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Abstract. Isoprene is the dominant non-methane Volatile Organic Compound,(VOC) emitted from terrestrial ecosystems and

(pstss.

plays an important role in ozone chemistry. Understanding isoprene emissions is critical for controlling air pollution. The
Model of Emissions of Gases and Aerosols from Nature (MEGAN) is widely used to calculate biogenic isoprene emissions
worldwide. While MEGAN predictions are good for many regions, a previous analysis of isoprene observations around China
showed large discrepancies between observed and simulated isoprene concentrations. The uncertainties of isoprene emissions
in China are also reflected in the large differences between MEGAN version 2.1 and 3.1. In this work, bottom-up high-
resolution vegetation distributions and updated emission factors are combined with satellite data in the Speciated Isoprene
Emission Model with the MEGAN Algorithm for China (SieMAC) to improve isoprene emission estimates in China. The
results from this new emission inventory for summer 2013 improve upon MEGAN versions 2.1 and 3.1 when compared with
isoprene observations and satellite HCHO products. This improved emission inventory is applied in a regional model, and the

results indicate a potentially underestimated role of biogenic isoprene in ozone formation over polluted eastern China.

1 Introduction

Isoprene (CsHs) dominates global biogenic volatile organic compound (BVOC) emissions, accounting for
approximately half of total BVOC emissions and one-third of all volatile organic compounds (VOCs) released into the
atmosphere (Guenther et al., 2012). Its high reactivity makes it a crucial precursor for tropospheric ozone (Os) formation,
particularly in regions with substantial biogenic sources (Fiore et al., 2005; Fu et al., 2007; Geng et al., 2011; Fu and Tai, 2015;
Zhang and Wang, 2016; Ma et al., 2019; Li et al., 2019a; Wu et al., 2020; Wang et al., 2021b; Geddes et al., 2022; Lou et al.,
2023; Oumami et al., 2024).

This is especially significant in China, where isoprene comprises over 50% of annual BVOC emissions and surpasses
anthropogenic VOC levels during summer daytime hours when ozone production peaks (Tie et al., 2006; Li et al., 2016; Wang
et al., 2020). Recent studies show that isoprene can enhance regional ozone production rates by up to 10 ppbV h™! during

summer (Geng et al., 2011; Wu et al., 2020; Yu et al., 2022). The importance of accurately quantifying isoprene emissions has
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grown as China faces persistent and severe summertime ozone pollution (Li et al., 2019¢; Lu et al., 2020; Li et al., 2020b;
Wang et al., 2023). This highlights the critical need for well-constrained isoprene emission estimates to better understand
regional atmospheric chemistry and develop effective air quality policies.

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is the most widely used biogenic emission
model and serves as the standard module for estimating biogenic isoprene emissions in chemistry transport models. However,

MEGAN-based national isoprene emission estimates for China ranged from 4.10 to 37.45 TgC yr:}, (Guenther et al., 1995;

(ot

Klinger et al., 2002; Tie et al., 2006; Chi and Xie, 2012; Fu and Liao, 2012; Li et al., 2012; Li et al., 2013; Li and Xie, 2014;
Stavrakou et al., 2014; Gao et al., 2019; Li et al., 2020c; Wang et al., 2020; Wu et al., 2020; Wang et al., 2021a; Ma et al.,
2022; Li et al., 2023) and regional studies showed uncertainties between -82% and +177% (Zheng et al., 2010; Wang et al.,
2011b). Furthermore, a previous analysis of isoprene observations around China showed large discrepancies between observed
isoprene concentrations and those simulated with MEGAN emission inventories (Zhang et al., 2020).

These uncertainties in MEGAN are largely attributed to its Emission Factor (EF) input (Wang et al., 2011b; Situ et
al., 2014). EF represents the emission potential of plants, and ranges from 0 to >10000 ug m? h™' among plant species, with
substantial variations even within individual genera (Klinger et al., 2002; Guenther et al., 2006; Guenther et al., 2012). Ideally,
to generate precise EF inputs, species-specific EF measurements and species-level plant composition data are required.
Unfortunately, such data specificity is not available for some regions (Messina et al., 2016; Guenther et al., 2006). MEGAN
provides a global gridded EF map with 1 km spatial resolution as the default input (Guenther et al., 2012; Chen et al., 2022).
While this high-resolution map incorporates speciated EF data for regions with adequate measurements and detailed vegetation
distributions, the values assigned to most regions in China were based on an outdated ecoregion map from and global
ecoregion-average EFs (Guenther et al., 2006; Olson et al., 2001), failing to capture the country's diverse vegetation
composition and recent land cover changes (Peng et al., 2014; Chen et al., 2019). Although MEGAN version 3.1 incorporates
more recent EF measurements for China, it still relies on the previous ecoregion distributions (Jiang et al., 2018b; Chen et al.,
2022).

Recent studies have begun utilizing local EF measurements and plant species distribution datasets to drive MEGAN
for China (Wang et al., 2011b; Li et al., 2013; Situ et al., 2013; Li and Xie, 2014; Situ et al., 2014; Wang et al., 2018; Li et al.,
2020c). However, few of these estimates are evaluated against observational data, and those incorporating both local EFs and
detailed vegetation distributions are largely confined to regional scales. For example, Li et al. (2020c) investigated national-
scale isoprene emissions using local EFs, but their reliance on outdated vegetation distributions limits the accuracy of their
estimates. To our knowledge, no comprehensive national study has estimated isoprene emissions across China by integrating
both localized EFs and updated vegetation distribution, highlighting a critical gap in the field that needs to be addressed.

To address these challenges, we present the Speciated Isoprene Emission Model with the MEGAN Algorithm for
China (SieMAC). SieMAC builds upon the MEGAN framework with four key updates: (1) incorporation of extensive local

EF measurements and up-to-date vegetation distributions, (2) implementation of Plant Functional Type (PFT)-specific Leaf
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Area Index (LALI), (3) addition of an optional environmental factor accounting for water-stress impacts, (4) modification of the
temperature response algorithm for boreal grass.

We implement SieMAC into a three-dimensional regional chemical transport model (REAM) and evaluate its
performance using both ground-based measurements and satellite observations. The evaluation results demonstrate that
SieMAC outperforms both MEGAN version 2.1 and MEGAN version 3.1 in representing isoprene emissions across China.
The paper describes the model algorithms and input datasets (Section 2), evaluation methodology (Section 3), results and

validation (Section 4), and discusses uncertainties and implications for understanding regional air quality (Section 5).

2 Model Description
2.1 SieMAC model algorithm

SieMAC adapts the MEGAN algorithm to calculate vegetation isoprene emissions. The model is based on MEGAN

v2.1's offline version (available at https:/bai.ess.uci.edu/megan. last access: 6 Sept 2025) and calculates emissions as:

Emission = EF -y (1)
where EF is the emission factor representing emissions under the standard condition as defined in Guenther et al. (2012) and
y is the normalized emission activity factor accounting for deviations from the standard condition.

MEGAN provides a global 1km x 1km EF map as the default input for emission factor, while also supporting PFT-
specific emission factors as an alternative option (Guenther et al., 2006; Guenther et al., 2012; Oumami et al., 2024). SieMAC
adopts the PFT-specific approach, which allows dynamic adjustment of EF inputs for different regions and periods. Following
the PFT-7 classification scheme (Table 1), the model calculates grid cell emission factors as:

EF = yF - EF; ()
where F; is the fraction of grid area covered by PFT i, and EFi is its specific EF based on plant composition of the PFT.

The emission activity factor y accounts for environmental influences on emissions:

Y = (Scanopy tayer =1tWi " Yp1* Y1) *Ya " VYsm * Yco, " LAI - Cp (3)
where the components represent effects of light (y;), temperature (yr), leaf age (y4), soil moisture (ysy,), CO:2 inhibition
(Yco,)- and leaf area index (LAJ). C¢g is a unitless constant that normalizes y to unity under the standard condition. SieMAC
implements MEGAN's standard canopy environment model, which simulates light and temperature distributions at five
canopy depths. The overall impact of light and temperature (¥ - ) is calculated as the weighted average of these factors
across the canopy layers using the model's predefined layer-specific weights (w;). In addition, we modify the calculation of
yr for boreal grass following Wang et al. (2024b), and the affected regions are shown in Fig. S1. The calculation of y, follows
MEGAN v2.1's default algorithm. The values of ygy and yo, are set to 1 due to uncertainties in characterizing these

processes (Situ et al., 2014; Jiang et al., 2018b; Wang et al., 2021b; Pang et al., 2024).
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A key enhancement in SieMAC is the use of PFT-specific LAI rather than grid cell averaged values, as LAI can vary
substantially among different vegetation types (e.g., broadleaf trees typically have greater leaf area than grasses) and show
distinct seasonal patterns (Oleson and Bonan, 2000; Bonan et al., 2002). Additionally, SieMAC includes an optional factor,
Yvpp, to account for enhanced isoprene emissions under water-stressed conditions, addressing a limitation in MEGAN v2.1
where soil moisture effects (yg,,) are not fully characterized (Zhang and Wang, 2016; Ma et al., 2019). yypp is calculated based
on the vapor pressure deficit (VPD), defined as the difference between saturation vapor pressure and ambient vapor pressure
(Zhang and Wang, 2016). VPD is directly related to water stress of plants, with higher VPD values indicate more intense
water-stressed conditions. While yypp, was derived from U.S. observations and its application to other regions requires careful
evaluation, it provides a mechanism to investigate water-stress impacts on isoprene emissions in China. The final emission
calculation in SieMAC is:

Emission = (annopy layer=tWi " Ypi Y1) Ya~ Yvep * Cce yiFi - EF; - LAL “
where i is the index of PFT, and yyp, is optional. Details of datasets and methods used to derive driving variables for SieMAC

are described below.

2.2 SieMAC land cover variables

SieMAC requires two categories of driving variables: weather variables (light, temperature, wind speed, humidity
and pressure) and land cover inputs. For land cover inputs, we develop two datasets at different spatial resolutions: a High
Resolution (HR) dataset and a Moderate Resolution (MR) dataset. These datasets include PFT fractions (F: in Eq. (2)), PFT-
specific emission factors (EF: in Eq. (2)), and leaf area indices (LA in Eq. (2)). Given that unrepresentative land cover inputs
can significantly bias emission estimates, we derive these datasets through careful integration of multiple data sources. We use
these variables to estimate isoprene emissions across China during summer 2013 and evaluate the results using previous

studies, satellite products, and ambient measurements.

2.2.1 Fraction and emission factor

We first calculate the fraction of a grid cell area covered by each PFT and their corresponding emission factors
(hereafter PFT F and PFT EF, respectively), and then use these results to derive PFT-specific LAIs for each grid. Three datasets
are used for this derivation: the Vegetation Atlas of China (1:1000000) (Zhang, 2007), eighth China Forest Resource Statistics
(https://www.forestdata.cn/, last access: 15 May 2025), and MODIS MOD44B v006 product for 2013
(https://Ipdaac.usgs.gov/products/mod44bv006/, last access: 15 May 2025, Dimiceli et al., 2015).

Our land cover analysis integrates these three complementary datasets to provide a complete picture of vegetation
distribution in China. The Vegetation Atlas of China (1:1000000) serves as our baseline for vegetation composition, providing
species-level distributions based on nationwide surveys from the 2000s (Li et al., 2013; Li and Xie, 2014). However, this

information needs to be updated. We therefore incorporate the eighth Forest Resource Statistics, a five-year national survey
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that provides genus-level forest composition data at the provincial level for 2009-2013 and the MODIS MOD44B v006
product, which provides annual tree and non-tree vegetation areas at a 250 m resolution for 2013.

Given that no single dataset provides up-to-date species-level vegetation distribution for China, we develop two
processing approaches — High Resolution (HR) and Moderate Resolution (MR) - to optimize the use of available information.
The HR approach prioritizes detailed species composition from the Vegetation Atlas while adjusting tree areas using the Forest
Resource Statistics, whereas the MR approach directly applies provincial-level tree compositions to MODIS tree area data.
HR provides more accurate species composition data, but it is based on an older national survey, while MR takes advantage

of concurrent satellite tree cover data with provincial-level species composition constraints, as shown in Fig. 1, The detailed

(osed

data integration workflows for both approaches are further illustrated in Figures S2 (MR) and S3 (HR). For both datasets, we

first disaggregate the genus-level tree compositions from the Forest Resource Statistics into species-level information using
the species proportion data from the Vegetation Atlas. This step provides provincial-level species composition data that are
consistent with the two datasets.

For the HR dataset related to trees, we compare provincial-level areas between the Forest Resource Statistics and the
Vegetation Atlas for each tree PFT. When the Atlas shows larger areas, we proportionally scale down all species areas within
that PFT to match the Forest Resource Statistics while maintaining relative species proportions. Conversely, when the Forest
Resource Statistics show larger areas, we preserve the Atlas species distributions and calculate residual areas. These residuals
are then redistributed across grid cells where MODIS indicates tree cover after accounting for Atlas-based distributions. To
implement this redistribution, we regrid both the Vegetation Atlas (~10km?) and MODIS tree products to a 4x 4 km? resolution,
ensuring that the total areas for all tree PFTs match the Forest Resource Statistics

The MR dataset for trees takes a different approach by directly applying the derived provincial species compositions
to MODIS tree area data at the 250 m resolution. This assumes uniform tree species composition within each province but
captures concurrent vegetation cover more accurately. The resulting fractions are then averaged to 500 m grid cells to match
the resolution of LAI data to be described in the following section.

For non-tree PFTs (shrubs, crops, and grass), both HR and MR datasets use the same approach. We combine MODIS
non-tree vegetation areas with PFT type from the Vegetation Atlas. For grid cells with MODIS non-tree vegetation coverage
but lacking non-tree vegetation classification in the Atlas, we assign the non-tree PFT types based on the nearest classified
grid cell. We calculate PFT fractions with these PFT areas, which are then averaged to a 4 km resolution for HR and a 500 m
resolution for MR datasets.

To derive PFT EFs, we compile leaf-level measurements from published studies for tree and shrub species (Guenther
et al., 1995; Yang et al., 2001; Klinger et al., 2002; Li and Klinger, 2002; Wang et al., 2002; Zhang et al., 2002; Wang et al.,
2003a; Wang et al., 2003b; Zhao et al., 2004; Kang et al., 2005; Luo et al., 2005; Geron et al., 2006; Wang et al., 2007; Singh
et al., 2008; Chen et al., 2009; Dong et al., 2009; Tsui et al., 2009; Zhang and Xie, 2009; Deng et al., 2010; Yin et al., 2010;
Huang et al., 2011; Li and Xiang, 2011; Wang et al., 2011a; Zhu, 2011; Song et al., 2012; Yang et al., 2013; Li et al., 2014;
Situ et al., 2014; Bao, 2015; Gao, 2016; Tang et al., 2016; Wang et al., 2016; Bu et al., 2017; Li et al., 2017; Lin et al., 2017;
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Wang et al., 2017b; Chen et al., 2018; Jiang et al., 2018a; Jin et al., 2018; Pan et al., 2018; Wang et al., 2018; Li et al., 2019b;
Lietal., 2019d; Lian et al., 2019; Li et al., 2020a; Liu et al., 2020; Peng et al., 2020; Pang et al., 2021), as they contribute most
significantly to isoprene emissions and show high variability in emission capacities (Guenther et al., 2012). For species lacking
direct measurements, we assign EFs based on genus-average values. When genus-average values are unavailable, we adopt
default values from Guenther et al. (1995), Wang et al. (2003a), and Wang et al. (2016). For crops and grasses, we use MEGAN
v2.1 default EFs (Guenther et al., 2012) due to limited measurements and generally lower emission rates. However, based on
recent findings of higher emission potentials in boreal regions (Wang et al., 2024b), we increase the grass EFs by a factor of

three in northwestern provinces of China (Fig. S1), where sedge comprises a significant portion of the grass coverage.

2.2.2 Leaf area index

We make use of MODIS measurements in conjunction with the high-resolution PFT distribution described in the
previous section to derive LAI distributions. The three MODIS products include MCDI15A2H
(https://Ipdaac.usgs.gov/products/mecd15a2hv006/, last access: 15 May 2025, Myneni et al., 2015), MCDI12Ql
(https://Ipdaac.usgs.gov/products/med12q1v006/, last access 15 May 2025, Friedl and Sulla-Menashe, 2019), and MOD44B.
MCDI15A2H is MODIS LAI product, delivering mean LAI values for each pixel on a 8-day basis. MCD12Q1 is MODIS land
cover product, providing global maps of land cover with five legacy classification schemes at annual time steps; we apply the
PFT classification scheme land cover dataset for 2013. Both MCD15A2H and MCD12Q1 have a spatial resolution of 500 m,
while MOD44B has a resolution of 250 m. We aggregate MOD44B data to a 500-m resolution to be compatible with the other
MODIS datasets. A key issue is to properly account for the differences between the Vegetation Atlas and MODIS PFT product
since the former can be used to assign species-specific isoprene EFs (Table S1), but the latter cannot. Additionally, the
derivation of MODIS LAI product incorporates its land cover product as a priori data (Knyazikhin et al., 1999). To

accommodate these incompatibilities, we first define eight main ecoregions (Fig. S84, Rodriguez and PErez, 2013; Zhang,

2007). An ecoregion is a geographical area that has a similar set of ecosystems. As such, a given PFT in MODIS can represent
a different ecosystem set in a different ecoregion. It should be noted that the eight ecoregions are used exclusively for the
purpose of calculating LAI data. We therefore compute 56 PFT-ecoregion dependent base LAIs using MODIS data (Table
S2). In the second step, we apportion grid-cell MODIS LAI data into PFT-specific LAls to maintain the spatial variability
observed by MODIS.

We first compute monthly averaged PFT-ecoregion dependent base LAls. The MODIS MCD12Q1 product only
assigns one dominant PFT type to each 500 m grid cell, and we apply MOD44B vegetation coverage data to determine the
fraction of the assigned PFT in each grid cell. We compute the monthly PFT-ecoregion dependent LAI data for PFT i and
ecoregion j:

T a1,

k=N
LAl = &;;TF
k

®

k=1

S2
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where N; is the number of grid cells with PFT i in ecoregion j, LAI, denotes MODIS LAI value for grid cell k, and Fx denotes
PFT i fraction in grid cell &.

We then add MODIS observed grid cell level LAI variability to the PFT-ecoregion average LAIs. MODIS LAI
measurement gives the average cell LAIf;,p,s, which is the sum of area-weighted LAI for all PFTs in the grid cell:

LAIjiopis = yi @ - Ff - LAIL (6)

where a; accounts for the discrepancies between the PFT area fractions, F{ , obtained using the Vegetation Atlas of China,
China Forest Resource Statistics, and MODIS MOD44B v006 product as described in the previous section, and those applied
by MCD15A2H as prior information. We assume that ; does not vary with PFT, therefore:
_ LAlyopis
T niFfLAL @
For each grid cell and PFT i, we then constrain the LAI value as:
LAIf = a - LAL; ®)

The LAI{ represents the LAI value for PFT i in grid cell that can be directly used in calculating the emissions from
the PFT, which is the PFT LAI input required for SieMAC. The 500 m PFT LAI data are directly used for MR emissions and
aggregated to a 4 km resolution for HR emissions. We limit the range of the resulted PFT LAI values following Bonan et al.
(2002). For grid cells lacking valid MODIS LAI values, which occurs when MODIS PFT product classifies a grid as non-
vegetation despite the presence of some vegetation cover (Wang et al., 2018; Wang et al., 2021a), we assign PFT-ecoregion
average LAIs as default values. This approach allows us to account for vegetation contributions that might otherwise be missed

in grid cells dominated by non-vegetation surfaces. The resulting spatial distributions of PFT-specific LAIs and emission

factors are shown in Figures S5-S8.

3 Model Evaluations

3.1 Model Setup <

We implemented SieMAC into REAM to evaluate emission estimates and simulated ambient isoprene levels against
measurements. REAM is a three-dimensional regional chemistry transport model that has been applied in numerous
tropospheric chemistry and transport studies across the United States and China (Zhao et al., 2009; Zhao and Wang, 2009;
Zhao et al., 2010; Zhang and Wang, 2016; Zhang et al., 2018; Li et al., 2019a; Qu et al., 2020; Zhang et al., 2020; Yan et al.,

2021)._The overall model setup and SieMAC integration approach are illustrated in Figure S9. The model has a spatial

resolution of 36 x 36 km? and includes 30 vertical layers in the troposphere. Meteorological fields are obtained from the
Weather Research and Forecast (WRF) model V4.0 simulations, constrained by ECMWF Reanalysis v5 (ERAS) products.
The chemical mechanism is based on GEOS-Chem (v11.01) with extended aromatic reactions from SAPRC-07. Lateral

boundary conditions are obtained from a 2° x 2.5° GEOS-Chem model (v11.01) simulation. For anthropogenic emissions, we
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used the Multi-resolution Emission Inventory for China (MEIC) for 2013, while biogenic emissions for all chemical species

except isoprene are calculated using MEGAN v2.1. We selected summer 2013 for this study as it represents the first year with

concurrent availability of CARE-China isoprene measurements and the China National Environmental Monitoring Centre

(CNEMC) Network air quality observations, enabling comprehensive model evaluation (Zhang et al., 2020; Bai et al., 2020).

We conducted model simulations for summer 2013 using six different isoprene emission configurations as detailed
in Table 2. For the MEGAN v2.1 and v3.1 simulations, we utilized their respective offline versions and EF inputs available at
https://bai.ess.uci.edu/megan/data-and-code. It needs to be noted that MEGAN v3.1 EFs are provided with different J-ratings,
a measure of confidence for corresponding EF values. Here, we used the EF values with a J-rating value of 4, the highest
confidence, to obtain the most accurate EF inputs for MEGAN v3.1. We followed the procedure in Wang et al. (2021a) to
obtain LAI data (denoted as LAIv in that study) as well as PFT distributions. We averaged the LAIs, PFT fractions, and
MEGAN 1 km EFs at each REAM grid cell and used the results as land cover inputs for MEGAN models. Note that MEGAN
v3.1 results should be considered preliminary as the developers are currently finalizing MEGAN v3.2.

The SieMAC implementation in REAM involved a multi-scale integration approach. We first simulated the canopy
environment for each REAM grid cell with local weather variables, including hourly temperature, solar radiation, humidity,
wind speed and pressure derived from the WRF simulations, and grid cell-averaged LAI and PFT fractions derived from the
high-resolution land cover datasets, using the MEGAN canopy model. For simulations using the MR dataset, the REAM grid-
averaged LATI and PFT fractions were calculated by aggregating the 500 m resolution data, while for HR simulations these
parameters were derived from the 4 km resolution datasets. The environmental activity factors calculated for each REAM grid
cell were then applied to their corresponding high-resolution subgrid cells. Emissions were first calculated at finer resolutions
(500 m for MR and 4 km for HR), then aggregated to the REAM resolution by summing emissions from all subgrid cells
within each REAM cell.

3.2 CARE-China Observations

The Campaign on Atmospheric Aerosol Research Network of China (CARE-China) collected ambient air samples at
twenty sites across China (Fig. 2) at approximately 14:00 Beijing Time every Wednesday from March 2012 to April 2014,
providing valuable isoprene measurements for model-measurement comparison. Details about CARE-China observations are
described by Zhang et al. (2020).We compared REAM simulated isoprene concentrations using different emission inventories
with these CARE-China observations to evaluate the model performance. We analysed the model performance across six
regions: North China Plain (NCP), Northeast China Plain (NECP), Northwest China (NWC), Southwest China (SWC),
Southeast China (SEC), and South China (SC). The Lhasa site was excluded from analysis due to limited observations during
the study period.
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3.3 OMI HCHO product

Formaldehyde (HCHO) serves as an intermediate product of isoprene oxidation and provides a valuable proxy for
evaluating isoprene emissions. During summer, when isoprene emissions peak and dominate reactive VOC emissions, HCHO
spatial variability closely aligns with isoprene emission patterns (Palmer et al., 2003; Shim et al., 2005; Millet et al., 2008).
We evaluated the spatial distribution of different emission inventories obtained in this study using the monthly Level 3 OMI
HCHO Vertical Column (VC) product with a 0.25 © X 0.25 ° spatial resolution, from the Belgian Institute for Space Aeronomy
(BIRA-IASB) (De Smedt et al., 2012; De Smedt et al., 2015), increasing observed concentrations by 32% to correct the low
bias of OMI HCHO products for high HCHO regions as suggested by Zhu et al. (2020).

4 Results and Discussion
4.1 Model Evaluations
4.1.1 Comparison with other studies

The national isoprene emissions estimated by SieMAC MR and HR for summer 2013 are 10.92 and 11.37 Tg C,
respectively (Table 3). Based on the seasonal distribution pattern where summer accounts for approximately 70% of annual
emissions (Tie et al., 2006; Li et al., 2023), these estimates correspond to annual emissions of around 15.6-16.2 Tg C. These
values fall within the range of previous estimates and notably align with the 15 Tg C annual estimate reported by Guenther et
al. (1995). However, the SieMAC emission distributions differ from previous studies, which will be elaborated in section 4.2.

The SieMAC HR estimate is approximately 4.1% higher than the MR estimate, reflecting their different approaches
to characterizing tree distributions. In HR, tree areas and distributions are constrained by the Forest Resource Statistics and
the Vegetation Atlas, respectively. In contrast, MR relies on MODIS products for tree area and assumes uniform tree
composition at the provincial level. The impact of these methodological differences is well illustrated in Heilongjiang province,
where the tree coverage is 1.95x10° km? in HR compared to 1.49x10° km? in MR. This difference in total tree area,
approximately 31% higher in HR, directly explains the 32% higher emission estimate given by the HR approach for this
province.

Comparing SieMAC with MEGAN simulation results using their respective default emission factor maps, REAM
grid-average LAI and PFT fractions, and identical meteorological inputs, we find that SieMAC HR and MR estimates exceed
both MEGAN v2.1 (8.05 TgC) and MEGAN v3.1 (4.47 TgC) predictions for summer 2013. Four key factors contribute to
SieMAC's higher estimates: (1) the implementation of PFT-specific LAL which better captures emissions from high-emitting
vegetation types (Messina et al., 2016); (2) incorporation of China's recent afforestation, which has doubled national forest
cover (Zhang et al., 2016; Chen et al., 2019); (3) improved representation of mixed vegetation areas, addressing a MODIS LAI
retrieval limitation that can reduce emission estimates by up to 19% (Wang et al., 2018); and (4) updated emission factors for

shrub species that are significant isoprene emitters in China (Klinger et al., 2002).
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Including VPD effects in SieMAC increases emission estimates by approximately 40%, pushing estimates toward the
upper range of previous studies. While this VPD algorithm was developed based on the observations in the United States
(Beckett et al., 2012; Zhang and Wang, 2016), and its direct application to Chinese vegetation introduces uncertainties, the
magnitude of this effect highlights the potential importance of water-stress impacts on isoprene emissions in China. This

suggests a critical need for region-specific studies of emission dependence on water stress in future work.

4.1.2 Evaluation against CARE-China observations

We first evaluate REAM's performance in simulating key atmospheric chemistry processes using the observations

from the China National Environmental Monitoring Centre (CNEMC) Network (https://www.cnemc.cn/en/), which provides

ozone (Op) and nitrogen dioxide (NOp) measurements across China. This validation step is essential before using REAM to

evaluate isoprene emission inventories, as CARE-China provides only isoprene concentration measurements without broader

atmospheric chemistry data. The REAM model demonstrates good agreement with observed ozone concentrations,as shown
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in Figs. 3 and S10. The spatial patterns of MDAS ozone biases are illustrated in Figs. S11 and S12, which show more uniform

bias distributions for SieMAC models compared to MEGAN versions, particularly during high ozone episodes. The improved

bias characteristics of SieMAC models during high pollution events are particularly important for air quality applications, as

these episodes represent the conditions of greatest concern for human health and regulatory compliance. While modelled NO2

exhibits a linear relationship with observations (Figs. 3 and S13), there is a noted low bias that corresponds to known instrument
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bias issues in surface-level NO2 measurements (Zhang et al., 2018; Li et al., 2019a). This general agreement in simulated ozone
and NO: provides confidence in REAM's capability for simulating isoprene concentrations.

Comparing the different emission models, SieMAC shows superior performance to MEGAN simulations across most
regions, as illustrated in Fig. 4. Following previous findings of distinct MEGAN performance patterns between northern and
southern China by Zhang et al. (2020), we analyse model performance separately for these regions.

In northern regions including NCP, NEC, and NWC, SieMAC MR demonstrates strong consistency with

observations, with 82 % and 87 % of data points falling within the evaluation criteria established by Zhang et al. (2020) (1:10
to 10:1 range),in NCP and NEC, respectively. SieMAC HR shows slightly lower but still robust performance with 78% and

(" leted: the 1:10 to 10:1 range

82 % within range in these two regions. The inclusion of VPD effects shows great impacts on isoprene emissions in the NCP

and NECP, with emissions nearly doubling when vegetation is water-stressed. However, the response of isoprene emissions

to water stress exhibits nonlinear behaviour that varies with drought severity. Some studies find enhanced isoprene emissions

during early or mild stages of drought due to elevated leaf temperatures from reduced stomatal conductance (Otu-Larbi et al.,

2020; Kaser et al., 2022), while other studies indicate that emissions are significantly reduced under severe drought conditions

(Potosnak et al., 2014; Klovenski et al., 2022). Recent modeling developments attempt to capture this complex nonlinear

response, distinguishing between mild drought-induced increases and severe drought-induced decreases (Wang et al., 2022).

The current VPD algorithm in SieMAC, derived from U.S. measurements, may not fully capture these nuanced responses in

Chinese ecosystems. Despite these complexities, the VPD inclusion substantially improves model-measurement agreement
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and highlights the critical need to investigate isoprene emissions when vegetation is water-stresses in these regions. For

SieMAC MR, the difference between measured and simulated regional averages decreases from 30 % to 3 % in NCP and from
40% to 7% in NEC when the VPD effect is included. Similarly, for SieMAC HR, the difference decreases from 43 % to 17 %
in NCP and from 36 % to 5 % in NEC. This improvement reflects the model's ability to capture enhanced emissions during
the dry, hot conditions typical of northern regions when the VPD effect is included. In contrast, both MEGAN models show
substantial underestimations, particularly MEGAN v3.1, where 58 % of predicted concentrations fall below one-tenth of
observed values in NCP. The NWC region presents unique challenges, showing consistent underestimations across all models.
This is primarily attributed to MODIS limitations in detecting sparse tree cover and potential bias in emission activity
algorithms that were primarily developed for temperate and tropical vegetation. Recent research indicates that boreal
ecosystems respond differently to environmental changes compared to plants in other climate zones (Wang et al., 2024a; Wang
et al., 2024b). Despite these challenges, SieMAC still outperforms MEGAN models in this region.

In southern regions including SC, SEC, and SWC, SieMAC MR and HR achieve even stronger performance, with up
to 100 % of predictions falling within the J1:10 to 10l range. The impact of VPD effects varies regionally, improving

(" leted: acceptable

predictions in SWC but slightly degrading performance in SEC and SC. This variation likely stems from the relationship
between VPD, temperature, and humidity. High summer temperatures in SEC and SC can elevate VPD levels and trigger
emission enhancements even in humid conditions. This calls for further experiments to characterize regional plant responses
to high VPD in China. MEGAN v2.1 performs reasonably well in SC and SWC but underestimates in SEC, while MEGAN
v3.1 shows broader underestimation, capturing only 42 % of observations in SEC.

The distribution of model/measurement ratios in Fig. 5 further demonstrates SieMAC's advantages, particularly for
SieMAC MRvrp, which exhibits the narrowest distribution, with a central tendency of unity. While MEGAN v2.1 shows
reasonable performance in southern regions, its heavy left-tailed distribution for northern sites indicates systematic
underestimations. MEGAN v3.1 consistently shows the broadest, left-skewed distributions, reflecting widespread

underestimations across all regions. We acknowledge that the CARE-China isoprene measurements, obtained using canister

sampling techniques, may have inherent uncertainties related to sampling and storage procedures (Plass-Diilmer et al., 2006),

representing an additional source of uncertainty in model-measurement comparisons.

4.1.3 Evaluation with OMI HCHO

Satellite observations of HCHO vertical columns provide an independent method for evaluating simulated isoprene
emissions for regions dominated by biogenic emissions. During summer, isoprene oxidation represents the main source of
HCHO over most of China's land area (Zhang et al., 2021; Fan et al., 2021; Cao et al., 2018; Wang et al., 2017a). While
anthropogenic VOCs can dominate HCHO production in metropolitan regions, these urban areas comprise only a small fraction
of the total land area. The spatial distribution of HCHO columns thus generally reflects isoprene emission distribution patterns

across much of China (Wang et al., 2021a).
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The agreement between simulated and observed HCHO columns is examined after interpolating the OMI HCHO
observations to match the REAM 36 km grid resolution. Using Pearson correlation coefficients () shown in Fig. 6, SieMAC
MR and MRvrp show correlation values of 0.64 and 0.65 with OMI HCHO observations, notably higher than both MEGAN
v2.1 and v3.1. Given that summer HCHO distributions are strongly influenced by isoprene oxidation, these higher correlations
suggest that SieMAC MR better represents the spatial distribution of isoprene emissions. The relatively poor performance of
SieMAC HR compared to MR could be attributed to the bias in its tree distributions, which strictly relies on the Vegetation
Atlas.

The improvement in SieMAC is further supported by direct comparisons between modelled and observed HCHO
vertical columns shown in Fig. 7. Since all model simulations use identical meteorological fields, chemical mechanisms, and

emissions except for isoprene, the differences in model performance can be attributed directly to the isoprene emission

estimates. The spatial correlation coefficients among all simulations are high (0.87-0.9), reflecting the contribution of isoprene

emissions to high HCHO columns. MEGAN v3.1 shows a substantial underestimation of HCHO magnitudes with a large

negative mean bias (MB = -2.2x10,* molec cm;?) and a high root mean square error (RMSE = 4.35%10"> molec cm?). In

contrast, SieMAC configurations demonstrate much better overall performance with smaller biases and RMSE values
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indicating that SieMAC not only captures spatial patterns but also reproduces the observed HCHO magnitudes more

accurately. This suggests that while MEGAN v3.1 may preserve some spatial relationships, it systematically underestimates

actual HCHO concentrations, whereas SieMAC provides more realistic emission estimates,

Deleted: the reduced root mean square errors (RMSE) and mean

4.2 Spatiotemporal distributions of SieMAC Estimates

We now examine the spatiotemporal patterns of SieMAC isoprene emissions. Understanding these patterns is crucial
due to isoprene's critical role in ozone formation and China's severe summer ozone pollution. We analyse the spatial
distribution of isoprene emissions, present estimates for three highly urbanized and densely populated metropolitan areas with
significant ozone pollution, explore the contributions of various PFTs and their temporal variations during the summer of 2013.

These insights could provide valuable context for analysing isoprene's impacts on regional ozone levels.

4.2.1 Spatial distribution

The spatial distributions of summer isoprene emissions over China exhibit distinct patterns in different models (Fig.
8). While all models capture the general contrast between high emissions in eastern China and minimal emissions in the
sparsely vegetated western regions, there are substantial differences in both magnitude and spatial patterns that call for detailed
examination.

A key distinction between SieMAC HR and MR lies in their spatial continuity patterns. HR exhibits more
heterogeneous distributions with abrupt transitions and isolated emission hotspots, reflecting its preservation of detailed local
variations in tree species composition from the Vegetation Atlas. In contrast, MR shows more gradual spatial transitions due

to its application of provincial-level tree compositions to MODIS vegetation cover data. Despite these methodological
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differences, both approaches identify the Qinling ynountains, encompassing southern Shaanxi, northern Hubei, and western

d: arcas

Henan provinces, as a major emission source, with emissions exceeding 12 nmol m? s™! due to extensive Quercus forests.
MEGAN models identify the central southern China region, including Hunan, Jiangxi, Fujian, and southern Anhui,
as the primary emission source, with higher emissions compared to the Qinling region. While MEGAN also shows elevated

emissions in northern Hubei province, the high emissions do not extend to the Qinling mpuntains as SieMAC. MEGAN v2.1

and v3.1 share similar spatial patterns, though v3.1 consistently simulates lower emissions with peak values of around 8 nmol
m s~ compared to approximately 12 nmol m? s in v2.1, reflecting updates to emission factors and algorithms (Guenther et
al., 2012; Jiang et al., 2018b; Chen et al., 2022). While SieMAC estimates align more closely with MEGAN v2.1 in magnitude,
they show distinct spatial patterns and notably higher emissions across broad areas of eastern China, particularly in the Qinling
region where SieMAC exceeds MEGAN v2.1 by up to 9 nmol m? s!. These differences primarily stem from MEGAN's use
of ecoregion-based distributions versus SieMAC's incorporation of detailed Chinese vegetation data. Additionally, SieMAC
HR and MR predict much higher isoprene emissions at 5.5-5.8 nmol m= s™! over the polluted NCP region compared to MEGAN
v2.1 and v3.1 at 1.4-2.8 nmol m? s, indicating a larger biogenic contribution to the observed severe ozone episodes in the
region than previously thought (e.g., Ma et al., 2019).

The inclusion of VPD effects in SieMAC significantly enhances emissions in regions experiencing hot and dry
summers (Fig. 9). The most pronounced increases of up to 10 nmol m™ s™! occur in Shandong province and the Qinling region.
These enhancements highlight the potential importance of water stress effects on regional emissions and atmospheric
chemistry. However, as shown in the model evaluation against CARE-China observations and OMI HCHO data, further field

measurements would help better constrain these effects across Chinese ecosystems.

4.2.2 Emission Estimates for Major Megacity-cluster Areas

Table 4 lists emission estimates for the three most developed and polluted megacity-cluster regions in China: NCP,
the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The spatial distribution of these study regions is shown in
Fig. S14. While SieMAC predictions are generally closer to MEGAN v2.1 than MEGAN v3.1, significant differences still

dq

exist between SieMAC and MEGAN v2.1. The substantial differences between MEGAN v2.1 and v3.1 estimates also highlight
the uncertainties in current isoprene emission estimates for these important megacity-cluster regions.

Previous studies have documented that isoprene emissions enhance regional ozone production in NCP and YRD.
However, studies constraining isoprene emissions in these areas are currently limited and primarily focus on subregions rather
than the entire regions. SieMAC without VPD algorithm predicts isoprene fluxes of 1.16-1.26 kg C km™ h™! in NCP and 1.33-
1.45 kg C km? h'! in YRD, approximately 2.1- and 1.7-times MEGAN v2.1 estimates of 0.59 kg C km™ h™' and 0.84 kg C km"
2h!, respectively. These results suggest that isoprene's impact on regional air quality may be more significant than previously
recognized.

Including VPD effects further increases emission estimates to 1.77-1.92 kg C km h™! in NCP and 1.91-2.08 kg C

km h'! in YRD, representing increases of ~52 % and ~44 %, respectively. Given that vegetation has frequently been water-
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stressed over NCP and YRD in recent years (Xu et al., 2015), these substantial increases highlight the need for targeted research
to better characterize emission dependence on water stress in Chinese ecosystems.

In contrast to NCP and YRD, PRD has more comprehensive regional emission studies available (Table 4). PRD shows
the highest isoprene fluxes among the three regions, primarily due to its meteorological conditions that favour isoprene
emissions. The region's dense vegetation cover, consistently high temperatures, and strong solar radiation create optimal
conditions for isoprene production. While the relative difference between SieMAC and MEGAN v2.1 is smaller in PRD
compared to the other two regions, SieMAC estimates are still noticeably higher than MEGAN v2.1. The PRD's humid
monsoon climate presents unique challenges for modeling VPD effects. The high summer temperatures can elevate VPD levels
even in humid conditions, leading to enhanced regional emissions in SieMAC, which appears to overpredict emissions
compared to observations (Fig. 4). This suggests that the current VPD algorithm, developed for different climate conditions,

may require regional calibration for humid environments like PRD.

4.2.3 PFT Contributions and Monthly Variations

Understanding the contributions of different PFTs to isoprene emissions and their temporal variations is crucial for
accurate emission modelling in China and for informing vegetation management policies. We focus on the MR and HR
simulations here due to the introduced additional uncertainties by the VPD algorithm in the southern China.

Both SieMAC MR and HR simulations show that broadleaf deciduous trees are the largest contributors at 39 % and
43 %, followed by broadleaf evergreen trees at 38 % and 33 % (Fig. 10). When combined, broadleaf trees account for 76-77
% of total isoprene emissions, consistent with their known role as dominant isoprene emitters. Grasses contribute 11 % in MR
and 14 % in HR simulations, while shrubs account for 7.31 % and 8.38 %. Other vegetation types make up the remainder.

These relative contributions differ somewhat from previous studies. While Li et al. (2013, 2020) similarly identified
broadleaf trees as the primary contributors at 72.9 5% and 80.2 %, they found a higher relative contribution from shrubs
compared to grasses. Our higher grass contributions likely reflect the updated temperature response algorithms and emission
factors assigned to grasses, particularly in northwest China, where grass emissions are pronounced.

The monthly distribution of isoprene emissions shows a clear peak in July across all model simulations (Fig. 11). This
temporal pattern is consistent between SieMAC MR, HR, and both versions of MEGAN, reflecting their similar approaches
to calculating emission activity factors. The slight variations between SieMAC and MEGAN estimates can be attributed to

SieMAC's implementation of PFT-specific LAI and updated temperature response functions for boreal grass.

4.3 Impacts on ozone simulations

The differences in isoprene emissions between SieMAC and MEGAN significantly influence simulated ozone
distributions across China, with distinct spatial patterns emerging from different emission scenarios (Fig. 12). Compared to
MEGAN v2.1 simulations, both SieMAC MR and HR predict widespread ozone increases across eastern China, while minimal

changes are observed in western China, consistent with the negligible isoprene emission differences in that region. In the North
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NCP region, ozone concentrations increase by 5-10 ppbv, while other regions typically show increases less than 5 ppbv. This
enhancement pattern aligns with the spatial distribution of elevated atmospheric oxidation capacity, as evidenced by increased

HCHO concentrations across the regions (Fig. S16). The differences become even more pronounced when comparing against

MEGAN v3.1, with ozone increases exceeding 15 ppbv around the NCP region, reflecting the lower isoprene emissions in
MEGAN v3.1.
The incorporation of VPD effects in SieMAC further amplifies these patterns (Figs. 12 and S17). SieMAC MRyrp

and HRvep simulations show ozone increases exceeding 15 ppbv in the NCP region, while other areas rarely exceed 10 ppbv

increases. The regional differences in 0zone response can be attributed to variations in 0zone-NOx-VOC chemical sensitivity

between different areas. The heavily polluted NCP, characterized by high NOx_emissions from urbanization and industrial

activities, appears to operate more in a VOC-sensitive regime where ozone production has relatively high sensitivity to reactive

VOCs and therefore, additional isoprene emissions directly lead to substantial ozone increase. In contrast, regions like southern

Shaanxi province in the Qinling mountains do not have large NOx sources. Ozone photochemistry in these regions is NOx-

sensitive _where ozone formation is less responsive to VOC increases. Additionally, the distinct topographical and

meteorological differences between these regions might also contribute to the varying ozone responses. The flat NCP region

experiences more persistent high-pressure systems that favour ozone accumulation, while the mountainous Shaanxi terrain

might promote enhanced vertical mixing that can dilute ozone responses to isoprene increases. ,This enhanced sensitivity to

VPD effects is particularly significant given that the NCP already experiences China's most severe ozone pollution. These
findings align with previous research (Ma et al., 2019) that documented strong correlations between water-stressed conditions,
enhanced isoprene emissions, and elevated ozone levels in the NCP region.

These findings demonstrate significant spatial variations in how different isoprene emission estimates affect simulated
ozone distributions across China. The pronounced ozone increases in the NCP region, particularly when accounting for VPD

effects, suggest that current models may underestimate the role of biogenic emissions in China's ozone pollution.

5 Summary and conclusions

We developed the Speciated Isoprene Emission Model with the MEGAN Algorithm for China (SieMAC), which
reveals distinct spatial patterns of isoprene emissions across China compared to previous estimates. Model evaluation against
both ground-based CARE-China network observations and satellite HCHO data demonstrates SieMAC's improved
performance over MEGAN v2.1 and v3.1, particularly in northern China where previous versions showed systematic
underestimation. When using SieMAC emissions, the chemical transport model, REAM, produces more accurate spatial
distributions of both isoprene and HCHO compared to simulations using MEGAN emissions.

SieMAC estimates summer 2013 emissions between 10.22 and 14.79 Tg C, corresponding to annual emissions of
approximately 15-22 Tg C. While these magnitudes align with the range of previous studies, SieMAC indicates a significantly

smaller north-south emission gradient than previously recognized. This revised spatial pattern reflects in part recent land use
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changes, especially the extensive afforestation efforts and urban greening initiatives in northern China that have introduced
high-emitting tree species across the region. The resulting higher emissions in the polluted NCP and YRD regions indicate a
large contribution of biogenic emissions to severe summertime ozone pollution in these regions.

The inclusion of VPD effects in SieMAC reveals potentially significant water-stress impacts on emissions, with
enhancements up to 40% during summer conditions. This finding is particularly relevant for the NCP region, where water-
stress induced emission increases can contribute to severe ozone pollution episodes. These results highlight the need to better
understand dehydration-emission relationships in Chinese ecosystems, especially given the region's vulnerability to climate
change.

Despite these improvements, several important uncertainties remain in the current model framework. The emission
factors used in SieMAC, while incorporating extensive local measurements, still cannot fully capture the diversity of China's
vegetation. The assigned EFs for species lacking direct measurements introduce potential biases that could be addressed
through expanded measurement campaigns. Additionally, while SieMAC uses real-time vegetation datasets to adjust
distributions from the Vegetation Atlas of China, the resolution limitations of current remote sensing and vegetation statistic
datasets and the dated Vegetation Atlas limit the model's ability to capture recent land use changes. The anticipated release of
an updated Vegetation Atlas should help address some of these limitations.

Another significant source of uncertainty lies in the activity response algorithms. SieMAC primarily adopts
MEGAN's algorithms and inherits their uncertainties. The optional VPD response factor of SieMAC, derived from U.S.
measurements, may not fully represent the behaviour of Chinese vegetation. Regional differences in how plants respond to
environmental changes have been documented in other studies, suggesting the need for China-specific field studies and
laboratory experiments to better characterize these relationships.

Our results highlight several critical implications for environmental policy and air quality management. The
significant role of biogenic isoprene in modulating regional ozone pollution is particularly evident in eastern China and the
NCP region, where accurate emission representation is crucial for surface ozone control. Additionally, these findings
emphasize the importance of considering air quality impacts in future afforestation projects, especially in dehydration-prone
regions where VPD effects can substantially enhance isoprene emissions and subsequent ozone formation. Furthermore, our
results suggest that current models may underestimate the contribution of isoprene to China's ozone pollution, particularly in
polluted eastern China. Looking forward, the flexible open-source framework of SieMAC, which allows for continuous
improvement and regional customization as new datasets and measurements become available, make it a valuable tool for both

research and policy applications.
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Figure 1. Schematic workflow for generating SieMAC land cover input data. Pink boxes denote input datasets: Vegetation Atlas, Forest
Resource Statistics, tree and non-tree coverage from MODIS MOD44B, EF measurements, MODIS LAI and PFT products. Grey panels
represent two processing approaches: high-resolution (HR, left) and medium-resolution (MR, right). Within each panel, orange rectangles

540  indicate area-aggregation or scaling operations, blue rectangles indicate derivation of provincial or gridded composition/PFT fractions, and
orange diamonds mark decision branches. Green boxes show the final products used as SieMAC inputs: gridded PFT fractions, EFs, and
LAL
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Figure 2. Geographical distribution of the 19 CARE-China monitoring sites analysed in this study. Sites are colour-coded by region
550  following Zhang et al. (2020): North China Plain (NCP, blue squares), Northeast China Plain (NECP, light-green squares), Northwest China
(NWC, orange squares), Southeast China (SEC, magenta diamonds), South China (SC, pink diamonds), and Southwest China (SWC, grey

diamonds). Provincial boundaries are shown for reference.
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Figure 3. Evaluation of REAM-SieMAC MR with surface observations from the China National Environmental Monitoring Centre
(CNEMC). Hourly model outputs and measurements were processed to seasonal means at each CNEMC site before comparison. (a)
Maximum daily 8-hour average ozone (MDAR); (b) daily mean NO,. Each dot represents a single site—season mean. The dashed line indicates
the 1:1 relation; statistics in the lower-right corner give the root-mean-square error (RMSE), mean bias (MB), and Pearson correlation

coefficient (r).
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Figure 4. Comparison between simulated and measured isoprene concentrations at CARE-China sites. Northern and southern regions
are evaluated separately because MEGAN exhibits region-dependent performance (Zhang et al., 2020). Panels (a—f) show results for northern
sites—North China Plain (NCP, blue), Northeast China Plain (NECP, light green), and Northwest China (NWC, orange)—using six emission
schemes: SieMAC MR, SieMAC HR, MEGAN v2.1, SieMAC MRypp, SieMAC HRypp, and MEGAN v3.1. Panels (g-1) present the same
schemes for southern sites—Southeast China (SEC, magenta), South China (SC, pink), and Southwest China (SWC, dark green). Each
symbol represents an observation point, while stars denote regional geometric means. The geometric mean is used here because the
concentration values span multiple orders of magnitude. Both axes are logarithmic; the solid black line shows the 1:1 reference, and red

dashed lines mark factors of ten (10:1 and 1:10). Percentages in the upper-left corners indicate the proportion of data points falling within

the factor-of-ten lines.
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Figure 5. Distributions of the model-to-measurement ratio for surface isoprene at CARE-China sites. Histograms are shown separately
for northern (N, panels a—h) and southern (S, panels i—p) regions. Within each region, the four columns, from left to right, correspond to the
SieMAC configurations: MR, MRyep, HR, and HRypp. Red bins represent SieMAC results, blue bins represent MEGAN v2.1, and yellow (Deleted: green

bins represent MEGAN v3.1. The x-axis is logarithmic with a bin width of 0.5. The vertical dashed line marks the 1:1 ratio.
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Figure 6. Spatial correspond between modelled isoprene emissions and satellite formaldehyde (HCHO). Bars give the Pearson

correlation coefficient (r) between grid-cell seasonal mean isoprene emission from each inventory—SieMAC MR, SieMAC MRypp,
SieMAC HR, SieMAC HRypp, MEGAN v2.1, and MEGAN v3.1—and Ozone Monitoring Instrument (OMI) HCHO vertical column over
mainland China for summer 2013. Higher values of r indicate a closer match in the spatial patterns of isoprene emissions and observed

formaldehyde.
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Figure 7. Seasonal mean of formaldehyde (HCHO) vertical col (VC) for 2013 simulated with six emission inventories:
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spatial agreement with observations.
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(a) SieMAC MR

(d) SieMAC MR,

(b) SieMAC HR

(c) MEGAN v2.1

() MEGAN v3.1

|-+ Wrjowu

Figure 8. Summertime (2013) isoprene emissions over mainland China derived from six emission schemes: (a) SieMAC MR, (b)

SieMAC HR, (c) MEGAN v2.1, (d) SieMAC MRyep, (€) SieMAC HRypp, and (f) MEGAN v3.1. Shade shows emission rate in nmol m? s°

! (colour scale at right).
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(a) SieMAC MR - MEGAN v2.1 (b) SieMAC HR - MEGAN v2.1
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620  Figure 9. Spatial differences in isoprene emissions (summer 2013) among different schemes. (a) and (b) map the difference between

SieMAC and MEGAN v2.1 for MR and HR, respectively (SieMAC — MEGAN v2.1). (¢) and (d) map the difference between SieMAC and
MEGAN v3.1 for MR and HR. respectively (SieMAC — MEGAN v3.1). (¢) and (f) quantify the impact of vapour pressure deficit stress by

(a) SieMAC MR - MEGAN v2.1

subtracting the unstressed SieMAC fields from their VPD-enabled counterparts (SieMAC MRypp — SieMAC MR and SieMAC HRypp —
SieMAC HR). Colours denote the magnitude of the difference in nmol m? s! (scale at right); red shades indicate higher emissions in the

first-listed inventory, while blue shades indicate lower emissions.
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Figure 10. Relative contribution of each PFT to the total isoprene emissions during summer 2013, shown separately for MR (a) and

HR (b). BrDe Tree and BrEv Tree refer to broadleaf deciduous and broadleaf evergreen trees, respectively; "Others" comprises needleleaf

trees and crops. Values next to each sector give the percentage contribution to the total national emissions attributable to that PFT.
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Figure 11. Monthly variation of isoprene emissions for summer 2013 in four inventories: SieMAC MR (dark blue), SieMAC HR
light blue), MEGAN v2.1 (brown), and MEGAN v3.1 (grey). (a) is the relativ

inventory's total summer emission, permitting direct comparison of seasonal progression across inventories. (b) presents absolute monthl

¢ monthly emissions expressed as a percentage of each

—e—SieMAC MR ——MEGAN v2.1
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emissions in Tg C mon™!, showing the magnitude differences between emission inventories,
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(a) SieMAC MR - MEGAN v2.1 (b) SieMAC HR - MEGAN v2.1
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Figure 12. Differences in seasonal mean of daily maximum 8-hour average ozone (MDAS) between SieMAC and MEGAN
simulations (summer 2013). Panels show the differences between various SieMAC configurations and MEGAN inventories: (a-d) SieMAC
versus MEGAN v2.1, and (e-h) SieMAC versus MEGAN v3.1. From left to right, columns represent SieMAC MR, SieMAC HR, SieMAC
MRypp, and SieMAC HRypp configurations. Colours indicate concentration differences in ppbv (scale at right); red shades show higher

ozone concentrations in SieMAC simulations, while blue shades indicate lower concentrations.
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Table 1. PFT scheme used in this study

PFT Number Description

1 Broadleaf Evergreen Tree
2 Broadleaf Deciduous Tree
3 Needleleaf Evergreen Tree
4 Needleleaf Deciduous Tree
5 Shrub

6 Crop

7 Grass

690 Table 2. REAM Simulations

Case Isoprene Emission Model

SieMAC MR SieMAC with MR land cover, omit yypp
SieMAC HR SieMAC with HR land cover inputs, omit yypp
SieMAC MRvrp Same a SieMAC MR, but includes yypp
SieMAC HRvep SieMAC with HR land cover, but includes yypp
MEGAN v2.1 offline MEGAN v2.1

MEGAN v3.1 offline MEGAN v3.1

Table 3. Isoprene Emission Estimates for China (Unit: TgC)

Data Source Model Study Period Emissions (Tg C

This Study SieMAC MR 2013 summer 10.92 season’!
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This Study

This Study

This Study

This Study

This Study

Wang et al. (2021b)
Chen et al. (2022)
Wang et al. (2007)
Li et al. (2023)

Ma et al. (2022)
Wang et al. (2021a)
Li et al. (2020c)
Wang et al. (2020)
Wau et al. (2020)
Gao et al. (2019)

Li and Xie (2014)

Stavrakou et al. (2014)

Lietal. (2013)

Chi and Xie (2012)

Fu and Liao (2012)

SieMAC HR

SieMAC MRvep

SieMAC HRvrp

MEGAN v2.1

MEGAN v3.1

MEGAN v2.1

MEGAN v2.1

Guenther et al. 1995

MEGAN v3.1

MEGAN v2.1

MEGAN v2.1

MEGAN v2.1

MEGAN v2.1

MEGAN v2.1

MEGAN v3.0

MEGAN v2.1

MEGAN v2.04

MEGAN v2.1

Guenther et al. 1995

MEGAN module embedded

in GEOS-CHEM

2013 summer
2013 summer
2013 summer
2013 summer
2013 summer
2011 summer
2014 July
1999 July
2020
2015-2019
2001-2016
2008, 2013, 2018
2001-2016
2017
2005-2016
1999-2003
2005

2003

2003

2001-2006

11.37 season’!
15.27 season’!
15.83 season’!
8.05 season’!
4.47 season’!
5.8 season’!
2.00 mon’!

0.95 mon™!

7.23 yr!
13.88-14.29 yr'!
14.06 yr'!
28.23-37.45 yr!
7.56 yr!

13.3 yr'!

6.13 yr!

27.09 yr-

9.30 yr!

23.42 yr!

7.45 yr!

9.59 yr'!




Lietal. (2012) PCEEA in Guenther et al.2006 2006 9.36 yr'!
Tie et al. (2006) Guenther et al. 1993 2004 7.70 yr'!
Klinger et al. (2002) Guenther et al. 1995 2000 4.10 yr!
Guenther et al. (1995) Guenther et al. 1995 1990 15.00 yr!
Table 4. Regional Isoprene Emission Estimates (Unit: kg C km? h'!)
Region  Data Source Model Study Period Emissions Note if for subregions
kg C km™ h'")
NCP This Study SieMAC MR 2013 summer 1.26
SieMAC HR 2013 summer 1.16
SieMAC MRvrp 2013 summer 1.92
SieMAC HRvep 2013 summer 1.77
MEGAN v2.1 2013 summer 0.59
MEGAN v3.1 2013 summer 0.29
Wang et al. (2018) MEGAN v2.1 2018 0.18 Beijing
Wang et al. (2003a) GloBEIS 1998 summer 0.17 Beijing
YRD This Study SieMAC MR 2013 summer 1.33
SieMAC HR 2013 summer 1.45
SieMAC MRvrp 2013 summer 1.91
SieMAC HRvrp 2013 summer 2.08
MEGAN v2.1 2013 summer 0.84
MEGAN v3.1 2013 summer 0.48
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Lou et al. (2023) MEGAN v2.1

PRD This Study SieMAC MR

SieMAC HR
SieMAC MRvrp
SieMAC HRvpp
MEGAN v2.1
MEGAN v3.1
Situ et al. (2014) MEGAN v2.1
Wang et al. (2011b) MEGAN v2.0

Zheng et al. (2010) GloBEIS

2020 Aug

2013 summer

2013 summer

2013 summer

2013 summer

2013 summer

2013 summer

2008 Fall

2003 summer

2006

2.04

0.78

0.53

2.4

0.42

0.16

Zhejiang province

Dinghu Mountain

700
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Data and Code Availability

The current version of SieMAC standalone
https://github.com/Cathiiie/SieMAC_Gamma under the MIT licence. The exact version of the model described in this paper
is archived on Zenodo under DOI: 10.5281/zenodo.15740701 (Xi, 2025). Setup instructions and execution steps are outlined

in the README file. The sample input files, including PFT-specific emission factors, LAI datasets, sample meteorological

code is available

on

following ~ GitHub

inputs, and benchmark outputs, are available at http://apollo.eas.gatech.edu/data/. Complete emission inventor

additional meteorological data files, and supplementary datasets can be provided upon request,

Deleted: Setup instructions and execution steps are outlined in the
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