14 November 2025

Dr. Sophie Valcke, Editor
Geoscientific Model Development

We enclose the revisions for our manuscript “Automatic reduction of ocean biogeochemical models:
a case study with BFM (v5.3)” and address the reviewers’ comments in the following remarks.
We have indicated our changes in the manuscript with the following color code: Reviewer 1 and |
Reviewer 2. Deletions are shown with a strike out and the respective color, e.g., a deletion for |
Reviewer 2 would look like this: seme-deletedtext. In this document, we consider each reviewer’s m
comment and provide our response with “Our Response:”.

We sincerely thank the reviewers for their suggestions, and for the helpful feedback

Reviewer #1

This manuscript addresses the important and computationally challenging problem
of reducing the complexity of ocean biogeochemical models. The authors adapt a
model reduction technique from combustion science (DRGEP) and apply it to the
50-state-variable Biogeochemical Flux Model (BFM), generating a suite of smaller
models. The topic is timely and of significant interest to the ocean modeling com-
munity.

However, while the goal is laudable, the manuscript in its current form suffers from
several fundamental scientific flaws in its methodology, interpretation of results, and
the substantiation of its core claims. The proposed “modified DRGEP” method is
presented without sufficient theoretical justification and appears ad hoc. Its applica-
tion requires manual interventions that undermine its claim of being an “automatic”
process. Furthermore, the study’s conclusions are drawn from a very narrow set of
environmental conditions, leading to overstated claims of generalizability. The re-
sults include spurious findings, such as a single-variable oxygen model, which stem
from a misapplication of the reduction technique. Finally, the central motivation
of the paper—improving computational efficiency—is never quantitatively demon-
strated.

Due to these significant issues, the manuscript is not suitable for publication in its
current state. A major revision is required to address the methodological weaknesses
and to provide a more rigorous validation and analysis of the results.

Our Response: Thank you for the feedback. The edits made in response to your comments
have strengthened the manuscript. We hope that our additions and revisions have satisfactorily
addressed these concerns, and clarified the goals of the manuscript.

The original DRGEP method is rooted in the principles of chemical kinetics. This
manuscript replaces the mechanistically-derived interaction coefficient with an em-
pirical “error matriz”. This approach is problematic because: (i) The method for
calculating the modified direct interaction coefficient—>by removing state variables
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one by one and normalizing by the mazimum row-wise error—is not theoretically
justified. Why is this specific normalization chosen? It could introduce biases, and
its relationship to the propagation of error through a coupled, non-linear system is
unclear. (i) The authors should provide a much more robust defense of this method-
ological choice, perhaps by testing it on a simpler, known system to demonstrate its
validity before applying it to a complex model like the BFM.

Our Response: Thank you for raising this question. This approach is intended to pragmatically
calculate what the direct interaction coefficients were designed to quantify in the DRG and DRGEP
methods: impact on overall production rate of one component induced by removal of another
component [1, 2]. We chose to normalize by the maximum row-wise error to scale the contribution
of removing state variable B to the rate of change in state variable A between [0,1] to apply a
single cutoff threshold. Without this normalization we cannot ensure consistency in threshold
values between all state variables.

To further justify our introduction of the modified DRGEP method, we have added a short verifi-
cation study (new Section 3, on pages 8-9) using GRI-Mech 3.0, a gas-phase combustion model
consisting of 53 chemical species and 325 elementary reactions. The results indicate that the mod-
ified DRGEP method performs similarly to the DRGEP method in terms of size and accuracy of
reduced models produced.

The authors report that they were required to manually retain ammonium, all phyto-
plankton chlorophyll constituents, and in one case nitrate, to prevent the model from
failing. The justification is that these variables play roles “not completely captured
using the interaction coefficients”. This is a critical admission that the proposed
method is flawed and fails on its own to identify indisputably essential components
of the ecosystem. An objective and truly automatic method should not require such
a priori expert knowledge to ensure a biologically sensible outcome.

Our Response: It is true that the modified DRGEP—Iike the original DRG and DRGEP
methods applied to chemical-kinetics models [1, 3, 4]—does not completely capture the complex
roles of certain state variables with the interaction coefficients. This comes from the component—
component nature of the interaction coefficients, which do not map perfectly to the global quantities
of interest. The need to manually specify or “protect” components from removal, particularly
inert species, is consistent with all prior applications of the DRG and DRGEP methods used in
the combustion literature. Ultimately, the goal of these reduction methods is to pragmatically
automate the reduction procedure, but human inputs are still required; the method is not intended
to provide a theoretical quantity of component importance.

The entire analysis is based on a single set of climatological forcing data from the
BATS site. The conclusion that 14 state variables (including all mesozooplankton,
silicate, and semi-refractory DOM) can be removed is therefore only valid for this
specific location and condition, yet it is presented as a major finding of the paper.
The removal of entire functional groups like diatoms and mesozooplankton makes
the reduced models fundamentally unsuitable for application in many other oceanic
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regimes (e.g., upwelling systems, polar oceans) or for studying key ecosystem pro-
cesses like trophic transfer and carbon export.

Our Response: The reviewer is absolutely right: the reduced models produced here may be
unsuitable for other applications. The reduced models shown here are specific to the BATS condi-
tions used, the target components specified, and the allowable error. The example reduced models
produced here are for demonstration purposes only and not intended for broad use; we have added
a clarification statement addressing this point to the Conclusions on page 22. The major contri-
bution here is the introduction of the reduction method itself for biogeochemical models, and the
major result is the success of the method.

The reduction strategy would need to be reapplied using environmental conditions from other
ocean regimes to accurately represent the new system. This work is not intended to provide
reduced-complexity ocean biogeochemical models for further study. Instead, the usable output is
the method itself. We have added a statement emphasizing this point to the Conclusions on page
23.

The Ozygend scenario produced a model with only a single state variable, oxygen,
leading the authors to conclude that peak oxygen concentration is driven more by air-
sea flux than biology. This conclusion is scientifically unsound. The BFM’s own
equations show that oxygen is directly consumed and produced by biological processes.
The reduction algorithm has simply identified the largest term in the budget at the
surface and erroneously concluded that all other coupled terms are unimportant.
This result should be presented as a failure of the method under these conditions,
not as a valid scientific insight.

Our Response: The purpose of the reduction method is to produce a more-compact model by
eliminating unimportant components, depending on the desired application. Error is unavoidable
with respect to the initial, full-detail model—instead, an allowable level of error is specified, with
the reduction in model size as the tradeoff.

While the reviewer is correct that biological processes directly produce and consume oxygen, if the
oxygen profile is the only quantity of interest, using a model that solely represents oxygen allows
capturing trends in oxygen profile throughout the water column with a 2.2% normalized root mean
square error in oxygen concentration. However, this may not extend to all ecosystems or conditions,
and should only be used for the conditions considered in the reduction. As mentioned above, we
have added a clarification statement addressing this point to the Conclusions on page 22.

Furthermore, the modified DRGEP method is applied at multiple depths in the water column to
consider surface, subsurface, and bottom effects while performing the model reduction analysis. The
direct interaction coefficient for all state variables was chosen as the maximum across all depths to
prevent bias from surface or bottom fluxes.

The manuscript is motivated entirely by the need to reduce the high computational
cost of biogeochemical models. However, the paper presents zero data to support
the claim that the reduced models are more efficient. The authors must provide a
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quantitative analysis of the computational speed-up for each reduced model versus
the full BEM50. Without this, the primary justification for the work is missing.

Our Response:

Subsection 5.2:

Thank you for this comment. We agree that we should do a better job of
demonstrating the benefits of the reduced models. To address this point, we generated reduced
models and added a new subsection (5.2, on page 21) and figure (Figure 9) to the manuscript:

To demonstrate the potential improvement in performance by reducing biogeochemical
models, we manually constructed versions of each reduced model obtained from the re-
duction strategies used in this study. We used Oregon State University’s high perfor-
mance computing cluster to run five-year simulations of the fully-coupled biophysical
models, using the same conditions as described previously. Figure 9 shows the average
computational time from five simulations run for each model. Reducing the number of
components by a factor of 1.4-2.2x reduces the wall-clock time by 2.6-3.6X, or between
a linear and quadratic reduction in time. Larger, more-complex initial models would
see further factors of reduction in computational cost. In this demonstration, transport
operations contribute substantially to the overall cost, as seen in the sub-linear time
reduction when reducing to a single model component.
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Figure 9: Wall-clock times for five-year simulations of reduced BFM models and full 50-component
BFM coupled to pyPOM1D, shown as a function of component number. Trend lines indicate square-
root, linear, and quadratic scaling of time with number of components.

The current BFM implementation does not allow for the full removal of state variables from the
model and generation of a true reduced model, because the model structure is hardcoded. Instead,
to evaluate the performance of reduced models, we use flags to zero out unimportant state variables
and their associated rates to disregard their contribution to the system. This does not reduce the

Page 4 of 11



size of the system of ordinary differential equations or the number of computations performed
during the simulation, and so does not result in a significant change in computation time.

We also clarify this point in new subsection 5.2:

The current hardcoded structure of the BEM implementation does not allow generation
of truly reduced models, with identified unimportant components and interactions fully
removed. Rather, state variables identified as unnecessary for a given reduction strategy,
along with all associated rate of change components, are set to zero in the simulation
to eliminate their contribution to the model output. While this enables our examination
of the reduction approach here, it does not reduce the size of the system of ordinary
differential equations or the number of calculations performed throughout the simulation.
Time complezity of iterative solvers used in implicit time integration algorithms scales
between O(N?) and O(N3) in the worst case, where N represents the size of the system
[5, 6]. These costs come from numerical evaluation and factorization of the Jacobian
matriz.

The reduction algorithm is guided by errors in average concentration, peak concen-
tration, and time of peak. These metrics can easily mask significant errors in the
model’s dynamic behavior. They do not constrain process rates (e.g., NPP, grazing)
or the duration of events (e.g., a bloom). A model could match a peak value but have
completely unrealistic flures, making it unsuitable for most scientific applications.
The authors should evaluate the reduced models against a wider set of process-based
metrics.

Our Response: Thank you for pointing this out. We agree that certain dynamics may be
masked using the metrics we chose. However, we are concerned with the overall contribution of a
state variable to the system rather than the dynamics of individual biological processes. We added
clarification for this point in Section 4 on page 10:

The target state variables and metrics for the reduction strategies are chosen for the
purpose of evaluating the BFM. Individual biological processes are not evaluated in the
reduction strategies. Rather, state variables are retained or removed based on their
overall contribution to the dynamics of the system.

The study’s entire methodology is built upon the “modified direct interaction coeffi-
cient,” which is derived from a “percent error” in the instantaneous rate of change,
dCA/dt (Eq. 6). This metric is fundamentally unstable for stiff, non-linear systems
like biogeochemical models. For state variables that are near quasi-steady state,
the demominator, |dCA /dt|original, will approach zero. This will cause the ratio
to become numerically explosive, massively amplifying any minor numerical noise
or transient fluctuation. The authors do not describe any form of reqularization,
time-averaging, or thresholding to handle this critical instability, which means the
foundation of their graph reduction is unreliable.

After calculating the error matriz, the authors normalize each row by its maximum
value to create coefficients bounded between [0,1] (Eq. 7). This step erases the
absolute magnitude of the sensitivities. Consequently, a state variable that is highly
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sensitive to multiple perturbations becomes indistinguishable from a variable that is
only weakly sensitive to all perturbations. Applying a single, global cutoff threshold,
€, to these normalized—and no longer comparable—uvalues has no consistent physical
or biogeochemical meaning, likely leading to the erroneous pruning or retention of
state variables.

Our Response: Indeed, this is the major improvement of the DRGEP (and modified DRGEP)
method over the original DRG method [2].

Normalizing the error matrix by the maximum row-wise error ensures a bounded direct interaction
coefficient between [0,1] for all state variables regardless of differences in magnitude.

The purpose of the direct interaction coefficient is to quantify the importance of one component
to another in a normalized way, by estimating the direct impact of removal [1, 2, 7]. In this way,
only direct interaction coeflicients 7 a5, rac, 7ap, etc., are directly comparable, because they rank
the importance of different components to component A only. This is value of the path-dependent
nature of the DRGEP method and the overall interaction components, based on particular overall
targets of interest. Individual direct interaction components are not compared and the threshold is
not applied to them; instead, the threshold is applied to the overall interaction coefficients, found
as the product along pathways of the direct coefficients.

In response to this comment, we now include a new section (3) and Figure (3) that provide a
verification of the modified DRGEP method:

To verify that the modified DRGEP method performs similarly as the original DRGEP
method, we applied both to reduce GRI-Mech 3.0 [8], a 53-species gas-phase combus-
tion model consisting of 325 chemical reactions. We implemented the DRGEP method
using pyMARS [9], which uses the Cantera library [10] for handling chemical kinetics.
To sample for the reduction process and evaluate error of reduced models, we use au-
toignition simulations that solve time-dependent governing equations for conservation
of energy and conversation mass in a homogeneous reactor (i.e., zero-dimensional, with
no spatial transport). We specified an error limit of 5% in ignition delay time, the time
required for temperature to increase by 400 K. All combinations of the following condi-
tions were used for the autoignition simulations: four initial temperatures (1000, 1200,
1400, and 1600K); three initial pressures (1, 11, and 21 atm); and three equivalence
ratios (0.5, 1.0, 1.5).

Figure 8 shows number of species in reduced models versus threshold (€), along with
error in ignition delay for a single ignition condition (1000K, 1atm, and equivalence
ratio of 1.0). The results indicate that the modified DRGEP method performs qualita-
tively similar to the DRGEP method in terms of size and accuracy for reduced models.
For a given threshold, the modified DRGEP method retains additional species, though
the errors in the reduced models produced by the methods remain nearly identical until
€ ~ 0.21. These trends—including the flat error with reducing species count until a
sharp spike—match those seen previously for DRGEP, and the difference between the
methods is similar to differences between DRG and DRGEP implementations in past
comparisons [2, 3, 11]. While DRGEP removes more species for a given threshold value
than modified DRGEP, ultimately the methods produce a similarly sized final reduced
model for the given upper error limit of 5%. In fact, modified DRGEP method reduces
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the model to 33 species and 187 reactions with 1.07% error in ignition delay time. The
DRGEP method reduces the model to 35 species and 205 reactions with 1.08% error in
ignition delay time.
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Figure 3: Number of species and percent error in ignition delay versus threshold for DRGEP and
modified DRGEP for the GRI Mech 3.0 model [8]; the error in ignition delay comes from initial
conditions of 1000 K, 1atm, and an equivalence ratio of 1.0.

The tables summarizing the reduction scenarios (e.g., Tables 1-5) contain a column
labeled “% Error”. However, the values reported in this column are not percentages
but are given in absolute physical units (e.g., mg Chl-a m-3, mmol N m-3). This
is a significant inconsistency, not a minor typographical error. It creates a funda-
mental ambiguity in interpreting the results and undermines the credibility of the
automated reduction algorithm, which is described as terminating when a “percent

error” exceeds a user-specified limit.

Our Response:

Thank you for pointing out this confusing inclusion in the original manuscript;

the physical units we included represented the state variables rather than than the error itself. The
error is given as a percentage and does not have units. We have removed these units to avoid the

confusion.
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Reviewer #2

The manuscript titled “Automatic reduction of ocean biogeochemical models: a case
study with BFM (v5.3)” provides a comprehensive examination of simplifying the
complexity of ocean biogeochemical models using the DRGEP method. The authors
demonstrate how they reduced the 50-state-variable BFM model to a smaller set of
variables while preserving essential system behavior. By testing various scenarios
inwolving living organic matter, nutrients, orygen, and carbon, the study success-
fully achieves model reduction without significant loss of information. The authors
further suggest that this reduction approach could be applied to other biogeochemical
models, potentially leading to substantial decreases in computational costs for highly
complex systems.

While the manuscript effectively describes the methodology and results of the reduc-
tion process, several key issues should be addressed before publication. In particular,
the study should more clearly articulate its primary research objective and emphasize
the novel contributions of this work to strengthen its scientific impact.

Our Response: Thank you for your positive feedback, and helping us improve our communication
around the objectives and contributions.

1. The authors have effectively conducted a reduction of the ocean biogeochemical
model, particularly for the Princeton Ocean Model coupled with the BFM biogeo-
chemical module. In the abstract, the authors mention that large-eddy simulations
(LES) require high computational resources. As I understand the manuscript, the
reduction of variables aims to enable the implementation of a simplified biogeochem-
ical model within LES that explicitly resolves turbulence. However, the manuscript
lacks a clear statement of the main objective behind reducing the ocean biogeochemi-
cal variables. Is the goal to develop a 1D turbulence-resolving LES or to reduce model
complexity in climate-scale Earth System Models? It would be helpful for the au-
thors to clarify in the abstract what type of model development—LES or large-scale
climate modeling—the variable reduction and computational efficiency are intended
to support.

Our Response: Thank you for pointing out the lack of a clear objective statement. The
reviewer is correct that our main objective is producing reduced models for use in large-scale
multidimensional LES that resolve turbulence and the evolution of reactive biogeochemical tracers.
In this manuscript, our focus is in demonstrating a method for automatically producing such
reduced models; the actual models presented here are not intended for reuse beyond the specific
conditions used for their generation.

Our abstract does state

Large-scale biophysical simulations, such as high-resolution large-eddy simulations
(LES) of the upper ocean, require significant computing resources to capture small-scale
turbulent processes while also resolving the evolution of reactive biogeochemical tracers.

and we have now added an additional statement clarifying our primary goal on page 3:
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Our primary goal in reducing such models is to produce more-compact versions to be
used in large-scale biophysical simulations, such as high-resolution LES of the upper
ocean that resolve both small-scale turbulent processes and the evolution of reactive bio-
geochemical tracers.

2. The authors have conducted tests using ocean biogeochemical datasets at the
BATS site and compared the full version of the 1D BFM with its reduced ver-
stons across various biogeochemical variables. However, first and foremost, the
full-version BFM simulation should be directly compared with the BATS observa-
tions. Fven though the BFM development team may have demonstrated this in
previous studies, a fundamental step in model validation is to evaluate the base-
line biases between the observations and the full-variable model and understand the
reduced-variable results based on these biases.

In addition, it is unclear what specific changes have been made between the full-
variable configuration (BFM50) and the reduced-variable simulations (e.g., BFM23,
BFMS36). Therefore, I strongly recommend that the authors clearly present the dif-
ferences between the full and reduced versions in Figures 5, 6, 7, and related sup-
plementary figures. For example, in Section 4.1.2, the authors note oversaturation
of nitrate and phosphate and underestimation of PON and DIC; however, these
differences warrant closer examination and clearer comparison.

Our Response: The reviewer is correct that a validation of the full BFM simulation is an
important step. The purpose of this work is not to provide reduced versions of the BFM to be used
for further research. Recent articles from collaborators have studied the performance of BFM with
respect to BATS and HOTS observational data in more detail [12]. We have added a statement
addressing this point to the Conclusions on page 22.

The objective of this work is to demonstrate the ability of the modified DRGEP method
to reduce high-complexity ocean biogoechemical models under a given set of environmen-
tal conditions. Here, we verify the method by comparing the reduced models to the full
50-state-variable BFM rather than observational data.

The state variables removed in each reduction scenario are actually presented throughout Section
4 already (pages 11, 13, 14, 15). The differences in the fields between the full and reduced
models are attributed to the removal of living organisms and their biological rates—nutrient uptake,
respiration, excretion, lysis, etc.

3. Although the reduction of BGC wvariables is well demonstrated using the BATS
dataset, I am concerned that this reduction may lead to overfitting specific to the
BATS conditions. This raises an important question regarding the sensitivity of
the reduction method to physical environmental processes, including vertical diapy-
cnal mixing, seasonal entrainment, and isopycnal mixing. While there are limited
sites with long-term biogeochemical time-series, I recommend performing a simi-
lar analysis using the HOTS dataset. Alternatively, applying the reduced-variable
model to other locations for validation would strengthen the robustness of the reduced
BATS-based model and demonstrate its potential applicability for future model de-
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velopments.

Our Response: The reviewer is absolutely correct that the reduced models presented here may
be overfit /specifically apply to the BATS conditions. In general the reduced models presented in
this manuscript are specific to the environmental conditions used and would need to be reapplied
if such conditions were to change. We have added a clarification statement addressing this point
to the Conclusions on page 22.

20: Recommend to add the most recent ocean biogeochemical models such as
MARBL, PISCES.

Our Response: We have added mention to these additional recent ocean biogeochemical models
on page 2.
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