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Abstract. Modeling biogeochemical processes in ocean fluid dynamics simulations is computationally expensive, necessitat-

ing efficient model reduction techniques. Large-scale biophysical simulations, such as high-resolution large-eddy simulations

(LES) of the upper ocean, require significant computing resources to capture small-scale turbulent processes while also re-

solving the evolution of reactive biogeochemical tracers. However, the complexity of existing biogeochemical models, such

as the Biogeochemical Flux Model (BFM) which resolves 56 state variables, leads to unfeasibly high computational costs5

when represented in detailed LES. To address this, we applied model reduction techniques from the field of combustion to

systematically reduce the complexity of the BFM while maintaining high fidelity. Specifically, we developed a modified ver-

sion of the Directed Relation Graph with Error Propagation method and applied it to a 50-state-variable BFM. By analyzing

24 reduction scenarios, we produced five reduced models containing between 1 and 36 state variables capable of accurately

capturing trends in concentration of the target fields. The results demonstrate the effectiveness of this reduction approach in10

preserving key biogeochemical dynamics while significantly reducing model size and complexity, paving the way for more

efficient high-resolution ocean biogeochemical simulations.
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1 Introduction

Ocean biogeochemical modeling has emerged as a key tool for investigating a wide range of biogeochemical processes in

the ocean, with applications to studies of ocean carbon cycling, acidification, deoxygenation, and fisheries science (Fennel15

et al., 2022). Ocean biogeochemical models range in complexity from simple, nutrient-phytoplankton-zooplankton (NPZ)

(Franks, 2002; Lewis, 2005) or nutrient-phytoplankton-zooplankton-detritus (NPZD) (Denman and Peña, 2002; Schartau and

Oschlies, 2003; Heinle and Slawig, 2013) models that contain only three or four state variables, to complex NPZD-type models

containing 20 or more state variables, such as the Biogeochemical Elemental Cycling (BEC) model (Moore et al., 2013); the

Biogeochemical Flux Model (BFM) (Vichi et al., 2007b); the Carbon, Ocean, Biogeochemistry and Lower Trophics (COBALT)20

model (Stock et al., 2014, 2020); the Ecological Simulation (EcoSim) model (Bissett et al., 1999); and the biogeochemical

MIRO model (Lancelot et al., 2005). Higher-complexity biogeochemical models contain multiple phytoplankton, zooplankton,

and bacteria functional groups, and carry multiple limiting nutrients such as nitrate, ammonium, and iron.

Ocean biogeochemical models are coupled with physical circulation models to represent the physical transport and mixing

of dissolved and suspended components critical for biogeochemical cycling. One-dimensional (depth) and three-dimensional25

(latitude, longitude, depth) models of physical circulation span a range of spatial resolutions (meters to hundreds of kilometers)

and model domains (regional to global). Limited computational resources often require biogeochemical model complexity to

be balanced by physical model complexity, for example, by simulating complex biogeochemical processes across the global

ocean at coarse resolution (hundreds of kilometers) to represent processes important for global carbon cycling, or by simulating

a simplified version of biogeochemical cycling in a small region at high resolution to capture the role of eddies or submesoscale30

processes on phytoplankton abundance.

Modeling the interactions between reactive ocean biogeochemical tracers and small-scale ocean circulation processes requires

high levels of both physical and biogeochemical model complexity. This is because the mixing timescales of small-scale tur-

bulence (1 m–1 km) are similar to the biogeochemical reaction timescales (Smith et al., 2015). Yet, past studies addressing

physical–biogeochemical interactions on small scales have used either highly complex biogeochemical models and simpli-35

fied physical models (Benzi and Nelson, 2009; Smith et al., 2020), or, alternatively, complex physical models and simplified

biogeochemical models (Lévy et al., 2001; Le Quéré et al., 2005; Wiggert et al., 2006; Smith et al., 2015, 2018). Simulating

coupled physical and biogeochemical processes with sufficient complexity at small scales (e.g., within large eddy simulation

or LES) requires extensive computational resources that are often beyond the reach of most scientific projects. These compu-

tational costs can be reduced with ocean biogeochemical model reduction techniques, wherein the number of biogeochemical40

reactive tracers is reduced without affecting model fidelity.

Recent studies have successfully coupled reduced forms of complex ocean biogeochemical models to small-scale physical

models. Ward et al. (2013) removed processes involving unconstrained parameters, with a focus on balancing generality and

uncertainty (rather than computational cost). Galbraith et al. (2015) compared the full-detail 30-tracer TOPAZ model against

manually reduced models with three and six tracers, finding that the reduced models could reasonably capture spatial patterns45
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of nutrients and oxygen, and carbon uptake; however, the reduced models produced significant differences in organic matter

cycling. Smith et al. (2018) used computational singular perturbation to reduce a detailed eight-species ocean carbonate chem-

istry model for coupling with LES (2.5 m resolution); the model reduction permitted a multi-hour simulation of the coupled

model and produced high spatiotemporal variability in dissolved inorganic carbon. More recently, Smith et al. (2020) devel-

oped a reduced-order biogeochemical model and coupled this to the one-dimensional Princeton Ocean Model (POM). They50

manually reduced the BFM from 56 to 17 state variables by using intuition to remove state variables believed to be unimportant

to open-ocean ecosystem dynamics. While successful, their ocean biogeochemical model reduction process would be difficult

to replicate in other models.

The present study outlines the development and implementation of a model reduction method, based on techniques used in

the combustion field, to obtain reduced forms of ocean biogeochemical models. We apply the method to the open-ocean, 56-55

state-variable BFM v5.3 (Vichi et al., 2023). We then couple the reduced forms of the BFM to the one-dimensional Princeton

Ocean Model (POM1D) and verify the result by comparing to the fully coupled BFM-POM1D (Vichi et al., 2007a). As we

will demonstrate, our reduced models maintain high fidelity at lower computational cost. While our study focuses on reducing

the BFM, the model reduction technique can be applied to any ocean biogeochemical model.

2 Methods60

This section first describes the physical transport model used in this work, as well as the biogeochemical model used here for

demonstration. Second, we describe the theory behind an existing reduction method: directed relation graph with error propa-

gation (DRGEP). Next, the modified DRGEP method developed for this research is described. Then, we provide a description

of automation software for the modified DRGEP method.

2.1 Princeton Ocean Model65

POM was originally developed by Blumberg and Mellor (1987) and is an open-source software package written in Fortran.

It is a free surface, hydrostatic, primitive equation ocean circulation model that employs a sigma coordinate system scaled

by the depth of the water column for the vertical coordinate. The prognostic state variables include temperature, salinity,

and turbulent kinetic energy fields, with modifications allowing for diagnostic simulations using climatological data for tem-

perature and salinity profiles. Vertical mixing coefficients are computed using a second-order turbulence closure sub-model.70

Appendix B contains a brief description of the governing equations for the diagnostic mode of POM1D, which is used in this

study. Blumberg and Mellor (1987) and Mellor (2003) fully describe the three-dimensional POM and the one-dimensional ver-

sion (POM1D), respectively. We rewrote POM1D in Python (pyPOM1D) (Jordan et al., 2025a) for coupling with the Python

version of the BFM (Jordan et al., 2025a) and reduction software (Klee, 2020a), described next.
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2.2 BFM model75

The BFM was originally developed by Vichi et al. (2007b, 2023) and is implemented in an open-source software package

written in Fortran. For the purposes of this research, the dimensional BFM was rewritten in Python (Klee, 2020b; Jordan et al.,

2025a). The full BFM v5.3 contains 56 state variables and includes the cycling of iron. For this work, we did not include iron

cycling, resulting in a model containing 50 state variables. The state variables are categorized into three different chemical

functional families (CFFs): living organic (LO), non-living organic (NO), and inorganic (IO). Figure 1 shows a schematic of80

the interactions between the CFFs. Vichi et al. (2007b) provide a full description of BFM.
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Figure 1. Schematic of the 50-state-variable BFM indicating the CFFs and the processes which transport matter; adapted from Vichi et al.

(2007b).
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2.3 DRGEP Method

In the field of combustion and gas-phase chemical kinetics, skeletal reduction methods are used to simplify complex chem-

ical reaction models while preserving the essential kinetics and dynamics of the system. Skeletal reduction methods remove

unimportant species and reactions for given conditions and applications to improve computational efficiency. DRGEP, like85

other skeletal reduction methods, is designed to be applied to chemical kinetic models in the form of a system of elementary

chemical reactions. This is a limitation of these methods, because they can not easily be applied to models in the general form

of ordinary differential equations (ODEs), like the BFM. This motivated the development of a modified DRGEP method that

can reduce models not in the form of elementary reactions.

Pepiot-Desjardins and Pitsch (2008) first introduced the DRGEP method to improve on the original directed relation graph90

(DRG) method (Lu and Law, 2005, 2006a, b). This method represents a chemical kinetic model as a graph, as Figure 2

illustrates, where the nodes represent species and the weight and direction of the connecting lines represent the species depen-

dencies, due to interactions in reactions. Species B and D are directly linked to the target species A and species C is directly

linked to B. Removing species D introduces an estimated error of rAD in the production rate of target A. Removing species

C introduces an estimated error of rBC to species B which propagates to A.95

Figure 2. Example of a directed relation graph showing the direct interaction coefficients, rAB , as the weight for the edge connecting each

node/species.

Species dependencies are quantified using a direct interaction coefficient, which approximates the error induced in the net

production of species A by the removal of species B from the model. The direct interaction coefficient is

rAB =

∣∣∑nR

i=1 νA,iωiδ
i
B

∣∣
max(PA,CA)

, (1)

where

PA =
nR∑

i=1

max(0,νA,iωi) ,100
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CA =
nR∑

i=1

max(0,−νA,iωi) ,

δi
B =





1, if the ith reaction involves species B,

0, otherwise,
(2)

i is the ith reaction, nR is the total number of reactions, νA,i is the stoichiometric coefficient of species A in the ith reaction,

and ωi is the overall reaction rate of the ith reaction (Pepiot-Desjardins and Pitsch, 2008; Niemeyer et al., 2010; Niemeyer and105

Sung, 2011). Once the direct interaction coefficients are calculated, a modified version of Dijkstra’s algorithm calculates the

overall interaction coefficients (Dijkstra, 1959; Niemeyer and Sung, 2011):

RTB = max
all paths p

(rTB,p) , (3)

where the path-dependent interaction coefficient between target species T and species B along path p, rTB,p, is

rTB,p =
n−1∏

j=1

rSjSj+1 , (4)110

n is the number of species between T and B in pathway p, and Sj is a placeholder for the intermediate species j starting at T

and ending at B.

After obtaining the overall interaction coefficient for each species, a user-defined cutoff threshold, ϵ, identifies species that can

be removed. DRGEP removes any species and its associated reactions if the overall interaction coefficient for that species is

less than the cutoff threshold. Previous research indicated that DRGEP offers improved reduction efficiency compared to DRG,115

in that it can remove more species for a given error tolerance (Pepiot and Pitsch, 2005; Pepiot-Desjardins and Pitsch, 2008;

Niemeyer et al., 2010; Niemeyer and Sung, 2011).

2.4 Modified DRGEP

Next, we introduce the modified DRGEP method, which is similar to the DRGEP method but uses a modified direct interaction

coefficient. The modification allows the method to be applied to a broader range of models, not just in the form of elementary120

chemical reactions, where nodes and edges are generalized to be any model component and interactions between them. Many

biogeochemical models are in the form of ODEs and cannot be reduced using existing skeletal model reduction methods like

DRGEP. The modified direct interaction coefficient was developed based on Pepiot-Desjardins and Pitsch (2008)’s original

definition of the direct interaction coefficient: “rAB quantifies how much removing B disturbs the established balance between

production and consumption in the source term ofA.” The modified direct interaction coefficient is obtained by first generating125

the error matrix:



eC1C1 . . . eC1Cn

...
. . .

...

eCnC1 . . . eCnCn


 , (5)
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where n is the number of species in the model, and the elements eCACB
are the percent error between the original rate of

change in concentration for species A and the rate of change in concentration for species A after removing species B:

eCACB
=

∣∣∣∣∣
dCA

dt

∣∣new− dCA

dt

∣∣original

dCA

dt

∣∣original

∣∣∣∣∣ · 100% . (6)130

Next, the percent error matrix from Eq. (5) is normalized by the maximum value along each row in the matrix. This normalized

matrix is the modified direct interaction coefficient matrix, where a given element would be calculated as

r̃CACB
=

eCACB

max(eCAC1 ,eCAC2 , . . . ,eCACn)
. (7)

After calculating the modified direct interaction coefficients, the method follows the DRGEP method. Using the modified

direct interaction coefficients, the overall interaction coefficients are calculated for a given target species as shown in Eqs. (3)135

and (4). Then, a user-defined cutoff threshold identifies which species can be removed. Any species whose overall interaction

coefficient is less than the cutoff threshold can be removed.

2.5 Modified DRGEP Automation

The software developed for implementing the modified DRGEP method uses an automated reduction algorithm (Klee, 2020a).

A specific scenario needs to be considered for the automation, because the algorithm iterates through different threshold values140

and checks the percent error introduced by the reduced model. This error is specific to a given scenario and is for quantities of

interest to the user that are representative of a realistic use of the model. The iterations stop when the magnitude of the error

exceeds a user-specified limit. The percent error between the full model and the reduced model determines the effectiveness

of the reduced model being generated. This percent error can be characterized by the deviation from the full model for any

combination of variables the user specifies. For example, it might be the percent error in the average concentration for a given145

species over a specified amount of time.

When using the automated reduction scenario, the following inputs are needed:

– The target species, which are the species of interest for the reduction scenario and overall interaction coefficients are

calculated for each target species;

– Retained species, which are species that are also important and need to be kept in the reduced model, but do not affect150

the removal of any other species since overall interaction coefficients are not computed for them;

– The error function, which contains the calculation for the percent error being used in the reduction algorithm, and is

specific for the scenario being considered;

– Error limit, which is a value the user determines, and is used to terminate the algorithm when the percent error exceeds

this value;155

– Function containing the rate equations for the model being reduced.
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Once all of the inputs are provided, the program starts at a cutoff threshold, determines which species can be removed, removes

them, then computes the error. If the error is less than the error limit, the program will increment the threshold value and repeat

the reduction process. This loop is repeated until the error exceeds the specified error limit. The penultimate run conditions are

used as the reduced model.160

3 BFM Reduction

We configured the coupled pyPOM1D-BFM model to simulate seasonal phytoplankton dynamics within the upper 150 m of

the ocean measured at the BATS location (Steinberg et al., 2001). Monthly climatologies of BATS were used as forcing data

in the biophysical simulations assuming a 360-day climatological year with 12 months and 30 days per month. The modified

DRGEP method was applied to the coupled pyPOM1D-BFM at multiple depths—air-sea interface (0 m), 25 m, 50 m, 75 m,165

100 m, 125 m, and mixed layer bottom (150 m)—to consider surface, subsurface, and bottom effects while performing the

model reduction analysis. Direct interaction coefficients were calculated for all state variables at each of the chosen depths.

The maximum interaction coefficient was then selected for each state variable to ensure the reduced model obtained would be

valid through the full domain. After the direct interaction coefficients and overall interaction coefficients are calculated, state

variables are removed from the model based on the user-defined cutoff threshold.170

To perform the model reduction we define a scenario that includes at least one target state variable and a specific percent error

that controls the reduction. We chose the scenarios based on state variables typically of interest in the oceanic community,

categorized into four sections: living organic (LO), dissolved inorganic carbon (DIC), particulate organic nitrogen (PON),

inorganic nutrients (IN), and oxygen. The reduced model generated for each scenario is only valid for the conditions used for

the reduction. We constructed a total of 24 different scenarios with relevant percent errors in either average concentration, peak175

concentration, or time of peak concentration for the given target state variables.

We forced the following state variables to be retained in all scenarios: ammonium (N (4)) and all phytoplankton chlorophyll

constituents (P (1)
chl , P (2)

chl , P (3)
chl , P (4)

chl ). Nitrate (N (3)) was also retained for the DIC4 scenario. We found that these state variables

play important roles that are not completely captured using the interaction coefficients and need to be retained manually. This is

consistent with prior applications of the DRGEP reduction method used in combustion, where inert species need to be protected180

from removal in the same way (Lu and Law, 2005, 2006a, b; Niemeyer et al., 2010).

3.1 Living Organic Scenarios

The LO CFF within the BFM includes four types of phytoplankton, pelagic bacteria, and four types of zooplankton. For the

LO category, nine scenarios were considered, broken up into two sub-categories: phytoplankton chlorophyll and phytoplank-

ton carbon. Six scenarios considered the phytoplankton chlorophyll concentrations and three considered phytoplankton carbon185

concentrations. The BFM contains four phytoplankton groups in the full BFM: diatoms (P (1)), nanoflagellates (P (2)), pico-

phytoplankton (P (3)), and large phytoplankton (P (4)); and four zooplankton groups: carnivorous mesozooplankton (Z(3)),
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omnivorous mesozooplankton (Z(4)), microzooplankton (Z(5)), and heterotrophic nanoflagellates (Z(6)). The scenarios, in-

cluding the target state variables and the error being calculated for the reduction are:

LO1. This scenario measures the error in the average chlorophyll concentration (sum of P (1)
chl , P (2)

chl , P (3)
chl , and P (4)

chl ) during190

the spring bloom, occurring January to March for the second year of a ten-year simulation.

LO2. This scenario is similar to Scenario 1 but excludes diatoms, and the error is in the average chlorophyll concentration

(sum of P (2)
chl , P (3)

chl , and P (4)
chl ) during the spring bloom, occurring January to March for the second year of a ten-year

simulation.

LO3. This scenario is similar to Scenario 2, but also excludes nanoflagellates and the error is in the average chlorophyll195

concentration (sum of P (3)
chl and P (4)

chl ) during the spring bloom occurring January to March for the second year of a

ten-year simulation.

LO4. This scenario measures the error in the peak chlorophyll concentration (sum of P (1)
chl , P (2)

chl , P (3)
chl , and P (4)

chl ) during the

spring bloom occurring January to March for the second year of a ten-year simulation.

LO5. This scenario is similar to Scenario 4 but excludes diatoms, and the error is in the peak chlorophyll concentration (sum of200

P
(2)
chl , P (3)

chl , and P (4)
chl ) during the spring bloom occurring January to March for the second year of a ten-year simulation.

LO6. This scenario is similar to Scenario 5 but also excludes nanoflagellates, and the error is in the peak chlorophyll concen-

tration (sum of P (3)
chl and P (4)

chl ) during the spring bloom occurring January to March for the second year of a ten-year

simulation.

LO7. This scenario looks at a spring phytoplankton bloom and measures the error in the average phytoplankton carbon con-205

centration (sum of P (1)
C , P (2)

C , P (3)
C , and P (4)

C ) during the spring bloom occurring January to March in the second year

of a ten-year simulation.

LO8. This scenario looks at a spring phytoplankton bloom and measures the error in the peak phytoplankton carbon concen-

tration (sum of P (1)
C , P (2)

C , P (3)
C , and P (4)

C ) during the spring bloom occurring January to March in the second year of a

ten-year simulation.210

LO9. This scenario looks at a spring phytoplankton bloom and measures the error in the time at which the peak phytoplankton

carbon concentration occurs (sum of P (1)
C , P (2)

C , P (3)
C , and P (4)

C ) during the spring bloom occurring January to March in

the second year of a ten-year simulation.

Eight of the Nine LO scenarios result in the same 34-state-variable model (BFM34) by removing the following state variables:

silicate (N (5)), reduction equivalents (N (6)), diatom silicate (P (1)
S ), all mesozooplankton constituents (Z(3)

C , Z(3)
N , Z(3)

P , Z(4)
C ,215

Z
(4)
N , Z(4)

P ), heterotrophic flagellates nitrogen Z(6)
N , semi-labile dissolved organic carbon (R(2)

C ), semi-refractory dissolved or-

ganic carbon (R(3)
C ), particulate organic silicate (R(6)

S ), DIC (O(3)), nitrogen sink (O(4)), and total alkalinity (O(5)). These

state variables are not important when considering a phytoplankton spring bloom (for both carbon and chlorophyll concentra-
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tions) and the amount of carbon stored in non-photosynthesizers. The one exception was scenario LO9, which removed the

microzooplankton nitrogen constituent (Z(5)
N ) and heterotrophic flagellates nitrogen (Z(6)

N ) in addition to the 16 state variables220

listed above. We disregarded this 32-state-variable model because removing Z(5)
N increases the error of the other LO scenarios

beyond the error limit. Table 1 summarizes the reduction results for each scenario.

Table 1. Results from the model reduction for the LO scenarios showing which percent error is being calculated for the reduction, the target

state variables, and the percent error for each scenario. The full BFM contains 50 state variables. The reduced model for LO1, LO2, LO3,

LO4, LO5, LO6, LO7, and LO8 contains 34 state variables. The reduced model for LO9 contains 32 state variables.

Scenario Error Description Target State Variables % Error Error Units

LO1 Average P
(1)
chl , P (2)

chl , P (3)
chl , P (4)

chl 0.119 mg Chl-a m−3

LO2 Average P
(2)
chl , P (3)

chl , P (4)
chl 0.400 mg Chl-a m−3

LO3 Average P
(3)
chl , P (4)

chl 0.447 mg Chl-a m−3

LO4 Peak P
(1)
chl , P (2)

chl , P (3)
chl , P (4)

chl 0.008 mg Chl-a m−3

LO5 Peak P
(2)
chl , P (3)

chl , P (4)
chl 0.008 mg Chl-a m−3

LO6 Peak P
(3)
chl , P (4)

chl 0.169 mg Chl-a m−3

LO7 Average P
(1)
C , P (2)

C , P (3)
C , P (4)

C 0.138 mg C m−3

LO8 Peak P
(1)
C , P (2)

C , P (3)
C , P (4)

C 0.032 mg C m−3

LO9 Time of peak P
(1)
C , P (2)

C , P (3)
C , P (4)

C 1.350 mg C m−3

3.2 Inorganic Nutrient Scenarios

The IN category considers four scenarios:

IN 1. This scenario measures the error in the average phosphate (N (1)) concentration for the second year of a ten-year simu-225

lation.

IN 2. This scenario measures the error in the peak phosphate concentration during the second year of the ten-year simulation.

IN 3. This scenario measures the error in the average for the nitrate (N (3)) concentration for the second year of a ten-year

simulation.

IN 4. This scenario measures the error in the peak nitrate concentration that occurs during the second year of the ten-year230

simulation.

All four IN scenarios result in the same 34-state-variable model (BFM34) obtained in LO scenarios. Table 2 summarizes the

reduction results for each IN scenario.

3.3 Particulate Organic Nitrogen Scenarios

The PON category considers three scenarios:235
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Table 2. Results from the model reduction for the inorganic nutrient scenarios showing which percent error is being calculated for the

reduction, the target species, and the percent error for each scenario. The full BFM contains 50 state variables. The reduced model contains

34 state variables.

Scenario Error Description Target State Variables % Error Error Units

IN1 Average N (1) 0.201 mmol P2 m−3

IN2 Peak N (1) 0.101 mmol P2 m−3

IN3 Average N (3) 0.000 mmol N2 m−3

IN4 Peak N (3) 0.000 mmol N2 m−3

PON1. This scenario measures the error in a one-year average concentration for PON (R(6)
N ) and phytoplankton nitrogen

constituents (P (1)
N , P (2)

N , P (3)
N , P (4)

N ) for the second year of a ten-year simulation.

PON2. This scenario measures the error in peak concentration for PON and phytoplankton nitrogen constituents during the

second year of a ten-year simulation.

PON3. This scenario measures the error in the time at which the peak concentrations for PON and phytoplankton nitrogen240

constituents occur during the second year of a ten-year simulation.

PON1 and PON2 result in a 35-state-variable model (BFM35) removing: silicate (N (5)), reduction equivalents (N (6)), diatom

silicate (P (1)
S ), all mesozooplankton constituents (Z(3)

C , Z(3)
N , Z(3)

P , Z(4)
C , Z(4)

N , Z(4)
P ), semi-labile dissolved organic carbon

(R(2)
C ), semi-refractory dissolved organic carbon (R(3)

C ), particulate organic silicate (R(6)
S ), DIC (O(3)), nitrogen sink (O(4)),

and total alkalinity (O(5)). PON3 resulted in the same 34-state-variable model produced in the LO scenarios. We disregarded245

this 34-state-variable model because removing Z(6)
N increases the error of the other PON scenarios beyond the error limit.

Table 3. Results from the model reduction for the PON scenarios showing which percent error is being calculated for the reduction, the target

state variables, and the percent error for each scenario. The full BFM contains 50 state variables. The reduced model for the PON scenarios

contains 35 state variables.

Scenario Error Description Target State Variables % Error Error Units

PON1 Average P
(1)
N , P (2)

N , P (3)
N , P (4)

N , R(6)
N 0.105 mmol N m−3

PON2 Peak P
(1)
N , P (2)

N , P (3)
N , P (4)

N , R(6)
N 0.036 mmol N m−3

PON3 Time of peak P
(1)
N , P (2)

N , P (3)
N , P (4)

N , R(6)
N 4.890 mmol N m−3

3.4 Oxygen Scenarios

The oxygen category considers four scenarios:
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Oxygen1. This scenario measures the error in a one-month average for the oxygen (O(2)) concentration in January of the

second year of a ten-year simulation.250

Oxygen2. This scenario measures the error in a one year average for the oxygen concentration in the second year of a ten-year

simulation.

Oxygen3. This scenario measures the error in the peak oxygen concentration that occurs during the second year of the ten-year

simulation.

Oxygen4. This scenario measures the error in the time at which the peak oxygen concentration occurs during the second year255

of the ten-year simulation.

The Oxygen1, Oxygen2, and Oxygen4 scenarios result in the same 35-state-variable (BFM35) model produced by the PON

scenarios. Oxygen3 results in a six-state-variable model, which included oxygen and the five retained state variables. We then

ran the scenario with the retained state variables removed to determine their impact of the peak oxygen concentration, resulting

in a single-state-variable model with only oxygen. Table 4 summarizes the reduction results for each oxygen scenario.260

Table 4. Results from the model reduction for the oxygen scenarios showing which percent error is being calculated for the reduction, the

target state variable, and the percent error for each scenario. The full BFM contains 50 state variables. The reduced model for Oxygen1,

Oxygen2, and Oxygen4 contains 35 state variables. The reduced model for Oxygen3 only includes oxygen.

Scenario Error Description Target State Variables % Error Error Units

Oxygen1 Average O(2) 0.082 mmol O2 m−3

Oxygen2 Average O(2) 0.108 mmol O2 m−3

Oxygen3 Peak O(2) 0.123 mmol O2 m−3

Oxygen4 Time of peak O(2) 0.000 mmol O2 m−3

The Oxygen3 scenario shows that all other state variables can be removed from the model without significantly impacting

the peak oxygen concentration. This can be important in determining oxygen-minimum zones in the ocean—a fully detailed

biogeochemical model is not necessary to model oxygen concentrations in the upper ocean. Though the rate equation for

oxygen concentration depends on phytoplankton, bacteria, and zooplankton source/sink terms, peak oxygen concentration is

driven more by the aeration at the ocean surface than the other source and sink terms. Oxygen aeration by wind depends265

on oxygen concentration and location-specific environmental parameters such as temperature, salinity, and wind speed. This

suggests that this single-state-variable reduced model may only be valid for the parameters used in the BFM, and may not be

suitable generally.

3.5 Dissolved Inorganic Carbon Scenarios

The DIC category considers four scenarios:270
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DIC1. This scenario measures the error in a one-month average for the DIC (O(3)) concentration for January in the second

year of a ten-year simulation.

DIC2. This scenario measures the error in a one-year average for the DIC concentration for the second year of a ten-year

simulation.

DIC3. This scenario measures the error in a one year average for the DIC concentration for the fifth year of a ten-year simula-275

tion.

DIC4. This scenario measures the error in the peak DIC concentration that occurs during the second year of the ten-year

simulation.

Three of the four DIC scenarios result in the same 36-state-variable model (BFM36) which removes silicate (N (5)), reduction

equivalents (N (6)), diatom silicate (P (1)
S ), all mesozooplankton constituents (Z(3)

C , Z(3)
N , Z(3)

P , Z(4)
C , Z(4)

N , Z(4)
P ), semi-labile280

dissolved organic carbon (R(2)
C ), semi-refractory dissolved organic carbon (R(3)

C ), particulate organic silicate (R(6)
S ), nitrogen

sink (O(4)), and total alkalinity (O(5)). This model closely resembles BFM35, since DIC concentration is highly dependent on

primary productivity.

The one exception was scenario DIC4, which results in a 23-state-variable model (BFM23) removing: silicate (N (5)), reduction

equivalents (N (6)), all remaining diatom constituents (P (1)
C , P (1)

N , P (1)
P , P (1)

S ), all remaining picophytoplankton constituents285

(P (3)
C , P (3)

N , P (3)
P ), all remaining large phytoplankton constituents (P (4)

C , P (4)
N , P (4)

P ), all mesozooplankton constituents (Z(3)
C ,

Z
(3)
N , Z(3)

P , Z(4)
C , Z(4)

N , Z(4)
P ), microzooplankton nitrogen (Z(5)

N ), all heterotrophic flagellate constituents (Z(6)
C , Z(6)

N , Z(6)
P ),

semi-labile dissolved organic carbon (R(2)
C ), semi-refractory dissolved organic carbon (R(3)

C ), particulate organic silicate (R(6)
S ),

nitrogen sink (O(4)), and total alkalinity (O(5)). The DIC4 scenario originally produced a 22-state-variable model with nitrate

(N (3)) removed in addition to those removed in BFM23. Although nitrate’s overall interaction coefficient designates it as290

an “unimportant” state variable for determining peak DIC concentration, it is necessary to retain all nutrients for biological

processes when living organisms are present in a model. We therefore set nitrate as an additional retained state variable for the

DIC4 scenario. The BFM23 reduced model is similar in size to the 17-state-variable model (BFM17) that Smith et al. (2020)

produced manually. BFM23 includes bacteria, DIC, and three additional phytoplankton chlorophyll constituents not included

in BFM17, while BFM17 includes the nitrogen constituent for microzooplankton not present in BFM23. Table 5 summarizes295

the reduction results for each DIC scenario.

4 Model Reduction Results

4.1 Physical Coupling to the Automatically Reduced BFM

We coupled each reduced model to the one-dimensional transport model, ran these to steady state, and calculated monthly

means as functions of depth for chlorophyll-a, oxygen, nitrate, phosphate, PON, NPP, and DIC. We calculated normalized root300

mean squared error (NRMSE) to quantitatively evaluate the model. Root mean squared error (RMSE) was normalized by the
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Table 5. Results from the model reduction for the DIC scenarios showing which percent error is being calculated for the reduction, the target

state variable, and the percent error for each scenario. The full BFM contains 50 state variables. The reduced model for the DIC scenarios

contains 36 state variables.

Scenario Error Description Target State Variable % Error Error Units

DIC1 Average, 1 month O(3) 0.124 mg C m−3

DIC2 Average, year 2 O(3) 0.106 mg C m−3

DIC3 Average, year 5 O(3) 0.117 mg C m−3

DIC4 Peak, year 2 O(3) 0.069 mg C m−3

difference between the standard deviation in pyPOM1D-BFM50 for each concentration field.

RMSE =

√∑N
i=1 (xi− yi)

2

N
(8)

NRMSE =
RMSE
σ

× 100% , (9)305

whereN is the number of grid points in the concentration field and xi and yi are the concentrations at location i for the reduced

and full models, respectively. The standard deviation in each field is

σ =

√∑
(xi− x̄)2
N − 1

(10)

where x̄ is the mean concentration in the field of interest.

Figures 3 and 4 show the NRMSEs in the fields of interest for each of the coupled physical-biogeochemical models. We310

find small RMSE values in the fields of interest in the 34-, 35-, and 36-state-variable models despite an approximate 30%

reduction in size of the full model. A significant improvement in the representation of the Nitrate field can be seen between

BFM34 and BFM35 with the inclusion of the heterotrophic flagellate nitrogen constituent (Z(6)
N . Large errors are observed in

the targe fields for BFM17, which further demonstrates its loss of accuracy detailed by Smith et al. (2020). When compared

to the manually reduced BFM17, the automatically reduced BFM23 provides a more accurate representation of the Oxygen,315

Phosphate, NPP, and DIC fields. With respect to the original, full model, the 1-, 23-, and 36-state-variable models were chosen

as unique scenarios to be presented below. Due to similarities in size and performance to BFM36, we do not present the results

for the less-detailed BFM34 and BFM35, but these can be found in Appendix C.

4.1.1 Single-Variable Oxygen Model

This oxygen model captures trends in the oxygen profile, including locations of maximum and minimum concentrations in the320

field. However, the oxygen concentration obtained from the reduced model is slightly lower than in the full model, particularly
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Figure 3. NRMSE (%) of the 34-, 35-, and 36-state variable models with respect to the full pyPOM1D-BFM50. Note the use of multiple

y-axis limits to represent the error in the concentration fields on different scales. Error in DIC is not shown for BFM34 and BFM35 as the

constituent is not resolved in the models.

in the subsurface region where primary production is the most prevalent. These results indicate the air-sea flux of oxygen is the

primary driver of oxygen concentrations in the upper ocean. Figure 5 qualitatively compares the results to those obtained from

the pyPOM1D-BFM50 in the second year of the simulation.

4.1.2 23-State-Variable BFM325

Figure 6 qualitatively compares the results to those obtained from the pyPOM1D-BFM50. The 23-state-variable model suc-

cessfully captures the trends in the profiles for each field of interest. In comparison to the full model, BFM23 produces over-

saturated nitrate and phosphate fields and undersaturated PON and DIC fields. This comes from the removal of multiple living

organisms in the model, resulting in lower nutrient consumption, respiration, and particulate nitrogen content. Chlorophyll-a

and NPP concentrations are also undersaturated in the reduced model due to removing three of the four phytoplankton groups.330

Though the chlorophyll constituent of each phytoplankton group was retained during the reduction, chlorophyll synthesis

highly depends on the carbon constituent (see Eq. A29). These results show the importance of parameter optimization fol-

lowing a model reduction, which is also evident in the manually reduced BFM17 (Smith et al., 2020). Kern et al. (2023)

optimized BFM17 by performing an optimization-based parameter estimation of the 51 uncertain model parameters, finding

improvement in total normalized error between 31% and 95% for five target fields—chlorophyll-a, oxygen, nitrate, phosphate,335

and PON. Appendix C provides a qualitative comparison of BFM23 to the manually reduced BFM17.
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Figure 4. NRMSE (%) of the Fortran BFM17 with respect to BFM50 and Python BFM23 with respect to the full pyPOM1D-BFM50. Error

in DIC is not shown for BFM17 as the constituent is not resolved in the model.

Figure 5. Comparison of (a) pyPOM1D-BFM50 simulation results to (b) pyPOM1D-Oxygen for oxygen concentration (mmol O/m3).
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Figure 6. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM23 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3).
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4.1.3 36-State-Variable BFM

Figure 7 qualitatively compares the results of BFM36 to those obtained from pyPOM1D-BFM50. The 36-state-variable model

provides the most accurate representation of the full BFM50, producing an NRMSE below 0.015% for all fields of interest apart

from oxygen at 0.857%. This demonstrates the ability of the modified DRGEP method to identify and remove unnecessary340

state variables from complex biogeochemical models. The method determined the 14 state variables removed from BFM50 to

produce BFM36 were determined to be unnecessary in all reduction scenarios.

4.1.4 Summary

Using a variety of scenarios, we reduced the 50-state-variable BFM to 1-, 23-, 34-, 35-, and 36-state-variable models. Am-

monium (N (4)) and all phytoplankton chlorophyll constituents (P (1)
chl , P (2)

chl , P (3)
chl , P (4)

chl ) are retained in each scenario except345

Oxygen3, which produced the single-variable model. The following state variables are identified as unimportant across all

scenarios: silicate (N (5)), reduction equivalents (N (6)), diatom silicate (P (1)
S ), all mesozooplankton constituents (Z(3)

C , Z(3)
N ,

Z
(3)
P , Z(4)

C , Z(4)
N , Z(4)

P ), semi-labile dissolved organic carbon (R(2)
C ), semi-refractory dissolved organic carbon (R(3)

C ), particu-

late organic silicate (R(6)
S ), nitrogen sink (O(4)), and total alkalinity (O(5)). Though these components could be removed from

the BFM, we do not suggest that these components are universally unimportant. Rather, the reduced models obtained in this350

work apply only to the BFM for specific environmental conditions and tracer interactions. Changing such conditions requires

the reduction strategies to be reapplied to a obtain reduced model that accurately represents the new system.

5 Conclusions

This study demonstrates a method for automatically reducing ocean biogeochemical models by adapting a technique used in

the field of combustion: the DRGEP method. DRGEP identifies unimportant species and reactions that can be removed from355

the system without inducing substantial error. However, DRGEP is designed to be applied to chemical kinetic models in the

form of elementary chemical reactions and cannot be easily applied to biogeochemical models in the form of ODEs. Here, we

introduce the modified DRGEP method, suitable for a broader range of model types, to apply to biogeochemical models.

We apply the modified DRGEP method to the 50-state-variable BFM, considering 24 reduction scenarios in terms of different

target state variables and/or types of error considered. The 24 scenarios are grouped into four categories: living organic, DIC,360

PON, and oxygen. These categories result in reduced models containing 1, 23, 34, 35, and 36 state variables. All reduction

scenarios consistently eliminate 14 state variables: silicate (N (5)), reduction equivalents (N (6)), diatom silicate (P (1)
S ), all

mesozooplankton constituents (Z(3)
C ,Z(3)

N ,Z(3)
P ,Z(4)

C ,Z(4)
N ,Z(4)

P ), semi-labile dissolved organic carbon (R(2)
C ), semi-refractory

dissolved organic carbon (R(3)
C ), particulate organic silicate (R(6)

S ), nitrogen sink (O(4)), and total alkalinity (O(5)). We find that

the reduction strategies are insensitive to the target state variables, which can be attributed to the strongly-coupled interactions365

between biogeochemical tracers.
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Figure 7. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM36 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3).
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We couple the reduced ocean biogeochemical models to a one-dimensional physical ocean model to examine the effect of

vertical transport on tracer distributions. We compare results from the reduced models with the full 50-state-variable BFM for

seven target fields of interest: chorophyll-a, oxygen, nitrate, phosphate, PON, NPP, and DIC. We find that the reduced models

produce results comparable to the full BFM for the target state variables of the chosen reduction strategy, which demonstrates370

the effectiveness of the modified DRGEP method. Additionally, the modified DRGEP method produces a reduced model

that is comparable in size to the manually reduced BFM17 with better performance, illustrating the utility of the method for

inexperienced users of ocean biogeochemical models.

Future work should apply the automatic model reduction strategy to other ocean biogeochemical models. Additionally, the

modified DRGEP method should be applied to the BFM using different observational data for environmental forcing to compare375

outputs for the reduction scenarios. It would be useful to perform a sensitivity analysis to identify and optimize the most

sensitive model parameters for a more accurate representation of observational data. The current structure of the modified

DRGEP method was designed for application to the BFM and cannot be directly applied to other biogeochemical models. This

motivates the development of a generalized framework for ocean biogeochemical models capable of accurately representing

models of varying structure and complexity to enable further implementation of the model reduction strategy.380

Code and data availability. The current version of pyPOM1D-BFM is available from the project website https://github.com/MalikJordan/

pyPOM1D-BFM under the BSD 3-clause license. The exact version of the model used to produce the results used in this paper is archived

on Zenodo (Jordan et al., 2025a), as are input data and scripts to run the model and produce the plots for all the simulations presented in this

paper (Jordan et al., 2025b).
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A BFM Equations385

The BFM is adapted from the original 56-state-variable model from Vichi et al. (2007b) (Vichi et al., 2023). We did not

include iron cycling for this work, which resulted in a full model containing 50 state variables. A list of the state variables is

provided in Table A1. The rate of change equations for each state variable are composed of source and sink terms from various

physiological and ecological processes listed in Table A2 and are detailed below.

Table A1. List of the 50 state variables in the BFM, including the chemical functional family (CFF), units, description, and rate equation

reference for each state variable. CFFs are divided into living organic (LO), non-living organic (NO), and inorganic (IO) families.

Symbol CFF Units Description Equation

P
(1)
C LO mg C m−3 Diatoms Carbon A4

P
(1)
N LO mmol N m−3 Diatoms Nitrogen A5

P
(1)
P LO mmol P m−3 Diatoms Phosphorus A6

P
(1)
chl LO mg Chl-a m−3 Diatoms Chlorophyll A7

P
(1)
S LO mmol Si m−3 Diatoms Silicate A8

P
(2)
C LO mg C m−3 Nanoflagellates Carbon A4

P
(2)
N LO mmol N m−3 Nanoflagellates Nitrogen A5

P
(2)
P LO mmol P m−3 Nanoflagellates Phosphorus A6

P
(2)
chl LO mg Chl-a m−3 Nanoflagellates Chlorophyll A7

P
(3)
C LO mg C m−3 Picophytoplankton Carbon A4

P
(3)
N LO mmol N m−3 Picophytoplankton Nitrogen A5

P
(3)
P LO mmol P m−3 Picophytoplankton Phosphorus A6

P
(3)
chl LO mg Chl-a m−3 Picophytoplankton Chlorophyll A7

P
(4)
C LO mg C m−3 Large Phytoplankton Carbon A4

P
(4)
N LO mmol N m−3 Large Phytoplankton Nitrogen A5

P
(4)
P LO mmol P m−3 Large Phytoplankton Phosphorus A6

P
(4)
chl LO mg Chl-a m−3 Large Phytoplankton Chlorophyll A7

BC LO mg C m−3 Pelagic Bacteria Carbon A33

BN LO mmol N m−3 Pelagic Bacteria Nitrogen A34

BP LO mmol P m−3 Pelagic Bacteria Phosphorus A35

Continued on next page
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Table A1 - Continued from previous page

Symbol CFF Units Description Equation

Z
(3)
C LO mg C m−3 Carnivorous Mesozooplankton Carbon A51

Z
(3)
N LO mmol N m−3 Carnivorous Mesozooplankton Nitrogen A52

Z
(3)
P LO mmol P m−3 Carnivorous Mesozooplankton Phosphorus A53

Z
(4)
C LO mg C m−3 Omnivorous Mesozooplankton Carbon A51

Z
(4)
N LO mmol N m−3 Omnivorous Mesozooplankton Nitrogen A52

Z
(4)
P LO mmol P m−3 Omnivorous Mesozooplankton Phosphorus A53

Z
(5)
C LO mg C m−3 Microzooplankton Carbon A51

Z
(5)
N LO mmol N m−3 Microzooplankton Nitrogen A52

Z
(5)
P LO mmol P m−3 Microzooplankton Phosphorus A53

Z
(6)
C LO mg C m−3 Heterotrophic Nanoflagellates Carbon A51

Z
(6)
N LO mmol N m−3 Heterotrophic Nanoflagellates Nitrogen A52

Z
(6)
P LO mmol P m−3 Heterotrophic Nanoflagellates Phosphorus A53

R
(1)
C NO mg C m−3 Dissolved Organic Carbon A74

R
(1)
N NO mmol N m−3 Dissolved Organic Nitrogen A75

R
(1)
P NO mmol P m−3 Dissolved Organic Phosphorus A76

R
(2)
C NO mg C m−3 Semi-Labile Dissolved Organic Carbon A77

R
(3)
C NO mg C m−3 Semi-Refractory Dissolved Organic Carbon A78

R
(6)
C NO mg C m−3 Particulate Organic Carbon A79

R
(6)
N NO mmol N m−3 Particulate Organic Nitrogen A80

R
(6)
P NO mmol P m−3 Particulate Organic Phosphorus A81

R
(6)
S NO mmol Si m−3 Particulate Organic Silicate A82

N (1) IO mmol P m−3 Phosphate A88

N (3) IO mmol N m−3 Nitrate A89

N (4) IO mmol N m−3 Ammonium A90

N (5) IO mmol Si m−3 Silicate A91

N (6) IO mmol S m−3 Reduction Equivalents A95

O(2) IO mmol O2 m−3 Dissolved Oxygen A84

O(3) IO mg C m−3 Dissolved Inorganic Carbon A85

O(4) IO mmol N m−3 Nitrogen Sink A92

O(5) IO mmol Eq m−3 Total Alkalinity A94
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Table A2. List of abbreviations used to indicate physiological and ecological processes in the BFM equations.

Abbreviation Process

gpp Gross primary production

rsp Respiration

prd Predation

rel Biological release: egestion, excretion, mortality

exu Exudation

upt Uptake

lys Lysis

syn Biochemical synthesis

nit Nitrification

denit Denitrification

rmn Biochemical remineralization

reox Reoxidation

Table A3. Symbols, values, units, and descriptions for constant parameters within the BFM.

Symbol Value Units Description

Ω
(O)
C 12.0 mmol O2 (mg C)−1 Stiochiometric coefficient for oxygen reaction

Ω
(O)
N 2.0 mmol O2 (mmol N)−1 Stiochiometric coefficient for nitrification reaction

Ω̃
(O)
N 1.25 mmol O2 (mmol N)−1 Stiochiometric coefficient for denitrification reaction

Ω
(r)
O 0.5 mmol HS− (mmol O2)−1 Stiochiometric coefficient for oxic-anoxic reaction

Ω
(r)
N 0.625 mmol HS− (mmol N)−1 Stiochiometric coefficient for nitrogen-anoxic reaction

εC 0.6 - Partition between dissolved and particulate excretion of carbon

εN 0.72 - Partition between dissolved and particulate excretion of nitrogen

εP 0.832 - Partition between dissolved and particulate excretion of phosphorus
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A1 Environmental Parameters390

The BFM depends on the following environmental parameters: temperature, surface irradiance, salinity, and wind speed. These

parameters change seasonally and their values are calculated using a sinusoidal forcing based on summer and winter values.

The effects of temperature on the physiological processes is denoted by a non-dimensional parameter f (T )
j defined as

f
(T )
j =Q

(T−T∗)/T∗

10,j , j = P,Z,B,N,S (A1)

where T ∗ is a base temperature and Q10,j is a a coefficient for phytoplankton (j = P ), zooplankton (j = Z), bacterioplankton395

(j =B), nitrification/denitrification reaction (j =N ), and the dissolution of biogenic silica (j = S). Irradiance directly affects

phytoplankton growth during photosynthesis. The amount of photosynthetically available radiation (PAR) within the BFM is

calculated as

EPAR =
QS εPAR

0.217λ∆z
(1− exp(−λ∆z)) (A2)

where QS is the short-wave surface irradiance flux, εPAR is the fraction of PAR within QS , 0.217 is a conversion factor used400

to convert QS from units of W m−2 to µ E m−2 s−1, λ is the total extinction coefficient, and ∆z is the depth of the surface

layer. The total extinction coefficient is calculated as

λ= λw + cR(6)R
(6)
C +

4∑

i=1

iP
(i)
chl (A3)

where λw is the background extinction coefficient, cR(6) if the specific attenuation coefficient of particulate detritus, and P (i)
chl

are the phytoplankton chlorophyll terms for i= 1,2,3,4.405

A2 Living Organic Components

The living organic components include phytoplankton, bacteria, and zooplankton.

A2.1 Phytoplankton

Phytoplankton are a part of the living organic CFF and the BFM contains four phytoplankton species: diatoms, nanoflagellates,

picophytoplankton, and large phytoplankton. Each phytoplankton species has carbon, nitrogen, phosphorous, chlorophyll, and410

silicate constituents, each representing a different state variable. The rate equations for each phytoplankton constituent are
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∂P
(i)
N

∂t

∣∣∣∣∣
bio

= max

[
0,
∂P

(i)
N

∂t

∣∣∣∣∣

upt

N(3)

+
∂P

(i)
N

∂t

∣∣∣∣∣

upt

N(4)

]
−
∑

j=1,6

∂P
(i)
N

∂t

∣∣∣∣∣

lys

R
(j)
N

− ∂P
(i)
N

∂P
(i)
C

6∑

k=3

∂Z
(k)
C

∂t

∣∣∣∣∣

prd

P
(i)
C

(A5)
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Table A4. Symbols, values, units, and descriptions for environmental parameters within the BFM.

Symbol Value Units Description

Q10,P 2.0 - Q10 coefficient for phytoplankton

Q10,Z 2.0 - Q10 coefficient for zooplankton

Q10,B 2.95 - Q10 coefficient for bacterioplankton

Q10,n 2.0 - Q10 coefficient for nitrification/denitrification

Q10,N5 1.49 - Q10 coefficient for dissolution of biogenic silica

T ∗ 20 ◦C Base temperature

EPAR 0.4 - Fraction of photosynthetically active radiation

λw 0.0435 m−1 Background attenuation coefficient

cR(2) 0.1 × 10−3 m2 (mg C)−1 C-specific attenuation coefficient of particulate detritus

∆z 5.0 m Depth of surface layer

T sum 28.0 ◦C Seawater temperature during the summer

Twin 8.0 ◦C Seawater temperature during the winter

QsumS 20.0 W m−2 Incident solar radiation during the summer

QwinS 300.0 W m−2 Incident solar radiation during the winter

Ssum 34.0 psu Seawater salinity during the summer

Swin 37.0 psu Seawater salinity during the winter

W sum 10.0 m s−1 Wind speed during the summer

Wwin 20.0 m s−1 Wind speed during the winter

415
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The gross primary production term in the phytoplankton carbon constituent is defined as
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where f (T )
P is the temperature regulation factor (Equation (A1)), f (E)

P is the light regulation factor (Equation (A10)), f (PP )
P is

the primary production limiting factor (Equation (A11)), r(0)P is the maximum photosynthetic rate, and PC is the instantaneous

phytoplankton carbon concentration. The light regulation factor is defined as425

f
(E)
P = 1− exp

(
− αchl(0)EPARPchl

r
(0)
P P

(i)
C

)
(A10)

where EPAR is the amount of photosynthetically available radiation (Eq. (A2)) and αchl(0) is the maximum light utilization

coefficient. The primary production limiting factor is defined as

f
(PP )
P = min(1.0, ) if P (i)

S ∃, otherwisef (PP )
P = 1.0 (A11)

where N (4) and P (i)
S are the instantaneous silicate and phytoplankton silicate concentrations, respectively, h(S)

P is the half430

saturation constant for silicate limitation, and ρ(S)
P is the half saturation constant for silicate limitation of Contois. Diatoms are

the only phytoplankton species that have a silicate constituent (P (1)
S ∃ and P (2)

S , P (3)
S , P (4)

S ∄).

The phytoplankton respiration term includes the basal respiration and activity respiration rates and is defined as
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(A12)

where bP is the basal specific respiration rate, γP is the activity respiration fraction, βP is the excreted fraction of primary435

production, and f (N,P )
P is a multiple nutrient limitation term which allows for the internal storage of nitrogen and phosphorus

and is defined as

f
(N,P )
P = min

[
f

(N)
P ,f

(P )
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]
(A13)
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(A14)440
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(A15)

where ϕmin
N and ϕmin

P are the minimum phytoplankton quotas and ϕopt
N and ϕopt

P are the optimal phytoplankton quotas for nitrogen

and phosphorus, respectively.

Phytoplankton lysis includes mortality processes that disrupt the cell membrane due to mechanical, viral, and yeast causes.445

Cell lysis produces both dissolved and particulate detritus denoted by R(1)
j and R(6)

j , respectively, where j = C, N, P. The

cytoplasm is released as dissolved detritus, while the structural parts which are less degradable, are released as particulate

detritus. The lysis terms for carbon, nitrogen, and phosphorus are defined as
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450
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where h(N,P )
P is the nutrient-stress threshold, d(0)

P is the maximum specific nutrient-stress lysis rate, εN,P
P is the fraction of

nutrients released as particulate detritus (Equation (A18)), and χlys is an optional specific lysis rate which is depended on the

population density (Equation (A19)). The terms εN,P
P and χlys are defined as
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(A18)455

χlys = d
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(A19)

The exudation term is defined as
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(A20)

The nitrogen uptake rate is the sum of the uptake of dissolved nitrate, N (3), and ammonium, N (4), and is defined as460

∑
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(A21)

where aN
P is the specific affinity for nitrogen, h(N)

P is the half saturation constant for ammonium uptake, and ϕmax
N is the

maximum nitrogen quota. The net primary productivity, GP , is defined as
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(A22)

The specific uptake rate, νP , from Equation (A21) is defined as465

νP = f
(T )
P r

(0)
P (A23)

When the nitrogen uptake rate (Equation (A21)) is positive, the partitioning between dissolved nitrate and ammonium becomes
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where
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When the nitrogen uptake rate (Equation (A21)) is negative, the entire flux goes to the dissolved organic nitrogen pool, R(1)
N .

The phosphorus uptake rate is defined as
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(A28)

where a(P )
P is the specific affinity constant for phosphorus and ϕmax

P is the maximum phosphorus quota. When the phosphate

uptake rate is negative, the entire flux goes to the dissolved organic phosphorus pool, R(1)
P .480

The net chlorophyll synthesis is defined as
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where ρchl is the dynamical chlorophyll to carbon ratio and regulates the amount of chlorophyll in the phytoplankton cell which

is defined as

ρchl = θ
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chl min
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(A30)485

where θ(0)chl is the maximum chlorophyll to carbon quota and α(0)
chl is the maximum light utilization coefficient.

Phytoplankton silicate uptake is defined as
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(A31)

where ϕopt
S is the optimal silicate to carbon ratio in silicifiers. Phytoplankton silicate loss associated with lysis is defined as
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(A32)490

The phytoplankton predation terms are presented with the zooplankton equations in Section A2.3.
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Table A5. Symbols, values, units, and descriptions for the phytoplankton parameters within the BFM

Symbol P (1) P (2) P (3) P (4) Units Description

c
(T )
P 0.0 0.0 0.0 0.0 - Cut-off threshold for temperature regulating factor

r
(0)
P 2.5 1.6 1.02 0.83 d−1 Maximum specific photosynthetic rate
bP 0.05 0.05 0.05 0.1 d−1 Basal specific respiration rate

d
(0)
P 0.01 0.05 0.01 0.02 d−1 Maximum specific nutrient-stress lysis rate
γP 0.1 0.05 0.2 0.1 - Activity respiration factor
βP 0.01 0.05 0.1 0.15 - Excreted fraction of primary production

h
(N,P )
P 0.1 0.1 0.1 0.5 - Nutrient stress threshold

h
(x)
P 0.0 0.0 0.0 100.0 mg C m−3 Half saturation constant for extra lysis

h
(N)
P 1.0 1.5 0.1 1.0 mmol N-NH4 m−3 Half saturation constant for ammonium uptake

d
(x)
P 0.0 0.0 0.0 0.5 d−1 Extra lysis rate

a
(N)
P 0.025 0.025 0.025 0.025 m3 (mg C)−1 d−1 Specific affinity constant for nitrogen

a
(P )
P 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 2.5 × 10−3 m3 (mg C)−1 d−1 Specific affinity constant for phosphorus

a
(S)
P 0.0 0.0 0.0 0.0 m3 (mg C)−1 d−1 Specific affinity constant for silicate

ϕ
(min)
N 6.87 × 10−3 6.87 × 10−3 6.87 × 10−3 6.87 × 10−3 mmol N (mg C)−1 Minimum nitrogen quota

ϕ
(opt)
N 1.26 × 10−2 1.26 × 10−2 1.26 × 10−2 1.26 × 10−2 mmol N (mg C)−1 Optimal nitrogen quota

ϕ
(max)
N 1.26 × 10−2 1.26 × 10−2 1.26 × 10−2 1.26 × 10−2 mmol N (mg C)−1 Maximum nitrogen quota

ϕ
(min)
P 4.29 × 10−4 4.29 × 10−4 4.29 × 10−4 4.29 × 10−4 mmol P (mg C)−1 Minimum phosphorus quota

ϕ
(opt)
P 7.86 × 10−4 7.86 × 10−4 7.86 × 10−4 7.86 × 10−4 mmol P (mg C)−1 Optimum phosphorus quota

ϕ
(max)
P 1.572 × 10−3 7.86 × 10−4 1.572 × 10−3 1.572 × 10−3 mmol P (mg C)−1 Maximum phosphorus quota

ϕ
(min)
S 0.0 0.0 0.0 0.0 mmol Si (mg C)−1 Minimum Si:C ratio in silicifiers

ϕ
(opt)
S 0.01 0.0 0.0 0.0 mmol Si (mg C)−1 Optimal Si:C ratio in silicifiers

θ
(0)
chl 0.035 0.016 0.02 0.035 mg chl (mg C)−1 Maximum chl:C quotum

α
(0)
chl 1.1 × 10−5 1.52 × 10−5 0.7 × 10−5 0.68 × 10−5 mg C (mg chl)−1 µE−1 m2 Maximum light utilization coefficient

cP 0.03 0.03 0.03 0.03 m2 (mg chl)−1 Chlorophyll-specific light absorption coefficient

h
(S)
P 1.0 0.0 0.0 0.0 mmol Si m−3 Half saturation constant for Si-limitation

ρ
(S)
P 0.0 0.0 0.0 0.0 - Half saturation constant for Si-limitation of Contois

A2.2 Bacterioplankton

Bacteria are part of the living organic CFF and have carbon, nitrogen, and phosphorus constituents, each representing a different

state variable. The bacteria rate equations are
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Bacteria lysis of dissolved and particulate matter for carbon, nitrogen, and phosphorus are defined as500
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where εi is the partition between dissolved and particulate excretion of either carbon, nitrogen, or phosphorus, d(0)
B is the

specific mortality rate, d(d)
B is the density-dependent specific mortality rate, and f

(T )
B is the temperature regulation factor505

(Equation (A1)). The uptake of dissolved organic carbon is defined as

∂BC

∂t

∣∣∣∣∣

upt

R
(1)
C

=

min

(
f

(N,P )
B f

(T )
B r

(0)
B BC,

∑
j=1,6 ν

(R(j))
B f

(N,P )

(R(j))
R

(j)
C

)
ν

(R(1))
B f

(N,P )

(R(1))
R

(1)
C

∑
j=1,6 ν

(R(j))
B f

(N,P )

(R(j))
R

(j)
C

(A38)

where f (N,P )
B is a non-dimensional regulating factor for the nutritional content of bacterial cells (), r(0)B is the maximum

specific growth rate, ν(R(j))
B is the specific uptake rate for substrate, and f (N,P )

(R(j))
is a non-dimensional regulating factor for

organic substrate (Equation (A44)). Similarly to Equation (A38), the uptake of particulate organic carbon is defined as510
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R

(j)
C

)
ν

(R(6))
B f

(N,P )

(R(6))
R

(6)
C

∑
j=1,6 ν

(R(j))
B f

(N,P )

(R(j))
R

(j)
C

(A39)

Since the parameters ν(R(2))
B and ν(R(3))

B are both zero, the uptake of semi-labile dissolved organic carbon and semi-refractory

dissolved organic carbon are both zero.

∂BC

∂t

∣∣∣∣∣

upt

R
(j)
C

= 0, j = 2,3 (A40)

The release of semi-labile dissolved organic carbon and semi-refractory dissolved organic carbon are defined by515

∂BC

∂t

∣∣∣∣∣

rel

R
(2)
C

= max

(
0, 1− f (N)

B , 1− f (P )
B

)
ν

(C)
B BC (A41)

∂BC

∂t

∣∣∣∣∣

rel

R
(3)
C

= min

(
f

(N,P )
B f

(T )
B r

(0)
B BC,

∑

j=1,6

ν
(R(j))
B f

(N,P )

(R(j))
R

(j)
C

)(
1− γa

B

)
γa

B βB (A42)

where νC
B is the specific relaxation rate for semi-labile carbon release, γa

B is the activity respiration fraction, and βB is the

fractional excretion of semi-refractory carbon.520
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The non-dimensional regulating factors from Equations (A38) and (A39) are defined as

f
(N,P )
B = min

(
1,
BN/BC

ψ
(opt)
N

,
BP/BC

ψ
(opt)
N

)
(A43)

f
(N,P )

R(j) = min

(
1,
R

(j)
N /R

(j)
C

ψ
(opt)
N

,
R

(j)
P /R

(j)
C

ψ
(opt)
P

)
, j = 1,6 (A44)

where ψ(opt)
N and ψ(opt)

N are the optimal bacteria quotas for nitrogen and phosphorus, respectively. The uptake of dissolved and525

particulate organic nutrient components can be computed using the nutrient rations of organic matter.

∂Bi

∂t

∣∣∣∣∣

upt

R
(j)
i

=
R

(j)
i

R
(j)
C

∂Bi

∂t

∣∣∣∣∣

upt

R
(j)
C

, i= N, P; j = 1,6 (A45)

The nutrient uptake and release of ammonium and phosphate are defined as

∂BN

∂t

∣∣∣∣∣

upt,rel

N(4)

= f
(N)
B ν

(N)
B

(
BN

BC
−ψ(opt)

N

)
BC (A46)

530

∂BP

∂t

∣∣∣∣∣

upt,rel

N(1)

= f
(P )
B ν

(P )
B

(
BP

BC
−ψ(opt)

P

)
BC (A47)

where ν(N)
B and ν(P)

B are specific relaxation rates towards the optimal internal quota. The non-dimensional factors f (N)
B and

f
(P )
B are defined as

f
(N,P )
B =

{
−1 , if BN,P

BC
−ψ(opt)

N,P > 0
N(4,1)

N(4,1)+h
(N,P)
B

, if BN,P
BC

−ψ(opt)
N,P < 0

(A48)

The bacteria respiration term is defined as535

∂BC

∂t

∣∣∣∣∣

rsp

O(3)

= bBf
(T )
B BC +

[
γ

(a)
B + γ

(O)
B −

(
1− f (O)

B

)] ∑

j=1,6

∂BC

∂t

∣∣∣∣∣

upt

R
(j)
C

(A49)

where bB is the basal specific respiration rate, γ(a)
B is the activity respiration fraction, γ(O)

B is the additional respiration fraction

under anoxic conditions. The non-dimensional regulating factor for oxygen, f (O)
B , is defined as

f
(O)
B =

(
O(2)

)3

(
O(2)

)3

+
(
h

(O)
B

)3 (A50)

where h(O)
B is the half saturation value for oxygen limitation.540

The bacteria predation terms are presented with the zooplankton equations in Section A2.3.
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Table A6. Symbols, values, units, and descriptions for bacteria parameters within BFM.

Symbol Value Units Description

h
(O)
B 30.0 mmol O2 m−3 Half saturation value for oxygen limitation

r
(O)
B 8.38 d−1 Potential specific growth rate

bB 0.1 d−1 Basal specific respiration rate

γ
(a)
B 0.6 - Activity respiration fraction

γ
(O)
B 0.2 - Additional respiration fraction under anoxic conditions

d
(0)
B 0.1 d−1 Specific mortality rate

d
(d)
B 0.0 m3 (mg C)−1 d−1 Density-dependent specific mortality rate

ν
(R(1))
B 0.3 d−1 Specific quality-dependent potential R(1) uptake (nutrient-rich labile)

ν
(R(2))
B 0.0 d−1 Specific potential R(2) uptake (semi-labile)

ν
(R(3))
B 0.0 d−1 Specific potential R(3) uptake (semi-refractory)

ν
(R(6))
B 0.01 d−1 Specific potential R(6) uptake (particulate)

a
(N)
B 0.0 m3 (mg C)−1 d−1 Specific affinity constant for nitrogen

a
(P )
B 0.0 m3 (mg C)−1 d−1 Specific affinity constant for phosphorus

ν
(C)
B 1.0 d−1 Relaxation time scales for semi-labile carbon release

ν
(N)
B 1.0 d−1 Relaxation time scales for nitrogen uptake or remineralization

ν
(P )
B 1.0 d−1 Relaxation time scales for phosphorus uptake or remineralization

ψ
(min)
N 1.67 × 10−2 mmol N (mg C)−1 Minimum nitrogen quota

ψ
(opt)
N 1.67 × 10−2 mmol N (mg C)−1 Optimal nitrogen quota

ψ
(min)
P 1.85 × 10−3 mmol P (mg C)−1 Minimum phosphorus quota

ψ
(opt)
P 1.85 × 10−3 mmol P (mg C)−1 Optimal phosphorus quota

h
(N)
B 5.0 mmol N (mg C)−1 Half saturation for nitrogen uptake

h
(P )
B 1.0 mmol P (mg C)−1 Half saturation for phosphorus uptake

βB 0.0 - Fractional excretion of R(3) uptake (semi-refractory)

A2.3 Zooplankton

Zooplankton are part of the living organic CFF and the BFM contains 4 different zooplankton species: carnivorous mesozoo-

plankton, omnivorous mesozooplankton, mircozooplankton, and heterotrophic nanoflagellates. Each zooplankton species has

carbon, nitrogen, and phosphorus constituents, each representing a different state variable. The zooplankton rate equations are545
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C
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(A51)
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(A52)

∂Z
(i)
P

∂t

∣∣∣∣∣
bio

=
BP

BC

∂Z
(i)
C

∂t

∣∣∣∣∣

prd

BC

+
4∑

j=1

P
(j)
P

P
(j)
C

∂Z
(i)
C

∂t

∣∣∣∣∣

prd

P
(j)
C

+
6∑

k=3

Z
(k)
P

Z
(k)
C

∂Z
(i)
C

∂t

∣∣∣∣∣

prd

Z
(k)
C

−
6∑

k=3

Z
(i)
P

Z
(i)
C

∂Z
(k)
C

∂t

∣∣∣∣∣

prd

Z
(i)
C

−
∑

m=1,6
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(A53)550

The total amount of food available to zooplankton groups considering the set of possible preys, Xi ∈
{
P

(j)
i ,Bi,Z

(j)
i

}
, is

defined as

Fi =
∑

X

δZ,XeZ,XXi (A54)

where δZ,X is the availability of prey Xi for predator Z. The non-dimensional capture efficiency, eZ,X , is defined as

eZ,X =
XC

XC +µZ
(A55)555

where µZ is the feeding threshold.

The total carbon ingestion of zooplankton is defined as

∂Zi

∂t

∣∣∣∣∣

prd

Xi

= f
(T )
Z r

(0)
Z

δZ,XeZ,XXi

Fi

Fi

Fi +hF
Z

ZC (A56)

where δZ,X is the availability of preyXi for predator Z, eZ,X is the non-dimensional capture efficiency, f (T )
Z is the temperature

regulation factor (Equation (A1), Fi is the prey for predator Z, and Z(i)
i is the instantaneous zooplankton concentration for560

i= C, N, P. The specific search volume, hF
Z , is defined as

hF
Z =

r0Z

νZ
(A57)

where r0Z
and νZ are the specific growth rate and specific search volume for zooplankton, respectively. The total ingestion

rate for carbon, nitrogen, and phosphorus is defined as

Ij =
∑

X

∂Zj

∂t

∣∣∣∣∣

prd

Xj

, j = C, N, P (A58)565

The terms in the rate equations are defined differently for mesozooplankton (Z(3),Z(4)) and microzooplankton (Z(5),Z(6)) and

are outlined separately in the following sections.
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Table A7. Prey availability for zooplankton predation terms within the BFM. These parameters are unitless.

Symbol Z(3) Z(4) Z(5) Z(6)

δZ(i),P (1) 0.0 1.0 0.5 0.0

δZ(i),P (2) 0.0 0.1 1.0 0.1

δZ(i),P (3) 0.0 0.0 0.5 1.0

δZ(i),P (4) 0.0 0.7 0.0 0.0

A2.3.1 Mesozooplankton

The respiration term is defined as

∂Z
(i)
C

∂t

∣∣∣∣∣

rsp

O(3)

= IC

(
1− ηZ −βZ

)
+ bZf

(T )
Z Z

(i)
C (A59)570

where IC is the total ingestion rate for carbon, ηZ is the assimilation efficiency, βZ is the excreted fraction of uptake, bZ

is the basal specific respiration rate, f (T )
Z is the temperature regulation factor (Equation (A1), and Z(i)

C is the instantaneous

zooplankton carbon concentration.

Mesozooplankton are assumed to have no dissolved products.

∂Z
(i)
j

∂t
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rel

R
(1)
j

= 0, j = C, N, P (A60)575

The particulate organic carbon release term is defined as

∂Z
(i)
C
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C
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(i)
C

)γZ

+Q
(C)
Z (A61)

where d(dns)
Z is the density-dependent specific mortality rate, f (O)

Z is the oxygen-dependent regulation factor (Equation (A62)),

dZ is the specific mortality rate, γZ is the exponent for density-dependent mortality, and Q(C)
Z is a correction term for carbon

that eliminates the excess of the non-limiting constituent. The oxygen-dependent regulation factor is defined as580

f
(O)
Z =

(
O(2)

)3

(
O(2)

)3

+
(
h

(O)
Z

)3 (A62)

where h(O)
Z is the half saturation value for oxygen.

The particulate organic nitrogen and phosphorus release terms are defined as
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, j = N, P (A63)
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where Ij is the total ingestion rate for either nitrogen or phosphorus.585

The release of ammonium and phosphate are defined as

∂Z
(i)
N

∂t

∣∣∣∣∣

rel

N(4)

= bZf
(O)
Z f

(T )
Z Z

(i)
N +QN

Z (A64)
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N(1)

= bZf
(O)
Z f

(T )
Z Z

(i)
P +QP

Z (A65)

whereQN
Z andQP

Z are correction terms that eliminate the excess of the non-limiting constituent. The values for these correction590

terms are determined by a switch which indicates whether carbon, nitrogen, or phosphorus is the limiting nutrient. Then the

correction terms are calculated using the information in Table A8. The switch uses the actual elemental ratios of ingested

material which are defined by

Γ(j)
Z =

(
1−βZ

)
Ij

ηZIC
, j = N, P (A66)

Table A8. Mesozooplankton method of eliminating the excess of the non-limiting constituent. The switch determines whether carbon,

nitrogen, or phosphorus is the limiting nutrient.

Limiting

Element Carbon Nitrogen Phosphorus

if Γ
(N)
Z

Z
(i)
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(i)

(N)/Z
(i)

(C) and Γ
(P)
Z < Z

(i)

(P)/Z
(i)

(C)

Q
(C)
Z 0 ηZIC− (1−βZ)

ψ
(opt)
N

IN ηZIC− (1−βZ)

ψ
(opt)
P

IP

Q
(N)
Z (1−βZ)IN−ψ(opt)

N ηZIC 0 (1−βZ)IN−ψ(opt)
N (ηZIC−Q(C)

Z )

Q
(P)
Z (1−βZ)IP−ψ(opt)

P ηZIC (1−βZ)IP−ψ(opt)
P (ηZIC−Q(C)

Z ) 0

A2.3.2 Microzooplankton595

The microzooplankton respiration term is defined the same as the mesozooplankton respiration term and is shown in Equation

(A59).

The release of dissolved organic carbon is defined as

∂Z
(i)
C

∂t
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rel

R
(6)
C

= εC
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(
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)
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1− f (O)
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)
d
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Z + dZ

]}
(A67)
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Table A9. Symbols, values, units, and descriptions for mesozooplankton parameters in the BFM.

Symbol Z(3) Z(4) Units Description

r
(0)
Z 2.0 2.0 d−1 Potential specific growth rate

νZ 2.5 × 10−3 0.025 m3 (mg C)−1 d−1 Specific search volume

bZ 0.01 0.02 d−1 Basal specific respiration rate

ηZ 0.6 0.6 - Assimilation efficiency

βZ 0.3 0.35 - Excreted fraction of uptake

ψ
(opt)
N 0.015 0.015 mmol N (mg C)−1 Optimal nitrogen quota

ψ
(opt)
P 1.67 × 10−3 1.67 × 10−3 mmol P (mg C)−1 Optimal phosphorus quota

dZ 0.02 0.02 d−1 Specific mortality rate

d
(dns)
Z 0.01 0.01 m3 (mg C)−1 d−1 Density-dependent specific mortality rate

γZ 2.0 2.0 - Exponent for density-dependent mortality

h
(O)
Z 30.0 30.0 mmol O2 m−3 Half saturation value for oxygen

where εC is the partition between dissolved and particulate excretion of carbon, IC is the total ingestion rate of carbon ηZ is the600

assimilation efficiency, βZ is the excreted fraction of uptake, f (O)
Z is the oxygen-dependent regulation factor (Equation (A68)),

d
(O)
Z is the oxygen-dependent specific mortality rate, and dZ is the specific mortality rate. The oxygen-dependent regulation

factor is defined as

f
(O)
Z =

O(2)

O(2) +h
(O)
Z

(A68)

where h(O)
Z is the half saturation value for oxygen.605

The dissolved organic nitrogen and phosphorus release terms are defined as
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j
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IjβZZ
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]}
, j = N, P (A69)

where εj is the partition between dissolved and particulate of either nitrogen or phosphorus and Ij is the total ingestion rate

for either nitrogen or phosphorus.

The release of particulate organic carbon, nitrogen, and phosphorus are defined as610
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(A70)
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The release of ammonium and phosphate are defined as

∂Z
(i)
N
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rel
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= max
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IN
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∂Z
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P

}
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where ψ(opt)
N and ψ(opt)

P are the optimal nitrogen and phosphorus quotas, respectively.

Table A10. Symbols, values, units, and descriptions for microzooplankton parameters in the BFM.

Symbol Z(5) Z(6) Units Description

r
(0)
Z 2.0 5.0 d−1 Potential specific growth rate

µZ 50.0 50.0 m3 (mg C)−1 d−1 Half saturation food concentration for preference factor

bZ 0.02 0.02 d−1 Basal specific respiration rate

ηZ 0.5 0.3 - Assimilation efficiency

βZ 0.25 0.35 - Excreted fraction of uptake

ψ
(opt)
N 1.28 × 10−2 1.28 × 10−2 mmol N (mg C)−1 Optimal nitrogen quota

ψ
(opt)
P 1.85 × 10−3 1.85 × 10−3 mmol P (mg C)−1 Optimal phosphorus quota

dZ 1.0 × 10−6 1.0 × 10−6 d−1 Specific mortality rate

d
(O)
Z 0.25 0.25 m3 (mg C)−1 d−1 Oxygen-dependent specific mortality rate

h
(O)
Z 0.5 0.5 mmol O2 m−3 Half saturation value for oxygen

A3 Non-living Organic Components

The non-living organic components include dissolved organic matter and particulate organic matter.620

A3.1 Dissolved Organic Matter

Dissolved organic matter (DOM) is part of the non-living organic CFF and the BFM has carbon, nitrogen, and phosphorus

constituents of DOM. The rate equations for each DOM species are
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(A74)

625
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The source and sink terms for the DOM rate equations have been defined previously in Section A2.3.

A3.2 Particulate Organic Matter

Particulate organic matter (POM) is part of the non-living organic CFF and the BFM has carbon, nitrogen, and phosphorus635

constituents of POM. The rate equations for each POM constituent are

∂R
(6)
C

∂t

∣∣∣∣∣
bio

=
4∑

j=1

∂P
(j)
C

∂t

∣∣∣∣∣

lys

R
(6)
C

+
∂BC

∂t

∣∣∣∣∣

lys

R
(6)
C

− ∂BC

∂t

∣∣∣∣∣

upt

R
(1)
C

+
6∑

k=3

∂Z
(k)
C

∂t

∣∣∣∣∣

rel

R
(6)
C

(A79)

∂R
(6)
N

∂t

∣∣∣∣∣
bio

=
4∑

j=1

∂P
(j)
N

∂t

∣∣∣∣∣

lys

R
(6)
N

+
4∑

j=1

min

[
0,
∂P

(j)
N

∂t

∣∣∣∣∣

upt

R
(3)
N

+
∂P

(j)
N

∂t

∣∣∣∣∣

upt

R
(4)
N

]
− ∂BC

∂t

∣∣∣∣∣

lys

R
(6)
N

− R
(6)
N

R
(6)
C

∂BC

∂t

∣∣∣∣∣

upt

R
(1)
C

+
6∑

k=3

∂Z
(k)
N

∂t

∣∣∣∣∣

rel

R
(6)
N

(A80)

640

∂R
(6)
P

∂t

∣∣∣∣∣
bio

=
4∑

j=1

∂P
(j)
P

∂t

∣∣∣∣∣

lys

R
(6)
P

+
4∑

j=1

min

[
0,
∂P

(j)
P

∂t

∣∣∣∣∣

upt

R
(6)
N

]
− ∂BC

∂t

∣∣∣∣∣

lys

R
(1)
P

− R
(6)
P

R
(6)
C

∂BC

∂t

∣∣∣∣∣

upt

R
(6)
C

+
6∑

k=3

∂Z
(k)
P

∂t

∣∣∣∣∣

rel

R
(6)
P

(A81)
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The silicate dissolution term is defined as
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S R
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S (A83)645

where Λrmn
S is the constant specific dissolution rate and f (T )

S is the temperature regulation factor (Equation (A1)). All other

source and sink terms for the POM rate equations have been defined previously in Section A2.
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A4 Inorganic Components

The inorganic components include dissolved gases, dissolved inorganic nutrients, and inorganic state variables.

A4.1 Dissolved Gases650

The rate equations for dissolved oxygen and dissolved carbon dioxide are
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where Ω(O)
C , Ω(O)

N , and Ω(r)
O are stoichiometric coefficients for carbon, nitrogen, and oxygen, respectively. The nitrification655

term is defined as
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where Λnit
N(4) is the specific nitrification rate, f (T )

N is the temperature regulation factor (Equation (A1)), and hO is the half

saturation oxygen concentration.

The reoxidation rate of reduction equivalents is defined as660
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whereΛreox
N(6) is the specific reoxidation rate.

The oxygen aeration of the surface layer by wind, dO(2)

dt

∣∣∣
wind

, is calculated using the description provided by Weiss (1970) and

the flux of dissolved inorganic carbon, dO(3)

dt

∣∣∣
flux

, is based on Wanninkhof (1992)’s description. All other source and sink terms

for the dissolved gases have been defined previously in Section A2.665

A4.2 Dissolved Inorganic Nutrients

The inorganic nutrients include phosphate, nitrate, ammonium, and silicate. The rate equations for each of the inorganic nutri-

ents are
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The denitrification flux is defined as
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where Λdenit
N(3) is the specific denitrification rate, f (T )

N is the temperature regulation factor (Equation (A1)), MO is the reference680

anoxic mineralization rate, Ω(O)
C is the stoichiometric coefficient for oxygen reaction, and f (O)

B is the oxygen non-dimensional

regulating factor (Equation (A50)). All other source and sink terms for the dissolved inorganic nutrients have been defined

previously in Sections A2 and A4.

A4.3 Inorganic Species

The rate equations for total alkalinity and reduction equivalents are685
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The source and sink terms for the inorganic state variables have been defined previously in Sections A2 and A4. Ω(r)
O , Ω(O)

C , and

Ω̃(O)
N are the stoichiometric coefficients for oxic-anoxic reaction, oxygen reaction, and denitrification reaction, respectively.690
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Table A11. Symbols, values, units, and descriptions for the non-living organic CFF and the inorganic CFF parameters within the BFM.

Symbol Value Units Description

Λrmn
S 0.02 d−1 Specific dissolution rate of biogenic silica

Λreox
R(6) 0.05 d−1 Specific dissolution rate of reduction equivalents

Λnit
N(4) 0.01 d−1 Specific nitrification rate

Λdenit
N(3) 0.35 d−1 Specific denitrification rate

hO 10.0 mmol O2 m−3 Half saturation oxygen concentration

hr 1.0 mmol HS− m−3 Half saturation oxygen concentration for anoxic processes

MO 1.0 mmol O2 m−3 d−1 Reference anoxic mineralization rate

alk_flag FALSE - Logical parameter for total alkalinity calculation

B Princeton Ocean Model

POM is a three-dimensional ocean circulation model developed by Blumberg and Mellor (1987). Mellor (2003) adapted this

into a one-dimensional solver, POM1D, which includes only the vertical coordinate. Briefly, the diagnostic mode of POM1D,

which is used in this study, solves the momentum equations for the horizontal velocity components (U,V ) given by
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(B1)695
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)
, (B2)

where the Coriolis parameter, f , is described by the angular velocity of the Earth, Ω, and latitude, ϕ, as

f = 2Ωsinϕ. (B3)

The vertical viscosity and diffusivity coefficients, KM and KH respectively, are calculated using Mellor and Yamada’s closure700

hypothesis as

KM = qlSM (B4)

KH = qlSH , (B5)

where q is the turbulent velocity, l is the length scale, and SM and SH are empirical functions. The turbulent kinetic energy705

and length scale are obtained by solving
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∂
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where g = 9.81m s−1, ρ0 = 1025kg m−3, Kq = κKH is the vertical diffusivity for turbulence, κ= 0.4 is the von Karman710

constant, W̃ is a function of the distance between rigid boundaries, and B1 and E1 are empirical constants.

Boundary conditions are necessary for solving the momentum (B1 and B2) and turbulence (B6 and B7) equations. The bound-

ary conditions for horizontal velocity components are
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The wind stress, #»τ w, and bottom drag coefficient, #»τ b, are described by
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where Cb is the bottom drag coefficient and
#»

U b = (Ub,Vb) is the bottom velocity. The boundary conditions for the turbulent

kinetic energy are
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Blumberg and Mellor (1987) and Mellor (2003) give full descriptions of the three-dimensional POM and the one-dimensional

version (POM1D), respectively.
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C Coupled Physical-Biogeochemical Models730

Figure C1. Comparison of (a) pyPOM1D-BFM50 simulation results to (b) pyPOM1D-Oxygen for oxygen concentration (mmol O/m3).

Simulation plots are monthly averages for the second year in the simulation.
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Figure C2. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM23 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3). Simulation plots are monthly averages for the second year in the simulation.
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Figure C3. Comparison of BFM17-POM1D simulation results (rows 1 and 2) to pyPOM1D-BFM23 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3). Simulation plots are monthly averages for the second year in the simulation.
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Figure C4. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM34 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3). Simulation plots are monthly averages for the second year in the simulation.
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Figure C5. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM35 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3). Simulation plots are monthly averages for the second year in the simulation.
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Figure C6. Comparison of pyPOM1D-BFM50 simulation results (rows 1 and 2) to pyPOM1D-BFM36 (rows 3 and 4) for (a,h) chlorophyll-a

(mg Chl-a/m3), (b,i) oxygen (mmol O/m3), (c,j) nitrate (mmol N/m3), (d,k) phosphate (mmol P/m3), (e,l) PON (mg N/m3), (f,m) NPP (mg

C/m3/day), (g,n) DIC (mg C/m3). Simulation plots are monthly averages for the second year in the simulation.
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