

Post-review adjustments

$\text{HO}\cdot$ and $\cdot\text{OH}$ can be used interchangeably in Chemistry, same as $\text{O}\cdot$ and $\cdot\text{O}$, or any other radical. They mean the same thing and the \cdot symbol on O simply indicates that the **free electron** rests on the oxygen atom. In some situations, such as hydrogen bonded complexes where the **hydrogen bonding** is expressed by the \cdots symbol, either $\text{HO}\cdot$ or $\cdot\text{OH}$ can be used in such a way that the structure can be clearly understood by the reader. Putting \cdot and \cdots symbols close to each other can be misleading.

Hence, for example, “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}$ ” is preferably written as “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}$ ” to highly the presence of both the **free electron** and the **hydrogen bonding**. Originally, such was written as “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}$ ”, which clearly highlighted both the **free electron** and the **hydrogen bonding**. However, the \cdots symbol was changed to $\cdots\cdots$ symbol during the typesetting and copying-editing processes.

Based on the above, the following changes are required.

Page 3

Line 79: Change “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ” to “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ”.

Page 4

Line 15: Change “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_n$ ” to “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_n$ ”.

Line 21: Change “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ” to “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ”.

Line 25: Change “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ” to “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_{n=0-2}$ ”.

Line 35: Change “ $\text{HO}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_n$ ” to “ $\cdot\text{OH}\cdots\cdots\text{CH}_3\text{-O-SO}_3\text{H}\cdots\cdots(\text{H}_2\text{O})_n$ ”.

Line 53: Change “ $\text{SO}_4^{\cdot-}\cdots\cdots\text{H}_3\text{O}^+$ ” to “ $\text{SO}_4^{\cdot-},\text{H}_3\text{O}^+$ ”. Here, the \cdots symbol can be replaced by “,” not only to remove the confusion that may arise from $\cdots\cdots$, but also to highly the existence of an **ion-pair** between $\text{SO}_4^{\cdot-}$ and H_3O^+ , which is a common representation in Chemistry.

Page 8

Line 39: Change “ $\text{O}_2\cdots\cdots\text{O-H}_2\text{C-O-SO}_3^-$ ” to “ $\text{O}_2\cdots\cdots\text{O}\cdot\text{-H}_2\text{C-O-SO}_3^-$ ”.