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Abstract. Water stage variations significantly influence biochemical and hydrological processes within river networks. 10 

River camera, with its ease of deployment and low cost, has emerged as a promising tool for water stage estimation, enabling 

efficient water stage interpretation from images via deep learning (DL). However, a critical challenge is the requirement of 

accurate water stage data for DL training, which often have biases caused by sedimentations, floating debris or water flow 

impacts associated with contact-based gauge observations. Previous studies have overlooked the influence of gauge data 

errors in real-world applications. This study introduces an imaging-based water stage estimation framework that addresses 15 

hidden errors in gauge station measurements for training DL models. The framework adopts a multi-task learning paradigm, 

using erroneous gauge stage data as labels and incorporating water pixel ratios automatically extracted from images to 

constrain model estimation ranking. Based on training loss, a thresholding method then filters error-free data to retrain an 

unbiased model. This framework is tested on images and bubble-gauge stage data from the Minturn River, Greenland, 

spanning 2019 to 2021. The results obtained show the framework successfully identified a gauge offset event on July 29, 20 

2021, and mitigated an average water stage observation error of approximately 0.6 meters thereafter. Moreover, the trained 

DL model revealed water stage fluctuations under low-flow conditions that gauge observation could not reflect. This study 

implies that integrating contact and non-contact observations is a robust approach for river stage measurement.  
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1. Introduction 25 

Rivers are conduits between terrestrial and aquatic environments, mediating hydrological processes and biochemical 

transports (Mosley, 2015; Whitworth et al., 2012). Observing river flow dynamics can enhance comprehension of river 

evolution mechanisms, aiding in the development of adaptive water management plans and  early warning systems for 

extreme hydrological events (Kreibich et al., 2022; Lane, 2017; Trenberth et al., 2014). As a typical indicator of river flow 

dynamics, water stage data are essential for unraveling complex exchange fluxes among different hydrological components 30 

(Etter et al., 2018; Van Wesemael et al., 2019; Yamazaki et al., 2012). Therefore, water stage has become one of the 

primarily observed hydrological variables for rivers. 

River water stage observations can be categorized into contact-based and non-contact-based methods, each associated with 

distinct sources of observational error. Traditional river gauges, as a representative of contact-based methods, commonly use 

float, pressure, or vibrating wire sensing as a foundational component for water stage measurement (Kinzli et al., 2016; 35 

Loizou & Koutroulis, 2016; Majdalani et al., 2019). Constrained by the contact-mode, these gauges are prone to interference 

from sedimentation, floating debris, and drift under flow impacts, compromising the accuracy and consistency of observation 

(Di Baldassarre & Montanari, 2009). Non-contact observation methods, exemplified by remote sensing via satellites such as 

Envisat and Jason-2, can supplement water stage data for in-situ river gauges (Frappart et al., 2006; Papa et al., 2012). Due 

to orbital constraints, atmospheric interference, and limited sensor revisit frequencies, satellite and airborne optical 40 

techniques are restricted by relatively long revisit intervals and susceptibility to cloud cover. The resulting water stage data 

typically exhibit temporal resolutions of 5–16 days and estimation errors exceeding 0.5 meters (Grimaldi et al., 2016; Yan et 

al., 2015). 

River cameras, as an arising form of non-contact, near-range remote sensing techniques,  can mitigate the impact of river 

flow and objects on measurement (Dolcetti et al., 2022). By providing real-time visualization of river conditions, river 45 

cameras can yield high temporal resolution water stage data, supplementing traditional gauge observations (Spasiano et al., 

2023). The effectiveness of river camera observations depends on the accuracy of water stage extraction from the images. A 

series of studies installed white poles, colored bars, or QR codes as fiducial markers within the camera’s view, then adopted 

computer vision techniques to track pixel value changes of these markers, allowing the estimation of water stages (Herzog et 

al., 2022; Noto et al., 2022; Tauro et al., 2022). These methods share a common reliance on contact-based markers placed 50 

within river channels, with cameras acting as around-the-clock observers for continuous water stage monitoring. 
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Another commonly used imaging-based method involves segmenting water pixels within each image using traditional 

computer vision methods or deep learning (DL) models (Akiyama et al., 2020; Erfani et al., 2022; Lopez-Fuentes et al., 

2017). Segmented water masks can be transformed using photogrammetric techniques and then overlaid onto the topography 

of river channels to derive scalar water stage values (Sermet & Demir, 2023). The accuracy of water stage data obtained 55 

through this method depends on both waterbody segmentation and terrain data quality. Factors such as suspended solids, 

water transparency, and surface reflection can affect the accuracy of river topographical measurements derived from LiDAR 

scanning. These errors propagate through the workflow and ultimately impact the overlay analysis of water masks and 

terrain data for river stage estimation (Awadallah et al., 2023; Hilldale & Raff, 2008).  

Using water stage data observed by gauges as labels to train a DL model provides a novel approach for directly mapping 60 

images to water stages, enabling accurate water stage estimations from new images (Vandaele et al., 2023; Vanden Boomen 

et al., 2021). This approach avoids the need for deploying additional reference objects and collecting fine-scale terrain data. 

Previous studies have already validated the inherent fitting capabilities of DL-enabled image regression models for imaging-

based water stage estimation across various rivers (Gupta et al., 2022). A commonly used convolutional neural network 

architecture, ResNet18, was trained on gauge station data from six small streams in the United States, achieving a mean 65 

absolute error as low as 0.1 m. However, in practical scenarios, the gauge water stage data used for training may already 

contain errors stemming from water flow disturbances. As DL models trained under noisy labels are likely to learn biased 

mapping relationships (Northcutt et al., 2021; Yi et al., 2022), estimated water stages can be inaccurate, rendering them 

unable to produce robust water stage measurement based on river camera images. Notably, this issue has received limited 

attention in prior research, and addressing gauge data bias remains a critical knowledge gap in achieving robust imaging-70 

based observations. 

To mitigate the impact of inherent errors in historical gauge data, this study proposes a novel framework that integrates a 

multi-task learning paradigm with a thresholding method to train a DL regression model, enabling accurate imaging-based 

water stage estimation. Concurrently establishing a mapping relationship between images and observed gauge data during 

model training, we introduce an additional ranking loss function for constraining model parameter optimization. The ranking 75 

loss guides the DL model to ensure that the ordering of water stage estimations aligns with the sequence of water body pixel 

ratio estimated by the water segmentation models. A thresholding method is subsequently developed to adaptively detect 

moments of historical bias based on the training loss value for each image, allowing for the automatic identification of error-

free historical gauge data to retrain a robust DL model. 
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 80 

2. Methodology 

2.1 Overview of the framework 

ShuffleNet, a classic lightweight convolutional neural network (X. Zhang et al., 2018), was selected as the backbone model 

for imaging-based water stage estimation. Through the use of depth-wise separable convolutions and channel shuffling, 

ShuffleNet achieves high computational and memory efficiency (Ma et al., 2018). To apply the ShuffleNet model to provide 85 

accurate water stage estimations despite existing errors in historical gauge data, we developed a multi-phase framework 

incorporating multi-task learning and a thresholding method (Figure 1). 

In the first phase, multi-task learning was implemented by training the ShuffleNet model with both gauge stage sequences 

and imaging-based water pixel ratio sequences as labels. The former served as the direct target for model fitting, though it 

contains potential errors, while the latter was used to further constrain the fitting process by enforcing consistency in the 90 

output values’ ordering relationship with SOFI (Static Observer Flooding Index, SOFI). Based on water masks automatically 

extracted from images using a water segmentation model (Z. Wang et al., 2024), SOFI was calculated as a ratio of water 

pixel to the total pixel of the image. By using dual labels, the impact of biases in the gauge data can be mitigated. 

The Second phase is designed to detect gauge bias. A thresholding method was applied to the sequence of differences 

between model predictions and gauge stage to identify potential gauge bias occurrences, segmenting the sequence into two 95 

subsequences, representing data before and after the gauge bias occurrence. A statistical test was then conducted to 

determine whether the former significantly differed from the latter; if not, this indicated no significant error in the gauge 

stage sequences. Otherwise, a significant difference confirmed the presence of gauge bias, allowing the erroneous gauge 

stage data to be discarded, thus isolating only reliable data for further use. Finally, the error-free gauge stage subsequence, 

along with the complete SOFI sequence, was used as labels to retrain ShuffleNet. Through the use of error-free data, a DL 100 

regression model capable of providing accurate water stage estimations thus can be yielded. Specific details of each 

component in the framework will be elaborated in subsequent sections. 

https://doi.org/10.5194/egusphere-2025-2902
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

 

Figure 1. The workflow of the framework designed to train a DL-enabled image regression model capable of providing accurate 

water stage estimation under biased gauge data conditions. 105 

 

2.2 Multi-task learning paradigm 

Multi-task learning involves solving multiple learning tasks simultaneously (Y. Zhang & Yang, 2021). By capturing the 

common pattern hidden in the training signal of related tasks, MTL has the potential to extract more information from the 

training data and enhance the model performance (Ruder, 2017). As shown in Figure 2 (a), this study formalized the model 110 

training into a combination of regression and ranking tasks. Initially, water stage predictions were compared with gauge 

stage for supervising the regression task. Meanwhile, margin loss was computed by pairing all images in the mini-batch and 

testing whether their rankings adhered to the ranking of SOFI values (Figure 2 (b)). 
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The ShuffleNet model jointly learned the regression task and the ranking task, by defining the total loss function as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒𝑔 +  𝜆𝐿𝑟𝑎𝑛𝑘                                                                              (1) 115 

𝐿𝑟𝑒𝑔  and 𝐿𝑟𝑎𝑛𝑘  are the regression and ranking loss, respectively, and 𝜆  is the weighting parameter to balance the 

contributions of the two terms. For 𝐿𝑟𝑒𝑔, we used the Mean Squared Error (MSE) function: 

𝐿𝑟𝑒𝑔 = (𝑣 − 𝑣𝑔𝑡)2                                                                                 (2) 

where 𝑣 represents the model prediction and 𝑣𝑔𝑡 is the ground truth value of the river water stage. The ranking loss, 𝐿𝑟𝑎𝑛𝑘, is 

computed as: 120 

𝐿𝑟𝑎𝑛𝑘 = max (0, −𝑣𝑠𝑜𝑓𝑖
𝑟𝑎𝑛𝑘(𝑣1 − 𝑣2))                                                               (3) 

where 𝑣1 and 𝑣2 represent the model prediction for the two images in a pair, and 𝑣𝑠𝑜𝑓𝑖
𝑟𝑎𝑛𝑘  represents the ground truth ranking 

for the pair referring to the SOFI, where “+1” means the SOFI value for image 1 is higher, and “-1” means the SOFI value 

for image 2 is higher.  

The ranking loss serves as a regularization term, preventing overfitting of the regression objective with the aid of SOFI 125 

derived from river camera images, especially when inherent errors exist in gauge stage observations due to gauge bias. The 

weight λ balances the regression and ranking tasks, ensuring it is sufficiently large for regularization but not excessively high 

to compromise water stage estimation accuracy. We showed the influence of varying λ in Section 3.2.  

 

Figure 2. Multi-task learning paradigm. (a) The illustration of the training framework that combines both regression and ranking 130 

tasks; (b) the workflow of margin loss calculation for supervising the ranking task. 
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2.3 Thresholding method 

After iterative training under the multi-task learning paradigm, the stage difference sequence can be calculated by subtracting 

the gauge stage from the model prediction. Subsequently, a thresholding method was used to detect the occurrence time of 135 

the most significant gauge bias within the inspected period, based on which erroneous stage data were removed.  

Initially, the Jenkins Natural Break method (Jenks, 1967) was used to divide the stage difference sequence into two groups: 

values exceeding the binary threshold were classified as significant errors (True), likely attributable to gauge offset, while 

those below the threshold were identified as insignificant errors (False) due to random variations. While significant errors do 

not exclusively occur following gauge bias caused by flowing debris or flow impact—since a minority of images may 140 

exhibit significant errors due to poor visual quality—the majority of cases still display a temporal clustering of significant 

and non-significant errors. Accordingly, errors occurring before and after the gauge bias were assumed as False and True, 

respectively. We then aimed to optimize the estimated gauge bias occurrence time to maximize alignment between the time-

sequenced labels obtained from the thresholding method and the assumed labels. Specifically, the objective is to achieve the 

highest F1 score between the two label sequences.  145 

F1 score is a commonly-used metric for evaluating the classification performance. It considers both the precision and recall 

of the model to compute a single score. Precision (P), Recall (R), and F1 score (F) are calculated as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                        (4) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                        (5) 

𝐹 =
2×𝑃×𝑅

𝑃+𝑅
                                                                                        (6) 150 

Where TP is the true positive rate representing the proportion of samples that are actually positive and judged as positive, 

while TN is the true negative rate representing the proportion of samples that are actually positive but are judged as negative. 

Similarly, FP and FN denote the false positive rate and false negative rate, respectively. Here, the positive and negative 

samples were time points labeled as True and False. 

To confirm that the identified significant errors are systematic errors caused by physical contact, a T-test was applied. Only 155 

if a statistically significant comparative relationship was observed between the difference subsequences before and after the 
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gauge bias occurrence would the post-bias gauge stage sequence be discarded, retaining only the pre-bias subsequence and 

the complete SOFI sequence to retrain ShuffleNet under the multi-task learning paradigm for accurate water stage estimation. 

 

Figure 3. The illustration of the thresholding method for inferring the optimized division time. 160 

 

3. Study area and experimental setup 

3.1 Study area 

The Minturn River was selected as the study area to evaluate the effectiveness of the proposed framework due to its 

concurrent collection of river stage gauge data and time-lapse camera images on the main stem of the river. As shown in 165 

Figure 5 (a), the Minturn River is a major proglacial river that drains a ~2,800 km² supraglacial catchment, originating from 

a large grounded lobe of the Greenland Ice Sheet in Inglefield Land, Northwest Greenland (Li et al., 2022; Yang et al., 2019). 

The gauging site was positioned ~15 km downstream of the ice edge on the Minturn River, enabling the collection of runoffs 

from the largest river within the proglacial zone.  

As shown in Figure 4 (b), the instrument monitoring network was established by Goldstein et al (2023) and consists of an in-170 

situ bubble-gauge and two time-lapse camera systems. The camera positioned on the west bank was used in this study, 
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capturing images under adequate ambient light conditions. Its oblique field-of-view is directed across the river to monitor the 

right (east) bank of the river channel. A total of 288, 377, and 317 images were obtained between July 12 and December 17 

2019, between June 21 and December 31 2020, and between January 1 and September 17 2021, respectively, and their 

corresponding river stage gauge data were also obtained. 175 

The bubble-gauge experienced significant errors after July 29, 2021, when the protective conduit was struck, resulting in the 

shearing-off of the exit orifice, likely caused by a large upstream boulder impacting the conduit. Such systematic biases in 

the bubble-gauge data make it an ideal candidate for testing the effectiveness of our framework. Additionally, at the gauge 

site, the Compact CF Bubbler of the bubble-gauge becomes exposed at low flow, while observable flow remains in the river 

channel. As the compact bubbler can only measure water stage when submerged, it measures atmospheric pressure instead of 180 

water stage when the river level falls below it. 

 

 

Figure 4. (a) Study area and gauging location. The red lines delineate the boundary of the Minturn River watershed, while the blue 

lines represent the tributaries of the Minturn River. (b) On-site photo of the Minturn River gauging station, including bubble-185 

gauge and time-lapse cameras. Source: Goldstein et al (2023). 

 

3.2 Experimental setup 

Three datasets with varying data volumes, excluding or including systematic bias, were constructed: the 2019 data, the data 

from 2019 to 2021, and the data from 2019 to 2021. The framework was applied separately to all three datasets to evaluate 190 

its performance under varying data conditions. For each dataset, the original gauge stage data were used as labels to train the 

https://doi.org/10.5194/egusphere-2025-2902
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

model, while the corrected gauge stage data, obtained through the overlay analysis of water masks and terrain data for the 

corresponding period, served as a benchmark to evaluate the framework’s effectiveness in detecting gauge bias and assess 

ShuffleNet model’s estimation performance. 

When training the ShuffleNet model under the multi-task learning paradigm, the number of training iterations was set to 20, 195 

the learning rate was set to 0.001, and the mini-batch size was set to 8. Additionally, to investigate the impact of the 

parameter λ used to balance the regression and ranking tasks on model training, nine scenarios were set (λ=0, 1, 5, 10, 15, 20, 

25, 30, 35), and the iterative changes in MSE loss were visualized for each scenario to determine the optimal λ value.  As 

illustrated in Figure 5, an increase in λ was associated with a corresponding rise in the initial MSE loss value, and the loss 

did not consistently converge to zero throughout the iterative process. This suggests that multi-task learning effectively 200 

mitigates overfitting to the inherently erroneous gauge stage data. Beyond a λ value of 10, further increases in λ did not 

result in significant changes in the MSE loss variation. In addition, continuously increasing λ may cause the model to 

prioritize ranking performance over accurate regression, thereby limiting its ability to constrain water stage estimates within 

reasonable numerical ranges. Consequently, a λ value of 10 was selected for subsequent analysis. 

Furthermore, the Spearman correlation coefficient (de Winter et al., 2016), were applied to preliminarily evaluate the 205 

consistency of the SOFI sequence and gauge stage sequence prior to model training. In addition, Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) were adopted to quantify the gaps between different water stage sequences. 

 

Figure 5. MSE loss value curve with different λ values 
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 210 

4. Results 

4.1 Comparative relationship between target variables in multi-task learning 

Accurate water segmentation and reliable SOFI sequence forms the foundation upon which the incorporation of ranking task 

can mitigate the impact of erroneous gauge stage on model training. Based on the water masks automatically extracted by the 

water segmentation model, SOFI for each image was calculated and compared with the corresponding gauge stage.  215 

As shown in Figure 6 (a), SOFI calculated from images collected in 2019 and 2020 highly correlated to the gauge stage, with 

Spearman rank correlation coefficients of 0.99 and 0.95, respectively. Due to systematic errors from gauge bias, the 

correlation between SOFI and gauge stage was lower in 2021, with a Spearman rank correlation coefficient of 0.87.  

The SOFI exhibited consistency with the gauge stage, yet the two displayed a non-linear relationship (Figure 6 (b)). 

Although inferring the gauge bias occurrence time based on direct comparison of these variables is challenging, the 220 

reliability of SOFI calculated through the method used in this study, along with its alignment with gauge stage trends, 

qualifies it to serve as an effective label for supervising the ranking task in the multi-task learning paradigm. 
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Figure 6. The comparative relationship between gauge stage and SOFI in years 2019 – 2021. (a) Historical data of gauge stage and 

SOFI in different years and their (b) scatter plots. 225 

 

4.2 Detection of erroneous gauge stage 

After iterative training under the multi-task learning paradigm, the differences between the stage estimated by the ShuffleNet 

model from the image and the gauge stage were computed. Based on these differences, the thresholding method was applied 

to infer the time when the gauge bias occurred. 230 
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For the complete dataset covering 2019 to 2021, the Jenks Natural Breaks method established a threshold of 0.21 m, 

classifying all absolute stage errors as either True or False. Among these, 924 time points were categorized as False, while 

58 time points were categorized as True (Figure 7). Following this, the optimal segmentation time point was determined by 

maximizing the F1 score, leading to the identification of the gauge bias occurrence time as 0:00 a.m. on July 30th, 2021, 

consistent with the actual event. A T-test was then used to verify the gauge bias occurrence determined by the thresholding 235 

method. A p-value less than 0.01 confirmed the presence of gauge bias. 

 

Figure 7. The temporal sequence of absolute stage error and their corresponding labels. 

 

Unlike the 2019–2021 dataset, the other two datasets—the 2019 data and the 2019–2020 data—did not contain errors 240 

induced by significant gauge bias and were used for comparison to demonstrate the robustness of the framework. The same 

process was applied to both datasets as with the complete dataset, estimating the threshold value and conducting a T-test to 

assess differences in absolute stage error before and after the inferred gauge bias occurrence. As shown in Figure 8, in the 

absence of inherent significant errors, the estimated threshold values were relatively small (2019: 0.06 m; 2019–2020: 0.05 

m), and no significant difference in errors was observed before and after, indicating that no gauge bias existed, consistent 245 

with the actual scenario. This validates the robustness of the framework. 
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Figure 8. Absolute stage errors of both early and late stages for three datasets. 

 

4.3 Retraining effectiveness  250 

After detecting the gauge bias occurrence, we used the error-free gauge stage data along with the complete SOFI sequence 

from 2019 to 2021 to retrain the ShuffleNet model under the multi-task learning paradigm, aiming to establish a robust 

mapping relationship between the image data and the unbiased river water stage. 

As illustrated in Figure 9 (a), after model retraining, ShuffleNet predicted river water stage consistent with the gauge stage 

for images captured before the occurrence of gauge bias, with RMSE and MAE below 0.05m. For the period after gauge bias 255 

occurrence, significant corrections were made to the gauge stage, resulting in RMSE and MAE of 0.56m and 0.57m, 

respectively, which are consistent with the gauge bias magnitude determined by previous studies based on cameras and Lidar 

scanners (Goldstein et al., 2023).  

In comparison, results from single-task learning or multi-task learning without re-training led to complete overfitting or 

remained partially affected by erroneous labels, failing to fully mitigate the impact of errors in gauge stage data. This 260 

highlights the necessity of model re-training (Table 1). Furthermore, as shown in Figure 9 (b), the model could further 

extrapolate water stage values into negative ranges relative to the original coordinate system, and effectively depict water 

stages below the bubble-gauge installation point, thereby supplementing observations of low-flow conditions. 
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 265 

Figure 9. Effectiveness of estimations under low flow conditions. (a) The temporal sequence of the calibrated stage after model 

retraining; (b) example illustration of stage variations for low flow conditions. 

 

Table 1. Comparative performance of training strategies on river water stage estimation 

Training Strategy 

RMSE (m) MAE (m) 

Phase without 

Bias 

(Ideal Value: 0) 

Phase with  

Bias 

(Ideal Value: 0.5) 

Phase without Bias 

(Ideal Value: 0) 

Phase with  

Bias 

(Ideal Value: 0.5) 

Single-task Learning 0.03 0.04 0.02 0.03 

Multi-task Learning 

(pre-training) 
0.05 0.10 0.04 0.08 

Multi-task Learning 

(post-training) 
0.05 0.57 0.04 0.56 

 270 

5. Discussion 

In this study, the SOFI sequence obtained from river camera and the water stage data collected by bubble-gauge were 

concurrently used to train a DL regression model. The original single regression task of mapping images to water stages was 

extended to integrate the regression and ranking tasks into a multi-task learning paradigm. In the presence of systematic 

errors in the gauge stage data, the ranking task supervised by SOFI was introduced as a regularization item (Tian & Zhang, 275 
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2022). With the assistance of relatively more robust non-contact data, model parameter optimization can be effectively 

guided, thus preventing overfitting to inherently biased data. From data perspective, the multi-task learning can be viewed as 

a form of data assimilation, whereby multiple data sources are integrated during training, facilitating mutual calibration. The 

approach of using multi-task learning for data assimilation has already been applied to monitoring other hydrological 

variables such as flood depth and water quality (Chaudhary et al., 2020; Zhe et al., 2023). It can effectively address 280 

challenges including the absence of fine-grained data and data uncertainties. 

The integration of multiple data sources through multi-task learning relies on the reliability of at least some of them or on the 

premise that the error types of each data source are distinct. For instance, in our study, the stability of the non-contact 

monitoring mode and the accuracy of the water segmentation algorithm render SOFI relatively robust. The reliability of 

camera data underpins the final framework’s ability to accurately infer gauge bias occurrences and rectify historical data. 285 

Moreover, it should be noted that that our framework only concentrates on addressing systematic errors stemming from 

gauge biases. Other sporadic errors caused by periodic hydraulic impacts can be effectively distinguished through the simple 

application of a T-test. These errors, characterized by random distribution patterns, can potentially be mitigated directly by 

leveraging the bias inductive capacity of deep learning (DL) (Baxter, 2000), obviating the need for specific processing.  

Moreover, there are still some limitations that need to be addressed. Firstly, the study inadequately considered the possibility 290 

of multiple gauge biases. The bubble-gauge deployed on the Minturn River, used in our study, experienced only one 

significant bias during 2019-2021. To address the occurrence of multiple biases, future work can implement sliding time 

windows with shorter intervals to sequentially process the entire time series or adopt unsupervised clustering methods to 

automatically identify and separate clusters (Khan et al., 2014), thus enabling the automatic recognition of multiple gauge 

biases. Meanwhile, the framework will also be tested on more diverse datasets with different types and levels of error to 295 

validate its performance. Furthermore, when river cameras are deployed in environments prone to displacement by strong 

winds or wildlife, applying image quality control and calibration techniques such as image registration (Zitova & Flusser, 

2003) may be needed.  
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6. Conclusion 300 

This study has presented that DL regression models can yield reliable water stage estimations from river camera images, 

even when training data contain errors stemming from floating debris or hydraulic impact spikes. A novel framework 

integrating multi-task learning and a thresholding method was developed, and was able to effectively identify gauge stage 

errors and mitigate their impact on model training, establishing a robust mapping from images to water stage. 

The framework was applied to bubble-gauge data and river camera images collected in the Minturn River, Greenland, from 305 

2019 to 2021. It accurately detected the occurrence of gauge bias on July 29, 2021, and corrected an average water stage 

observation error of approximately 0.6 m thereafter. Additionally, the trained DL model based on the framework can further 

reveal water stage variations under low-flow conditions below the bubble-gauge installation point. Furthermore, the 

framework was validated to focus specifically on systematic errors, rather than over-identifying and processing minor 

random errors, demonstrating adaptability to varying data conditions. 310 

Overall, this study presents a novel approach to integrating biased gauge data with river camera images for robust, imaging-

based river stage measurement. Future work should address multiple occurrences of gauge bias, potential displacements of 

river cameras, and extend the framework’s application to a wider range of river conditions for comprehensive evaluation. 
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