. 

Panels(b), (e), (h), and (k) are from the HIP-Opt2. version. Panels (c), (f), (i), and (l) are the 

absolute errors (AEs) between the Fortran and HIP-Opt2. Versions. 

 

Figure 2. BC, PM2.5, ASO4, and ANH4 concentrations outputted by the EPICC-Model for the 

Fortran and HIP-Opt2. versions. Panels (a), (d), (g), and (j) are from the Fortran version. 

Panels(b), (e), (h), and (k) are from the HIP-Opt2. version. Panels (c), (f), (i), and (l) are the 

absolute errors (AEs) between the Fortran and HIP-Opt2 versions. 

 

Table 1. The root mean square error (RMSE) between the Fortran and HIP-Opt2. versions, 

standard deviation (std) of the Fortran version, and the RMSE and std ratio. 

 RMSE std RMSE/std (%) 

HONO (ppbV) 2.1 × 10!" 0.1  2.1 × 10!# 



SO2 (ppbV) 3.3 × 10!" 0.7 4.5 × 10!$ 

NO2 (ppbV) 2.8 × 10!% 3.4 8.3 × 10!$ 

NH3 (ppbV) 9.6 × 10!" 4.1 2.4 × 10!$ 

BC (𝝁𝒈 ∙ 𝒎!𝟑) 9.7 × 10!' 0.2 4.8 × 10!" 

PM2.5 (𝝁𝒈 ∙ 𝒎!𝟑) 4.4 × 10!( 1.9 2.3 × 10!% 

ASO4 (𝝁𝒈 ∙ 𝒎!𝟑) 1.7 × 10!% 0.2 7.0 × 10!# 

ANH4 (𝝁𝒈 ∙ 𝒎!𝟑) 1.1 × 10!% 0.2 5.8 × 10!# 

 

n Figure 5 shows that each CPU process and GPU handles a specific number of rows and 

columns. This raises concerns that the model may be hardcoded to a fixed domain. How 

can the current design be generalized to different grid definitions.  

Response: We apologize for any confusion caused by the imprecise expression. In the original 

Fortran version of EPICC-Model, the entire simulation domain is decomposed into different sub-

domains using MPI, with each CPU process responsible for computing one sub-domain—

including the integrations of the advection module. In this study, our work involves offloading the 

advection module computations, originally performed on the CPU after MPI decomposition, to 

China’s domestic GPU-like accelerators through heterogeneous porting, thereby enabling parallel 

computation of the advection module on the GPUs. When different simulation domains or varying 

numbers of MPI processes are configured for the same domain, the size of the sub-domain 

handled by each CPU process after MPI decomposition differs. Consequently, the dimensions (i.e., 

the number of rows and columns) of the region for which the GPU is responsible in performing 

advection computations will also vary. To avoid ambiguity, we have revised the relevant 

description in lines 341–366 as follows: 

In the original Fortran version of EPICC-Model, the entire simulation domain is decomposed 

into subdomains using MPI, with each CPU process responsible for computations—including 

those of the advection module—within one subdomain. In this study, after MPI domain 

decomposition, we offloaded the advection module computations originally performed on the CPU 

to China’s domestic GPUs through heterogeneous porting, thereby enabling parallel execution of 

the advection module on GPUs. Considering future high-resolution applications with large-scale 

data, assigning a single GPU to multiple CPU processes could lead to data-transfer contention 

and potential GPU memory overflow. Therefore, we adopted an “MPI+HIP” hybrid 



parallelization approach, in which each participating CPU process is assigned a dedicated GPU 

accelerator. This design expands the parallel computing capacity of the model on heterogeneous 

clusters and makes full use of GPU resources. The implementation can be summarized in three 

main steps: (1) Obtain the MPI process rank information, as well as the number and indices of 

GPUs available on each compute node; (2) Based on the MPI process rank and using the 

remainder function in standard C, determine the number and indices of GPUs to be launched; (3) 

Map each MPI process to a specific GPU index, thereby realizing the “one CPU process – one 

GPU” configuration in the MPI+HIP hybrid parallel scheme.  

As illustrated in Figure 5, taking the d02 domain configured in Section 4.1 with 8 CPU 

processes and 8 China’s domestic GPU-like accelerators as an example: the EPICC model 

decomposes the simulation domain into 8 subdomains using the MPI software standard, with each 

CPU process handling its assigned subdomain. During the execution of the advection module, the 

“MPI+HIP” hybrid parallel scheme allocates one GPU accelerator to each CPU process. 

Computational tasks originally performed by the CPU are offloaded to the corresponding GPU; 

after the advection computations are completed, the results are returned to the CPU. 

 

n My main concern is the practical performance of the model. While the GPU port 

version clearly shows gains in offline and coupled tests. Its real world usefulness is 

questionable. In this paper, the authors use 10 CPU processes with 10 GPUs and report 

an overall performance improvement of only 1.5x. The cost of one GPU can exceed that 

of a 64 core CPU. Why not increase the number of CPUs instead, rather than pairing 

them with GPUs for such limited gain. 

Response: Your concern is highly valid and necessary. Indeed, there remains considerable room 

for improving the computational performance of the advection module on China’s domestic GPU-

like accelerators in this study. However, the task of porting and adapting key computational 

modules of numerical models to GPUs and accelerating them through heterogeneous parallelism is 

both urgent and imperative. First, limited by the heat dissipation capacity of transistors, the 

improvement in computational performance of CPU processors has slowed and is gradually 

approaching its physical limits. In recent years, however, GPU processors have continued to 

achieve significant performance gains due to their architectural advantages, and heterogeneous 



supercomputing centered on "CPU+GPU" has become absolutely dominant among the world’s 

leading high-performance computing systems. Taking the 66th TOP500 list published in 

November 2025 as an example, 9 of the top 10 supercomputers adopt heterogeneous architectures. 

Therefore, heterogeneous computing represents the primary direction for the future development 

of supercomputing. Nevertheless, the advancement of numerical models relies heavily on the 

support of supercomputing. The team that won the Gordon Bell Prize for Climate Modeling in 

November 2025 leveraged the powerful computational capabilities of NVIDIA GH200 GPUs to 

achieve the world's first 1.25 km ultra-high-resolution Earth system simulation (Klocke et al., 

2025). To realize kilometer-scale ultra-high-resolution simulations of atmospheric pollution, it is 

both necessary and imperative for us to adapt air quality models to heterogeneous supercomputers 

and implement efficient parallel computing. Furthermore, both the offline performance tests in this 

study and the coupled performance tests in Cao et al. (2024) demonstrate that the larger the 

computational scale, the more pronounced the GPU acceleration becomes. This sufficiently proves 

the potential of GPUs in large-scale, high-resolution application scenarios. The simulation case 

configured in this study has a resolution of only 15 km over the whole of China, which may not 

yet fully demonstrate the parallel computing advantages of GPUs. In the future, higher-resolution 

simulation cases will be designed to better highlight the performance benefits of GPUs. Finally, in 

future work, we will employ additional optimization techniques to further enhance the 

computational performance of the advection module and other critical modules on China’s 

domestic GPU-like accelerators. These include adopting asynchronous communication strategies 

to hide the communication overhead between CPUs and GPUs, configuring thread and block 

coordinated indexing to enable parallel computation of the model’s three-dimensional grids, 

utilizing unified memory access, and implementing mixed-precision schemes. We have modified 

this part in lines 732-781, which are as follows: 

There remains considerable room for improving the computational performance of GPU-

HADVPPM4HIP V1.0 within the EPICC-Model in this study. First, constrained by the thermal 

dissipation limits of transistors, the growth in computational performance of CPU processors has 

slowed and is gradually approaching its physical limits. In recent years, however, GPU processors 

have continued to achieve substantial performance gains due to their architectural advantages, 

and heterogeneous supercomputing architectures centered on "CPU+GPU" now dominate the 



landscape of advanced high-performance computing systems worldwide. Taking the 66th TOP500 

list released in November 2025 as an example, 9 out of the top 10 supercomputers adopt 

heterogeneous architectures. Hence, heterogeneous computing represents the primary direction 

for the future development of supercomputing. That said, the advancement of numerical models 

relies fundamentally on the support of supercomputing capabilities. The team awarded the Gordon 

Bell Prize for Climate Modeling in November 2025 leveraged the powerful computational 

capacity of NVIDIA GH200 GPUs to accomplish the world’s first 1.25 km ultra-high-resolution 

Earth system simulation (Klocke et al., 2025). To achieve kilometer-scale, ultra-high-resolution 

simulations of atmospheric pollution, it is both essential and imperative to adapt air quality 

models to heterogeneous supercomputing environments and enable efficient parallel computing.  

Moreover, results from offline computational performance tests in this study and coupled 

performance tests in Cao et al. (2024) consistently show that the acceleration effect of GPUs 

becomes more pronounced as the computational scale increases, which sufficiently demonstrates 

the potential of GPUs in large-scale, high-resolution application scenarios. The simulation case 

configured in this study, with a resolution of only 15 km over the whole of China, may not yet fully 

reflect the parallel computing advantages of GPUs. In the future, higher-resolution simulation 

cases will be designed to better highlight the performance advantages of GPU acceleration.  

Finally, in future work, we will employ further optimization techniques to enhance the 

computational performance of the advection module and other computationally intensive modules 

in the EPICC-Model on domestic heterogeneous clusters, including but not limited to:  

(1) Firstly， priority should be given to optimizing CPU-GPU data transfer efficiency by 

reducing communication overhead through strategies such as unified memory architecture, 

asynchronous communication, mixed-precision methods, and minimizing non-essential 

variable I/O in air quality forecasting.  

(2) Second, while GPU-accelerated modules including the gas-phase chemistry module (Cao et 

al., 2025) and advection module have been individually developed, their systematic 

integration into EPICC-Model requires architectural refinement to increase GPU code 

coverage. We will analyze the computational characteristics of the code in other modules of 

the model. For code segments involving iterative computations, we will first decouple the 

iterative computations by creating intermediate variables, thereby eliminating dependencies 



between successive calculation steps. Subsequently, the computational code of other modules 

after iterative decoupling will be rewritten in the form of Kernel functions to increase the 

proportion of code executed on the GPU. 

(3) Finally, in current heterogeneous architecture supercomputing systems, the number of CPU 

processes within a computing node typically exceeds the number of GPUs. Employing the 

current matching scheme of one CPU process to one GPU accelerator results in the waste of 

remaining CPU computing resources. In the future, on one hand, while avoiding data 

transmission competition between the CPU and GPU, we will consider designing a more 

sophisticated mechanism for matching multiple CPU processes with a single GPU. On the 

other hand, drawing on Cao et al. (2024), we plan to introduce an OpenMP shared-memory 

parallel scheme into the EPICC-Model. Through multi-level hybrid parallelism, while porting 

computationally intensive modules to the GPU for parallel computing, other modules running 

on the CPU will utilize OpenMP multithreading parallelism, thereby fully leveraging CPU 

computing resources. 

 

n Currently there seems to be no straightforward solution.   

1. The authors could load more computation (by porting more code) onto the GPU for a 

single memory allocation and copy. However, this approach introduces serial dependent 

computation within the kernel, reducing overall performance. 

2. The authors could share one GPU across multiple processors, but this creates 

competition for host and device data transfer, which becomes a bottleneck. 

Response: Thanks for your constructive suggestions. Indeed, the efficiency of data transfer 

between the CPU and GPU is one of the most critical factors affecting the computational 

performance of numerical models on heterogeneous clusters. To improve the efficiency of data 

transfer between the CPU and GPU, this study reduces the communication frequency and 

increases the data transfer volume between them. However, relying solely on this optimization 

strategy is far from sufficient. In the future, on one hand, we will employ asynchronous 

communication strategies to hide part of the communication overhead; on the other hand, we will 

analyze the computational characteristics of other modules in the model. For code segments 

involving iterative computations, we will first decouple the iterative computations by introducing 



intermediate variables, ensuring that successive calculation steps are independent of each other. 

Subsequently, the computational code of other modules after iterative decoupling will be 

restructured into Kernel functions. This approach not only increases the proportion of code 

executed on the GPU but also facilitates parallel computation on the GPU. 

As for your mention of allocating one GPU accelerator to multiple CPU processes, in high-

resolution application scenarios with large data scales, this approach may indeed lead to 

competition in data transfer between CPU and GPU and is prone to GPU memory overflow. 

Therefore, designing a more complex CPU-GPU matching mechanism is required to achieve 

pairing between multiple CPU processes and a single GPU. Currently, we opt for the relatively 

easier-to-implement scheme of matching a single CPU process with a single GPU. In the future, 

on one hand, while avoiding data transfer competition between CPU and GPU, we will consider 

designing a more sophisticated mechanism for matching multiple CPU processes with a single 

GPU. On the other hand, drawing on Cao et al. (2024), we plan to introduce an OpenMP shared-

memory parallel scheme into the EPICC-Model. Through multi-level hybrid parallelism, while 

porting computationally intensive modules to the GPU for parallel computing, other modules 

running on the CPU will utilize OpenMP multithreading parallelism, thereby fully leveraging CPU 

computing resources. We have modified this part in lines 762-781, which are as follows: 

Second, while GPU-accelerated modules including the gas-phase chemistry module (Cao et 

al., 2025) and advection module have been individually developed, their systematic integration 

into EPICC-Model requires architectural refinement to increase GPU code coverage. We will 

analyze the computational characteristics of the code in other modules of the model. For code 

segments involving iterative computations, we will first decouple the iterative computations by 

creating intermediate variables, thereby eliminating dependencies between successive calculation 

steps. Subsequently, the computational code of other modules after iterative decoupling will be 

rewritten in the form of Kernel functions to increase the proportion of code executed on the GPU. 

Finally, in current heterogeneous architecture supercomputing systems, the number of CPU 

processes within a computing node typically exceeds the number of GPUs. Employing the current 

matching scheme of one CPU process to one GPU accelerator results in the waste of remaining 

CPU computing resources. In the future, on one hand, while avoiding data transmission 

competition between the CPU and GPU, we will consider designing a more sophisticated 



mechanism for matching multiple CPU processes with a single GPU. On the other hand, drawing 

on Cao et al. (2024), we plan to introduce an OpenMP shared-memory parallel scheme into the 

EPICC-Model. Through multi-level hybrid parallelism, while porting computationally intensive 

modules to the GPU for parallel computing, other modules running on the CPU will utilize 

OpenMP multithreading parallelism, thereby fully leveraging CPU computing resources. 

 

Significant benefits from GPU computing for numerical models may only be recognized once 

PCI bandwidth is substantially improved, or unified memory becomes more widely 

supported.  

Response: Indeed, technologies such as unified memory and enhanced data transfer bandwidth 

can significantly improve the computational performance of air quality models on GPUs. To this 

end, NVIDIA Corporation, a prominent GPU manufacturer, has incorporated unified memory 

access functionality into its CUDA and introduced dedicated GPU interconnect technologies. 

These technologies utilize high-bandwidth, low-latency point-to-point connections, replacing 

traditional PCIe buses. Consequently, achieving efficient parallel computation of air quality 

models on GPU accelerators necessitates collaboration between researchers well-versed in the 

intrinsic physicochemical mechanisms of the models and engineers with expertise in GPU 

hardware and software. Herein, we appeal for the participation of engineers specializing in GPU 

software and hardware development to jointly advance the progress of air quality modeling. We 

have added this part in lines 782-786, which are as follows: 

Consequently, achieving efficient parallel computation of air quality models on GPU 

accelerators necessitates collaboration between researchers well-versed in the intrinsic 

physicochemical mechanisms of the models and engineers with expertise in GPU hardware and 

software. Herein, we appeal for the participation of engineers specializing in GPU software and 

hardware development to jointly advance the progress of air quality modeling. 

 

General comments  

n The authors list many performance metrics, such as 556.5x, 17.0x, 1.5x, 20.5x, and 39.3% 

in the abstract, but it is unclear what each is being compared against. This is confusing 

for readers.  



Response: Thanks for your valuable feedback. We acknowledge that our initial abstract did not 

clearly specify the baseline for the performance comparisons. In this study, after refactoring the 

Fortran code into C and adapting the advection solver program (GPU-HADVPPM4HIP) to a 

domestic GPU-like accelerator using the HIP heterogeneous programming interface, we first 

conducted offline computational performance tests. Identically sized random arrays were provided 

to GPU-HADVPPM4HIP and the Fortran-version HADVPPM advection program to compare the 

offline computational performance of the advection module on the CPU versus the domestic GPU-

like accelerator. The results show that the acceleration effect of the advection module on the 

domestic GPU-like accelerator becomes more pronounced as the data size increases. Compared to 

the Fortran version compiled with the -O0 baseline option, GPU-HADVPPM4HIP compiled with 

the -O3 optimization option achieves a speed-up of 556.5x on the domestic GPU-like accelerator 

for a data size of 10⁸. After coupling GPU-HADVPPM4HIP into EPICC-Model without any 

further optimization, the baseline version (HIP-Ori) exhibited extremely low computational 

efficiency, requiring approximately 5.3 hours to simulate 1 hour of integration. Therefore, we 

performed the communication and thread optimizations described in Sections 3.2 and 3.3, 

resulting in the HIP-Opt1 and HIP-Opt2 versions. Compared to HIP-Ori, HIP-Opt1 with 

communication optimization achieved a 17.0x performance improvement. Building upon 

HIP-Opt1, HIP-Opt2 with additional thread optimization further improved computational 

performance by 1.5x relative to HIP-Opt1. Finally, we compared the computational performance 

of the advection module between the original Fortran version of EPICC-Model and the HIP-Opt2 

version in a real word simulation case. The results indicate that, excluding data transfer overhead 

between the CPU and GPU, the advection module achieves a 20.5× speed-up on the domestic 

GPU-like accelerator compared to the CPU. When data transfer overhead is taken into account, 

the computational efficiency of the advection module on the domestic GPU is improved by 39.3%. 

We have added this part in lines 28-39, which are as follows: 

Offline benchmark results demonstrated that GPU-HADVPPM4HIP V1.0 achieved a 

maximum speedup of 556.5x on a GPU-like accelerator using the compiler optimization option 

compared to the Fortran HADVPPM baseline compiled option for a data size of 10⁸. Integrating 

GPU-HADVPPM4HIP V1.0 into EPICC-Model V1.0 yielded three distinct versions: the initial 

HIP-based version (HIP-Ori), a version optimized for CPU and GPU communication frequency 



(HIP-Opt1), and a further-optimized version employing a thread-block coordinated indexing 

strategy (HIP-Opt2). Compared to the HIP-Ori version, HIP-Opt1 achieved a model-level 

computational efficiency improvement of 17.0x. Building upon HIP-Opt1, HIP-Opt2 delivered an 

additional 1.5x enhancement in computational efficiency. At the module level, including CPU and 

GPU data transfer overhead, the GPU implementation improves computational efficiency of the 

advection module by 39.3%; when communication cost is excluded, the advection module attains 

a 20.5× acceleration relative to its CPU counterpart. 

 

n Line 146: Typo “initial condition” should be IC.  

Response: We apologize for the oversight. The abbreviation for "initial conditions" has been 

standardized to "IC" in the revised manuscript. 

 

n A critical requirement for porting modules onto GPUs is that loops must be vectorized 

and independent, with each iteration not dependent on previous ones. What methods do 

the authors use to verify that the loops in the direction module meet this requirement?  

Response: Your question is highly professional and valuable. Indeed, GPUs are well-suited for 

large-scale matrix parallel computations without data dependencies. Before porting the advection 

module to a domestic GPU for parallel computing, we first analyzed the computational 

characteristics of its code. We identified that during the final step of concentration update, the 

module does involve iterative computation, where the updated concentration on the left side of the 

equation depends on the concentration value on the right side, i.e., con(i) = con(i) - delta(i), where 

delta represents the concentration change due to the advection process, i represents different grids. 

To address this, we decoupled the iterative computation by introducing an intermediate variable. 

Prior to the concentration update, the con variable is copied to a new variable, concpy. The final 

update is then performed using concpy: con(i) = concpy(i) - delta(i). This approach of decoupling 

the iteration not only ensures computational correctness but also fully leverages the multi-thread 

parallel computing capability of the GPU. We have added this part in lines 324-330, which are as 

follows: 

Furthermore, given that GPUs are well-suited for large-scale matrix parallel computations 

without data dependencies, prior to implementing parallel computation on a two-dimensional grid 



using thread and block coordinated indexing, we decoupled the iterative computations present in 

the advection module by introducing intermediate variables. This ensures computational 

independence at each step, meaning that the computation of the next step does not depend on the 

results of the previous step, thereby fully leveraging the multi-thread parallel computing capability 

of the GPU. 

 

n Line 192: The text “ as shown in Figure 2, the implementation of parallel 

computing ...”, does not align with the content of the figure.  

Response: We apologize for any confusion caused by our previous wording. In fact, regarding 

another computationally intensive module in the EPICC-Model for air quality—the gas-phase 

chemistry module—Cao et al. (2025) have implemented a 4th-order Rosenbrock solver for 

parallel computation on the China’s domestic GPU-like accelerators. Performance tests show that 

the computational time fraction of the gas-phase chemistry module decreased from 45.7% in the 

original Fortran version to 29.9%. Along with this reduction in the computational share of the gas-

phase chemistry module, the share of the advection module increased from 13.3% to 25.0%, 

making it the new computational hotspot. This shift is one of the key motivations for conducting 

GPU-based parallel acceleration of the advection module in this study. To avoid any inconsistency 

between the description and the figure content, we have updated Figure 2. Specifically, Figure 2(a) 

shows the computational time distribution among modules in the original Fortran version of 

EPICC-Model, where the gas-phase chemistry module accounts for 45.7% and the advection 

module for 13.3%. Figure 2(b) presents the distribution after Cao et al. (2025) implemented GPU 

parallelization of the gas-phase chemistry module: the share of the gas-phase chemistry module 

decreases from 45.7% to 29.9%, while the share of the advection module increases from 13.3% to 

25.0%, establishing it as the new computational hotspot. We have modified this part in lines 189-

207, which are as follows: 

Figure 2 illustrates the changes in the computational time proportion among modules before 

and after the heterogeneous parallel implementation of the gas-phase chemistry module on a 

domestic GPU, as reported by Cao et al. (2025). Specifically, Figure 2(a) shows the time 

proportion of each module in the original Fortran version, while Figure 2(b) presents the 

corresponding proportion after the gas-phase chemistry module was ported for parallel 



computing on the China’s domestic GPU-like accelerator. As shown in Figure 2, the 

implementation of parallel computing for gas-phase chemistry modules on China’s domestic 

GPU-like accelerator achieved significant efficiency improvements, reducing its computational 

time proportion from 45.7% to 29.9%. Notably, the computational time proportion of MPI_Barrier 

synchronization function has decreased from 23.9% to 13.4%. A critical observation emerged 

regarding the advection module, whose computational time proportion increased from 13.3% to 

25.0%, establishing it as a new performance bottleneck comparable to the optimized chemistry 

module. This performance shift necessitates subsequent optimization efforts focusing on 

heterogeneous porting and parallel acceleration of the PPM scheme for China’s domestic GPU-

like architectures within the EPICC-Model V1.0 framework, aiming to enhance the computational 

efficiency of the advection module. 

 

 

Figure 2. The computational time proportion among modules (a) for the Fortran version and (b) 

after implementing the gas-phase chemistry module on China’s domestic GPU-like accelerators 

for parallel computation. 

 

n Line 360: The authors state that WRF is a state-of-the-art mesoscale numerical weather 

prediction. Note that NCAR has developed MPAS as the next generation model. Also, 

WRF v3.9.1 is used in this study, which is 8 years old. The latest version is 4.7.1.  

Response: Thanks for your valuable suggestion. Indeed, the Model for Prediction Across Scales 



(MPAS) is a flagship next-generation numerical weather prediction model under active 

development at the National Center for Atmospheric Research (NCAR) in the United States. We 

have revised this part in lines 383-387, which are as follows:  

Meteorological inputs are generated using the Weather Research and Forecasting (WRF, 

Skamarock et al., 2008) model, a mesoscale numerical weather prediction system, and is widely 

adopted in both theoretical research and operational forecasting. This study employed the WRF 

version 3.9.1, and the model domain configurations maintains identical nesting architecture and 

spatial coverage as the EPICC-Model. 

 

n Which variables are evaluated in Table 4?  

Response: We sincerely apologize for the lack of clarity in our previous description. In the 

process of implementing the parallel computation of the advection module on domestic GPUs, we 

first refactored the Fortran source code of the HADVPPM program into C, and then utilized the 

HIP heterogeneous programming interface to adapt the advection module for domestic GPUs, 

resulting in GPU-HADVPPM4HIP. In this study, we first compared the offline computational 

result errors between the Fortran and C-language versions of the HADVPPM program (F-to-C), 

between the C-language version of HADVPPM and the GPU-HADVPPM4HIP program 

(C-to-HIP), and between the Fortran version of HADVPPM and the GPU-HADVPPM4HIP 

program (F-to-HIP). For the offline result comparison, a dedicated Fortran program was 

developed to generate identical input datasets, each consisting of 100 double-precision floating-

point numbers. Therefore, the absolute errors (AE) and relative errors (RE) presented in Table 4 

represent the average values computed from the 100 double-precision floating-point results 

produced by the Fortran, C-language, and HIP versions of the HADVPPM program after 

performing the advection solution computation under the given input conditions. We have revised 

this part in lines 402-409, which are as follows:  

To ensure input consistency, a dedicated Fortran program was developed to generate 

identical input datasets, including 100 double-precision floating-point numbers, for all three 

implementations. Each implementation executed a complete advection integration computation, 

with subsequent output recording and analysis. Therefore, the absolute errors (AE) and relative 

errors (RE) presented in Table 4 represent the average values computed from the 100 double-



precision floating-point results produced by the original Fortran code, restructured standard C 

code, and HIP-accelerated code of the HADVPPM program after performing the advection 

solution computation under the given input conditions. 

 

n The term “data scale” requires clarification.  

Response: Thanks for your constructive suggestions. To conduct the offline computational 

performance testing, we also developed a Fortran program to generate random arrays of varying 

sizes. These arrays were then input into both the Fortran version of the HADVPPM program and 

the GPU-HADVPPM4HIP program, in order to evaluate the offline computational performance of 

the advection module on the CPU and the domestic GPU. These random arrays are one-

dimensional and contain 10², 10³, 10⁴, 10⁵, 10⁶, 10⁷, and 10⁸ random numbers, corresponding to 

the different scales (from 10² to 10⁸) mentioned in the manuscript. The offline testing code has 

been uploaded to ZENODO (https://doi.org/10.5281/zenodo.16916413, Cao and Wu, 2025) and is 

available for download should you be interested. We have revised this part in lines 553-556, which 

are as follows: 

To achieve this, Fortran-based test programs were implemented to generate randomized 

input arrays with varying scales for both Fortran and HIP versions of the HADVPPM program. 

These random arrays are one-dimensional and contain 10², 10³, 10⁴, 10⁵, 10⁶, 10⁷, and 10⁸ 

random numbers. 

 

n Lines 614 – 618: The authors state that eliminating non-critical variables such as sea 

salt aerosols could accelerate the model. A well designed GPU port should retain the 

integrity of the original model. Common chemical mechanisms involve hundreds of 

species with reaction pathways. Omitting components may compromise scientific 

completeness. 

Response: Thanks for your valuable comment. The third-generation air quality models are 

designed based on the "One Atmosphere" concept, which treats atmospheric physical and 

chemical processes as an integrated whole. It would be unscientific to arbitrarily remove non-

critical variables, such as sea salt, solely to improve model computational efficiency. Accordingly, 

we have removed the related statements from the manuscript. 
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