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Abstract.

We present a dataset of Antarctic annual surface melt rates (6.25 km resolution, 2012-2021
:::::::::
2011-2021) from 19 GHz Special

Sensor Microwave Imager/Sounder (SSMIS). First, melt occurrence is detected via thresholds for brightness temperature, diur-

nal variation, and winter anomaly, calibrated with Automatic Weather Station (AWS) data. Second, AWS-driven surface energy5

balance modeling yields an empirical relation between annual melt days and water-equivalent melt volume. SSMIS-derived

melt volumes show good agreement
:::::::
correlate

::::
well

:
with AWS-based melt estimates (R2 = 0.83). Compared to QuikSCAT and

RACMO2.4
::
p1 outputs, SSMIS captures a similar spatial melt pattern but estimates a total melt volume approximately 15%

lower than RACMO
::::::::::
RACMO2.4, on the decadal average.

1 Introduction10

The occurrence of surface melt on the Antarctic ice sheet
::
Ice

:::::
Sheet

:
constitutes a key indicator of cryospheric change, with

profound implications for ice-shelf stability, glacier dynamics, and continental mass balance. Surface melting has been linked

to ice-shelf thinning (Holland et al., 2011), accelerated outlet glacier flow, and sudden ice-shelf collapse (Scambos et al., 2000)

.
::::::::
Therefore,

::
it
::
is

:::::::
essential

::
to
:::::

make
:::::::::::
observations

::
of

::::::
surface

:::::
melt,

::::
both

::
to

:::::::
monitor

:::::::
change,

:::
and

::
to

::::::
collect

::::
data

:::
for

:::
the

:::::::::
evaluation

:::
and

:::::::::::
development

::
of

:::::::
models.15

::::::
Surface

::::
melt

::::::
occurs

::::
from

::
a
::::::
surplus

:::
of

:::::
energy

:::
in

:::
the

::::::
surface

::::::
energy

::::::
budget

::::::::::::::::::::::::
(Van Den Broeke et al., 2004)

:
.
::
If

:::
the

::::::
balance

:::
of

:::::::
radiative

:::
and

::::::::
turbulent

::::::
energy

:::::
fluxes

::
is

:::::::
positive,

:::
and

:::
the

:::::::
surface

:
is
::
at
:::
the

:::::::
melting

:::::
point,

:::
the

:::::
excess

::::::
energy

::
is

::::
used

:::
for

:::::::
melting

::
of

::
the

:::::::
surface

::::
snow

:::
or

:::
ice.

:::
For

:::::
snow,

:::
the

:::::::
surface

:::::
albedo

::
is
::
a
::::::::
dominant

:::::
driver

::
of

:::
the

::::::
energy

:::::::
budget.

:::::::
Because

::::
snow

::::::
albedo

::
is
:::::
high,

:
a
:::::
small

::::::
albedo

::::::
change

::::
leads

::
to
:::::
large

:::::::
changes

::
in

:::
the

:::::::
available

:::::::
surface

::::::
energy.

::
In

:::::::::
Antarctica,

::::
most

::::::
surface

::::
melt

:::::::::
percolates

:::
into

:::
the

:::
firn

:::::
layer,

:::
and

::::::::
refreezes,

:::::
rather

::::
than

:::::::
running

::
off

::::
into

:::
the

:::::
ocean

:::::::::::::::::::::
(Van Wessem et al., 2018)20

:
.
::::::::
Although

:::
the

:::::
direct

::::::::::
contribution

::
of

:::::::::
meltwater

:::::
runoff

::
to

:::
the

::::::::
negative

:::::::
Antarctic

:::::
mass

:::::::
balance

::
is

::::
very

:::::
small,

:::
the

:::::::
indirect

:::::
effect

::
of

::::::
surface

::::
melt

:::
on

:::::::
ice-sheet

:::::
mass

::::::
balance

::
is
:::::::::
important.

::
In

:::
the

::::::::
Antarctic

:::::::::
Peninsula,

:::::
recent

::::::::
warming

:::
has

::::::::
increased

:::::::
surface

::::
melt

1



:::::::::::::::
(Cape et al., 2015).

::::::::::
Refreezing

::::::::
meltwater

:::
has

::::::::
depleted

:::
firn

::
air

:::::::::::::::::::
(Holland et al., 2011)

:::
and

::::::::
promoted

:::
the

::::::::
formation

::
of

:::::::::
meltwater

:::::
ponds,

::
a
::::::::
precursor

:::
for

:::::::::::::
hydrofracturing

:::::::::::::::::::::::::::::::::::::::::::
(Scambos et al., 2000; Kuipers Munneke et al., 2014)

:
.
::
A

:::
link

::::
with

:::
the

:::::::
sudden

:::::::
collapse

::
of

:::
the

::::::
Larsen

::
A

:::
and

::
B

:::
ice

::::::
shelves

::
is
:::::::
thereby

::::::
implied

:::::::::::::::::::
(Dunmire et al., 2024).

::::::
Future

::::::::
warming

:::
will

::::::::
promote

::::
more

:::::::
surface

::::
melt25

::::::::::::::::
(Trusel et al., 2015),

::::
firn

::
air

::::::::
depletion

::::::::::::::::::::::::::::::::::::::::::::::
(Kuipers Munneke et al., 2014; Veldhuijsen et al., 2024)

:::
and

:::::::
thereby,

:::::::
possible

::::::::
ice-shelf

::::::::
instability.

:

Remote sensing is a practical way to monitor surface melt across the vast Antarctic ice sheet
::
Ice

:::::
Sheet. Passive-microwave

radiometry exploits the strong contrast in brightness temperature between wet and dry snow (Zwally and Gloersen, 1977).
::
It

:
is
::
a

:::::::
powerful

::::::::
technique

::
to

:::::::
observe

::::::
surface

::::
melt

::::::::::
year-round,

:::
and

::
at

::::
high

:::::::
temporal

:::::::::
resolution.

:::
The

::::::::::
penetration

:::::
depth

::
of

:::
the

:::::::::
microwave30

:::::
signal

:::::
varies

:::::::
strongly

::::
with

::::::::
frequency

:::
—

::::
only

:
a
::::
few

:::::::::
centimetres

::
at

:::::::
37 GHz

:::::::
(∼2 cm),

::::
and

::::::::
increasing

:::
up

::
to

::::::
∼1.8 m

::
at

:::::::
1.4 GHz

:::
—

::
so

:::
that

::::
each

:::::::
channel

:::::::
samples

:
a
:::::::
different

:::::
layer

::
of

:::
the

::::::::
snow/firn

::::::
column

::::::::::::::::::::
(Colliander et al., 2022).

:
Several studies have introduced

binary melt-day detection approaches based on simple thresholds or polarization and spectral indices to identify liquid water

(Zwally and Fiegles, 1994; Abdalati and Steffen, 1997; Torinesi et al., 2003; Picard and Fily, 2006). These approaches are

indicators for
:::::::::
Importantly,

:::
all

:::::
these

::::::
passive

::::::::::
microwave

:::::::::
techniques

:::::::
measure

:
the presence of liquid water, rather than for the35

actual physical process of surface melt , which is in fact an energy-conversion process (de Roda Husman et al., 2022). Yet,

the term “surface melt” is widely used
:::::::::::::::::::::::::
(de Roda Husman et al., 2022).

::
In

::::
line

::::
with

::::::::
common

:::::::
practice

:
in the remote -sensing

community (e.g., Torinesi et al. 2003, Trusel et al. 2013, Leduc-Leballeur et al. 2020, Banwell et al. 2023), and we will adopt it

here, although we acknowledge that passive-microwave sensors detect liquid water in the snowpack, independently of whether

active melting is
:::
we

:::
will

::::::::
interpret

::
the

::::::::
presence

::
of

:::::
liquid

:::::
water

::
as

::::::::
snowmelt

::::::::::
occurrence,

::::
even

::::::
though

:::::
liquid

:::::
water

:::
can

:::
be

::::::
present40

::
in

:::
the

:::::
snow

:::::::
without

::::
melt occurring at the surface.

::::::::::
sub-surface. From this point onward, we will refer to observations of liquid-water presence — whether derived from passive-

microwave data or from in situ AWS measurements — collectively as “surface melt days.”

These approaches provide valuable insights into the spatial and temporal distribution of melt days but do not directly45

yield water-equivalent melt volumes. A smaller but growing body of work has tackled the challenge of quantifying melt vol-

umes from satellite data. Trusel et al. (2013) empirically calibrated active-microwave QuikSCAT Ku-band backscatter against

automatic weather station (AWS )
:::::
AWS energy-balance estimates to produce continent-wide melt-volume maps at ∼4.5 km

resolution. Unfortunately, the QuikSCAT mission ended in 2009. All
:::::
After

::::
that,

::::::
optical

:::::::
satellite

:::::::
imagery

::::
has

::::
been

::::
used

:::
to

:::::::
estimate

::::::
surface

::::
melt

:::::::
volumes

::::::::::::::::::
(Banwell et al., 2021)

:
.
:::::
Other efforts to quantify surface melt volume since then rely on model-50

based training data. For example, Zheng et al. (2022) used a neural network trained on modelled surface melt to estimate daily

melt over Greenland from passive-microwave data at 3.125 km resolution. Banwell et al. (2023) combined passive-microwave

:::::::::::::::
passive-microwave

:
and ASCAT scatterometer melt-day

:::::::
melt-day counts with the SNOWPACK firn model to derive meltwater

volumes on ice shelves
::::::::
Antarctic

:::
ice

:::::::
shelves,

::
for

:::
the

::::::
period

::::::::::
1980–2021,

::
on

::
a
::::::
25-km

:::
grid.

In this paper, we present the first method to estimate Antarctic melt-volume from passive microwave data that is calibrated55

solely against melt rate derived from in situ AWS surface energy balance (SEB) observations. ,
::::

and
:::
we

:::
use

::::
this

::::::
method

:::
to

::::::
produce

::
a
:::::::::::::
continent-wide

::::::
annual

::::::::::
surface-melt

::::
rate

::::::
dataset

:::
at

::::
6.25

:::
km

:::::::::
resolution

:::
for

:::
the

::::::
period

::::::::::
2011–2021.

:
We employ 19
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GHz brightness temperatures from SSMIS on DMSP-F17, chosen for high sensitivity to small amounts of liquid water in the

snowpack (de Roda Husman et al., 2022) and continuity with earlier SSM/I instruments which potentially enable long-term

monitoring. Melt-day occurrence and the melt-day-to-volume relationship are both calibrated directly to melt volumes from60

seven AWS sites in Antarctica (Van Tiggelen et al., 2025; Jakobs et al., 2020). By using in situ observations for calibrating

the satellite signal to melt volume, we incorporate directly
::::::::
indirectly

::::::::::
incorporate critical physical feedbacks in the interaction

between the snowpack and the atmosphere, such as temperature–albedo interactions (Jakobs et al., 2020), or refreezing dy-

namics. Through this
:::
This

:
multi-tiered approach — combining high-resolution SSMIS retrievals, AWS-SEB calibration, and

model intercomparison — we deliver
:::::::
delivers a reproducible, quantitative baseline for Antarctic surface melt and identify

:::
rate65

:::
and

::::::::
identifies pathways for future methodological refinements.

2 Materials

This study relies on two main sources of data: satellite-derived brightness temperature from the SSMIS sensor and in-

situ observations from AWS. These datasets are used for melt detection, calibration, and validation. The following subsections

describe their characteristics and processing. We use the MEaSUREs Antarctic Boundaries Version 2 dataset (Mouginot, 2017)70

as the Antarctic mask. We define each Antarctic hydrological year as running from 1 June through 31 May of the following

calendar year. In this study, we analyze
:::::::::::
Accordingly,

:::
we

::::::
analyse

:
ten hydrological years spanning 2012–2021 for availability

of AWS data, corresponding to the period from 1 June 2011 to 31 May 2021.
::::
2021,

:::::::::::::
corresponding

::
to

::::
melt

:::::
years

::::::::
2011–12

::::::
through

::::::::
2020–21.

::::::::::
Throughout

:::
the

::::::::::
manuscript,

:::
we

::::::::
therefore

:::::
refer

::
to

:::
the

::::::::
temporal

:::::::
coverage

:::
as

::::::::::
2011–2021,

:::::
which

:::::::
reflects

:::
the

:::::
actual

:::::
range

::
of

:::::::::::
hydrological

:::::
years

::::::::
included.

::::
This

::::::::
temporal

:::::::
window

:::::::
reflects

:::
the

::::::
overlap

::::::::
between

:::::
AWS

::::
data

:::::::::
availability

::::
and75

:::::
stable

::::::
SSMIS

:::::::::::
observations,

:::::
which

:::::::
together

::::::::
constrain

:::
the

::::::::
coverage

::
of

:::
the

::::::::
calibrated

:::::::
dataset.

2.1 SSMIS brightness temperature

This study uses SSMIS brightness temperature from
::::::
SSMIS

::
on

:
the DMSP-F17 satellite over the period 2012

::::::::::
hydrological

::::
years

:::::
2011–2021. DMSP-F17 was selected for its sun-synchronous, dawn–dusk orbit stability, which provides two consistent

Antarctic overpasses per day at approximately 06:00 (hereafter "M", morning observation) and 18:00 (hereafter "E", evening80

observation) local time1. All brightness temperatures were obtained from the National Snow and Ice Data Center (NSIDC)2

and preprocessed in Google Earth Engine (Gorelick et al., 2017). Our analysis concentrates on the horizontally
::
H polarized

19 GHz channel, offering a 6.25 km × 6.25 km
::::::::
enhanced footprint — the finest available at this frequency . We also investigated

:::::::::::::::::
(Brodzik et al., 2024)

:
.
::::
This

:::::::
channel

:
is
::::::

widely
:::::

used
:::
for

::::
melt

::::::::
detection

:::::::
because

::
19

::::
GHz

::
is
::::::::
sensitive

::
to

:::::
small

:::::::
amounts

::
of
::::::

liquid

::::
water

::::::
while

:::
still

::::::::::
penetrating

::::
into

::::
dry

::::
firn,

:::::::
yielding

::::
low

:::::::::
brightness

:::::::::::
temperatures

:::::
under

::::::::
dry-snow

::::::::::
conditions

:::
and

::
a
:::::::
marked85

:::::::
increase

:::::
when

:::::
liquid

:::::
water

::
is
:::::::
present

::::::::::::::::::::::::::::::::::::::::::::::::
(Zwally and Gloersen, 1977; de Roda Husman et al., 2022).

::::
We

::::
also

::::::::
evaluated

:
the 37

and 91 GHz channels , as well as the vertically polarized signal, but found that it did not improve the melt detectionmethod

1https://www.remss.com/missions/ssmi/
2https://nsidc.org/data/nsidc-0630/versions/2, last accessed 6 June 2025
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appreciably
::
at

::::
their

::::::::
enhanced

::::::::::
resolutions

::::::
(3.125

::::
km),

:::
but

:::::
these

::::::::::::::
higher-frequency

::::::::
channels,

::::::::::::
characterised

::
by

:::::
much

:::::::::
shallower

:::::::::
penetration

::::::
depths

::::::::::::::::::::
(Colliander et al., 2022)

::
did

:::
not

:::::::
provide

:
a
:::::::::
consistent

:::::::::::
improvement

::
in

:::
our

:::::::::::
methodology

:::
for

::::
melt

::::::::
detection.

2.2 Automatic weather stations observations90

Automatic weather station
::::
AWS

:
observations are the foundation for the method in this paper. For the melt volume to be

calculated, only AWS
:::::
AWSs that measure sufficient variables to close the surface energy balance qualify. This grossly reduces

the number of available AWS locations, since the full radiation budget is only measured at a handful of stations in Antarctica.

A major provider of data for this study is the Institute for Marine and Atmospheric Research Utrecht (IMAU) AWS dataset,

which is described in Van Tiggelen et al. (2025). Only the IMAU AWS stations
:::::
AWSs with at least one entire hydrological year95

of data within the June 2011 – May 2021 window were used for calibration and evaluation. These comprise AWS11 (Halv-

farryggen Ice Rise), AWS14 (northern Larsen C ice shelf), AWS15 (central Larsen C ice shelf), AWS16 (Princess Elisabeth

station), AWS17 (Scar Inlet as a remnant of Larsen B ice shelf) and AWS18 (Cabinet Inlet on western Larsen C ice shelf).

::::
(Fig.

::::
S1). All six sites record the standard meteorological variables and the four components of net surface radiation, with

measurements corrected for common errors as detailed in Van Tiggelen et al. (2025). Melt volumes are subsequently computed100

at each station using the SEB model of Jakobs et al. (2020). In this framework, turbulent fluxes are calculated using similar

::::::::
similarity theory, surface temperature is determined via iterative closure of the SEB, and excess energy at 0°C is converted into

meltwater. Meltwater percolates through the firn using a bucket scheme until refreezing occurs. Shortwave radiation penetra-

tion into the
:::::::::
subsurface

:::::
layers

:::
of

:::
the snowpack is neglected. Of the six IMAU AWS stations meeting our requirements, four

(AWS14, AWS15, AWS17 and AWS18) are situated on or immediately adjacent to Larsen C ice shelf, whereas the remaining105

two (AWS11 and AWS16) provide a few years of measurements in locations with low melt. To broaden the geographic scope

of our calibration and ensure robust performance of the melt model across climatically distinct regions, we augment the IMAU

network
:::::
lower

::::
melt.

:::
We

::::::::
augment

:::
the

::::::
dataset with a decade (2012

::::
2011–2021) of observations at

:::::::::::
measurements

:::::
from the Ger-

man Neumayer station, where
:
.
::::::::
Although

:::::::::
Neumayer

:::
also

:::::::
exhibits

::::::::
generally

:::
low

::::
melt

:::::
rates,

::
its

::::::::::
continuous

:::
and

::::::::
long-term

::::::
record

::::::::::
substantially

::::::::::
strengthens

:::
the

:::::::::
calibration

::::::
dataset

:::
and

:::::::::
introduces

:
a
::::::::::::
well-sampled

::::::
coastal

::::
East

::::::::
Antarctic

::::::
climate

::::::
distinct

:::::
from

:::
the110

::::::::
high-melt

:::::::::
conditions

::
of

::::::
Larsen

::
C.

::
At

:::::::::
Neumayer,

:
we use the surface radiation observations from the Baseline Surface Radiation

Network (BSRN) station (Schmithüsen, 2021), meteorological observations (Schmithüsen, 2023a), and surface height obser-

vations (Schmithüsen, 2023b).

For additional analysis, we also use observations of near-surface air temperature scaled to a nominal height of 2 m above the

surface.115

Modelling surface melt in an SEB model carries uncertainties because of model settings, model assumptions, and errors in

the input. This uncertainty is estimated using a number of sensitivity tests. First, the uncertainty from the IMAU AWS forcing

is estimated by separately including or removing one of four measurement corrections: the window heating of the pyrge-

ometer, the shortwave heating of the passively ventilated temperature sensor, the correction for relative humidity for ice and

sensor sensitivity at very low temperatures, and the correction for tilt and bias of the pyranometer, which are all described by120

Van Tiggelen et al. (2025). Then, the uncertainty due to
::
To

::::::::
constrain

:::
the

::::::::::
uncertainty

::::::::
associated

:::::
with the SEB modelsettings
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and assumptions is estimated by separately varying one of five model settings at the time: using a constant height of the sensors

to 2 m
:
,
:::
five

::::::::
different

:::::
model

:::::::
settings

:::::
were

::::::::::
individually

::::::::
adjusted:

::
i)

:::
the

::::::
sensor

:::::
height

:::::
fixed

::
to

:::
2m

:
above the surface instead

of variable
::::::
varying

:
in time, the use of a

::
ii)

:::
the roughness length for momentum of 1 mm instead of

:::::::
increased

:::::
from 0.1 mm

for snow, using a
:
to

::
1

::::
mm,

:::
iii)

:::
the

:
surface longwave emissivity of 0.97 instead of

::::::::
decreased

::::
from

:
1 , using an alternative

::
to125

::::
0.97,

:::
iv)

:::
the snow thermal conductivity (Anderson, 1976), and finally, letting

::::::::::::
parameterised

::::
after

:::::::::::::::
(Anderson, 1976)

::::::
instead

::
of

:::::::::::::::::
(Calonne et al., 2019)

:
,
:::
and

::
v)

::::::::
allowing the snow height

::
to freely evolve in the model instead of prescribing snow height in time

using the sonic height ranger
::::
being

:::::::::
prescribed

:::
by

::::::
surface

::::::
height observations. These choices result in one reference and nine

perturbed time series of SEB components and surface melt per IMAU station, where each perturbed timeseries results from

just one omitted measurement correction or one different model parameter at the time. This sensitivity analysis was conducted130

only
::::
only

::::::::
conducted

:
for the AWS stations with the highest number of positive melt observations among those selected

:::::
where

::
the

::::::::::
uncertainty

::
of

:::
the

:::::::::::
observations

:::
and

:::
of

:::
the

::::
SEB

::::::
model

:::
are

::::
both

::::::::
expected

::
to

::::::
impact

:::
the

::::
melt

::::::
volume

::::::::::::
computations.

::::::
These

::
are

:::
the

:::::
AWS

::::
that

:::
are

:::
left

::::::::::
unattended

::
for

::
a
::::
year

::
or

:::::
more

:::
and

:::::::
located

::
in

:::::
areas

::::
with

:::::::::
substantial

::::
melt, namely AWS14, AWS15,

AWS17, and AWS18.

3 Methods135

We derive the occurrence of a surface melt day and annual melt totals over Antarctica in two steps. First, we calibrate SSMIS

brightness temperature against in-situ surface melt observations at AWS locations to identify robust thresholds that discriminate

surface melt from non-melt days (Sec. 3.2). Second, we translate SSMIS-derived melt-day counts to a water-equivalent surface

melt volume using an empirical relation derived from the AWS observations (Sec. 3.3).

Prior to these steps, we have to establish that satellite observations at a spatially averaged scale of 6.25 km x 6.25 km are140

representative of AWS observations at a singular point.

3.1 Melt homogeneity

To assess whether the selected 6.25 km × 6.25 km SSMIS pixel accurately represents
::::::::
resolution

:::
of

::
an

:::::::
SSMIS

:::::
pixel

::
is

:::::::
sufficient

:::
to

::::::::
represent melt conditions at each AWS site, we compared it against the higher-resolution U-Melt binary melt

product (de Roda Husman et al., 2024), available at 500 m spatial resolution. For each station, an 11
:
a
:::
13 × 11 pixel window145

centered on
::
13

:::
grid

::
of

:::::::
U-Melt

:::::
pixels

:::
was

::::::::
centered

::::
over the AWS locationwas extracted, and the 0

::::
melt/1 meltflags

:::::::
no-melt

::::
state

of all surrounding pixels were
::::
was compared to that of the central pixel

::
for

::
all

:::::
days,

::::::::
including

::::
both

::::
melt

::::
and

:::::::
non-melt

::::
days.

Two metrics were computed: (i) Homogeneity
:::::::::::
homogeneity rate, defined as the fraction of surrounding pixels with melt

flags matching the central pixel, which exceeded 99
::
98% at all stations; and (ii) Local

::::
local variability, defined as the standard

deviation of binary melt values within the window, consistently below 0.01
:::::
which

::::::::
remained

:::::
below

::::
0.02.150

These results indicate that, despite the ∼40 km2 native footprint of a SSMIS pixel, melt conditions around each AWS site

are highly homogeneous
:::::
around

:::::
each

:::::
AWS,

:::
the

::::::
nature

::
of

:::::
melt

:::::::::
conditions

::
is

:::::
highly

::::::::::::
homogeneous

::
at
::
a
:::::
scale

::::::
similar

::
to

::::
that

::
of

:::
the

::::::
SSMIS

:::::
pixel

::::::::
footprint. Therefore, the selected SSMIS pixel provides a reliable representation of

::
we

::::::::
conclude

::::
that
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::
the

:::::
6.25

:::
km

::
×

::::
6.25

:::
km

:::::::::
resolution

::
of

:::
the

:::::::
SSMIS

::::
pixel

::
is
:::::::::

sufficient
::
to

::::::::
represent local melt conditions and is appropriate for

calibration purposes.155

3.2 SSMIS Melt Detection: Calibration and Flagging

To translate SSMIS brightness temperatures (Tb) into surface melt-day detections, we assembled a suite of candidate in-

dicators drawn from established microwave-based methods and calibrated each against in situ AWS melt observations (≥
0.5 mm w.e. day−1).

::::
This

::::::::
threshold

:::
was

:::::::
applied

::
to

:::::
avoid

:::::::
labelling

:::::::::
negligible

::::
melt

::::::::
amounts,

:::::
often

:::::
within

:::
the

:::::::::
numerical

:::::
noise

::
of

:::::::::::
SEB-derived

::::
melt

::::::::
estimates,

:::
as

:::
true

:::::
melt

::::::
events,

:::::
since

::::
very

:::::
small

:::::
daily

:::::
values

::::
may

::::::
reflect

::::::
model

:::::::::
uncertainty

::::::
rather

::::
than160

::::::::
physically

::::::::::
meaningful

::::::
surface

:::::
melt.

All metrics were computed at 19 GHz, 37 GHz, and 91 GHz, using both horizontal (H) and vertical (V) polarizations. The

indicators were grouped as follows (see Table S1 for a detailed description of all candidate variables):

1. Pure Brightness-Temperature: We tested absolute Tb at each frequency and polarization, for both morning and evening

observations.165

2. Winter-Anomaly: Difference between the Tb and its winter mean (Zwally and Gloersen, 1977).

3. Diurnal and Day-to-Day Change: i) Diurnal amplitude: difference in Tb between evening and morning overpasses (Ram-

age and Isacks, 2002). ii) Day-to-day change: difference in Tb between consecutive days at the same overpass time,
:::::::::
following

:::::::::
approaches

::::::
similar

::
to

:::::
those

::::
used

::
in

:::::::::
short-term

::
Tb:::::::::

variability
::::
melt

::::::::
detection

::::::::::::::::
(Wang et al., 2016).

4. Normalized Polarimetric Ratio (NPR): Contrast between vertical and horizontal
::
V

:::
and

::
H
:

polarizations at the same fre-170

quency and overpass
::::::::::::::::::
(Mousavi et al., 2021).

5. Normalized Seasonal Anomalies: Indicators that account for seasonal variability by comparing Tb to its winter anomaly

plus a multiple of the winter or annual standard deviation (Torinesi et al., 2003).

Each candidate indicator’s day-by-day values were compared against AWS-derived melt versus non-melt classifications.

Receiver Operating Characteristic (ROC) analysis was performed on all candidates (Fig. S1
::
S2), and thresholds were chosen to175

achieve an optimal trade-off between true positive rate (TPR) and false positive rate (FPR). The two best-performing metrics

were the 19 GHz H polarization evening brightness temperature, T (E)
b,19H (TPR ≈ 62%, FPR ≈ 2%), and its diurnal amplitude

::
the

::::::
winter

:::::::
anomaly

:
(TPR ≈ 67%, FPR ≈ 3%). All other candidates yielded TPR below 50%.

3.2.1 Multivariate Optimization

Since no single indicator achieved both high TPR and true negative rate (TNR; i.e., 1 - FPR) we selected triplets from the180

analyzed metrics and applied logical rules i) and (all three thresholds must be exceeded for a melt day to be detected); ii) or

(at least one threshold must be exceeded); iii) majority (at least two thresholds must be exceeded) to their thresholds. In 1,000

Monte Carlo trials (randomly sampling 30% of melt and 30% of non-melt days), the majority rule achieved the highest overall

accuracy and the resulting thresholds exhibited near-Gaussian distributions (Fig. S2
::
S3). The optimal threshold combination
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under the majority rule is:185

{T (E)
b,19H > 219.2K, Aw > 26.3K

:::::::::::
∆Td > 19.7K, Aw > 26.3K},

where

∆Td = T
(E)
b,19H −T

(M)
b,19H,

denotes the diurnal amplitude (difference between evening (E) and morning (M) overpasses), and

Aw = T
(E)
b,19H −µwinter,190

is the winter anomaly, with µwinter representing the mean 19 GHz horizontal
:
H-polarization brightness temperature over 1

June–31 August,
::::
and

∆Td = T
(E)
b,19H −T

(M)
b,19H,

:::::::::::::::::::

::::::
denotes

:::
the

::::::
diurnal

:::::::::
amplitude

:::::::::
(difference

:::::::
between

:::::::
evening

:::
(E)

:::
and

::::::::
morning

:::
(M)

::::::::::
overpasses).

This triplet yields 95.3% accuracy (TPR = 77.8%, TNR = 97.2%), thus balancing false positives and false negatives. Impor-195

tantly, because negative samples greatly outnumber positive ones in our dataset, a 3% drop in TNR (i.e., more false positives)

produces an absolute error count roughly equivalent to that resulting from a 22% drop in TPR (i.e., more false negatives). This

analysis is conducted on an annual basis, and the balanced trade-off between false positives and false negatives is achieved

at this temporal scale; applying the same thresholds over shorter periods may lead to a disproportionate increase in one error

type. At annual temporal resolution, a 3% decrease in TNR produces an absolute error count comparable to that from a 22%200

decrease in TPR, demonstrating a balanced trade-off between the two error types at this scale.

3.2.2 Melt-Day Flagging and Annual Summation

These three criteria were applied to each set of two
::::
twice daily SSMIS overpasses for each pixel. A pixel is flagged as “melt”

on day d if at least two thresholds are met. Annual
::::::::::::
SMISS-derived

::::::
annual

:
melt-day counts are obtained by summing these daily

flags per pixel over an Antarctic year (1 Jun to 31 May). A linear regression between AWS-derived and SSMIS-derived annual205

melt-day counts yielded a coefficient of determination of R2 = 0.91 (Fig. 1a).
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3.3 Melt estimation

The second major step in the melt volume estimate is to relate the annual number of melt days (m) to total annual melt (M ).

To that end, we fitted the AWS-derived decadal record (2012-2021
:::::::::
2011-2021) to an exponential model:

M = a
(
ebm − 1

)
, (1)210

where parameters a and b were estimated using a least-squares approach to minimize the residuals between the model and the

observed melt values (Fig. 2a). The above functional form follows an empirically demonstrated non-linear relationship between

melt days and meltwater production (Banwell et al., 2023; Trusel et al., 2013). This non-linear behaviour likely reflects melt-

albedo feedbacks, and the longer time required for refreezing of larger melt volumes, such that warmer summers produce

disproportionately more runoff (Banwell et al., 2023). By fitting a and b from equation 1 to AWS stations, which compute melt215

via a full SEB model, our approach embeds these physical feedbacks into the satellite-only
:::::::::::::
SSMIS-derived,

::::::::::::::
AWS-calibrated

framework.

When the exponential model is applied to the satellite-derived melt-day count, a pixel-level estimate of
::::
total annual melt is

obtained. A Monte Carlo-based confidence interval for the m–M relationship is derived by propagating measurement and

model uncertainties (detailed in Sec. 2.2, see Fig. 2a): for each AWS-year combination, ten m–M pairs corresponding to220

distinct setups are available, and in each of 1000 Monte Carlo iterations one setup is randomly selected for each AWS-year,

yielding n data points. The exponential model of 1 is then fitted to each sample, producing 1000 realizations of M(m) which

are evaluated over m ∈ [0,100] to characterize the variability of melt estimates. The light pink band in Fig. 2a represents the

3σ confidence envelope, the blue line denotes the median-fit relationship, and the red line corresponds to the fit obtained using

the reference setup alone.225

Fig. S3a
:::
S4a

:
shows the site-specific exponential fits at each of the four AWS locations (AWS14, AWS15, AWS17, AWS18)

where the sensitivity analysis was conducted (see Sec. 2.2); Fig. S3b
:::
S4b

:
presents the combined fit across the selected four

AWS stations, illustrating how the ten SEB-model permutations produce a modest spread in the resulting m–M curves.

For an independent assessment of the m–M relation, it was also derived for fully independent, model-only, RACMO2.4

melt-day and melt-volume output for 2012
::::
2011–2021, both across the entire Antarctic domain (Fig. 2b) and separately at four230

selected AWS locations (see Fig. S3c
:::
S4c). In both cases, the resulting exponential parameters and curve shape closely matched

those derived from the AWS-SEB calibration, demonstrating the robustness and spatial generality of the m–M relationship.

This also demonstrates that the collection of AWS observations used for this study sufficiently captures the variability in

surface melt conditions across the Antarctic ice sheet
::
Ice

:::::
Sheet

:
as represented by a physically-based model. The agreement in

functional shape, despite the melt days underestimation by SSMIS, supports the application of the AWS-derived fit to satellite-235

derived melt-day counts across the full Antarctic dataset.
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(a) (b)

Figure 1. Evaluation of all available coincident SSMIS- and AWS-based (a) melt days and (b) melt fluxes across the seven AWS locations.

4 Results

4.1 SSMIS-AWS comparison

Applying the fit described in Section 3.3, we produced estimates of total annual melt across Antarctica (Fig. 3a). We assessed

our results by comparing annual SSMIS-derived melt days and melt fluxes with coincident AWS-based observations, yielding240

a strong linear correlation (R2 = 0.91 and R2 = 0.83, respectively; Fig. 1b). However, given the limited number of in situ AWS

sites — which were also employed during calibration — this evaluation is inherently circular. Dividing the AWS record into

independent calibration and validation subsets was considered not feasible due to the small sample size and the constrained

spatial variability of the available stations.

4.2 Comparison of SSMIS with QuikSCAT and RACMO2.4p1245

We compare our ten-year mean
:::::::::::
decadal-mean melt-flux estimates from SSMIS with two independent products:

– QuikSCAT (1999–2009): active-microwave backscatter retrieval of
:::::::::::
decadal-mean annual melt flux

::::::
derived

::::
from

:::::::
Ku-band

:::::::::
backscatter at 4.45 km resolution (Trusel et al., 2013), see Fig. 3b.

– RACMO2.4
::
p1

:
(2012

::::::::
hereafter,

:::::::::::
RACMO2.4)

::::::
(2011–2021): regional climate model forced by ERA5, providing daily

melt flux
:::::::::::
decadal-mean

::::::
annual

::::
melt

::::
flux

::::::::
simulated

:
at 11km resolution, here averaged to the same decadal period

:::
km250

::::::::
resolution (van Dalum et al., 2025), see Fig.

:
3c.
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(a) (b)

Figure 2. Exponential melt-day to melt-volume relationship. (a) Scatterplot of annual meltwater volume (M , from AWS-SEB) versus melt
days (m) at six IMAU-AWS stations for 2012

::::
2011–2021, with the best-fit exponential curve shown in red

::::::::
(R2 = 0.91). The median fit from

1,000 Monte Carlo realizations is shown in blue, and the shaded pink band indicates the ±3σ confidence interval. (b) Comparison of the
AWS-derived m–M curve (black) against RACMO2.4 p1

::::::::
(R2 = 0.91): the red line is the RACMO

:::::::::
RACMO2.4 fit, while blue dots represent

RACMO2.4 p1 pixel-level data for all of Antarctica over 2012
:::
2011–2021.

Broad spatiotemporal agreement exists among all three products
::::::
Across

:::
the

::::::::
Antarctic

:::::::::
Peninsula,

:::
all

:::::
three

:::::::
datasets

:::::
show

::::::::::
consistently

::::
high

:::::::::::
decadal-mean

:::::::
surface

::::
melt

::::
rates. On LarsenC ice shelf

::
C
:::
Ice

:::::
Shelf, SSMIS, QuikSCAT, and RACMO melt

rates
::::::::::
RACMO2.4

:::
all exceed 350mm

:::
mm

:
w.e. yr−1. However, SSMIS and QuikSCAT (1999–2009) show their highest values

on
::::
place

::::
their

::::::
highest

::::::::::::
decadal-mean

::::
melt

::::::
values

:::::
along the western inlets (e.g. Mill Inlet), whereas RACMO’s peak is shifted255

::::::::::
RACMO2.4

:::::
shifts

::
its

:::::::::
maximum eastward toward Scar Inlet, a discrepancy noted earlier (Trusel et al., 2013).

Western-Peninsula ice shelves such as
:::::
spatial

:::::
offset

:::
also

:::::
noted

::
in

::::::
earlier

::::::::::::
satellite-based

:::::::
analyses

::::::::::::::::
(Trusel et al., 2013)

:
.
::::::
Farther

:::::
south,

:::
on

:
Wilkins and GeorgeVI exhibit mean melt fluxes higher than

:::
VI

:::
ice

:::::::
shelves,

::::::::::::
decadal-mean

:::::
melt

::::
rates

:::::::
exceed

200–250mm
::::

mm
:

w.e. yr−1 in all three datasets. On Shackleton Ice Shelf, all products report peak fluxes around 200-250

mm
:::::::
datasets.260

:::::
Along

::::::
coastal

:::::
West

:::::::::
Antarctica,

::::::::
including

:::
the

:::::::::
Amundsen

:::
and

:::::
Ross

:::
Sea

:::::::
sectors,

:::::::::::
decadal-mean

::::
melt

:::::
rates

::::::
remain

::::
low,

::::::
around

:::::
20–30

::::
mm w.e. yr−1 along the outer coastal

:
in

:::
all

::::::::
products.

::::::
These

::::
areas

::::::::
represent

:::::
some

:::
of

:::
the

::::::::::
lowest-melt

::::::
regions

:::::::
outside

::
the

::::::::::::
high-elevation

:::::::
interior.

:::::
Over

:::
the

::::
Ross

:::
Ice

::::::
Shelf,

::::::
SSMIS

::::
and

:::::::::
QuikSCAT

:::::
show

:::
the

::::::::
strongest

:::::::::::
decadal-mean

:::::
melt

:::::
along

:::
the

::::::
western

:::::
flank,

:::::::
whereas

:::::::::::
RACMO2.4

::::::::
simulates

:::::
higher

::::
melt

:::::
along

:::
the

::::::
eastern

:
margin.
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Figure 3. Comparison of decadal mean meltwater volume across Antarctica. (a) SSMIS-derived annual melt flux averaged over
2012

:::
2011–2021. (b) QuikSCAT-derived melt flux over 1999–2009 from backscatter observations (Trusel et al., 2013). (c) RACMO2.4

p1 model output averaged over 2012
:::
2011–2021 (van Dalum et al., 2025). (d) RACMO2.4 p1 model output averaged over 1999–2009 (van

Dalum et al., 2025).
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In Dronning Maud Land, annual surface melt at Roi Baudouin and inner Fimbul ice shelves are consistently
:::
East

::::::::::
Antarctica,265

::
the

:::::
three

:::::::
products

:::::
again

:::::
show

:::::::
broadly

::::::::
consistent

::::::::
patterns.

::::::::::::
Decadal-mean

::::::
surface

::::
melt

:::::
rates

::
of

:
around 200mm

::::
mm w.e. yr−1

::::
occur

:::
on

::::
Roi

::::::::
Baudouin

::::
and

:::
the

:::::
inner

::::::
Fimbul

:::
ice

:::::::
shelves, while northeast Amery Ice Shelf peaks around

:::::
shows

:::::
rates

::::
near

150mm
:::
mm

:
w.e. yr−1 across SSMIS, QuikSCAT, and RACMO. Along the Ross and Amundsen Sea margins, each method

records low-intensity melting (20–30 mm w.e.,yr−1). Over the Ross Ice Shelf, SSMIS and QuikSCAT indicate that melt occurs

predominantly on the western side, whereas RACMO simulates the strongest melt on the eastern margin. Finally, to facilitate270

::
all

::::::::
products.

::
To

:::::
allow a direct comparison with QuikSCAT,

::
we

::::
also

:::::::
extracted

:
RACMO2.4 p1 outputs were extracted

::::::
outputs

:
for 1999–2009

(Fig. 3d). During this interval, both datasets exhibit comparable magnitudes (mean values within ∼
::::
Over

:::
this

::::::
shared

::::::
period,

:::
the

:::
two

:::::::
datasets

:::::
show

:::::::::
comparable

::::::::::::
decadal-mean

::::
melt

::::::::::
magnitudes

::::::
(within

::
∼10%) and analogous large-scale spatial distributions,

despite RACMO
:::::
similar

::::::
spatial

:::::::
patterns,

:::::::::
including

::::::::::
RACMO2.4’s modest eastward shift in

:::::::::::
displacement

::
of

:
melt maxima and275

QuikSCAT’s systematic underestimation of low-melt zones. These inter-product
:::::::
tendency

::
to

:::::::::::
underestimate

::::
melt

::
in

:::::::::::
low-intensity

::::::
coastal

::::::
regions.

::::::
These agreements and discrepancies parallel

::
are

:::::::::
consistent

::::
with those observed between SSMIS and RACMO

for 2012
::::::::::
RACMO2.4

::
for

:::::
2011–2021.

Interannual melt volumes from SSMIS and RACMO over 2012
::::::::::
RACMO2.4

::::
over

:::::
2011–2021 exhibit very similar tempo-

ral patterns, with mean annual melt fluxes over 2012–2021 of approximately 83 Gtyr−1 for SSMIS compared to 98 Gtyr−1280

for RACMO
:
.
:::
The

:::::
mean

::::::
annual

::::::::
Antarctic

::::
melt

::::::
volume

::
is

::::::::::::
approximately

::
85

:::::::
Gt yr−1

::
for

:::::::
SSMIS

:::
and

:::
100

:::::::
Gt yr−1

:::
for

::::::::::
RACMO2.4

(Fig.S4
::
S5). The corresponding yearly mean surface melt flux maps (SSMIS vs. RACMO), presented in Fig.S5 of the Supplementary

Materials, further highlight the strong agreement in both
:::::
annual

:::::
mean

::::::::
melt-flux

:::::
maps

::::
(Fig.

::::
S6)

::::::
further

::::::::::
demonstrate

:::
the

:::::
close

spatial and temporal variability
:::::::::
agreement between the two datasets

:
,
:::
and

::::::::::
additionally

:::::::
provide

:
a
:::::::
regional

:::::
view

::
of

:::
the

::::::::
Antarctic

::::::::
Peninsula,

::::::
where

::::
most

::::::::
Antarctic

::::::
surface

::::
melt

::::::
occurs.285

5 Discussion

A closer look at misclassified
::::::
surface

::::
melt days reveals two primary sources of false positive detections. About 71 % of false

positives
::::::
(defined

::::
here

:::
as

::::
days

::::::::
classified

::
as

::::
melt

:::
by

::::::
SSMIS

:::::
while

::::::::::
AWS-SEB

::::::
reports

::::
zero

:::::
melt) occur when RACMO2.4 p1

simulates non-zero
:::::::
simulates

:
liquid water content (LWC) in the firn (See Fig. S6a

:::
S7a). Nearly 90 % of false positives coin-

cide with AWS near-surface air temperatures (T2m) above –5 °C (See Fig. S6b). These findings suggest that our classifier290

is not only responding to surface melt events, but more generally detects the presence of liquid water near the surface

(de Roda Husman et al., 2022), e.g., water retention within the upper firnthat elevates brightness temperature above the winter

offset
::::
S7b).

:::::
Taken

::::::::
together,

::::
these

:::::::
patterns

:::::::
indicate

::::
that

:::
the

:::::::
classifier

::
is
::::::::::
responding

::
to

:::::
liquid

:::::
water

::::::
within

:::
the

::::::::::
near-surface

::::
firn,

::::
even

:::::
when

::::::
surface

::::
melt

::
is

:::
not

:::::::::
diagnosed

::
by

::::::::::
AWS-SEB.

::::
This

:::::::::
behaviour

::
is

::::::::
consistent

::::
with

:::
the

::::::
known

::::::::::
penetration

:::::
depth

::
of

:::
19

::::
GHz

:::::::::
microwave

::::::::
radiation,

:::::
which

::
is
::::::::
sensitive

::
to

::::
both

::::::
surface

:::
and

:::::::
shallow

:::::::::
subsurface

::::::
wetting

:::::::::::::::::::::::::
(de Roda Husman et al., 2022). In295

this sense, SSMIS appears sensitive to a broader melt signal spectrum, including
::::::
detects

:
a
::::::
broader

::::::::
physical

:::::::::::
melt–wetting

:::::
signal

:::
that

:::::::
includes

:
processes not directly measurable by AWS but captured by RACMO

::::::::::
RACMO2.4’s subsurface hydrology. For this
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reason, we also explored the potential of additional microwave indicators, such as the 37 GHz channel and various polarization

or spectral ratios, to reduce false positives by improving sensitivity to surface wetting. While these metrics offer theoretical

advantages due to their shallower penetration and enhanced surface melt response (Colliander et al., 2022), our cross-validation300

results show no consistent performance improvement across the AWS network. This outcome supportes the assumption that

the
:::::::
supports

:::
our

::::::
choice

::
of

:::
the

:
19 GHz H polarization signal remains the most stable and spatially representative choice

::::
GHz

::::::::::::
H-polarization

::::::
channel

:::
as

:::
the

::::
most

::::::
robust

:::
and

::::::::
spatially

::::::::
consistent

::::::::
indicator

:
under current sensor constraints. A closer exam-

ination of Fig. 1 shows that Neumayer station exhibits larger residuals than the other sites. This discrepancy likely reflects

Neumayer’s local climate, where subfreezing daytime temperatures drive nearly instantaneous firn refreezing (van den Broeke305

et al., 2010). Consequently, less liquid water remains at the surface during SSMIS overpasses, diminishing the brightness-

temperature signal compared to other AWS locations — such as Larsen C — where subsurface water retention prolongs

wet-snow signatures.

::::::::
Although

:::
the

::::::
SSMIS

::::::
dataset

::::::
covers

::
all

::
of

::::::::::
Antarctica,

:::
the

:::::::::
calibration

:::::
relies

::
on

::
a

::::::::::::
geographically

::::::
limited

:::
set

::
of

:::::
AWS

:::::
sites,

::::
with

:::
four

:::::::
stations

::::::
located

:::
on

::::::
Larsen

:
C
::::
and

::::
only

::::
three

:::::::::
additional

::::
sites

:::::::::
elsewhere.

::::
This

:::::
raises

:::
the

:::::::
question

::
of

:::::::
whether

:::
the

::::::::
melt–day

::
to310

:::::::::::
melt–volume

::::::::::::
parametrisation

::
is

::::::::::
transferable

:::::
across

:::
the

:::
full

::::::::
Antarctic

::::
melt

:::::
zone.

::::::::
However,

:::
two

:::::
lines

::
of

:::::::
evidence

::::::
suggest

::::
that

:::
the

:::::::::
calibration

:
is
:::::::

broadly
::::::::::::
representative:

:::
(i)

:::
the

:::::::::
sensitivity

:::::::
analysis

:::::::::
combining

::
all

:::::
AWS

:::::
years

::::::::
produces

:
a
::::::
stable,

::::::::::::::
well-constrained

:::::
m–M

::::::::::
relationship,

::::
and

:::
(ii)

::::::::::
RACMO2.4

:::::::
exhibits

:
a
:::::
nearly

::::::::
identical

::::::::
functional

::::::::::
relationship

::::::
across

::
the

:::::
entire

:::
ice

:::::
sheet

::::
(Fig.

:::::
S4c).

:::::
These

:::::::::::
comparisons

:::::::
indicate

::::
that,

::::::
despite

::::
the

:::::
sparse

::::::::::
calibration

:::::::
network,

::::
the

:::::::::
underlying

::::::::::
exponential

:::::::
relation

::
is

::::::::::
sufficiently

::::::
general

::
to

:::::
apply

:::::
across

::::::::::
contrasting

:::::::
climatic

:::::::
regions,

::::::
though

::::
local

:::::::::
deviations

::::::
cannot

::
be

::::
fully

::::::::
excluded.

:
315

From a spatial perspective, our melt product reveals interesting regional features. For instance, on the Larsen C ice shelf,

a distinct east-west gradient is visible, likely driven by föhn winds over the Antarctic Peninsula mountain range (Luckman

et al., 2014) and supported by melt patterns in QuikSCAT (Trusel et al., 2013), and firn air content observations across the

ice shelf (Holland et al., 2011). The SSMIS-based method underestimates
:::::
shows

:::
less

:
surface melt relative to QuikSCAT —

but the first was collected a decade prior to
::::
after the second. Thus, its difference may be attributed to the documented cooling320

trend over the Peninsula
::
in

:::
the

::::
first

::::::
decade

:
after 2000 (Turner et al., 2016)

:
,
:::::
which

::::
has

::::
been

::::::
linked

::
to

::::::::::::
decadal-scale

::::::
natural

::::::
climate

:::::::::
variability. Taken together, our findings suggest that the proposed SSMIS-based detection scheme reasonably captures

the spatial and temporal patterns of surface melt across Antarctica. Its general consistency with known climate trends indicates

that the classifier is likely robust to both environmental variability and regional melt characteristics. However, the sensitivity

to shallow wetting layers — while offering valuable insight into subsurface processes — also introduces uncertainty when325

interpreting daily melt flags. Refining this ambiguity represents a necessary direction for improving the distinction between

surface and subsurface melt
:::
melt

::::
and

:::
the

:::::::
presence

::
of

::::::::::
sub-surface

:::::
liquid

:::::
water

:
in future satellite-based algorithms.

6 Conclusions

We introduce a novel 6.25 km gridded dataset of Antarctic surface melt rates for 2012
::::
2011–2021, derived exclusively from

SSMIS 19 GHz passive-microwave observations and calibrated against seven AWS energy-balance melt records. Our majority-330
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rule framework —combining absolute evening Tb, diurnal amplitude, and winter-season anomaly
::::::::
thresholds

:
— yields daily

melt flags that, when transformed through an exponential melt-day to melt-volume model, reproduce in-situ melt volumes with

fidelity. Comparative analyses with QuikSCAT and RACMO2.4 p1 confirm that our product accurately maps melt hotspots,

while misclassification analysis clarify the conditions under which passive-microwave retrievals are least reliable.

By providing a spatially comprehensive , satellite-only
:::::::::::::
SSMIS-derived,

::::::::::::::
AWS-calibrated record of Antarctic surface melt,335

this dataset fills a critical gap between sparse in-situ measurements and model outputs. It offers a transparent, reproducible

baseline for evaluating regional climate models, constraining firn-hydrology schemes, and informing assessments of ice-shelf

vulnerability to meltwater-induced weakening. The complete Antarctic-wide, decadal melt record is publicly available for use

in cryospheric process studies.

Code and data availability. The annual Antarctic surface melt–water equivalent maps derived from SSMIS 19 GHz brightness temperatures,340

covering the period 2011–12 to 2020–21, are publicly available at https://doi.org/10.5281/zenodo
::::::::
.16738423 (Di Biase, 2025). The dataset

includes GeoTIFF files providing annual number of melt days and
::::::::
cumulative

:
annual melt volume per pixel (in mm water equivalent) .

:::
with

::::::::::
corresponding

:::::::::
lower/upper

:::::
bound

:::::::
estimates

:::::
based

::
on

:::
the

::::::::
confidence

:::::::
intervals

:::::::::
represented

:
in
:::::::
Fig.2(a)

:
to
::::::
convey

:::
the

::::::::
uncertainty

:::::
range.

The AWS data used as forcing for the SEB model is available at https://doi.pangaea.de/10.1594/PANGAEA.974080 (Van Tiggelen et al.,

2024). The SEB model used to compute surface melt is available at https://doi.org/10.5281/zenodo.15082295 (Van Tiggelen et al., 2025).345
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