Dear Reviewer 1:

We appreciate your careful reading and critical reflections on our manuscript. We
value the concerns raised, but respectfully hold a different perspective on several key
points. Below, we address each comment in detail, presenting our reasoning and the
corresponding revisions to be made to the manuscript.

Comment 1:

The most critical concern lies in the overall suitability and motivation for an approach
that learns the absolute stage directly from images. The reliance on on-site gauge data
for training at every new location significantly limits its utility, particularly for
ungauged catchments, which are the primary target for innovative remote sensing
techniques. As gauged catchments already possess well-established, high-accuracy
stage measurement methods, the practical added value of this camera-based approach
for these sites is questionable. Also, there are already studies discussing the potential
and limits of directly learning the stage from images, which are not mentioned in this
study (e.g. Vanden Boomen et al., 2021). Furthermore, the risk is high that the
approach is highly sensitive to any movements (internal or external geometry) of the
camera setup. Such movements would likely necessitate a complete re-learning of the
model, which is a significant practical limitation and is not adequately addressed in
the current work. Finally, the authors' premise that obtaining accurate stage data is a
critical challenge for all DL-based camera gauges is debatable. For approaches relying
on photogrammetry, the stage data serves only as a reference, not as the primary input
for the Al-model, thereby mitigating this "critical challenge." A stronger, more
refined motivation for this specific DL-only approach is needed.

Response to Comment 1

We thank the reviewer for this insightful comment regarding our technical route. In
response, we would like to offer complementary perspectives on the intrinsic value of
image-based river monitoring.

First, we acknowledge that our approach currently requires physical gauge data at a
new site for initial model training. However, the data dependency is limited to the
early stage of deployment. For a specific site, during the initial co-existence period of
cameras and gauges at the early phase, the latter can serve as reference data to help Al
models learn and stabilize. Once the physical gauges reach the end of their lifespan, a
well-trained camera-Al system can replace their function at a low cost, enabling
continuous observation. With the continuous increase in the number of river camera
and physical gauge observation sites, as well as the accumulation of image-water
level pairs, DL models that directly establish image-to-water-stage mappings without
relying on additional camera parameters or environmental information such as terrain
provide a foundation for developing one-fit-all water stage estimation models. In
contrast to other methods such as photogrammetric approaches, these models are



independent of site-specific auxiliary data, thereby demonstrating strong
generalizability and the potential to be directly extended to ungauged rivers without
reliance on physical gauges or in-situ topographic surveys.

Second, we believe that our method possesses a certain degree of robustness to
variations in the visual observation environment. As the reviewer pointed out, factors
such as camera displacement and geometric variation are important sources of
potential uncertainty that can affect the robustness of image-based water level
estimation. Taking photogrammetric estimation as an example, this method requires
the extraction of water masks and their subsequent overlay with topographic data.
When the camera viewpoint changes but the pre-established projection coordinate
system is still used, substantial biases in the derived water level can occur. In contrast,
the DL framework we adopted, which directly maps images to water stages, can
inherently mitigate such effects and maintain robustness. DL models can
automatically extract high-level features that capture relative spatial relationships
between different objects, such as water bodies and riverbanks, rather than depending
on the absolute position of any single target. Consequently, minor camera
displacements exert limited influence on the results, while larger shifts can be
effectively corrected using modern camera systems equipped with automated
calibration and pan-tiltzoom (PTZ) mechanisms capable of dynamically
compensating for geometric variations in real time.

Overall, we consider our chosen technical route to be feasible in terms of
generalizability and robustness. Within this framework, the quality of water-stage
values obtained from physical gauges—used as training labels for the Al model—is
critical. However, influenced by contact-based measurement errors, these labels often
contain either random but minor deviations or systematic and substantial biases.
Random noise caused by turbulence or backflow can typically be attenuated during
deep-learning parameter optimization. In contrast, systematic errors —such as those
arising from sediment accumulation or rapid riverbed changes —necessitate targeted
correction strategies. Accordingly, our study’s core, innovative contribution is the
introduction of a multi-task learning framework that uses the water-pixel proportion
from images as an auxiliary label to mitigate systematic errors from physical gauges.

In the revised manuscript, we will refine and integrate these perspectives into the
Introduction and Discussion sections to better articulate the rationale and significance
of the proposed deep-learning-enabled, image-based water level estimation approach.
Regarding the reviewer’s comment on the citation of previous studies, we agree that a
more in-depth discussion of their limitations would be beneficial. Therefore, we will
incorporate and critically discuss these studies in the revised version to more clearly
highlight both the potential and the limitations of prior research in this area. We also
recognize that the previous phrasing, “obtaining accurate stage data is a critical
challenge for all DL-based camera gauges”, was inaccurate. This challenge pertains
specifically to the technical route used in our study, rather than to all DL-based



camera gauge approaches in general. The statement will be revised in the manuscript
to reflect this clarification.

Comment 2:

The paper utilizes pixel information from segmented images to provide relative stage
information but lacks sufficient discussion on the segmentation process itself. This is
a significant omission, especially since several established studies (e.g., Eltner et al.,
2021; Zamboni et al., 2025, Moghimi et al., 2024) already perform this kind of water
segmentation for stage measurement, and the potential for segmentation errors and
their influence on the multi-task learning is not discussed at all. Furthermore, the
review fails to include relevant, state-of-the-art photogrammetric approaches that use
water segmentation (e.g., Blanch et al., 2025). Given that the study site appears highly
suitable for these methods, a direct comparison and justification for choosing the
DL-only approach is necessary. Also, the achieved accuracy, appearing to be in the
decimeter (dm) range, is not competitive with the centimeter (cm) accuracy
demonstrated by other camera gauge studies, particularly those using robust
photogrammetric methods (e.g., Eltner et al., 2021, Erfani et al., 2023, Blanch et al.,
2025). Therefore, also the title of the manuscript is misleading because I think, the
achieved accuracies cannot be described accurate. Finally, the approach involves
combining two loss functions, which necessitates the fine-tuning of the lambda value.
This introduces a hyperparameter that must be manually tuned, complicating the
model's reliability and generality.

Response to Comment 2:

First, we understand the reviewer’s focus on segmentation-based approaches.
However, it is important to clarify that the image segmentation module is not the
innovation of this study. In our previous work (Wang et al., 2025), we have already
proposed and validated an advanced water-body segmentation algorithm, which
demonstrated state-of-the-art performance on representative datasets.

The algorithm integrates a domain-specific DL-based water segmentation model with
a foundation model, Segment Anything Model (SAM). Compared with the
DL-enabled semantic segmentation models used by Erfani et al. (2023) and Blanch et
al. (2025), our method exhibits stronger generalizability and lower dependence on
local data. In contrast to the SAM-based segmentation approaches proposed by
Moghimi et al. (2024) and Zamboni et al. (2025), our method further incorporates an
additional DL module as an automated prompter, which enhances usability and
facilitates automated deployment. Without any local fine-tuning, the proposed
segmentation approach achieved an IoU exceeding 0.9 across four river camera
stations in Tewkesbury, UK, demonstrating sufficient performance for generating
auxiliary labels within the multi-task learning process of this study.



Overall, the principal contribution of the present work lies in the design of a
multi-task learning framework that integrates relative water-level features derived
from the segmentation task with the direct water-level regression task. This joint
formulation effectively mitigates the impact of biased contact-based gauge data
during model training, thereby improving the robustness of water level estimation. A
detailed discussion of the segmentation algorithm itself would divert attention from
this core methodological innovation — the proposed multi-task learning structure.
Therefore, the detailed description of the segmentation method will not appear in the
Introduction. Instead, following the reviewer’s suggestion, we will add appropriate
citations and a concise description of the segmentation algorithm in the Methods
section to justify the use of our internally developed segmentation approach.
Moreover, we do not deny the value of photometric approaches that combine water
segmentation with topographic projection. In fact, in this study, the ground-truth
water stage data were obtained using such a photogrammetric method, as the physical
gauge measurements were affected by contact-based biases.

In addition, we would like to clarify a misunderstanding regarding the reported
accuracy.The accuracy of our results is expressed in centimeters. This unit convention
follows the same precision definition used in previous studies conducted at the same
site, ensuring comparability and methodological consistency. Nevertheless, we concur
with the reviewer that the use of “accurate” in the title may convey a subjective
impression. The title will be revised to more clearly highlight the methodological
focus and problem addressed, with the effectiveness of the approach objectively
demonstrated through the presented results.

Regarding the hyperparameter that balances the two tasks, we have conducted
dedicated experiments and ablation analyses to examine their effects. The results and
parameter recommendations are reported in the manuscript and can serve as a
practical reference for future applications (Line 195 - Line 204):

“When training the ShuffleNet model under the multi-task learning paradigm, the
number of training iterations was set to 20, the learning rate was set to 0.001, and the
mini-batch size was set to 8. Additionally, to investigate the impact of the parameter
A used to balance the regression and ranking tasks on model training, nine
scenarios were set (A =0, 1, 5, 10, 15, 20, 25, 30, 35), and the iterative changes in
MSE loss were visualized for each scenario to determine the optimal A value. As
illustrated in Figure 5, an increase in A was associated with a corresponding rise
in the initial MSE loss value, and the loss 200 did not consistently converge to zero
throughout the iterative process. This suggests that multi-task learning effectively
mitigates overfitting to the inherently erroneous gauge stage data. Beyond a A
value of 10, further increases in A did not result in significant changes in the MSE
loss variation. In addition, continuously increasing A may cause the model to
prioritize ranking performance over accurate regression, thereby limiting its ability to
constrain water stage estimates within reasonable numerical ranges. Consequently, a
A value of 10 was selected for subsequent analysis.”
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Comment 3:

The suggested automatic detection of gauge errors appears effective only for very
strong and obvious errors. It is unclear why an established statistical approach would
not be equally or more effective for this task. The authors apply an automatic
post-processing/filtering step to refine the training data, assuming the error resides in
the stage data and not the camera imagery. This assumption needs stronger
justification. The lack of provided code is a serious concern, particularly for a
technical note. This does not comply with the FAIR principles, which are essential for
research reproducibility.

Response to Comment 3:

The contact-based biases in physical gauges can generally be divided into random and
systematic components. DL models inherently possess a strong capability to smooth
out stochastic noise during the optimization process. In our study, an automatic
detection module was specifically developed to identify and mitigate significant
systematic errors.

Regarding the assumption issue, the strength of the multi-task learning framework lies
in its ability to balance and integrate errors across different tasks, thereby enhancing
the learning performance of each task simultaneously. It is not necessary to impose a
prior assumption about the superiority of one data source over another, and indeed,
we have not tried to make such assumption in this study. Furthermore, minor
geometric or imagery-related shifts caused by slight camera movement or
displacement do not adversely affect the learning performance of DL models, as we
have explained in our response to comment 1.

With regard to traditional statistical approaches, these methods typically rely on
causal relationships, in which additional meteorological variables — such as
precipitation and temperature — are incorporated to correct or explain variations in
stage data. In the absence of such external drivers, however, it becomes challenging to
distinguish genuine hydrological dynamics from observation errors. In contrast, our
approach is grounded in correlative relationships derived directly from camera
imagery, providing a visually supported validation pathway that operates
independently of meteorological inputs. While future extensions may integrate these
meteorological factors, the current framework is designed to address challenges that
traditional statistical methods cannot effectively resolve without them. Therefore, the
two approaches are conceptually distinct and not directly comparable. The Discussion
section of the revised manuscript will further elaborate on the theoretical distinctions
between causal and correlative modeling paradigms

Finally, we appreciate the reviewer’s valuable suggestion regarding code accessibility.
We will make the full source code publicly available and include the corresponding



repository link in the revised manuscript to facilitate reproducibility and future
research use.
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