Answer to the first review:

Acknowledgements:

We thank the reviewer for their very constructive feedback and thoughtful comments. We have
carefully studied the review, addressed all the points raised, and modified the manuscript accordingly.

Main concerns:

First main concern:

My main concern is the limited scope and potential lack of generalizability of the dataset and results. The data is restricted to
winter mornings (00:00-05:00 UTC, December-February) from 2020-2023, covering only 154 days with a balanced split of
stormy and non-stormy periods. While this controls for variability, it may not capture seasonal, diurnal, or regional differences
in thunderstorm dynamics (e.g., summer afternoons or other global hotspots). The study area is narrowed to a subset of
CONUS, but no sensitivity analysis is provided for other regions. A discussion on how these choices affect broader
applicability, perhaps with preliminary tests on extended data, would strengthen the contribution.

Answer to the first main concern:

Thank you for this insightful comment. We fully agree with you, and we have conducted additional
tests to demonstrate that the method also performs well across different regions, seasons, and times
of day, in order to assess the model’s robustness. The methodology was as follows:

We used data from another region centered over Panama, between latitudes [0, 15]°N and longitudes
[100, 70]°W.

Figure 1 - New inference selected area centered over the Panama

This region does not overlap with the training and testing area, which was located between latitudes
[15, 40]°N and longitudes [100, 65]°W.

Four days in August 2024 were selected during which thunderstorms occurred in this region. The data
were collected and processed for the period between 12:00 UTC and 15:00 UTC. With this selection,
we were able to test the robustness of the method on summer afternoons over a different region, as
suggested in your comment. We used GOES-R ABI Brightness Temperature (BT), GLM groups data, and
GFS best lifted index (bestLI) and maximum relative humidity (maxRH) as a spatio-temporal sequence



to infer on this new test case using our pre-trained model. Here are the obtained mean results in terms
of metrics over the 4 selected dates:
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Figure 2 - F1-Score plotted for forecast horizons every 10 minutes up to 1 hour using several thresholds from 0.5 to 0.05.

Visually, we also plotted a map showing the results for one of these dates (on 11 August 2025) and for
a 10-mn forecast horizon.
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Figure 3 - 10-mn predictions on 11 August 2025.

The network seems to successfully predict lightning activity probability across another season, time of
day, and region, achieving results comparable to those obtained over the Gulf of Mexico. In future
work, additional experiments will be conducted on a larger dataset, and fine-tuning will be explored
for different regions.

What we change on the paper:

We added a new subsection in the discussion section: 5.3 — “Assessment of the robustness of the
method” after line 378 which contains the following text: “To ensure that the method can capture the
seasonal, diurnal, and regional differences in thunderstorm dynamics, the model’s performance has
been evaluated over a new region centered on Panama. This area extended over latitudes [0°, 15°N]
and longitudes [100°W, 70°W] and does not overlap with the training domain. Several days in August
2024 were selected when thunderstorms occurred, focusing on the period between 12:00 and 15:00
UTC to assess the model’s performance during summer afternoons. Input images were generated using



the same GOES-R satellite sensors (ABl and GLM) and outputs from the GFS model. In this region, only
Full Disk data from GOES-R's sensors are available, resulting in a temporal resolution of 10 minutes.
Robustness tests were conducted, and the corresponding performance metrics are presented in Figure
14a. Despite the current limited size of the Panama dataset, the method generalizes well to these new
conditions, achieving F1-Scores close to those obtained over the Gulf of Mexico. Moreover, it still
produces well-calibrated probabilistic maps representing the risk of electrical activity as shown in
Figure 14b.”

Second concern:

My second concern is the benchmarking and novelty assessment. The model is compared to ConvLSTM, PredRNN,
persistence, and U-Net, showing superior F1 and calibration scores. However, it lacks direct comparison to recent lightning-
specific DL models from the literature, such as those in Brodehl et al. (2022), Geng et al. (2021), or Leinonen et al. (2023),
which also use satellite/radar data for nowcasting. While the intentional exclusion of radar data is well-justified for enhancing
applicability to aircraft flight paths where radar coverage may be limited or absent, discussing how the proposed method
might compare to radar-inclusive baselines would better contextualize its advantages and limitations.

Answer to the second concern:
Thank you for your second comment regarding the lack of direct comparison with other state-of-the-
art deep learning models such as Brodehl et al. (2022), Geng et al. (2021), and Leinonen et al. (2023).

First, comparing models for this type of prediction task is quite challenging, as no public benchmark
currently exists. Each research group creates its own dataset, designs its network, and applies it to its
data. Therefore, each model is explicitly tailored to the specific dataset used. This means that different
studies employ distinct input tensors, ground truths, loss functions, and forecast horizons, making it
very difficult to adapt one model to another dataset.

In Geng et al. (2021), the authors use simulated microphysical parameters, radar reflectivity, maximum
vertical velocity, lightning data from the Chinese National Lightning Detection Network, and Automatic
Weather Station (AWS) data — all very different from the inputs used in our approach. Their model is
based on a modified ConvLSTM architecture with a separate encoder for each data type, followed by
a fusion module and a decoder. While their architecture differs slightly, it operates on the same general
principle as a ConvLSTM. Therefore, we would expect results similar to those presented in subsection
5.1, as we tested this type of network on our data. They obtain good POD values for the first few hours,
but also a very high false alarm rate, resulting in an Fl-score around 0.25 for 30-minute forecasts —
nearly half of what we obtain in this study. For these reasons, we chose to only implement the two
other networks in order to compare them with our method.

Regarding the study of Leinonen et al. (2023), they employ an encoder—forecaster model using Gated
Recurrent Units (GRUs) to capture temporal dependencies. Their approach is conceptually close to a
ConvLSTM, and their methodology is similar to ours, as they predict lightning probability every 5
minutes up to one hour ahead. However, their model is more complex and relies on a large number of
input variables (39 different data types) over 6 timesteps to directly predict 12 timesteps (i.e., upto 1
hour). Since their code is available at https://github.com/MeteoSwiss/c4dl-multi, we implemented
their ConvGRU architecture and tested it on our data using the loss functions mentioned in their article
and GitHub repository. We experimented with their Weighted Cross-Entropy (WCE) and Weighted
Focal Loss (WFL) using lightning weights in [0.01, 0.5, 10] and obtained the following results:

o When using the WCE, regardless of the weight, the network misses too many lightnings while
trying to avoid false alarms.


https://github.com/MeteoSwiss/c4dl-multi

o When using the WFL, regardless of the weight, the network predicts too many lightning pixels,
thus detecting all lightning but generating many false alarms.

This behavior aligns with the design of the WFL, which emphasizes recall, while the WCE reduces false
alarms. With further investigation, it might be possible to find a balance between these two losses, but
for now, their method does not adapt well to our data.

Finally, in Brodehl et al. (2022), the authors propose a U-Net with additional residual blocks from a
ResNet architecture, referred to as ResU-Net. Their method achieves good results for lightning
prediction up to 180 minutes with 30-minute intervals. Although they use different data from ours
(several bands from the SEVIRI sensor and LINET lightning detection network data), they also apply a
search radius to mitigate class imbalance when computing metrics. They do not specify all required
parameters, such as the number of timesteps or input channels, but we still implemented and tested
their architecture on our dataset with our methodology. Using different loss functions, such as WCE
with lightning-to-background ratios of 1/1000 and 1/100, CE combined with a-Dice loss with a values
in [0.1, 0.05, 0.01] and also the loss function that they used in the paper (named as “Brodehl” in the
table), we obtained the following results for 5-minute predictions:

Table 1 - Metric results using ResU-Net from Brodehl et al. (2022) and different loss functions.

Loss function | WCE[1/1000] | WCE[1/100] | CE+0.1dice | CE+0.05dice | CE+0.01dice | Brodehl
Precision 0,127 0,2869 0,2616 0,3484 0,261 0,3497
Recall 0,9782 0,9412 0,9525 0,9111 0,9524 0,8290
F1-Score 0,2248 0,4398 0,4101 0,5041 0,4097 0,4919
ECE 0,4756 0,4307 0,4527 0,4109 0,4526 0,3554
MCE 0,9013 0,7731 0,855 0,764 0,8548 0,5937

All these scores are lower than those achieved in our study with the ED-DRAP network and
methodology. Specifically, while we obtained an F1-score of 0.65 for 5-minute predictions, the ResU-
Net reached only up to 0.5. More importantly, this network failed to produce calibrated outputs, as all
average ECE values exceeded 0.35 (i.e., more than 35% error), compared to less than 5% with our
approach.

What we change on the paper:

We added one paragraph to compare our results with those of Brodehl et al. (2022) at the end of the
subsection 5.1 after line 358. The paragraph is the following: “In addition to these tests, a ResU-Net
model inspired by Brodehl et al. (2022) has been implemented and trained on our dataset with the loss
in Equation 4, the Weighted Cross-Entropy (WCE), and the loss defined in their paper. The obtained F1-
Scores range from 0.22 to 0.50 for 5-minute forecasts, which is lower than the results obtained here,
and the ECE remains above 0.35, compared to less than 0.05 in this study. This shows that our
methodology is better suited to produce calibrated outputs and to address the current problem.”

Minor comments:

First comment:
L90-95: Clarify why the smaller area (red rectangle in Fig. 1) was chosen beyond computation cost, does it represent typical
thunderstorm regimes?



Answer:

Thank you for this comment. The reason why we selected a smaller area was not clearly explained in
the paper. In fact, this smaller region was chosen to reduce the image size, as using the entire CONUS
domain (1168x834 pixels) and training the network on 512x512 tiles would have been too
computationally expensive. Moreover, we aimed to design a model specifically trained on a region
with a balanced ratio of land and sea, in order to later evaluate its ability to provide useful predictions
in areas without ground sensors or with missing data. From a physical perspective, this region is located
near the InterTropical Convergence Zone (ITCZ), which experiences intense convective activity due to
the influence of the Gulf Stream.

What we change in the paper:

On line 90, the mention of the ITCZ was deleted. In addition, between lines 92 and 94, we added a
sentence to justify the choice of the smaller area which is the following: “It has been chosen because
it is near to the InterTropical Convergence Zone (ITCZ), which experiences intense convective activity
due to the influence of the Gulf Stream.”

Second comment:

Fig. 2: Add coordinate axes (latitude/longitude) to subfigure (b) to match (a) for consistency and better spatial context.
Answer:

Thank you for this pertinent comment. Correcting this will help the reader understand the spatial
context and avoid misunderstandings.

What we change in the paper:

We have modified subfigure (b) in Fig. 2, and both subfigures (a) and (b) in Fig. 3, to have the exact
same format and latitude/longitude axes for consistency.
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Figure 2. BT image from ABI with grayscale colormap in Kelvins and darker pixels corresponding to higher BT (a). Groups product from
GLM where white pixels correspond to lightning and black ones to background (b). These data are acquired on 01/13/23 at 00:06 UTC from
GOES-R ABI and GLM sensors.
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Figure 3. Map of bestLI (in Kelvin) with arker pixels corresponding to lower values of LI so higher chances of convection (a) and map of
maxRH (in %) with darker pixels corresponding to higher maxRH so to the presence of clouds (b). These data are derived from the 00:00
UTC forecast of the 01/12/2023 18:00 UTC GFS run.

Third comment:

L164-165: The effective training/testing area is further cropped to 256x256 pixels (17.3°N-37.7°N, 93°W-72°W) from the
subselected red rectangle; consider adding this cropped boundary as an inner rectangle in Fig. 1 for clarity.

What we change in the paper:

We modified the first figure to add the test region with a clear blue square centered over Florida and
updated the legend accordingly.

Figure 1. The green rectangle represents the geographical observed area CONUS, the red rectangle the training images area and the blue

square the final chosen area centered over the Gulf of Mexico and Florida. https://www.star.nesdis.noaa.gov/GOES/conus.php?sat=G16

Fourth comment:

L175-180: The input sequence (6 timesteps) is justified by a comparative study, but | suggest including a table or figure
summarizing F1 scores for 2/4/6/8 timesteps to support this.

Answer:

Regarding the choice of six timesteps as input, we initially conducted a study testing different numbers
of timesteps to predict the 30-minute electrical activity risk. Four trained models were evaluated on
the entire test database, and the metrics were averaged. These results led us to select six timesteps as
input (representing 30 minutes) because the best F1-Score was found in this case.



Table 2 - First metrics comparison for 30-minute predictions using different number of timesteps in input.

Timesteps in input 2 4 6 8 10
Precision 0,5705|0,6102 | 0,6078 | 0,6339 | 0,6637
Recall 0,31150,3096 | 0,3323|0,3112|0,2658
F1-Score 0,4008 | 0,4057 | 0,4286 | 0,4124 | 0,3630

Following your comment, we performed additional experiments by retraining ten models and
computing the mean results to ensure the repeatability of our findings. The obtained results are as
follows:

Table 3 - Metrics comparison for 30-minute predictions using different number of timesteps in input.

Timesteps in input 2 4 6 8 10
Precision 0,5066 | 0,4880 | 0,5350|0,5444|0,5224
Recall 0,2398 (10,3304 |0,3651|0,2936 |0,2144
F1-Score 0,2920(0,3474 10,4289 | 0,3456 | 0,2566

These results confirmed that using six timesteps as input for 30-minute forecasts is the optimal choice.

What we change in the paper:

As the paper mentioned that 6 timesteps were chosen as input and identified as the best configuration
for each forecast horizon, we have modified the lines between 175 and 180 and replace it with: “To
accomplish this task, a sequence of images was selected as the input for the neural network. To
determine the optimal number of timesteps to consider, a comparative study was conducted to
evaluate the model’s performance using a different number of timesteps as inputs for predicting
lightning occurrences. The study showed that the best performance for 30-mn predictions was achieved
using 6 input timesteps, corresponding to 30 minutes, and this configuration was therefore used for all
other horizons. Using 6 timesteps instead of 2, 4, 8, or 10 resulted in an increase of at least 8% in the
F1 score (as presented in Section 4.1) for 30-minute predictions.”

Fifth comment:

L305-310: The example in Fig. 9 misses only 5% lightning, but it's not clear which threshold is used in this case.
Answer:

Thank you for your remark. This addition clarifies the quantitative results for the reader and makes the
methodology easier to understand.

What we change in the paper:

On line 309, we added the threshold’s value used to obtain only 5% of missed lightnings which is 0.05
in the following sentence: “In this example, only 5% of lightning strikes are missed when using a
threshold of 0.05, and this result remains consistent across all forecast horizons, as shown in Fig. 10c.”



