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Main concerns: 

First main concern: 

 

Answer to the first main concern: 
Thank you for this insightful comment. We fully agree with you, and we have conducted additional 

tests to demonstrate that the method also performs well across different regions, seasons, and times 

of day, in order to assess the model’s robustness. The methodology was as follows: 

 We used data from another region centered over Panama, between latitudes [0, 15]°N and longitudes 

[100, 70]°W. 

 

 

 

 

 

 

 

 

This region does not overlap with the training and testing area, which was located between latitudes 

[15, 40]°N and longitudes [100, 65]°W.  

Four days in August 2024 were selected during which thunderstorms occurred in this region. The data 

were collected and processed for the period between 12:00 UTC and 15:00 UTC. With this selection, 

we were able to test the robustness of the method on summer afternoons over a different region, as 

suggested in your comment. We used GOES-R ABI Brightness Temperature (BT), GLM groups data, and 

GFS best lifted index (bestLI) and maximum relative humidity (maxRH) as a spatio-temporal sequence 

Figure 1 - New inference selected area centered over the Panama 



to infer on this new test case using our pre-trained model.  Here are the obtained mean results in terms 

of metrics over the 4 selected dates: 

 

Visually, we also plotted a map showing the results for one of these dates (on 11 August 2025) and for 

a 10-mn forecast horizon. 

  

Figure 3 - 10-mn predictions on 11 August 2025. 

The network seems to successfully predict lightning activity probability across another season, time of 

day, and region, achieving results comparable to those obtained over the Gulf of Mexico. In future 

work, additional experiments will be conducted on a larger dataset, and fine-tuning will be explored 

for different regions. 

What we change on the paper: 
We added a new subsection in the discussion section: 5.3 – “Assessment of the robustness of the 

method” after line 378 which contains the following text: “To ensure that the method can capture the 

seasonal, diurnal, and regional differences in thunderstorm dynamics, the model’s performance has 

been evaluated over a new region centered on Panama. This area extended over latitudes [0°, 15°N] 

and longitudes [100°W, 70°W] and does not overlap with the training domain. Several days in August 

2024 were selected when thunderstorms occurred, focusing on the period between 12:00 and 15:00 

UTC to assess the model’s performance during summer afternoons. Input images were generated using 

Figure 2 - F1-Score plotted for forecast horizons every 10 minutes up to 1 hour using several thresholds from 0.5 to 0.05. 



the same GOES-R satellite sensors (ABI and GLM) and outputs from the GFS model. In this region, only 

Full Disk data from GOES-R's sensors are available, resulting in a temporal resolution of 10 minutes. 

Robustness tests were conducted, and the corresponding performance metrics are presented in Figure 

14a. Despite the current limited size of the Panama dataset, the method generalizes well to these new 

conditions, achieving F1-Scores close to those obtained over the Gulf of Mexico. Moreover, it still 

produces well-calibrated probabilistic maps representing the risk of electrical activity as shown in 

Figure 14b.” 

 

Second concern: 

 

Answer to the second concern:  
Thank you for your second comment regarding the lack of direct comparison with other state-of-the-

art deep learning models such as Brodehl et al. (2022), Geng et al. (2021), and Leinonen et al. (2023). 

First, comparing models for this type of prediction task is quite challenging, as no public benchmark 

currently exists. Each research group creates its own dataset, designs its network, and applies it to its 

data. Therefore, each model is explicitly tailored to the specific dataset used. This means that different 

studies employ distinct input tensors, ground truths, loss functions, and forecast horizons, making it 

very difficult to adapt one model to another dataset. 

In Geng et al. (2021), the authors use simulated microphysical parameters, radar reflectivity, maximum 

vertical velocity, lightning data from the Chinese National Lightning Detection Network, and Automatic 

Weather Station (AWS) data — all very different from the inputs used in our approach. Their model is 

based on a modified ConvLSTM architecture with a separate encoder for each data type, followed by 

a fusion module and a decoder. While their architecture differs slightly, it operates on the same general 

principle as a ConvLSTM. Therefore, we would expect results similar to those presented in subsection 

5.1, as we tested this type of network on our data. They obtain good POD values for the first few hours, 

but also a very high false alarm rate, resulting in an F1-score around 0.25 for 30-minute forecasts — 

nearly half of what we obtain in this study. For these reasons, we chose to only implement the two 

other networks in order to compare them with our method. 

Regarding the study of Leinonen et al. (2023), they employ an encoder–forecaster model using Gated 

Recurrent Units (GRUs) to capture temporal dependencies. Their approach is conceptually close to a 

ConvLSTM, and their methodology is similar to ours, as they predict lightning probability every 5 

minutes up to one hour ahead. However, their model is more complex and relies on a large number of 

input variables (39 different data types) over 6 timesteps to directly predict 12 timesteps (i.e., up to 1 

hour). Since their code is available at https://github.com/MeteoSwiss/c4dl-multi, we implemented 

their ConvGRU architecture and tested it on our data using the loss functions mentioned in their article 

and GitHub repository. We experimented with their Weighted Cross-Entropy (WCE) and Weighted 

Focal Loss (WFL) using lightning weights in [0.01, 0.5, 10] and obtained the following results: 

• When using the WCE, regardless of the weight, the network misses too many lightnings while 

trying to avoid false alarms.  

https://github.com/MeteoSwiss/c4dl-multi


• When using the WFL, regardless of the weight, the network predicts too many lightning pixels, 

thus detecting all lightning but generating many false alarms. 

This behavior aligns with the design of the WFL, which emphasizes recall, while the WCE reduces false 

alarms. With further investigation, it might be possible to find a balance between these two losses, but 

for now, their method does not adapt well to our data. 

Finally, in Brodehl et al. (2022), the authors propose a U-Net with additional residual blocks from a 

ResNet architecture, referred to as ResU-Net. Their method achieves good results for lightning 

prediction up to 180 minutes with 30-minute intervals. Although they use different data from ours 

(several bands from the SEVIRI sensor and LINET lightning detection network data), they also apply a 

search radius to mitigate class imbalance when computing metrics. They do not specify all required 

parameters, such as the number of timesteps or input channels, but we still implemented and tested 

their architecture on our dataset with our methodology. Using different loss functions, such as WCE 

with lightning-to-background ratios of 1/1000 and 1/100, CE combined with α·Dice loss with α values 

in [0.1, 0.05, 0.01] and also the loss function that they used in the paper (named as “Brodehl” in the 

table), we obtained the following results for 5-minute predictions: 

Table 1 - Metric results using ResU-Net from Brodehl et al. (2022) and different loss functions. 

Loss function WCE[1/1000] WCE[1/100] CE+0.1dice CE+0.05dice CE+0.01dice Brodehl 

Precision 0,127 0,2869 0,2616 0,3484 0,261 0,3497 

Recall 0,9782 0,9412 0,9525 0,9111 0,9524 0,8290 

F1-Score 0,2248 0,4398 0,4101 0,5041 0,4097 0,4919 

ECE 0,4756 0,4307 0,4527 0,4109 0,4526 0,3554 

MCE 0,9013 0,7731 0,855 0,764 0,8548 0,5937 

 

All these scores are lower than those achieved in our study with the ED-DRAP network and 

methodology. Specifically, while we obtained an F1-score of 0.65 for 5-minute predictions, the ResU-

Net reached only up to 0.5. More importantly, this network failed to produce calibrated outputs, as all 

average ECE values exceeded 0.35 (i.e., more than 35% error), compared to less than 5% with our 

approach.  

 

What we change on the paper: 
We added one paragraph to compare our results with those of Brodehl et al. (2022) at the end of the 

subsection 5.1 after line 358. The paragraph is the following: “In addition to these tests, a ResU-Net 

model inspired by Brodehl et al. (2022) has been implemented and trained on our dataset with the loss 

in Equation 4, the Weighted Cross-Entropy (WCE), and the loss defined in their paper. The obtained F1-

Scores range from 0.22 to 0.50 for 5-minute forecasts, which is lower than the results obtained here, 

and the ECE remains above 0.35, compared to less than 0.05 in this study. This shows that our 

methodology is better suited to produce calibrated outputs and to address the current problem.” 

 

Minor comments: 

First comment: 

 



Answer:  
Thank you for this comment. The reason why we selected a smaller area was not clearly explained in 

the paper. In fact, this smaller region was chosen to reduce the image size, as using the entire CONUS 

domain (1168×834 pixels) and training the network on 512×512 tiles would have been too 

computationally expensive. Moreover, we aimed to design a model specifically trained on a region 

with a balanced ratio of land and sea, in order to later evaluate its ability to provide useful predictions 

in areas without ground sensors or with missing data. From a physical perspective, this region is located 

near the InterTropical Convergence Zone (ITCZ), which experiences intense convective activity due to 

the influence of the Gulf Stream.  

 

What we change in the paper: 
On line 90, the mention of the ITCZ was deleted. In addition, between lines 92 and 94, we added a 

sentence to justify the choice of the smaller area which is the following: “It has been chosen because 

it is near to the InterTropical Convergence Zone (ITCZ), which experiences intense convective activity 

due to the influence of the Gulf Stream.” 

 

Second comment: 

 

Answer:  

Thank you for this pertinent comment. Correcting this will help the reader understand the spatial 

context and avoid misunderstandings. 

What we change in the paper:  

We have modified subfigure (b) in Fig. 2, and both subfigures (a) and (b) in Fig. 3, to have the exact 

same format and latitude/longitude axes for consistency.  

 



 

 

 

Third comment:  

 

What we change in the paper:  
We modified the first figure to add the test region with a clear blue square centered over Florida and 

updated the legend accordingly. 

 

 

Fourth comment: 

 

Answer:  
Regarding the choice of six timesteps as input, we initially conducted a study testing different numbers 

of timesteps to predict the 30-minute electrical activity risk. Four trained models were evaluated on 

the entire test database, and the metrics were averaged. These results led us to select six timesteps as 

input (representing 30 minutes) because the best F1-Score was found in this case. 



Table 2 - First metrics comparison for 30-minute predictions using different number of timesteps in input. 

Timesteps in input 2 4 6 8 10 

Precision 0,5705 0,6102 0,6078 0,6339 0,6637 

Recall 0,3115 0,3096 0,3323 0,3112 0,2658 

F1-Score 0,4008 0,4057 0,4286 0,4124 0,3630 

 

Following your comment, we performed additional experiments by retraining ten models and 

computing the mean results to ensure the repeatability of our findings. The obtained results are as 

follows: 

      
Table 3 - Metrics comparison for 30-minute predictions using different number of timesteps in input. 

Timesteps in input 2 4 6 8 10 

Precision 0,5066 0,4880 0,5350 0,5444 0,5224 

Recall 0,2398 0,3304 0,3651 0,2936 0,2144 

F1-Score 0,2920 0,3474 0,4289 0,3456 0,2566 

 

These results confirmed that using six timesteps as input for 30-minute forecasts is the optimal choice.  

What we change in the paper:  
As the paper mentioned that 6 timesteps were chosen as input and identified as the best configuration 

for each forecast horizon, we have modified the lines between 175 and 180 and replace it with: “To 

accomplish this task, a sequence of images was selected as the input for the neural network. To 

determine the optimal number of timesteps to consider, a comparative study was conducted to 

evaluate the model’s performance using a different number of timesteps as inputs for predicting 

lightning occurrences. The study showed that the best performance for 30-mn predictions was achieved 

using 6 input timesteps, corresponding to 30 minutes, and this configuration was therefore used for all 

other horizons. Using 6 timesteps instead of 2, 4, 8, or 10 resulted in an increase of at least 8% in the 

F1 score (as presented in Section 4.1) for 30-minute predictions.” 

 

Fifth comment: 

 

Answer:  

Thank you for your remark. This addition clarifies the quantitative results for the reader and makes the 

methodology easier to understand. 

What we change in the paper: 
On line 309, we added the threshold’s value used to obtain only 5% of missed lightnings which is 0.05 

in the following sentence: “In this example, only 5% of lightning strikes are missed when using a 

threshold of 0.05, and this result remains consistent across all forecast horizons, as shown in Fig. 10c.” 


