We are grateful to Referee #1 for the valuable comments and suggestions. The replies to each comment are given below (marked in blue).

Patsa & Mandal present a paper to study return flow in accretionary wedges, a topic that has been widely studied in the recent decades and is still relevant today. This process has been modelled with theoretical solutions, numerical and analog models to explain field-based observations on pressure temperature conditions on metamorphic rocks along accretionary prisms. The authors provide a more generalized theoretical solution to include a non-parallel component on the slab to reproduce slab advance/rollback. In addition, they conducted analog models to enhance these results. Finally, an overview with natural observations is made.

The integration of analytical solutions with analog modelling represents a novel and valuable approach, with the potential to be further strengthened by incorporating existing numerical results. However, the current manuscript does not fully emphasize this novelty: the introductory section underplays the contribution, and the analytical and analog results are presented somewhat independently, without sufficient cross-comparison.

To improve the manuscript, I recommend (i) revising the introduction to more clearly articulate the novelty and significance of the combined approach, (ii) providing greater coverage and integration of the analog modelling, and (iii) addressing several technical issues within the analytical solution. If these major concerns are resolved, the manuscript would meet the standards for publication in Solid Earth and I look forward to see the revised version.

- We thank Referee #1 for all the insightful comments, providing an excellent synthesis of the scientific goals of this study. In the revised version, we carefully address the issues raised by the reviewer and incorporate all the suggestions outlined in this comment. The Introduction section has been modified to emphasize the novelty of the present approach that combines analytical solutions and laboratory modelling in evaluating the return flow kinematics in viscous accretionary wedges as a function of various parameters. Furthermore, the revised version includes an elaborate description of new sets of scaled laboratory model results to strengthen the integration between the theory and analogue modelling, as suggested by the reviewer. It is shown how the velocity fields within the wedge can evolve over time with respect to the instantaneous velocity patterns predicted from the analytical solutions. We also carefully address some of the technical issues and confusions that unfortunately occurred in the previous version of the manuscript.

Major Comment 1

The use of a non-dimensional parameter to quantify the strength or weakness of return flow is both effective and intuitive. This approach allows the balance of incoming and outgoing material along the top boundary to be measured, corresponding to sediment influx and exhumed units in an accretionary wedge. In the simplest case—rigid walls with parallel subduction—the value must equal 1, as dictated by wedge geometry and mass conservation.

However, when a non-parallel component is introduced to the slab, the theoretical models also incorporate material flux along the slab boundary. This introduces bias in the calculated rates of burial and exhumation, since part of the return flow ratio (FR) is influenced by this artificial slab-sourced material. In the case of slab advance, FR appears anomalously high due to two factors:

(1) the top-boundary influx of sediments, which the authors correctly identify, and (2) the additional, unaddressed influx of material along the slab boundary.

For the rollback scenario, the formulation permits material to exit through the slab boundary, which is physically unrealistic. With small rollback velocities, wedge geometry would still force material to return to the surface; however, in the present formulation, this is instead channelled out through the slab, leading to FR = 0. Furthermore, at high rollback velocities, the assumption of a downward-tapered wedge may break down, opening the system to the upper mantle. To remain consistent with the wedge geometry assumptions, I suggest restricting the analysis to small perturbations of the non-parallel component.

Finally, the comparison of slab advance, rollback, and normal subduction must be conducted under consistent assumptions regarding material influx. One possible way forward would be to fix the total incoming volume and instead vary return velocities, though I acknowledge that implementing this within the analytical framework may be non-trivial.

- We sincerely thank the reviewer for raising these relevant points. The return flux (F_R) value should indeed be 1 for rigid walls with slab-parallel subduction, which has been rightly noted by the reviewer. This small departure from $F_R = 1$ results from discretization in the numerical approach used to calculate F_R from the analytical solutions. This issue has been addressed in the revised version. However, we have now performed a high-resolution calculation, which yields a F_R value of 0.997 for a wedge with rigid walls and a slab-parallel subduction, very close to the theoretically predicted value of 1 (included in the revised text).

The return flux value is indeed high for slab advance, as correctly commented by the reviewer. We would like to clarify that the boundary condition at the wedge-slab interface considered in this theoretical derivation does not introduce any material influx across the slab boundary. Inward-pointing arrows shown in the figures actually indicate the wedge-ward movement directions of the subducting slab, which is used as a boundary condition in the analytical formulation. Such slab advance kinematics gives rise to a bulk horizontal shortening of the wedge, and this shortening eventually forces wedge materials to flow upward at higher rates, leading to a condition of $F_R > 1$. In this upgraded version we clarify this point.

Similarly, during slab rollback, the slab is migrating away from the wedge, and there is no outfluxing of wedge materials across the slab boundary (outward-pointing arrows in the figures). This is also clarified in this version. The reviewer has correctly noted that, for small rollback velocities, the wedge would still produce return flow. It actually occurs in our model for the case of very slow rollback velocity ($\phi < \sim \theta_1/3$ for rigid wall). This can be clearly observed in the return flux (F_R) vs. subduction obliquity (ϕ) plot (Fig. 7 of the previous version), where F_R is positive for a range of low positive ϕ values (i.e., slab rollback). We agree with the reviewer that the assumption of wedge geometry would break down in a relatively short time duration if the slab undergoes rollback at high velocities. Based on the reviewer's suggestion, we present our model results only for low rollback velocities in the revised version. We thank the reviewer for these valuable suggestions.

We would like to clarify that our theoretical model is subjected to a velocity boundary condition at the base, excluding any addition or removal of new materials in the wedge (i.e., the mass conservation condition is satisfied at any instant in the system). In all the analytical models, the subducting slab is moving at a velocity of 3 cm/yr. For slab advance and rollback settings, the wedge itself is squeezing and widening, respectively, due to the horizontal velocity component

of the subducting slab. Both the situations satisfy the mass conservation condition. These theoretical considerations are explicitly mentioned in the Basic Premises section of this upgraded version. We greatly appreciate these discussions by the reviewer.

Major Comment 2:

I strongly recommend undertaking a systematic comparison between the analytical solution and the analog modelling, as this would greatly strengthen the validation of the theoretical framework. At present, the two sets of results are described independently, which makes the paper look unbalanced. Establishing a one-to-one correspondence between the analytical predictions and the analog experiments for identical setups would provide a more rigorous test of the model and highlight the novelty of the combined approach.

That said, some modifications and additional discussion will be required to enable such a comparison. As noted in lines 415–416, the analog experiments allow material to exit through the bottom boundary, a feature not incorporated into the analytical solution. This discrepancy must be explicitly acknowledged and its implications discussed, since it directly affects the comparability of the results. One option is to consider modified boundary conditions in the analytical framework, or alternatively to constrain the analog results so that they are evaluated under conditions more consistent with the theoretical assumptions.

In addition, I recommend expanding the analog modelling section. At present, the manuscript dedicates considerably more space to the analytical solution, leaving the analog results underdeveloped. A more balanced treatment would not only give greater weight to the experiments but also allow for meaningful side-by-side comparisons. Importantly, you could draw inspiration from the approach of Moulas et al. (2021), who validated their analytical solution against numerical models with a similar setup. Extending your study to include a three-way comparison of analytical, analog, and numerical would significantly increase the robustness and originality of the manuscript.

To facilitate these improvements, some reorganization of the manuscript structure is advised. For example, moving Section 4 earlier in the text, immediately after the presentation of the analytical results would allow for more direct comparisons between the different methods. This restructuring would make the narrative more cohesive and highlight the integrative character of the study, which is currently one of its main strengths but not fully emphasized.

- We are grateful to Referee 1 for providing us with these valuable suggestions. We have thoroughly revised the analog modelling section, incorporating results from sets of fresh experiments performed with appropriate model scaling, which is described in this version as per the reviewer's suggestion. The revised version presents the analogue experimental results, giving a one-to-one comparison with the velocity patterns predicted from analytical solutions. Additionally, the model velocity fields are shown for two different time snaps of the experimental run, aiming to show whether the wedge follows the analytically predicted flow kinematics after significant amounts of slab movements.

We would like to clarify that the base of our experimental model is essentially rigid, as shown in the model setup. For rollback, the base of the overriding plate is pulled by a very thin (3 mm) buttress, which is underlain by the rigid model base. Our model setup thus did not allow any material to exit through the bottom boundary. In lines 415-416, we meant that the widening of the wedge facilitated the downward material flows within the wedge. We acknowledge that our

statements in lines 415-416 were somewhat confusing, which is corrected in this version. We thank the Referee #1 for raising this issue.

We greatly appreciate the reviewer's suggestion to expand and modify the analog modelling section. The revised version largely expands the descriptions of the experimental setup, scaling, and the model results. Additionally, we present a one-to-one comparison of the laboratory model results with the analytical results for identical setup. These suggestions have greatly helped us in improving the manuscript.

Considering the suggestions of the reviewer, we have reorganized the structure of the manuscript. In the revised version, the analog modelling section has been placed immediately after the analytical results. We thank the reviewer for these constructive suggestions.

Line to Line comments:

Line 20: Delete "the" or simply state "facilitate subduction."

- The sentence is modified in the revised version.

Line 21: References are missing for geophysical observations; see Abers (2005).

- We have added the reference of geophysical observations. We thank the referee for the suggestion.

Lines 25–28: I recommend mentioning the P–T–t path for consistency with the rest of the sentence, and introducing the concept of recycling here.

- We have modified the sentence.

Line 33: Retain only geochronological, since this sentence refers exclusively to exhumation rates and not geochemical constraints.

- Sentence modified.

Line 39: Verify the reference "?, for review."

- Referencing corrected.

Line 45: A reference is required. The corner flow model also accounts for both prograde and retrograde metamorphism; please mention this. Additionally, note that the model supports the possibility of sediments reaching mantle depths where partial melting may occur.

- The sentence is modified, and references are added. We also mention about the possibility of partial melting of sediments, if it reaches mantle depths.

Lines 48–49: Add one or two sentences on the thermal regime of subduction zones, as this strongly influences eclogite formation.

- The thermal regime indeed is an important factor for eclogite formation. This is addressed in the revised version.

Lines 56–57: Clarify the rationale of this sentence, or consider removing it.

-The sentence is removed.

Line 59: Quantify exhumation rates, providing values from numerical models and natural estimates. Restrict the discussion to the specific tectonic setting under study (wedge geometry)

- Exhumation rates in the numerical models, and those reported from natural accretionary wedges are provided in the revised version.

Line 61: At present, the introduction does not clearly define the scientific gap. While the questions posed are valid, they appear abruptly. The gap would be clearer if you outlined: (i) the discrepancies between modelled and observed exhumation rates, (ii) the wide variability in return-flow models, and (iii) the influence of parameters such as channel width, rheology, and boundary conditions. Emphasize the mismatch between observations and models.

- We sincerely thank the referee for giving us an excellent guideline to show the scientific gap in this work. The Introduction section has been substantially upgraded taking into account these points given by the reviewer. We must acknowledge that the modifications along these directions clearly bring out the novelty of this study.

Lines 62–63: Clarify whether questions (1) and (2) are essentially identical.

- Thanks for raising this point. The sentence has been modified.

Line 64: Revise to "theoretical and analog study."

- Modified.

Line 65: Specify the depth range of both the theoretical and analog models. Although this is mentioned later, it should also appear here. State the main assumptions explicitly—for example, that the accretionary wedge is closed and material cannot enter the mantle—since this represents a special-case scenario.

- The depth range for the theoretical and analog models are mentioned in the revised version. The main assumptions and limitations of the models are described briefly in this section, and discussed later in details in later parts of the article.

Line 70: Integrate content from later lines: prior work has already tested different boundary conditions in numerical models (e.g., Gerya et al., 2002). The novelty here lies in the analytical treatment of non-parallel slab boundary conditions, which allows replication of slab rollback and advance. When combined with analog modelling, this provides a unique contribution.

- The sentence has been rephrased in the revised version. We thank the referee for these constructive suggestions.

Line 76: Clarify the phrase "oblique to the slab." If it refers to the trench, rephrase as "a non-parallel component of slab velocity."

- By the phrase "oblique to the slab", we meant that the instantaneous subduction velocity vector is oriented oblique to the slab boundary on a vertical section perpendicular to the trench line. The sentence has been rephrased in the revised version.

Lines 86–88: This is the first mention of analog experiments, which are central to the manuscript. Introduce them earlier in the introduction and highlight the novelty of combining analytical solutions with analog modelling.

- We thank the reviewer for this nice suggestion. In the revised version of the manuscript, we have mentioned about the analog modelling approach of our study much earlier in the introduction section.

Line 96: Since some material may be dragged down, this is an important limitation—discuss explicitly.

- The reviewer has correctly pointed out that the assumption of no material outflux through the bottom of the wedge is an important simplification, which is clearly mentioned in the revised version.

Line 107: Even if non-linearity is not first-order, note that complexity may also arise from contrasting lithologies within the accretionary wedge.

- We completely agree with the reviewer. Non-linear rheology or contrasting lithology in the accretionary wedge can result in strain localization, folding at large scales, which can perturb the velocity field predicted from simple continuum approximation with linear viscous rheology. This issue is discussed in the revised version.

Line 117: Clarify whether this component is oblique to the trench or simply non-parallel.

- In this article, we only consider the slab-oblique kinematics in a vertical section perpendicular to the trench line. So, the slab-velocity vector is non-parallel to its boundary with the wedge. This is clarified in the revised version.

Lines 120–121: If the trench-oblique component is merely a reduction of subduction velocity, avoid presenting it as a trench-oblique term, since this implies a 3D model.

- We agree with the reviewer that the trench-oblique velocity component implies a threedimensional framework. In our article, we clearly mention that by subduction obliquity, we mean a velocity component of subduction at an angle to the slab-wedge boundary, taken on a vertical plane perpendicular to the trench line.

Lines 127–128: Replace "trench-perpendicular vertical plane" with "non-parallel component of slab velocity."

-The sentence is modified in the revised version, as suggested.

Line 130: In Fig. 2 it seems only the oceanic plate's fixed wall is constrained. Confirm whether the top boundary is also fixed.

- For the rigid overriding plate model, we considered the upper boundary of the wedge to be fixed. However, for a deformable overriding plate (OP), the upper boundary was free to deform. As Fig. 2 shows the model setup for both the cases, the constraint of a fixed upper boundary for the rigid OP case was not shown exclusively in the figure. However, we describe it in the revised text of this version.

Line 181: This derivation follows Moulas et al. (2021). Add a phrase such as "Following the approach of Moulas et al. (2021)..." You may shorten this section and direct readers to that reference until the non-parallel extension is introduced.

-Reference of Moulas et al. (2021) is added. However, for a more comprehensive presentation of the mathematical derivation for readers, we keep this part in the main text.

Line 214: Same as line 181.

-Reference is added.

Lines 229–230: Indicate that these models assume either a rigid overriding plate or very strong subduction channels, which generate extremely high overpressures.

- The sentence is rephrased in the revised version. We thank the reviewer for this suggestion.

Line 245: Clarify whether this is the discretization used to evaluate equations. If so, specify resolution and grid type.

- For measuring the return flux, we discretize the wedge into 1000 equal small arc elements at r = 10 km, where r is the radial distance from the wedge. Each arc covers an angle of $\theta_1/1000$. Since the velocity field in the corner flow solution is independent of r, F_R does not depend on the choice of r. The method of determining F_R is mentioned in the revised version of the manuscript. Thanks for this suggestion.

Lines 261–263: Add references or case studies linking models to natural observations.

-References added.

Line 267: In this simple case, the flow ratio (FR) should equal 1 due to mass conservation and wedge geometry. Clarify whether this depends on discretization.

-We thank the reviewer for pointing this out. Numerically determined F_R value indeed depends on the discretization. However, a high-resolution analysis gives the numerically determined F_R close to the exact theoretically predicted value. In the revised version, we have done a high-resolution analysis of F_R by taking 1000 arc elements across the wedge. This gives F_R of 0.997, which is close to 1.

Line 271: Is this because you are adding material through the slab or because of the "squeezing" of the wedge?

-Many thanks for this point. According to our model considerations, this occurs essentially due to squeezing of the wedge. Slab advance causes bulk horizontal shortening of the wedge (as discussed above), leading to exhumation of the wedge materials at higher rates.

Line 286: Is this difference with the rigid case because of the viscosity ratio only? what if mu_r is even higher (i.e., 10^5 or 10^7), do you reach the rigid wall solution? Also, see later comments to define high/low FR.

-Yes, a lower value of F_R occurs as the walls are deformable ($\mu_r = 10^3$). For increasing μ_r to 10^5 or 10^7 , F_R approaches values, 0.993 and 0.996, respectively, which are close to the numerically determined value for the equivalent rigid case ($F_R = 0.997$). We appreciate the reviewer's comment.

Lines 290–291: Figures 4–5 show material still returning to the surface but further from the trench. Confirm whether FR is calculated only for the accretionary wedge (if so, specify at line 245).

- In our calculation, F_{R} is calculated only for the accretionary wedge. This has been mentioned clearly in the revised version.

Lines 292–294: Consider adding a figure similar to FR vs. obliquity (Fig. 7) to illustrate this result, and extend the same approach to other variables.

- We thank the reviewer for this nice suggestion. To show comprehensively the effects of concerned parameters on the model results, we have used a single panel. This single plot shows the effect of subduction obliquity, viscosity ratio, and taper angle on the F_R value. Based on the reviewer's suggestion, we have now included a set of graphical plots to show the parametric effects independently. However, to maintain the number of figures in the main manuscript, we place them in the Supplementary, and cite the figures in the main text.

Line 323: Since deformation is not described, either remove the vorticity figures or move them to supplementary material with an explanation.

-We appreciate the reviewer's suggestion. We have provided the vorticity figures for showing the rotational behaviour of the flow field, which plays an important role in the tectonics of the wedge. The role of several parameters on the vorticity field of the wedge is described in the Parametrical Analysis section. The vorticity figures are also cited later in the discussion section. Hence, we keep these figures in the main text to keep the coherence in the presentation of our model findings.

Line 344 and Fig. 7: FR = 0.5 is presented as a threshold between significant and negligible return flow. Explain how this value was determined, or move section 3.2 to the discussion. Kerswell et al. (2023) may provide guidance.

- We appreciate the reviewer for raising this point. An ideal wedge setting (with rigid walls and wall-parallel subduction) produces return flows of buried materials with $F_R = 1$. A wedge with no return flow yields $F_R = 0$. Hence, we choose a value of 0.5 (middle between the two extremities) as a reference to express the return flow strength in wedges. Following the suggestion of the reviewer, we move section 3.2 to the 'Discussion' section in the revised version of the manuscript. We also thank the reviewer for providing the reference of the work of Kerswell et al.

(2023), which provides valuable insights on the recovery of HP rocks in subduction zones. This paper is appropriately cited in this version.

Line 351: Revise "wedge" to "downward-tapered wedge."

- Modified.

Lines 356–357: Move this sentence to the discussion section.

-The sentence has been moved to the discussion section.

Lines 392–395: Provide scaling for analog experiments. Do they correspond with analytical models or plate tectonic velocities? Indicate scaling parameters (e.g., Schellart & Strak, 2016) to demonstrate consistency with natural systems and analytical calculations.

- Yes, the subduction velocities of the analog experiments are scaled with respect to natural plate tectonic velocities (and analytical models). Scaling of the laboratory experiments are discussed in details in the revised version of the manuscript. We thank the reviewer for this suggestion.

Lines 411, 413: Replace "30%" with "0.3U" and "one-sixth" with "U/6" to align with line 415 ("0.6U").

- Replaced.

Line 413: Clarify whether oblique shortening with slab advance and oblique extension correspond to slab rollback. If so, use consistent terminology.

- Yes, by oblique shortening, and oblique extension we refer to slab advance, and slab retreat, respectively. However, we have changed these terms in the revised version of the manuscript for consistency in terminology.

Line 419: Remove "grossly." Add a one-to-one comparison with the analytical solution.

-The term has been removed. In the revised version of the manuscript, we show one-to-one comparison of the velocity pattern of experimental results with analytical results in an identical setup.

Lines 422–423: Gravity influences the analog model if the bottom boundary is open. Add a brief discussion of this effect.

- We would like to clarify that the bottom boundary was not left open in our experimental model setup. The rigid bottom boundary restricted wedge materials from flowing out of the system.

Line 425: If slab rollback or oblique extension precludes return flow, clarify how comparisons were made, since the analog and analytical models differ in bottom boundary conditions.

-In both the analog and analytical models, the wedge is underlain by rigid material, representative of the upper mantle.

Line 429: Change "crusts" to "crust."

-changed.

Lines 449–450: Clarify how comparisons between theoretical models and natural examples are made. Estimate taper angles and subduction dynamics (advance vs. rollback) for each exhumation case, then compare calculated FR values with reviews (e.g., Agard et al., 2009) or case studies (e.g., Franciscan Complex; Ring, 2008).

-We thank the reviewer for this valuable suggestion. The exact values of the parameters, such as wedge taper angle, subduction obliquity, viscosity ratio, from natural settings are presently unavailable. However, to demonstrate the applicability of our model findings, we adopt a qualitative approach using observed signatures (e.g., relatively higher exhumed: subducted rock volumes ratio) in some of the natural accretionary wedges (Agard et al, 2009), and suggest that the subducting slab motion (e.g., advance) and rheological conditions might be possible factors to facilitate the exhumation of deep crustal materials in convergent belts. For example, the high exhumation velocities (3-3.5 cm/yr) in the Ampelos/Dilek nappe during advance of the Anatolian microcontinent with Eurasia (Ring et al., 2007) can be correlated with high exhumation velocity (and F_R) obtained from our model results during slab advance.

We also acknowledge that a one-to-one comparison between the model predicted F_R and natural observation is difficult as this ratio can be controlled by other factors, such as erosion, which are not considered in the present study (Kerswell et al., 2023). These limitations are more elaborately discussed in the revised version.

Line 453: Are there documented cases of absent accretionary wedges in modern rollback settings?

-We could not find any case studies reporting the absence of accretionary wedges in rollback settings. In line 452-453, we only suggest the absence of return flows in accretionary wedges as a consequence of slab rollback settings, as observed in our theoretical and analogue models.

Line 454: Revise: note that HP units are present in Chile (Willner, 2005), with localized pressures of 2–2.5 GPa (González-Jiménez et al., 2017).

-The sentence has been removed in the revised version.

Lines 503–504: Mention the thermal regime, as it controls the brittle–ductile transition depth and influences viscosity.

-We have modified the sentence in the revised version. Thanks for the suggestion.

Line 510: Replace "subduction" with "subduction zones."

-Replaced.

Line 519: Expand to "Multiple structural fabrics and fluid-assisted deformation (e.g., Muñoz-Montecinos & Behr, 2023)."

-The sentence has been modified in the revised version.

Lines 530–545: This section would benefit greatly from plotting the geological cases in Figure 8, enabling direct comparison between tectonic settings, model outputs, and natural data. Analog model results could also be added for completeness.

- We appreciate these suggestions by the reviewer. However, we could not find the exact estimates of the parameters (e.g., taper angle, subduction obliquity, wedge-OP viscosity ratio) for natural orogenic belts in existing literature. It has not been possible to show natural examples at any specific position in the graphical plot of Fig. 8 (of the previous version). However, in the discussion section, we provide examples of natural occurrences of shear reversal from several natural accretionary wedges well reported in literature. Considering the suggestion of the reviewer, the analog model results are included in the revised version of the figure.

Line 590: Include rock strength in the brittle regime. In favorable conditions, rocks can sustain tens to hundreds of MPa before failure (Platt, 2019).

-We thank the referee for this suggestion. In the revised version, we have included the possibility of tectonic overpressures in brittle regime.

Line 625: Remove mu_r here, as it denotes viscosity ratio.

-Removed.