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Abstract.

We present a dataset of Antarctic annual surface melt rates (6.25 km resolution, 2012-2021) from 19 GHz Special Sensor

Microwave Imager/Sounder (SSMIS). First, melt occurrence is detected via thresholds for brightness temperature, diurnal vari-

ation, and winter anomaly, calibrated with Automatic Weather Station (AWS) data. Second, AWS-driven surface energy balance5

modeling yields an empirical relation between annual melt days and water-equivalent melt volume. SSMIS-derived melt vol-

umes show good agreement with AWS-based melt estimates (R2 = 0.83). Compared to QuikSCAT and RACMO2.4 outputs,

SSMIS captures a similar spatial melt pattern but estimates a total melt volume approximately 15% lower than RACMO, on

the decadal average.

1 Introduction10

The occurrence of surface melt on the Antarctic ice sheet constitutes a key indicator of cryospheric change, with profound

implications for ice-shelf stability, glacier dynamics, and continental mass balance. Surface melting has been linked to ice-shelf

thinning (Holland et al., 2011), accelerated outlet glacier flow, and sudden ice-shelf collapse (Scambos et al., 2000).

Remote sensing is a practical way to monitor surface melt across the vast Antarctic ice sheet. Passive-microwave radiometry

exploits the strong contrast in brightness temperature between wet and dry snow (Zwally and Gloersen, 1977).The penetration15

depth of the microwave signal varies strongly with frequency — only a few centimetres at 37 GHz (∼2 cm), and increasing

up to ∼1.8 m at 1.4 GHz — so that each channel samples a different layer of the snow/firn column (Colliander et al., 2022).

Several studies have introduced binary melt-day detection approaches based on simple thresholds or polarization and spectral

indices to identify liquid water (Zwally and Fiegles, 1994; Abdalati and Steffen, 1997; Torinesi et al., 2003; Picard and Fily,

2006). These approaches are indicators for the presence of liquid water, rather than for the actual physical process of surface20

melt, which is in fact an energy-conversion process (de Roda Husman et al., 2022). Yet, the term “surface melt” is widely

used in the remote-sensing community (e.g., Torinesi et al. 2003, Trusel et al. 2013, Leduc-Leballeur et al. 2020, Banwell
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et al. 2023), and we will adopt it here, although we acknowledge that passive-microwave sensors detect liquid water in the

snowpack, independently of whether active melting is occurring at the surface.

From this point onward, we will refer to observations of liquid-water presence — whether derived from passive-microwave25

data or from in situ AWS measurements — collectively as “surface melt days.”

These approaches provide valuable insights into the spatial and temporal distribution of melt days but do not directly yield

water-equivalent melt volumes. A smaller but growing body of work has tackled the challenge of quantifying melt volumes

from satellite data. Trusel et al. (2013) empirically calibrated active-microwave QuikSCAT Ku-band backscatter against auto-

matic weather station (AWS) energy-balance estimates to produce continent-wide melt-volume maps at ∼4.5 km resolution.30

Unfortunately, the QuikSCAT mission ended in 2009. All efforts to quantify surface melt volume since then rely on model-

based training data. For example, Zheng et al. (2022) used a neural network trained on modelled surface melt to estimate daily

melt over Greenland from passive-microwave data at 3.125 km resolution. Banwell et al. (2023) combined passive-microwave

and ASCAT scatterometer melt-day counts with the SNOWPACK firn model to derive meltwater volumes on ice shelves.

In this paper, we present the first method to estimate Antarctic melt-volume from passive microwave data that is calibrated35

solely against melt rate derived from in situ AWS surface energy balance (SEB) observations. We employ 19 GHz bright-

ness temperatures from SSMIS on DMSP-F17, chosen for high sensitivity to small amounts of liquid water in the snowpack

(de Roda Husman et al., 2022) and continuity with earlier SSM/I instruments which potentially enable long-term monitoring.

Melt-day occurrence and the melt-day-to-volume relationship are both calibrated directly to melt volumes from seven AWS

sites in Antarctica (Van Tiggelen et al., 2025; Jakobs et al., 2020). By using in situ observations for calibrating the satellite40

signal to melt volume, we incorporate directly critical physical feedbacks in the interaction between the snowpack and the

atmosphere, such as temperature–albedo interactions (Jakobs et al., 2020), or refreezing dynamics. Through this multi-tiered

approach — combining high-resolution SSMIS retrievals, AWS-SEB calibration, and model intercomparison — we deliver a

reproducible, quantitative baseline for Antarctic surface melt and identify pathways for future methodological refinements.

2 Materials45

This study relies on two main sources of data: satellite-derived brightness temperature from the SSMIS sensor and in-

situ observations from AWS. These datasets are used for melt detection, calibration, and validation. The following subsections

describe their characteristics and processing. We use the MEaSUREs Antarctic Boundaries Version 2 dataset (Mouginot, 2017)

as the Antarctic mask. We define each Antarctic hydrological year as running from 1 June through 31 May of the following

calendar year. In this study, we analyze ten hydrological years spanning 2012–2021 for availability of AWS data, corresponding50

to the period from 1 June 2011 to 31 May 2021.

2.1 SSMIS brightness temperature

This study uses SSMIS brightness temperature from the DMSP-F17 satellite over the period 2012–2021. DMSP-F17 was

selected for its sun-synchronous, dawn–dusk orbit stability, which provides two consistent Antarctic overpasses per day at
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approximately 06:00 (hereafter "M", morning observation) and 18:00 (hereafter "E", evening observation) local time1. All55

brightness temperatures were obtained from the National Snow and Ice Data Center (NSIDC)2 and preprocessed in Google

Earth Engine (Gorelick et al., 2017). Our analysis concentrates on the horizontally polarized 19 GHz channel, offering a

6.25 km× 6.25 km footprint — the finest available at this frequency. We also investigated the 37 and 91 GHz channels, as well

as the vertically polarized signal, but found that it did not improve the melt detection method appreciably.

2.2 Automatic weather stations observations60

Automatic weather station observations are the foundation for the method in this paper. For the melt volume to be calcu-

lated, only AWS that measure sufficient variables to close the surface energy balance qualify. This grossly reduces the number

of available AWS locations, since the full radiation budget is only measured at a handful of stations in Antarctica. A major

provider of data for this study is the Institute for Marine and Atmospheric Research Utrecht (IMAU) AWS dataset, which is

described in Van Tiggelen et al. (2025). Only the IMAU AWS stations with at least one entire hydrological year of data within65

the June 2011 – May 2021 window were used for calibration and evaluation. These comprise AWS11 (Halvfarryggen Ice Rise),

AWS14 (northern Larsen C ice shelf), AWS15 (central Larsen C ice shelf), AWS16 (Princess Elisabeth station), AWS17 (Scar

Inlet as a remnant of Larsen B ice shelf) and AWS18 (Cabinet Inlet on western Larsen C ice shelf). All six sites record the

standard meteorological variables and the four components of net surface radiation, with measurements corrected for common

errors as detailed in Van Tiggelen et al. (2025). Melt volumes are subsequently computed at each station using the SEB model70

of Jakobs et al. (2020). In this framework, turbulent fluxes are calculated using similar theory, surface temperature is deter-

mined via iterative closure of the SEB, and excess energy at 0°C is converted into meltwater. Meltwater percolates through the

firn using a bucket scheme until refreezing occurs. Shortwave radiation penetration into the snowpack is neglected. Of the six

IMAU AWS stations meeting our requirements, four (AWS14, AWS15, AWS17 and AWS18) are situated on or immediately

adjacent to Larsen C ice shelf, whereas the remaining two (AWS11 and AWS16) provide a few years of measurements in75

locations with low melt. To broaden the geographic scope of our calibration and ensure robust performance of the melt model

across climatically distinct regions, we augment the IMAU network with a decade (2012–2021) of observations at the German

Neumayer station, where we use the surface radiation observations from the Baseline Surface Radiation Network (BSRN) sta-

tion (Schmithüsen, 2021), meteorological observations (Schmithüsen, 2023a), and surface height observations (Schmithüsen,

2023b).80

For additional analysis, we also use observations of near-surface air temperature scaled to a nominal height of 2 m above the

surface.

Modelling surface melt in an SEB model carries uncertainties because of model settings, model assumptions, and errors in the

input. This uncertainty is estimated using a number of sensitivity tests. First, the uncertainty from the IMAU AWS forcing is

estimated by separately including or removing one of four measurement corrections: the window heating of the pyrgeometer,85

the shortwave heating of the passively ventilated temperature sensor, the correction for relative humidity for ice and sensor sen-

1https://www.remss.com/missions/ssmi/
2https://nsidc.org/data/nsidc-0630/versions/2, last accessed 6 June 2025
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sitivity at very low temperatures, and the correction for tilt and bias of the pyranometer, which are all described by Van Tiggelen

et al. (2025). Then, the uncertainty due to the SEB model settings and assumptions is estimated by separately varying one of

five model settings at the time: using a constant height of the sensors to 2 m above the surface instead of variable in time,

the use of a roughness length for momentum of 1 mm instead of 0.1 mm for snow, using a surface longwave emissivity of90

0.97 instead of 1, using an alternative snow thermal conductivity (Anderson, 1976), and finally, letting the snow height freely

evolve in the model instead of prescribing snow height in time using the sonic height ranger observations. These choices result

in one reference and nine perturbed time series of SEB components and surface melt per IMAU station, where each perturbed

timeseries results from just one omitted measurement correction or one different model parameter at the time. This sensitivity

analysis was conducted only for the AWS stations with the highest number of positive melt observations among those selected,95

namely AWS14, AWS15, AWS17, and AWS18.

3 Methods

We derive the occurrence of a surface melt day and annual melt totals over Antarctica in two steps. First, we calibrate SSMIS

brightness temperature against in-situ surface melt observations at AWS locations to identify robust thresholds that discriminate

surface melt from non-melt days (Sec. 3.2). Second, we translate SSMIS-derived melt-day counts to a water-equivalent surface100

melt volume using an empirical relation derived from the AWS observations (Sec. 3.3).

Prior to these steps, we have to establish that satellite observations at a spatially averaged scale of 6.25 km x 6.25 km are

representative of AWS observations at a singular point.

3.1 Melt homogeneity

To assess whether the selected 6.25 km × 6.25 km SSMIS pixel accurately represents melt conditions at each AWS site, we105

compared it against the higher-resolution U-Melt binary melt product (de Roda Husman et al., 2024), available at 500 m spatial

resolution. For each station, an 11 × 11 pixel window centered on the AWS location was extracted, and the 0/1 melt flags of

all surrounding pixels were compared to that of the central pixel.

Two metrics were computed: (i) Homogeneity rate, defined as the fraction of surrounding pixels with melt flags matching

the central pixel, which exceeded 99% at all stations; and (ii) Local variability, defined as the standard deviation of binary melt110

values within the window, consistently below 0.01.

These results indicate that, despite the ∼40 km2 native footprint of a SSMIS pixel, melt conditions around each AWS site

are highly homogeneous. Therefore, the selected SSMIS pixel provides a reliable representation of local melt conditions and

is appropriate for calibration purposes.

3.2 SSMIS Melt Detection: Calibration and Flagging115

To translate SSMIS brightness temperatures (Tb) into surface melt-day detections, we assembled a suite of candidate indi-

cators drawn from established microwave-based methods and calibrated each against in situ AWS melt observations (≥ 0.5
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mm w.e. day−1). All metrics were computed at 19 GHz, 37 GHz, and 91 GHz, using both horizontal (H) and vertical (V)

polarizations. The indicators were grouped as follows (see Table S1 for a detailed description of all candidate variables):

1. Pure Brightness-Temperature: We tested absolute Tb at each frequency and polarization, for both morning and evening120

observations.

2. Winter-Anomaly: Difference between the Tb and its winter mean (Zwally and Gloersen, 1977).

3. Diurnal and Day-to-Day Change: i) Diurnal amplitude: difference in Tb between evening and morning overpasses (Ram-

age and Isacks, 2002). ii) Day-to-day change: difference in Tb between consecutive days at the same overpass time.

4. Normalized Polarimetric Ratio (NPR): Contrast between vertical and horizontal polarizations at the same frequency and125

overpass (Abdalati and Steffen, 1997).

5. Normalized Seasonal Anomalies: Indicators that account for seasonal variability by comparing Tb to its winter anomaly

plus a multiple of the winter or annual standard deviation (Torinesi et al., 2003).

Each candidate indicator’s day-by-day values were compared against AWS-derived melt versus non-melt classifications.

Receiver Operating Characteristic (ROC) analysis was performed on all candidates (Fig. S1), and thresholds were chosen to130

achieve an optimal trade-off between true positive rate (TPR) and false positive rate (FPR). The two best-performing metrics

were the 19 GHz H polarization evening brightness temperature, T
(E)
b,19H (TPR ≈ 62%, FPR ≈ 2%), and its diurnal amplitude

(TPR ≈ 67%, FPR ≈ 3%). All other candidates yielded TPR below 50%.

3.2.1 Multivariate Optimization

Since no single indicator achieved both high TPR and true negative rate (TNR; i.e., 1 - FPR) we selected triplets from the135

analyzed metrics and applied logical rules i) and (all three thresholds must be exceeded for a melt day to be detected); ii) or

(at least one threshold must be exceeded); iii) majority (at least two thresholds must be exceeded) to their thresholds. In 1,000

Monte Carlo trials (randomly sampling 30% of melt and 30% of non-melt days), the majority rule achieved the highest overall

accuracy and the resulting thresholds exhibited near-Gaussian distributions (Fig. S2). The optimal threshold combination under

the majority rule is:140

{T
(E)
b,19H > 219.2K, ∆Td > 19.7K, Aw > 26.3K},

where

∆Td = T
(E)
b,19H−T

(M)
b,19H,

denotes the diurnal amplitude (difference between evening (E) and morning (M) overpasses), and

Aw = T
(E)
b,19H−µwinter,145
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is the winter anomaly, with µwinter representing the mean 19 GHz horizontal-polarization brightness temperature over 1

June–31 August.

This triplet yields 95.3% accuracy (TPR = 77.8%, TNR = 97.2%), thus balancing false positives and false negatives. Impor-

tantly, because negative samples greatly outnumber positive ones in our dataset, a 3% drop in TNR (i.e., more false positives)

produces an absolute error count roughly equivalent to that resulting from a 22% drop in TPR (i.e., more false negatives). This150

analysis is conducted on an annual basis, and the balanced trade-off between false positives and false negatives is achieved

at this temporal scale; applying the same thresholds over shorter periods may lead to a disproportionate increase in one error

type. At annual temporal resolution, a 3% decrease in TNR produces an absolute error count comparable to that from a 22%

decrease in TPR, demonstrating a balanced trade-off between the two error types at this scale.

3.2.2 Melt-Day Flagging and Annual Summation155

These three criteria were applied to each set of two daily SSMIS overpasses for each pixel. A pixel is flagged as “melt”

on day d if at least two thresholds are met. Annual melt-day counts are obtained by summing these daily flags per pixel over

an Antarctic year (1 Jun to 31 May). A linear regression between AWS-derived and SSMIS-derived annual melt-day counts

yielded a coefficient of determination of R2 = 0.91 (Fig. 1a).

3.3 Melt estimation160

The second major step in the melt volume estimate is to relate the annual number of melt days (m) to total annual melt (M ).

To that end, we fitted the AWS-derived decadal record (2012-2021) to an exponential model:

M = a
(
ebm− 1

)
, (1)

where parameters a and b were estimated using a least-squares approach to minimize the residuals between the model and

the observed melt values (Fig. 2a). The above functional form follows an empirically demonstrated non-linear relationship be-165

tween melt days and meltwater production (Banwell et al., 2023; Trusel et al., 2013). This non-linear behaviour likely reflects

melt-albedo feedbacks, and the longer time required for refreezing of larger melt volumes, such that warmer summers produce

disproportionately more runoff (Banwell et al., 2023). By fitting a and b from equation 1 to AWS stations, which compute melt

via a full SEB model, our approach embeds these physical feedbacks into the satellite-only framework.

When the exponential model is applied to the satellite-derived melt-day count, a pixel-level estimate of annual melt is obtained.170

A Monte Carlo-based confidence interval for the m–M relationship is derived by propagating measurement and model uncer-

tainties (detailed in Sec. 2.2, see Fig. 2a): for each AWS-year combination, ten m–M pairs corresponding to distinct setups

are available, and in each of 1000 Monte Carlo iterations one setup is randomly selected for each AWS-year, yielding n data

points. The exponential model of 1 is then fitted to each sample, producing 1000 realizations of M(m) which are evaluated

over m ∈ [0,100] to characterize the variability of melt estimates. The light pink band in Fig. 2a represents the 3σ confidence175

envelope, the blue line denotes the median-fit relationship, and the red line corresponds to the fit obtained using the reference
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setup alone.

Fig. S3a shows the site-specific exponential fits at each of the four AWS locations (AWS14, AWS15, AWS17, AWS18) where

the sensitivity analysis was conducted (see Sec. 2.2); Fig. S3b presents the combined fit across the selected four AWS stations,

illustrating how the ten SEB-model permutations produce a modest spread in the resulting m–M curves.180

For an independent assessment of the m–M relation, it was also derived for fully independent, model-only, RACMO2.4

melt-day and melt-volume output for 2012–2021, both across the entire Antarctic domain (Fig. 2b) and separately at four

selected AWS locations (see Fig. S3c). In both cases, the resulting exponential parameters and curve shape closely matched

those derived from the AWS-SEB calibration, demonstrating the robustness and spatial generality of the m–M relationship.

This also demonstrates that the collection of AWS observations used for this study sufficiently captures the variability in surface185

melt conditions across the Antarctic ice sheet as represented by a physically-based model. The agreement in functional shape,

despite the melt days underestimation by SSMIS, supports the application of the AWS-derived fit to satellite-derived melt-day

counts across the full Antarctic dataset.

4 Results

4.1 SSMIS-AWS comparison190

Applying the fit described in Section 3.3, we produced estimates of total annual melt across Antarctica (Fig. 3a). We assessed

our results by comparing annual SSMIS-derived melt days and melt fluxes with coincident AWS-based observations, yielding

a strong linear correlation (R2 = 0.91 and R2 = 0.83, respectively; Fig. 1b). However, given the limited number of in situ AWS

sites — which were also employed during calibration — this evaluation is inherently circular. Dividing the AWS record into

independent calibration and validation subsets was considered not feasible due to the small sample size and the constrained195

spatial variability of the available stations.

4.2 Comparison of SSMIS with QuikSCAT and RACMO2.4p1

We compare our ten-year mean melt-flux estimates from SSMIS with two independent products:

– QuikSCAT (1999–2009): active-microwave backscatter retrieval of annual melt flux at 4.45 km resolution (Trusel et al.,

2013), see Fig. 3b.200

– RACMO2.4 (2012–2021): regional climate model forced by ERA5, providing daily melt flux at 11 km resolution, here

averaged to the same decadal period (van Dalum et al., 2025), see Fig. 3c.

Broad spatiotemporal agreement exists among all three products. On Larsen C ice shelf, SSMIS, QuikSCAT, and RACMO

melt rates exceed 350 mm w.e. yr−1. However, SSMIS and QuikSCAT (1999–2009) show their highest values on the western

inlets (e.g. Mill Inlet), whereas RACMO’s peak is shifted eastward toward Scar Inlet, a discrepancy noted earlier (Trusel et al.,205

2013).
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(a) (b)

Figure 1. Evaluation of all available coincident SSMIS- and AWS-based (a) melt days and (b) melt fluxes across the seven AWS locations.

Western-Peninsula ice shelves such as Wilkins and George VI exhibit mean melt fluxes higher than 200–250 mm w.e. yr−1

in all three datasets. On Shackleton Ice Shelf, all products report peak fluxes around 200-250 mm w.e. yr−1 along the outer

coastal margin.

In Dronning Maud Land, annual surface melt at Roi Baudouin and inner Fimbul ice shelves are consistently around 200 mm210

w.e. yr−1, while northeast Amery Ice Shelf peaks around 150 mm w.e. yr−1 across SSMIS, QuikSCAT, and RACMO. Along

the Ross and Amundsen Sea margins, each method records low-intensity melting (20–30 mm w.e.,yr−1). Over the Ross Ice

Shelf, SSMIS and QuikSCAT indicate that melt occurs predominantly on the western side, whereas RACMO simulates the

strongest melt on the eastern margin. Finally, to facilitate a direct comparison with QuikSCAT, RACMO2.4p1 outputs were ex-

tracted for 1999–2009 (Fig. 3d). During this interval, both datasets exhibit comparable magnitudes (mean values within∼10%)215

and analogous large-scale spatial distributions, despite RACMO’s modest eastward shift in melt maxima and QuikSCAT’s sys-

tematic underestimation of low-melt zones. These inter-product agreements and discrepancies parallel those observed between

SSMIS and RACMO for 2012–2021.

Interannual melt volumes from SSMIS and RACMO over 2012–2021 exhibit very similar temporal patterns, with mean annual

melt fluxes over 2012–2021 of approximately 83 Gt yr−1 for SSMIS compared to 98 Gt yr−1 for RACMO (Fig. S4). The cor-220

responding yearly mean surface melt flux maps (SSMIS vs. RACMO), presented in Fig. S5 of the Supplementary Materials,

further highlight the strong agreement in both spatial and temporal variability between the two datasets.
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(a) (b)

Figure 2. Exponential melt-day to melt-volume relationship. (a) Scatterplot of annual meltwater volume (M , from AWS-SEB) versus melt
days (m) at six IMAU-AWS stations for 2012–2021, with the best-fit exponential curve shown in red. The median fit from 1,000 Monte
Carlo realizations is shown in blue, and the shaded pink band indicates the ±3σ confidence interval. (b) Comparison of the AWS-derived
m–M curve (black) against RACMO2.4p1: the red line is the RACMO fit, while blue dots represent RACMO2.4p1 pixel-level data for all
of Antarctica over 2012–2021.

5 Discussion

A closer look at misclassified days reveals two primary sources of false positive detections. About 71 % of false positives

occur when RACMO2.4p1 simulates non-zero liquid water content (LWC) in the firn (See Fig. S6a). Nearly 90 % of false225

positives coincide with AWS near-surface air temperatures (T2m) above –5 °C (See Fig. S6b). These findings suggest that

our classifier is not only responding to surface melt events, but more generally detects the presence of liquid water near the

surface (de Roda Husman et al., 2022), e.g., water retention within the upper firn that elevates brightness temperature above

the winter offset. In this sense, SSMIS appears sensitive to a broader melt signal spectrum, including processes not directly

measurable by AWS but captured by RACMO’s subsurface hydrology. For this reason, we also explored the potential of addi-230

tional microwave indicators, such as the 37 GHz channel and various polarization or spectral ratios, to reduce false positives

by improving sensitivity to surface wetting. While these metrics offer theoretical advantages due to their shallower penetra-

tion and enhanced surface melt response (Colliander et al., 2022), our cross-validation results show no consistent performance

improvement across the AWS network. This outcome supportes the assumption that the 19 GHz H polarization signal remains
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Figure 3. Comparison of decadal mean meltwater volume across Antarctica. (a) SSMIS-derived annual melt flux averaged over 2012–2021.
(b) QuikSCAT-derived melt flux over 1999–2009 from backscatter observations (Trusel et al., 2013). (c) RACMO2.4p1 model output aver-
aged over 2012–2021 (van Dalum et al., 2025). (d) RACMO2.4p1 model output averaged over 1999–2009 (van Dalum et al., 2025).
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the most stable and spatially representative choice under current sensor constraints. A closer examination of Fig. 1 shows that235

Neumayer station exhibits larger residuals than the other sites. This discrepancy likely reflects Neumayer’s local climate, where

subfreezing daytime temperatures drive nearly instantaneous firn refreezing (van den Broeke et al., 2010). Consequently, less

liquid water remains at the surface during SSMIS overpasses, diminishing the brightness-temperature signal compared to other

AWS locations — such as Larsen C — where subsurface water retention prolongs wet-snow signatures.

From a spatial perspective, our melt product reveals interesting regional features. For instance, on the Larsen C ice shelf, a240

distinct east-west gradient is visible, likely driven by föhn winds over the Antarctic Peninsula mountain range (Luckman et al.,

2014) and supported by melt patterns in QuikSCAT (Trusel et al., 2013), and firn air content observations across the ice shelf

(Holland et al., 2011). The SSMIS-based method underestimates surface melt relative to QuikSCAT — but the first was col-

lected a decade prior to the second. Thus, its difference may be attributed to the documented cooling trend over the Peninsula

after 2000 (Turner et al., 2016). Taken together, our findings suggest that the proposed SSMIS-based detection scheme reason-245

ably captures the spatial and temporal patterns of surface melt across Antarctica. Its general consistency with known climate

trends indicates that the classifier is likely robust to both environmental variability and regional melt characteristics. However,

the sensitivity to shallow wetting layers — while offering valuable insight into subsurface processes — also introduces uncer-

tainty when interpreting daily melt flags. Refining this ambiguity represents a necessary direction for improving the distinction

between surface and subsurface melt in future satellite-based algorithms.250

6 Conclusions

We introduce a novel 6.25 km gridded dataset of Antarctic surface melt rates for 2012–2021, derived exclusively from SSMIS

19 GHz passive-microwave observations and calibrated against seven AWS energy-balance melt records. Our majority-rule

framework—combining absolute evening Tb, diurnal amplitude, and winter-season anomaly—yields daily melt flags that, when

transformed through an exponential melt-day to melt-volume model, reproduce in-situ melt volumes with fidelity. Comparative255

analyses with QuikSCAT and RACMO2.4p1 confirm that our product accurately maps melt hotspots, while misclassification

analysis clarify the conditions under which passive-microwave retrievals are least reliable.

By providing a spatially comprehensive, satellite-only record of Antarctic surface melt, this dataset fills a critical gap be-

tween sparse in-situ measurements and model outputs. It offers a transparent, reproducible baseline for evaluating regional cli-

mate models, constraining firn-hydrology schemes, and informing assessments of ice-shelf vulnerability to meltwater-induced260

weakening. The complete Antarctic-wide, decadal melt record is publicly available for use in cryospheric process studies.

Code and data availability. The annual Antarctic surface melt–water equivalent maps derived from SSMIS 19 GHz brightness temperatures,

covering the period 2011–12 to 2020–21, are publicly available at https://doi.org/10.5281/zenodo.16738423 (Di Biase, 2025). The dataset

includes GeoTIFF files providing annual number of melt days and cumulative annual melt volume per pixel (in mm water equivalent) with

corresponding lower/upper bound estimates based on the confidence intervals represented in Fig.2(a) to convey the uncertainty range.265
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The AWS data used as forcing for the SEB model is available at https://doi.pangaea.de/10.1594/PANGAEA.974080 (Van Tiggelen et al.,

2024). The SEB model used to compute surface melt is available at https://doi.org/10.5281/zenodo.15082295 (Van Tiggelen et al., 2025).
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