
1 
 

Response of phytoplankton communi3es to the onset of the 2020 summer marine heatwave 1 
in the Drake Passage and Antarc3c Peninsula. 2 

Andrés S. Rigual-Hernández1,*, Amy Leventer2, Manuel Fernández-Barba3, José A. Flores1, 3 
Gabriel Navarro3, Johan Etourneau4, Dimitris Evangelinos5,6, Megan Duffy2, Carlota EscuIa7, 4 
Fernando Bohoyo8, José M. Sánchez-Santos9, Manon Sabourdy4,10, Francisco J. Jiménez-5 
Espejo7, and María A. Bárcena 1 6 

1. Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 7 
Salamanca, Spain 8 

2. Department of Geology, Colgate University, Hamilton, NY, USA. 9 
3. Department of Ecology and Coastal Management, InsItute of Marine Sciences of 10 

Andalusia (ICMAN), Spanish NaIonal Research Council (CSIC), 11519 Puerto Real, 11 
Cádiz, Spain. 12 

4. University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France. 13 
5. GRC Geociències Marines, Departament de Dinàmica de la Terra i de l’Oceà, Universitat 14 

de Barcelona, Barcelona, Spain.  15 
6. Department of Earth Science and Engineering, Imperial College London, London, UK.  16 
7. InsItuto Andaluz de Ciencias de la Tierra (IACT-CSIC), Armilla, Spain. 17 
8. InsItuto Geológico y Minero de España (IGME-CSIC), Madrid, Spain. 18 
9. Departamento de EstadísIca, Universidad de Salamanca, 37008 Salamanca, Spain 19 
10. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR CEA-CNRS-20 

UVSQ 8212 CEA Saclay, Gif sur Yveke 21 

⁎ Corresponding author. E-mail address: arigual@usal.es (A. S. Rigual-Hernández). 22 

Abstract 23 

Extreme warming events are increasingly more intense and frequent in the global ocean. These 24 
events are predicted to drive profound and widespread effects on marine ecosystems, yet their 25 
impact on phytoplankton, the base of the marine food web, is sIll largely unknown. Our 26 
understanding of the impact of these phenomena in marine ecosystems is parIcularly poor in 27 
the remote and logisIcally challenging Southern Ocean. During summer 2020, the research 28 
vessel Hespérides sampled the water column of the Drake Passage and northern AntarcIc 29 
Peninsula before (early January) and during the early phase (late January-early February) of a 30 
Marine Heat Wave (MHW), that resulted in sea surface temperature anomalies of up to +3°C. 31 
Here, we take advantage of this excepIonal opportunity to document the effects of an extreme 32 
warming event on the nutrient and phytoplankton (diatom and coccolithophores) distribuIons 33 
across the main zonal systems of the Southern Ocean. Overall, our results indicate that 34 
biogeographical variability of diatom and coccolithophore assemblages, the two dominant 35 
phytoplankton groups in the Southern Ocean, mirrored the physical and chemical properIes of 36 
the water masses delineated by the Southern Ocean fronts before and during the onset of the 37 
marine heat wave. Analysis of a suite of satellite-derived oceanographic parameters revealed 38 
that development and persistence of the 2020 marine heat wave were closely Ied to mesoscale 39 
anIcyclonic eddy dynamics. The increase in sea surface temperatures during the onset of the 40 
marine heat wave was associated with a remarkable increase in diatom abundance reaching 41 
bloom concentraIons and a shit in the diatom assemblage towards an increase in the relaIve 42 
abundance of the small diatom Fragilariopsis cylindrus/nana in the southern Drake Passage. 43 
Notably, the diatom bloom was not coupled with a staIsIcally significant change in chlorophyll-44 
a, as derived from in-situ fluorescence, or modelled Net Primary ProducIon. It is likely that the 45 
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differing contribuIon of other phytoplankton groups and/or a shit in the average phytoplankton 56 
size before and during the MHW might be responsible for these results. Average coccolithophore 57 
abundance was lower than previous studies in the Drake Passage and decreased during the 58 
MHW. We speculate that the remarkable nitrate decrease by approximately one order of 59 
magnitude lower than average summer concentraIons might have been responsible for the 60 
reducIon in coccolithophore numbers. Low nitrate levels are akributed to either the advecIon 61 
of nitrate poor waters from lower laItudes by an anIcyclonic eddy and/or nutrient consumpIon 62 
by substanIal development of sot-Issue phytoplankton biomass. Overall, our results reinforce 63 
the noIon that a warmer Southern Ocean will favour an increase of small phytoplankton cells in 64 
the southern Drake Passage and northern AntarcIc Peninsula with unpredictable consequences 65 
in the marine-food web and biogeochemical cycles that need to be urgently quanIfied and 66 
parametrized.  67 

1. Introduc3on  68 

The global ocean is warming at an unprecedented rapid rate, with modern global sea 69 
surface temperatures being nearly 1°C higher than 1850–1900 as a result of anthropogenic 70 
climate change (Lee et al., 2023). One consequence of this temperature rise is the increased 71 
likelihood of Marine Heat Waves (MHWs; Holbrook et al., 2019) which can be broadly defined as 72 
periods of anomalously high warm water temperatures that may last up to several months and 73 
may cover thousands of square kilometres (Oliver et al., 2021). These extreme warm ocean 74 
temperature events can lead to substanIal and diverse impacts on marine ecosystems, such as, 75 
(i) global-scale coral bleaching events (Eakin et al., 2019), (ii) profound changes in diversity and 76 
structure of marine ecosystems (Wernberg et al., 2013; Wernberg et al., 2016; Garrabou et al., 77 
2022), (iii) reducIon of carbon sequestraIon (Gao et al., 2021), (iv) shits in the geographical 78 
distribuIons of zooplankton and (v) mass mortaliIes of mammals and birds (Bond et al., 2015; 79 
Cavole et al., 2016; Hobday et al., 2018). However, likle informaIon exists about the effects of 80 
MHW on phytoplankton in the Southern Ocean, which represents the base of its marine food 81 
webs and regulates its biogeochemical cycles.  82 

The AntarcIc Peninsula (AP) is one of the fastest warming regions in the world’s oceans 83 
(Vaughan et al., 2003; Jones et al., 2019; Gorodetskaya et al., 2023) and is experiencing an 84 
increase in the frequency of extreme warming events both in the atmosphere (Turner et al., 85 
2021) and in the ocean (MonIe et al., 2020). The increase in air and sea surface temperatures 86 
are shortening the sea ice season and driving the retreat of glaciers at an increasingly 87 
acceleraIng rate (Cook et al., 2005; Eayrs et al., 2019; Blanchard-Wrigglesworth et al., 2021; 88 
Suryawanshi et al., 2023; Davison et al., 2024). The enhanced influx of fresh waters in coastal 89 
waters due to ice melIng results in a strengthening of the straIficaIon of the water column, 90 
while the increase of lithogenic parIcles - derived from subglacial erosion - increases turbidity 91 
and enriches the surface ocean with nutrients (Meredith et al., 2018). The abundance, structure 92 
and funcIon of phytoplankton communiIes in the AP are experiencing changes driven by this 93 
rapid environmental change. Primary producIon has increased in the Western AntarcIc 94 
Peninsula (WAP) during the last two decades (1998 to 2022), mainly due to the decline in sea ice 95 
coverage that results in longer blooms (Ferreira et al., 2024; Isla et al., 2025). As summarized in 96 
the comprehensive review by Deppeler and Davidson (2017), changes in the makeup of AP 97 
phytoplankton communiIes could also have profound effects in the local food chain (Ballerini et 98 
al., 2014). Freshening of surface waters is expected to drive a shit from diatom-dominated 99 
communiIes to cryptophytes and small flagellates (Moline et al., 2004; Montes-Hugo et al., 100 
2008). This shit in the dominance is thought to be driven by the higher physiological tolerance 101 

Deleted: north of the polar front 102 
Deleted: warm water event, most likely due to a 103 
Deleted: of nitrate 104 
Deleted: . We speculate that these unusually low105 
Deleted: were the result of106 

Deleted: However, li>le informa?on exists about the effects 107 
of marine heatwaves on phytoplankton that represent the 108 
base of marine food webs and regulate biogeochemical 109 
cycles in the ocean (Hayashida et al., 2020).110 

Deleted:  .111 



3 
 

of  cryptophytes to lower salinity waters associated with melt-water events (see Moline et al., 112 
2004 and references therein). Since krill feed mainly of phytoplankton cells larger than 10 μm, 113 
the overall size reducIon of phytoplankton communiIes has resulted in a decrease of krill 114 
numbers and an increase in salp abundance (grazers unaffected by the size of their prey) (Moline 115 
et al., 2004; Moline et al., 2008; Plum et al., 2020; Pauli et al., 2021). Since salps are not a 116 
preferred food source for some of the major macrofaunal groups of the AP, such as penguins and 117 
seals, changes in the composiIon of phytoplankton populaIons towards smaller and non-118 
siliceous phytoplankton are anIcipated to have detrimental effects in the whole ecosystem.  119 

Moreover, the climate-induced changes in phytoplankton communiIes are likely to alter 120 
the funcIoning of biogeochemical cycles in the AP, parIcularly the carbon cycle through impacts 121 
in the biological pump. On the one hand, ice loss results (i) in the ferIlizaIon of the surface 122 
ocean with nutrients fuelling phytoplankton blooms in areas previously covered by ice and in 123 
wake of icebergs (Bertolin and Schloss, 2009; Vernet et al., 2012) and (ii) in the creaIon of new 124 
carbon sinks in open ocean environments (Peck et al., 2010). On the other hand, the above-125 
menIoned shit in dominance from diatoms to cryptophytes will most likely result in a less 126 
efficient biological pump. This is because the organic content of parIcles lacking mineral ballast 127 
(such as cryptophytes) remineralizes at shallower depths than those associated with biominerals 128 
such as opal produced by diatoms. Moreover, while diatoms form fast-sinking algal aggregates 129 
and are an important component of faecal pellets produced by zooplankton (Green et al., 1998; 130 
Smetacek et al., 2004), cryptophytes are not grazed efficiently by AntarcIc krill which most likely 131 
results in a weaker carbon pump. The net effect of all above menIoned changes over the AP 132 
marine ecosystems and their biogeochemical cycles is yet to be determined.  133 

Notably, despite a growing body of evidence that supports the major influence of climate 134 
change and its cascading impacts on AP ecosystems (Plum et al., 2020; Oh et al., 2022; Thomalla 135 
et al., 2023; Ferreira et al., 2024), very limited scienIfic studies have addressed the effects of 136 
short-term climate extremes (such as MHWs) on phytoplankton primary producIvity  137 
(Fernández-Barba et al., 2024) and its composiIon (Antoni et al., 2020). This informaIon is 138 
parIcularly important because temperature is one of the main factors controlling phytoplankton 139 
growth by directly influencing metabolic rates (Eppley, 1972). One of the few field-based 140 
evidence studies addressing this point is the work by Latorre et al. (2023) who documented 141 
changes in the biomass of most plankton species in relaIon to an atmospheric heatwave in a 142 
cove of King George Island, South Shetlands. However, the effects of the local scale forcing in this 143 
small inlet make the extrapolaIon of their results to pelagic environments of the AP and Drake 144 
Passage difficult. Results of a near-global ocean physical–biogeochemical model indicate that 145 
background nutrient condiIons most likely represents a major control in determining the impact 146 
of heatwaves on phytoplankton producIvity (Hayashida et al., 2020). While in nutrient-poor 147 
regions marine heatwaves generally will result in weaker phytoplankton blooms, in nutrient-rich 148 
waters the heatwave blooms are predicted to result in higher phytoplankton numbers. Based on 149 
this noIon, phytoplankton growth in the nutrient-rich waters of the AP will be most likely 150 
sImulated by marine heatwaves. Since the frequency and intensity of MHWs are expected to 151 
substanIally increase in the coming decades (Frölicher et al., 2018; Oliver et al., 2018; Oliver et 152 
al., 2021), it is of criIcal importance to evaluate their impacts on Southern Ocean marine 153 
ecosystems.  154 

Here we report on data of major phytoplankton groups (diatoms and coccolithophores), 155 
fluorescence (as an indicator of algal biomass accumulaIon), net primary producIon, nutrients 156 
(silicate, nitrate and phosphate) and Sea Surface Temperatures (SST) measured before and 157 
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during the onset of a marine heatwave that affected the Drake Passage during January and 168 
February 2020. Moreover, we characterize the drivers of the warm water anomaly registered 169 
during the northbound transit using satellite-derived and reanalysis data. Our study builds on 170 
previous findings (Moline et al., 2004; Montes-Hugo et al., 2008) showing long-term warming 171 
and shits toward smaller phytoplankton cells in AntarcIc waters. The combinaIon of in-situ 172 
measurements with satellite-derived environmental parameters allowed us to specifically test 173 
the hypothesis that marine heatwaves act as acute perturbaIons capable of acceleraIng such 174 
community shits. Given the projected increase in MHW frequency, understanding these short-175 
term biological responses is criIcal to parameterizing their effects on AntarcIc marine food webs 176 
and biogeochemical cycles.  177 

 Figure 1. Bathymetric map showing the sampling locaIons during the POWELL-2020 campaign 178 
in the Drake Passage and northern AntarcIc Peninsula. Green and red diamonds represent 179 
staIons sampled during the southbound (4th to 5th of January 2020) and nortbound (31st January 180 
to 2nd February 2020) transits, respecIvely, while white dots depict representaIve staIons from 181 
the Bransfield Strait and northern Weddell Sea (including the Powell Basin) analyzed in this study. 182 
AbbreviaIons: SAZ – SubantarcIc Zone, SAF – SubantarcIc Front, PFZ – Polar Frontal Zone, PF – 183 
polar front, AZ – AntarcIc zone, SACCF – Southern AntarcIc Circumpolar Current Front, SZ – 184 
Southern Zone and SB – Southern Boundary, Max WSI – maximum winter sea ice extent and Min 185 
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SSI – minimum summer sea ice extent. Oceanic fronts ater Orsi et al. (1995) and sea ice 208 
climatology for 1981 to 2010 ater Fekerer et al. (2002, updated 2009). Ocean Data View 209 
sotware (Schlitzer, 2021) was used to generate this figure. 210 

1.2 Oceanographic seDng  211 

The study region covered in the present work is the Drake Passage, the Bransfield Strait 212 
and the Powell Basin, extending approximately from 56oS to 64oS and 64oW to 47oW (Fig. 1). The 213 
AntarcIc Circumpolar Current (ACC), the world’s largest ocean current system, flows from west 214 
to east in the Drake Passage, connecIng surface and deep layers of the ocean (Rintoul et al., 215 
2018). The ACC consists of four major hydrographic fronts from north to south within the Drake 216 
Passage: the SubantarcIc Zone (SAZ), the SubantarcIc Front (SAF), the Southern AntarcIc 217 
Circumpolar Front (SACCF) and the Southern Boundary front (Orsi et al., 1995; Rintoul et al., 218 
2018). The Drake Passage is the narrowest constricIon of the ACC, with a width of approximately 219 
800 km. As a result, the ACC fronts are closely spaced in this region compared to other sectors 220 
of the Southern Ocean (Meredith et al., 2011). The posiIon of the above-menIoned fronts 221 
exhibit temporal variaIons and are influenced by disturbances by mesoscale eddies and 222 
meanders (e.g. Rintoul et al., 1997; Rintoul and Sokolov, 2001). Both models and observaIons 223 
indicate the Drake Passage is one of the few key areas in the Southern Ocean where eddy heat 224 
transport across the ACC fronts is intensified (e.g. GuIerrez-Villanueva et al., 2020).  225 

Phytoplankton growth in the Southern Ocean is controlled by mulIple environmental 226 
factors, among which low light levels in deep wind-mixed surface layers and low concentraIons 227 
of the micronutrient iron, stand out as the main factors controlling primary producIon (MarIn 228 
et al., 1990; Boyd and Trull, 2007; Venables and Moore, 2010). The ACC carries Circumpolar Deep 229 
Water (CDW), the most widespread water mass in the Southern Ocean. Wind-driven upwelling 230 
of CDW south of the PF brings to the surface layer large amounts of nutrients and CO2 231 
(Toggweiler and Samuels, 1995) that fuel primary producIvity. However, the biological uptake of 232 
these nutrients is far from complete, with much of the Southern Ocean containing high nutrient 233 
concentraIons and low phytoplankton biomass. These condiIons make the Southern Ocean the 234 
largest high-nutrient, low chlorophyll (HNLC) region in the world ocean. The surface waters of 235 
the Drake Passage and of the mid- to outer-shelf of the AP are severely iron limited (< 0.1 nmol 236 
kg-1; Klunder et al., 2014; Annek et al., 2017) thereby restricIng phytoplankton growth. In turn, 237 
in the Bransfield Strait and coastal systems of the AP, re-suspension of iron-rich sediments and 238 
melIng of glaciers result in generally iron replete waters that support high primary producIon 239 
(Ardelan et al., 2010).  240 

2. Material and methods 241 

2.1. The POWELL-2020 campaign 242 

The POWELL-2020 campaign took place onboard the R/V Hespérides from 2 January to 243 
4 February 2020. During the POWELL2020 campaign, 150 staIons were sampled during the 244 
crossing of the Drake Passage, in the Bransfield Strait, and in the Powell Basin. In these areas, 245 
seawater samples were collected from the ship’s conInuous intake at 5 meters depth. During 246 
the southbound transit, surface seawater samples were collected every 3–4 hours to capture key 247 
changes across the different ACC fronts. On the return (northbound) transit, sampling was 248 
conducted every 2 hours. Within the Bransfield Strait and Powell Basin, sampling intervals were 249 
generally every approximately 4 hours, adjusted according to other ongoing research acIviIes. 250 

Three types of filters were used: the 0.45-micron HAWG filter for diatoms, 251 
coccolithophores, and dinoflagellates; the 0.45-micron HAWP filter for other organisms; and GFF 252 
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filters for pigments, suspended material, and carbon/nitrogen isotopes. Pigments, C/N isotopes, 256 
and HAWP filters were stored in aluminium foil and Petri dishes at -80°C, following rapid freezing 257 
with liquid nitrogen. The filters for phytoplankton were stored at room temperature in Petri 258 
dishes and let to dry for two days. 259 
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Nutrient analysis 261 

During the POWELL-2020 campaign, samples were collected in the Drake Passage and 266 
the Bransfield Strait, spanning transects between 65°W and 60°W and from 55°S to 63°S (Fig. 1). 267 
Discrete surface water samples were collected at a depth of approximately 5 meters using the 268 
underway seawater system. The sampling effort included 140 surface staIons distributed 269 
approximately every 60 km along the cruise track. Only nutrient data for the 51 staIons used for 270 
phytoplankton analysis (see secIon 2.4) are presented here. All samples intended for nutrient 271 
analyses were filtered immediately onboard through Whatman polycarbonate membrane filters 272 
(0.45 µm pore size, 47 mm diameter) to remove parIculate material. The filtered samples were 273 
frozen at -20°C in 50ml polyethylene vials for N and P nutrients, while they were stored at room 274 
temperature for Si measurements. Nutrient concentraIons were analysed at UMR EPOC, 275 
University of Bordeaux, and measured using two segmented flow autoanalyzer’s from Seal 276 
AnalyIcal: the AA3HR macroflow analyser was used for the determinaIon of silicates and 277 
phosphates, while the quAAtro microflow analyser was used for the determinaIon of nitrites, 278 
nitrates, and ammonium, following the protocol of   Bendschneider and Robinson (1952) 279 
opImized by Aminot et al. (2009). Silicate determinaIon was based on the formaIon of a silico-280 
molybdate complex, which is reduced by ascorbic acid to form molybdenum blue. PotenIal 281 
interferences from phosphates were eliminated by adding oxalic acid. 282 

Absorbance for silicates was measured at 820 nm. Phosphate detecIon was established 283 
on the fact that phosphates form a phospho-molybdate complex in the presence of anImony, 284 
which is reduced by ascorbic acid to produce an intense blue colour. 285 
Absorbance was measured at 880 nm. In comparison, nitrites react under acidic condiIons with 286 
sulphanilamide and N-naphthyl-ethylenediamine (NED) to form a coloured azo dye. 287 
Absorbance was then measured at 540 nm. In parallel, nitrates are quanItaIvely reduced to 288 
nitrites using a cadmium-copper reducIon column. The resulIng nitrites are then measured 289 
using the same colorimetric method as for direct nitrite analysis with an absorbance at 550 nm. 290 

As esImaIng water density was not feasible for all staIons, nutrient concentraIons are 291 
presented in micromoles per liter (µM L-1). Conversion from micromoles per liter (µM L-1) to 292 
micromoles per kilogram (µM kg-1) at selected staIons resulted in differences of less than 3% 293 
between the two units, implying that the data from this study and that of Freeman et al. (2019) 294 
presented in Table 1 in µM kg-1 are comparable. 295 
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2.3 Phytoplankton analysis 507 

Discrete samples were collected from the prefiltered and uncontaminated seawater line 508 
taken under the ship at 5 m water depth, in one L Nalgene bokles, and filtered immediately 509 
through 0.45-micron pore size, 25 mm diameter HAWG gridded mixed cellulose ester membrane 510 
filters. Here we present results from 51 staIons representaIve of the main environments 511 
sampled during the POWELL-2020 survey. Filters were placed in polystyrene petri dishes and 512 
allowed to dry (24-48 hours). Filters were then cut in half, with one half mounted on a glass slide 513 
using immersion oil and covered with a cover slip. These slides were used for quanItaIve 514 
analysis of micro- and nannoplankton abundance and assemblage composiIon using light 515 
microscopy at 1000x magnificaIon for diatoms and a microscope equipped with both linear and 516 
circular polarizaIon at 1000x for coccolithophore idenIficaIon. The other half of each filter was 517 
stored in the petri dish for Back Scakered Electron Imagery analysis using a Hitachi TM4000 Plus 518 
SEM. SEM work of selected samples was conducted to clarify idenIficaIon of smaller specimens.  519 

In regard to the taxonomic idenIficaIon of diatoms, each diatom cell (i.e. frustule) was 520 
idenIfied to the lowest taxonomic level possible using the taxonomic concepts of Hasle and 521 
Syvertsen (1997) and Scok and Marchant (2005). Morphological and molecular analyses by 522 
Lundholm and Hasle (2008) revealed that Fragilariopsis cylindrus and Fragilariopsis nana are 523 
different species but oten they share many morphological characterisIcs that make their 524 
differenIaIon impossible with light microscopy. Therefore, we followed the approach of 525 
Cefarelli et al. (2010) lumping the cell counts of these two species under the name F. 526 
cylindrus/nana. In regard to the genus Chaetoceros, three groups were disInguished. The 527 
vegetaIve cells of Chaetoceros subgenus Phaeoceros (which includes C. aequatorialis, C. 528 
atlan9cus, C. criophilus, C. peruvianus, C. dichaeta, C. pendulus, and C. bulbosum) and 529 
Hyalochaete were separated owing to their different habitats (oceanic and neriIc, respecIvely). 530 
The resIng spores of genus Chaetoceros were idenIfied only to group level due to a lack of 531 
morphological criteria. In regard to coccolithophore idenIficaIon, the taxonomic concepts of 532 
Young et al. (2003) and Nannotax website (Young et al., 2024) were followed. The lower 533 
coccolithophore diversity observed in our study compared to previous work in the study region 534 
(e.g. Charalampopoulou et al., 2016) is akributed to methodology applied. Previous studies used 535 
Scanning Electron Microscopy that allow for a more precise idenIficaIon of coccolithophore 536 
species as well as idenIficaIon of different Emiliania huxleyi and Calcidiscus leptoporus 537 
morphotypes. In turn, although light microscopy applied in HAWG filters allows a reliable 538 
quanIficaIon of coccospheres and characterizaIon of most coccolithophore taxa to genus level, 539 
it precluded the idenIficaIon to species and morphotypes level in some cases (e.g. classificaIon 540 
of E. huxleyi or C. leptoporus morphotypes). Lastly, it should be acknowledged that the 541 
zooplankton community was not analyzed during our survey and therefore their potenIal 542 
influence on phytoplankton standing stocks through grazing could not be assessed. 543 

2.4. Satellite-derived and reanalysis data 544 

European Space Agency (ESA) Climate Change IniIaIve (CCI) and Copernicus Climate 545 
Change Service (C3S) SST data spanning from 1982 to 2021 (Merchant et al., 2019; 546 
hkps://doi.org/10.48670/moi-00169; last accessed: May 2025) was used to analyze warm water 547 
anomalies. This satellite-derived, reprocessed Level 4 (L4) product provides global, gap-free daily 548 
SST at a 0.05° × 0.05° horizontal resoluIon, allowing for a comprehensive spaIotemporal 549 
characterizaIon of MHWs worldwide (e.g. Mar�nez et al., 2023; Bell et al., 2024; Fernández-550 
Barba et al., 2024). MHWs were then idenIfied based on the methodology outlined by Hobday 551 
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et al. (2016) and Oliver et al. (2021), with the addiIonal criterion of the long-term mean summer 555 
temperature (LMST), as described by Fernández-Barba et al. (2024). Specifically: (i) SSTs must 556 
exceed the seasonally varying 95th percenIle (relaIve to 1982-2012), (ii) for a minimum 557 
duraIon of 5 consecuIve days, (iii) with gaps of less than 3 days, and (iv) the mean SST must be 558 
higher than the LMST. The raIonale for including this addiIonal criterion was to exclude winter 559 
MHW events, thereby retaining only those that occurred during the austral summer, the season 560 
during which the POWELL-2020 campaign took place. As discrete yet prolonged events, MHWs 561 
occurred over defined periods during which SST exceeded a specified threshold (the 95th 562 
percenIle in this work). Therefore, MHW events were spaIotemporal characterized using 563 
metrics widely applied in previous studies (see Oliver et al., 2018; Oliver et al., 2021). In our 564 
study, MHW duraIon was calculated as the Ime interval (in days) between the onset and the 565 
end of each event. Since more than one event may occur within a given year, we also calculated 566 
total annual MHW days, defined as the sum of all days in a year during which SST exceeded the 567 
MHW threshold. Maximum intensiIes of MHWs were also calculated as the greatest difference 568 
between the absolute temperature and the seasonally varying threshold during each event. 569 
Based on this metric, MHW events were categorized according to the number of Imes the 570 
maximum intensity exceeded the difference between the climatological mean and the 95th-571 
percenIle threshold (Hobday et al., 2018; Oliver et al., 2021). Thus, events were classified from 572 
category 1 to 4 as moderate, strong, severe, and/or extreme, respecIvely. AddiIonally, to assess 573 
the strength of each event, MHW cumulaIve intensity was calculated by integraIng the event’s 574 
intensity over its duraIon. This metric is parIcularly relevant for evaluaIng the biogeochemical 575 
impacts resulIng from MHWs (Oliver et al., 2021; Smith et al., 2023). The general Python code 576 
used to detect MHWs is publicly accessible at hkps://github.com/ecjoliver/marineHeatWaves. 577 
The adapted code for the Southern Ocean is also freely available at 578 
hkps://github.com/ManuFBarba/Southern-Ocean-MHWs.  579 

To assess the influence of regional ocean dynamics, parIcularly mesoscale eddies, on 580 
the development of the 2020 MHW in the Drake Passage, satellite alImetry-derived variables 581 
from the Copernicus Marine Service (CMS) Global Ocean Gridded L4 Sea Surface Heights and 582 
Derived Variables product were analyzed. This dataset merges Level 3 along-track alImetric 583 
observaIons from mulIple satellite missions into a global gridded product with a spaIal 584 
resoluIon of 0.125° × 0.125° (hkps://doi.org/10.48670/moi-00148; last accessed: May 2025). 585 
Specifically, sea level anomaly (SLA) and absolute dynamic topography (ADT) were obtained for 586 
the period 1993–2021. These variables provide a first-order approximaIon of mesoscale 587 
circulaIon pakerns modulaIng the upper-ocean thermal structure. PosiIve SLA values are 588 
typically associated with warmer surface condiIons, while negaIve anomalies generally indicate 589 
cooler waters, reflecIng the thermal imprint of eddy-driven dynamics (Beech et al., 2022; He et 590 
al., 2024). SLA was derived relaIve to a 20-year mean dynamic topography (MDT) baseline 591 
(1993–2012), following the equaIon: 592 

SLA = SSH − MDT 593 

Where SSH is the instantaneous sea surface height, and MDT represents the long-term 594 
mean difference between sea level and the geoid (equipotenIal surface). Then, ADT corresponds 595 
to the absolute sea surface height referenced to the geoid, given by: 596 

ADT = SLA + MDT 597 

ADT is directly related to the geostrophic surface velocity field. The zonal (𝑢g) and 598 
meridional (𝑣g) components of geostrophic velocity were computed as: 599 
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𝑢! = −
g
ƒ	
	
𝜕𝐴𝐷𝑇
𝜕𝑦	

 600 

𝑣! =
g
ƒ	
	
𝜕𝐴𝐷𝑇
𝜕𝑥	

 601 

Where g is the gravitaIonal acceleraIon, ƒ is the Coriolis parameter (ƒ = 	2Ωsin𝜙 ; ϕ = 602 
laItude). Then, to further characterize mesoscale acIvity, Eddy KineIc Energy (EKE) was 603 
computed from geostrophic velocity anomalies.  604 

𝐸𝐾𝐸 =	
1
2	 (

	𝑢!-, +	𝑣!-,* 605 

Where 𝑢!-  = 𝑢! −	⟨𝑢!〉 and 𝑣!-  =	𝑣! −	⟨𝑣!〉 represent the deviaIons from the long-606 
term mean geostrophic velociIes (⟨𝑢!〉 and ⟨𝑣!〉, respecIvely). Moreover, to quanIfy kineIc 607 
energy redistribuIon throughout the water column, VerIcally-Integrated KineIc Energy (VIKE) 608 
was computed as: 609 

𝑉𝐼𝐾𝐸 = 	>
1
2	
𝜌(	𝑢, +	𝑣, +	𝑤,)

.!

."
𝑑𝑧 610 

Where 𝜌 is the seawater density profile, obtained from the CMS Global Ocean Physics 611 
Reanalysis (hkps://doi.org/10.48670/moi-00021; last accessed: May 2025) at 0.083° x 0.083° 612 
horizontal resoluIon, and 𝑢, 𝑣, and 𝑤 are the three-dimensional velocity components. VIKE is a 613 
criIcal diagnosIc to quanIfy the contribuIon of mesoscale eddies to the verIcal energy 614 
structure of the ocean and their potenIal role in modulaIng SST and triggering MHWs (Bian et 615 
al., 2023).  616 

 To invesIgate the atmospheric drivers, radiaIve fluxes, and surface energy inputs 617 
contribuIng to the onset of the 2020 MHW in the Drake Passage, key variables from the 618 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis product, 619 
provided by the C3S (Hersbach et al., 2023; hkps://doi.org/10.24381/cds.adbb2d47; last 620 
accessed: May 2025) were analyzed. This global reanalysis combines model outputs with 621 
observaIonal data to generate a product at 0.25° x 0.25° horizontal resoluIon, which has been 622 
extensively validated in the Southern Ocean and has outperformed other reanalyses (Gossart et 623 
al., 2019; Tetzner et al., 2019; Zhu et al., 2021). Specifically, anomalies of variables directly linked 624 
to heat transfer (2m-Air temperature and 10m-Wind Speed), radiaIve forcing (Surface net short-625 
wave radiaIon flux, Surface net long-wave radiaIon flux, Surface downward short-wave 626 
radiaIon flux, and Surface downward long-wave radiaIon flux), and surface sea-air dynamics 627 
(Mean sea level pressure, Surface latent heat flux, Surface sensible heat flux, Turbulent surface 628 
stress, and Normalized energy flux into ocean) were calculated relaIve to a 31-year reference 629 
period (1982-2012).  630 

 To support our in-situ data, net primary producIon (NPP) data was obtained from the 631 
Copernicus Global ocean low and mid trophic levels biomass content hindcast 632 
(hkps://doi.org/10.48670/moi-00020; last accessed: May 2025). This product combines 633 
interpolated L4, mulI-satellite data with reanalysis data to provide daily fields at a spaIal 634 
resoluIon of approximately 8 km. To enable comparison with in-situ observaIons and to 635 
reinforce the interpretaIon of local variability, monthly modeled surface dissolved iron 636 
concentraIon from the Global Ocean Biogeochemistry Hindcast dataset 637 
(hkps://doi.org/10.48670/moi-00019; last accessed: May 2025), at 0.25°×0.25° horizontal 638 
resoluIon was also incorporated. 639 
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2.5 Sta3s3cal analyses 640 

Canonical Correspondence Analysis (CCA; ter Braak and Verdonschot, 1995) was used to 641 
explore the relaIonship between the relaIve abundance of diatom species and measured 642 
environmental parameters. This analysis is a constrained ordinaIon technique that combines 643 
simultaneously the ordinaIon of diatom species, staIons and environmental parameters. 644 
Diatom species with more than 1% relaIve abundance in at least one sample were selected for 645 
the analysis; while the following key environmental parameters were selected for this analysis: 646 
laItude, SST, SSTA, salinity, fluorescence and the macronutrients silicate, phosphate and nitrate.  647 
StaIons with missing environmental data were removed from the analysis, resulIng in a final 648 
dataset that contained 39 staIons. The analysis was conducted using R v4.5.0, R Core Team 649 
(2025). 650 

To evaluate the possible influence of the MHW affecIng the Drake Passage in summer 651 
2020, sampling staIons of the Drake Passage were organized into four groups: staIons north of 652 
the Polar Front sampled before (i) and during the onset of the MHW (ii) and staIons south the 653 
Polar Front before (iii) and during the onset MHW (iv). Due to the absence of normality of the 654 
numerical variables, the non-parametric Wilcoxon test was used to determine differences in key 655 
physical and chemical parameters, diatom and coccolithophore cell concentraIons and in the 656 
relaIve abundance of key diatom species before and during the marine heat wave in the Drake 657 
Passage.   658 

3. Results 659 

3.1 Nutrient distribu3ons 660 

Nutrient distribuIons in the surface layer across the Drake Passage and Bransfield Strait 661 
during January and early February 2020 are illustrated in Figure 2b and summarized in Table 1. 662 
During the southbound transit to the Shetland archipelago in early January 2020, nitrate 663 
concentraIon in the subantarcIc and polar frontal zone waters ranged between 7.6 and 14.3 664 
and between 9.0 and 17.2 µmol L-1, respecIvely, while phosphate concentraIons ranged 665 
between 0.7 and 1.3 and between 1.3 to 1.4 µmol L-1, respecIvely. Silicate concentraIon was 666 
low in the subantarcIc zone and in the PFZ (with values ranging between 2.2 to 2.8 µmol L-1, and 667 
between 1.3 to 2.1 µmol L-1, respecIvely). South of the Polar Front, nitrate and phosphate levels 668 
showed a slight increase (from 13.0 to 17.4 and from 1.4 to 1.7 µmol L-1, respecIvely), whilst 669 
roughly a ten-fold rise in silicate concentraIons (11.7-21.6 µmol L-1) was observed. This sharp 670 
silicate gradient at the PF is also known as the Silicate Front and represents a criIcal boundary 671 
for nutrient distribuIons in the Southern Ocean (Freeman et al., 2019; Table 1). South of the SB 672 
and in the Bransfield Strait, nitrate and phosphate levels exhibit concentraIons similar to those 673 
documented in the AZ waters (Fig. 2b). In turn, silicate concentraIons exhibited the highest 674 
levels of the meridional gradient, with values up to 77.0 µmol L-1 (Fig. 2b). 675 

During the northbound transit in late-January early-February, the main biogeochemical 676 
Southern Ocean zones remained clearly evidenced in the nutrient distribuIons. However, some 677 
important differences compared with the southbound transit were noIced. Nitrate levels in the 678 
northern AAZ and north of the PF decreased about one order of magnitude (down to 0.8 µmol 679 
L-1) compared to those registered in the southbound transit. Likewise, phosphate concentraIons 680 
also decreased substanIally north of the PF (down to 0.6 µmol L-1). In contrast, the meridional 681 
distribuIon of silicate remained similar to that documented in the southbound transit (Fig. 2b).    682 
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 808 

Figure 2. a) Sea Surface Temperature (SST) and SST anomaly (SSTA). b) nutrient concentraIons 809 
(nitrate, silicate and phosphate). c) Fluorescence (in situ) and net primary producIon (NNP).    810 

 811 

Table 1. Physical and chemical parameters of the Drake Passage. Interannual average values 812 
represent the median and first and third quarIles (between brackets) for silicate, nitrate, 813 
phosphate, temperature and salinity between 2004 and 2017 from Freeman et al. (2019) and for 814 
Mixed Layer Depth (MLD) between 2004 and 2011 from Stephenson et al. (2012). Variability 815 
range of each parameter during the outbound (early January 2020) and northbound transits 816 
(Late-January early-February 2020) of the Powell-2020 campaign. *Freeman et al. (2019) and 817 
Stephenson et al. (2012) do not cover the Bransfield Strait but data from this region is presented 818 
for the POWELL-2020 campaign.  819 

Deleted: ¶820 

Formatted: Justified

Deleted: 3821 
Deleted: SSTs822 
Deleted: .823 

Deleted: satellite chlorophyll-a concentra?on.824 



12 
 

 825 

3.2 Phytoplankton abundance variability 826 

In-situ fluorescence measurements at 5 m depth from the ship (Fig. 2c) indicate 827 
maximum algal biomass accumulaIon in the western Bransfield Strait (in both the southbound 828 
and northbound transits) and in the Weddell Sea. In terms of temporal variability in the Drake 829 
Passage (i.e. before and during the onset of the MHW), average fluorescence suggests slightly 830 
higher algal biomass accumulaIon in the southbound and northbound transits (0.61 and 0.53 831 
volts in the southbound and northbound transits, respecIvely) and 0.55 volts in the Bransfield 832 
and Northern Weddell Sea. Likewise, modelled NPP suggests higher values in the southbound 833 
transit (358 mg C m-2 day-1) than in the northbound transit (269 mg C m-2 day-1; Fig. 2c).  834 

In terms of diatom distribuIons, total diatom abundance ranged between 0.003 and 5.5 835 
x 106 cells L-1 and exhibited a clear increase south of the PF (Fig. 3a). In terms of temporal 836 
distribuIon, diatom abundance within the same zonal systems was generally lower during early 837 
January than in late-January and early-February. While there is no universally fixed threshold for 838 
what consItutes a phytoplankton bloom, a frequent definiIon is a proliferaIon event with cell 839 
concentraIons reaching or exceeding one million cells per Liter (e.g. Johnsen et al., 1999). Based 840 
on this definiIon, diatom bloom concentraIons during the POWELL-2020 campaign were 841 
reached during the second half of the expediIon in one staIon in the Bransfield Strait (staIon 842 
82; Fig. 3a) and, almost consistently, during the northbound transit in the Southern Zone and 843 
AntarcIc Zone (staIons 118-126; Fig. 3a), with cell numbers reaching values up to ca. 5.5 x 106 844 
and 5 x 106 cells L-1, respecIvely.  845 

Coccolithophore abundance was low compared to diatoms, with cell concentraIons 846 
ranging between 0 and 8 x 104 coccospheres L-1 (Fig. 4a). Our results reveal a nearly opposite 847 
laItudinal distribuIon than that of the diatoms, with maximum concentraIons in the SAZ and 848 
PFZ. Coccolithophore abundance was negligible in the Bransfield Strait and northern Weddell 849 
Sea, with no coccospheres documented during our counts although a few coccospheres where 850 
idenIfied (but not quanIfied) during SEM analyses. In regard to temporal variability, average 851 
coccolithophore abundance in the SAZ and PFZ was two-fold during the southbound transit in 852 
early January (4.2 x 104 coccospheres L-1) than during the northbound transit in late January-853 
early February (ca. 1.6 x 104 coccospheres L-1). Coccolithophore assemblages were composed of 854 
two species: E. huxleyi and C. leptoporus. 855 

 856 

 857 
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Figure 3. a) Diatom cell concentraIon in the upper layer (5 m depth) documented in the Drake 940 
Passage, Bransfield Strait and Northern Weddell Sea Gyre documented in representaIve staIons 941 
of main environments during the POWELL-2020 campaign. b-e) RelaIve abundance of the most 942 
abundant and/or key diatom species.   943 

 944 

 945 

Figure 4. a) Coccosphere cell concentraIon in the upper layer (5 m depth) documented in the 946 
Drake Passage, Bransfield Strait and Northern Weddell Sea Gyre documented in representaIve 947 
staIons of main environments during the POWELL-2020 campaign. b) RelaIve abundance of 948 
Emiliania huxleyi and Calcidiscus leptoporus.    949 

3.3 Distribu3on of phytoplankton species 950 

Fragilariopsis kerguelensis dominated the diatom assemblages in the SAZ and PFZ (i.e. 951 
north of the PF) in both the southbound (average of 44%) and northbound transits (average of 952 
44%). South of the polar front, F. kerguelensis exhibited relaIvely high concentraIons in some 953 
staIons of the western Bransfield Strait during early summer (up to 45% in staIon 20; Fig. 3c). 954 
Fragilariopsis cylindrus/nana and Fragilariopsis pseudonana displayed a nearly opposite pakern 955 
to that of F. kerguelensis, dominaIng the diatom assemblages in most of the staIons south the 956 
PF. Fragilariopsis cylindrus/nana contributed an average of 51% to the diatom assemblage in all 957 
the staIons south of the PF, reaching maximum abundances in the northern Weddell Sea 958 
staIons where its contribuIon accounted for up 96% of the total diatom assemblage (staIon 959 
104; Fig. 3b). F. pseudonana contributed on average 24% of the diatom assemblage south of the 960 
PF, with peak contribuIons in the AntarcIc Zone. In terms of temporal variability, some 961 
differences between the southbound and northbound transits were noIced. While F. 962 
cylindrus/nana represented an average of 35% of the diatom assemblage from the PF 963 
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southwards in the Drake Passage in early January 2020 (i.e. the southbound transit), the relaIve 980 
abundance of this taxon increased to 49% in the same zonal systems during the onset of the 981 
MHW (i.e. northbound transit; Fig. 3b). In turn, F. pseudonana exhibited a slight decrease in its 982 
relaIve contribuIon reaching an average relaIve contribuIon in the southern Drake Passage 983 
between the southbound (42%) and the northbound transit (35%).  984 

Chaetoceros subgenus Phaeoceros was a major component of the diatom community in 985 
the SAZ and PFZ during the southbound transit (average of 32% of the total diatom assemblage; 986 
Fig. 3d). In turn, this taxon only exhibited an average contribuIon of 3% during the northbound 987 
transit with elevated numbers recorded only at one staIon (staIon 127 with a contribuIon of 988 
30%). The vegetaIve cells of Chaetoceros subgenus Hyalochaete were only documented in 989 
abundances over 1% in the first two staIons of the SAZ (staIons 1 and 2, with 6 and 2%, 990 
respecIvely; data not shown). Chaetoceros resIng spores showed a contrasIng distribuIon in 991 
the Drake Passage between the southbound and northbound transits. During the southbound 992 
transit, they were only present in the SAZ (up to 5%) and northern PFZ (Fig. 3d), while during the 993 
northbound transit they were consistently documented between the northern AAZ and SAZ 994 
(ranging between 1 and 5%). Chaetoceros resIng spores were also present in some staIons in 995 
the Bransfield Strait (up to 6% in Livingston Island). Notably, the diatom assemblages collected 996 
near Papagal and Johnson glaciers in the coastal waters of Livingston Island (staIons 13 and 14) 997 
were remarkably different from the rest of the staIons and rich in fine sediments. These samples 998 
exhibited high abundances of Pseudogomphonema kamtscha9cum (average of 38%) and 999 
secondary contribuIons of Navicula spp. (5%). The small centric group (that encompasses all 1000 
small centric diatoms under 20 µm that were not idenIfied to a lower taxonomic level) exhibit 1001 
peak values south of the SB and in the Bransfield Strait in early January, reaching values up to 1002 
18% in staIon 10. InteresIngly, SEM imagery revealed that some of the small centrics were 1003 
Minidiscus chilensis, although it was not possible to quanIfy its contribuIon due to the 1004 
limitaIons of light microscopy. Lastly, Thalassiosira spp. was a major contributor of the diatom 1005 
assemblages in the PFZ and SAZ during the southbound transit accounIng for up to 45% of the 1006 
diatom assemblage in the SAZ (Fig. 3f).  1007 

The first two axes of the CCA explain 72.9 % of the variability in species distribuIon based 1008 
on the environmental gradients; with CCA1 and CCA2 axes accounIng for 59.3% and 13.6% of 1009 
the total inerIa (Fig. 5). Axis CCA1 is mainly correlated with SST (negaIvely), laItude (negaIvely), 1010 
silicate (posiIvely), phosphate (posiIvely) and nitrate (posiIvely), while CCA2 was mainly 1011 
correlated with nitrate (posiIvely), and to a lower extent with SSTA (negaIvely), Fluorescence 1012 
(negaIvely) and Salinity (negaIvely). The sampling staIons are clearly grouped in the CCA 1013 
ordinaIon triplot; with all the staIons north of the Polar Front (i.e. staIons in the SAZ and PFZ) 1014 
located on the let side of the triplot and the majority of the samples south of the Polar Front on 1015 
the right side.  Diatom species resIng on the negaIve side of CCA1 are posiIvely correlated with 1016 
SST and low laItudes (please note that laItude is expressed in negaIve values in the Southern 1017 
Hemisphere) and negaIvely correlated with the three nutrients analysed. The most relevant 1018 
species on the negaIve side of CCA1 are Nitzschia bicapitata, Nitzschia sicula, Chaetoceros 1019 
Hyalochaete vegetaIve and resIng spores, Thalassiosira gravida, Thalassiosira len9ginosa, 1020 
Centrics > 20µm; Thalassiosira spp., Fragilariopsis kerguelensis, Fragilariopsis sublinearis, 1021 
Chaetoceros Phaeoceros vegetaIve, Fragilariopsis rhombica/separanda, Pseudo-nitzschia 1022 
turgiduloides and Rhizosolenia spp.. In turn, Fragilariopsis vanheurckii, small Fragilariopsis spp., 1023 
Fragilariopsis curta, Fragilariopsis cylindrus/nana, Corethron sp., Centrics < 20 µm, Fragilariopsis 1024 
pseudonana, and Fragilariopsis spp.  are placed on the posiIve side of CCA1 reflecIng their 1025 
affinity for greater laItudes, low temperatures, high macronutrient concentraIons and to a 1026 
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lesser degree, enhanced fluorescence. The diatom species P. kamtscha9cum is placed in the 1040 
negaIve side of CCA2 thereby suggesIng affiniIes for higher saliniIes and lower SSTA and 1041 
fluorescence. However, it should be noted that peak concentraIons of P. kamtscha9cum were 1042 
recorded in staIons with low salinity owing to meltwater influence (staIons 13 to 17), but owing 1043 
to the lack of measurements of some environmental variables, these staIons were excluded 1044 
from the CCA (see secIon 4.1 for more details). 1045 

In terms of coccolithophore assemblage composiIon, Emiliania huxleyi largely 1046 
dominated the coccolithophore assemblages during our survey with an average relaIve 1047 
abundance of ca. 87%. In regard to temporal variability of coccolithophores, a contrasIng 1048 
distribuIon of C. leptoporus could be observed between the southbound and northbound 1049 
transits. C. leptoporus contribuIon was negligible during the southbound transit but increased 1050 
substanIally during the northbound transit, reaching values up to 75% of the coccolithophore 1051 
assemblage in the SAZ (staIon 136; Fig. 4).  1052 

Figure 5. Canonical Correspondence Analysis (CCA) ordinaIon triplot represenIng key 1053 
environmental parameters (green arrows); relaIve abundance of diatom species (red) and 1054 
sampling staIons (dots). Chaet_Hyal: Chaetoceros Hyalochaete vegetaIve cells; Chaet_RS: 1055 
Chaetoceros resIng spores; Chaet_Phaeo: Chaetoceros Phaeoceros vegetaIve; Centrics<20μm: 1056 
UnidenIfied centrics < 20µm; Centrics>20μm: UnidenIfied centrics > 20µm; Coreth: Corethron 1057 
sp.; F_curta: Fragilariopsis curta; F_cyl:  Fragilariopsis cylindrus/nana; F_ker: Fragilariopsis 1058 
kerguelensis; F_pseud: Fragilariopsis pseudonana; F_rho/sep: Fragilariopsis 1059 
rhombica/separanda; F_spp.: Fragilariopsis spp.; F_spp_small: small Fragilariopsis spp.; F_sub: 1060 
Fragilariopsis sublinearis; F_van: Fragilariopsis vanheurckii; Nav: Navicula spp.; Nitzs: Nitzschia 1061 
spp.; Nitzs_bic: Nitzschia bicapitata; Nitzs_sic: Nitzschia sicula; Pennates: UnidenIfied pennates; 1062 
Pleuro: Pleurosigma spp.; Pn_ tur: Pseudo-nitzschia turgiduloides; Pn_spp: Pseudo-nitzschia spp.; 1063 
Pseudogom: Pseudogomphonema kamtscha9cum; Pn_heimii: Pseudo-nitzschia heimii; 1064 
Rhiz_spp: Rhizosolenia spp.; Shion_gra: Shionodiscus gracilis; Thal_grav: Thalassiosira gravida; 1065 
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Thal_lent: Thalassiosira len9ginosa; Thal_spp: Thalassiosira spp.; Un_pennate_A: UnidenIfied 1068 
pennate form A; Unident: UnidenIfied diatom. 1069 

 1070 
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Figure 6. Box plots showing the distribuIon of key environmental and biological parameters in 1071 
the northern and southern Drake Passage before (southbound transit) and during the onset of 1072 
the marine heat wave (northbound transit). The box plots show the lower and upper quarIles, 1073 
median, minimum, and maximum values, and outliers. p-values in red indicate significant 1074 
differences between the distribuIons of the two samples (p < 0.05). 1075 

3.4 Characteriza3on of the marine water anomaly   1076 

In late austral summer of 2020, significant MHWs developed in the Drake Passage (Fig. 1077 
7). The SLA field, referenced against the 1993–2012 climatology, revealed posiIve values along 1078 
the path of the POWELL-2020 northbound transect (January 31–February 2), exceeding +20 cm 1079 
(Fig. 7a). Elevated ADT coincided with this SLA signal. EKE anomalies and the configuraIon of 1080 
geostrophic surface currents during this period displayed intensified mesoscale acIvity in the 1081 
region (Fig. 7b). SST anomalies (SSTA) reached +3 °C above climatological thresholds (Fig. 7c), 1082 
with MHW intensity falling in the moderate to severe range as defined by Hobday et al. (2018). 1083 
The event persisted for over 90 days in parts of the Drake Passage (Fig. 7d), with cumulaIve 1084 
intensiIes averaging more than 60 °C days (Fig. 7e).  Temporal averages along the POWELL-2020 1085 
return transect indicated that SLA and ADT anomalies peaked during the strongest MHW periods 1086 
(Fig. 7f). EKE values were elevated compared to typical summerIme condiIons (Fig. 7f). In 1087 
contrast, VIKE remained relaIvely low during the MHW peak and increased only ater its decline 1088 
(Fig. 7f). To assess atmospheric variability during the events, near-surface (2-meter) air 1089 
temperature (N-SAT) anomalies, 10-meter wind speeds, and surface heat fluxes were examined 1090 
(Supplementary Fig. 1). January 31–February 2, 2020, showed slightly elevated air temperatures 1091 
(Supplementary Fig. 1a), reduced wind speeds (Supplementary Fig. 1b), and transient increases 1092 
in shortwave, longwave, latent, and sensible fluxes relaIve to the 1982–2012 baseline 1093 
(Supplementary Fig. 1c–h). However, the net surface heat exchange during the onset of the 1094 
MHWs was predominantly negaIve ((Supplementary Figs. 1i, 2). Net longwave and latent heat 1095 
fluxes were also negaIve, while sensible heat flux showed moderate posiIve values 1096 
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(Supplementary Fig. 1i). Wind-induced turbulent stress remained relaIvely stable during the 1097 
MHW peaks, increasing only ater the event subsided (Supplementary Fig. 1i). 1098 

  1099 

Figure 7. CharacterizaIon of the marine thermal anomaly during the austral summer of 2020 in 1100 
the Drake Passage. (a) Sea level anomalies (SLA; shading) and absolute dynamic topography 1101 
(ADT; purple contours), averaged over January 31–February 2, coinciding with the return 1102 
transect of the POWELL-2020 campaign. (b) Eddy kineIc energy (EKE; shading) anomalies and 1103 
surface geostrophic currents (black arrows) from CMS mulI-satellite observaIons. (c–e) Marine 1104 
heatwave (MHW) properIes during the austral summer of 2020, based on ESA CCI C3S L4 sea 1105 
surface temperature (SST) using the 95th percenIle criterion: (c) maximum intensity, (d) total 1106 
days, and (e) cumulaIve intensity. (f) Temporal evoluIon of SLA (orange), ADT (olive), EKE (pink), 1107 
and VerIcally-Integrated KineIc Energy (VIKE, dark red), together with MHW events (red 1108 
shading), as indicated by ESA CCI C3S L4 daily SST (black), climatological SST (SSTc, blue), and 1109 
MHW criterion (95th percenIle SST, green), during 2019–2020. Time series represent spaIal 1110 
averages over the return-leg staIons of the POWELL-2020 campaign (green dots in (a)). A 7-day 1111 
running mean filter is applied to EKE and VIKE. The reference period for the SLA and EKE 1112 
anomalies is 1993–2012 (a, b, and f), while that for MHWs is 1982–2012 (c–f).  1113 

3.5 Impact of the marine heat wave on the environmental and biological parameters in the 1114 
Drake Passage 1115 

Boxplots of the most relevant environmental and biological variables in the two divisions 1116 
of the Drake Passage before and during the MHW are shown in Figure 6. Wilcoxon’s rank-sum 1117 
tests showed that both SSTs and SSTAs were significantly greater in the Drake Passage (both in 1118 
northern and southern regions) at the onset of the MHW (Fig. 6a and b). In terms of nutrient 1119 
distribuIons, silicate concentraIons were fairly similar before and ater the MHW in the whole 1120 
Drake Passage (Fig. 6e). In turn, nitrate concentraIons were significantly lower north of the Polar 1121 
Front during the MHW, while phosphate levels were significantly lower in both north and south 1122 
the Polar Front during the MHW (Fig. 6c and 6d). In situ fluorescence measurements suggest no 1123 
significant differences in algal biomass accumulaIon (Fig. 6f), while NPP was significantly lower 1124 
in the northern Drake Passage during the MHW (Fig. 6g). In turn, diatom cell concentraIons 1125 
showed contrasIng results, exhibiIng staIsIcally higher diatom cell numbers south of the Polar 1126 
Front during the onset of the MHW but lower for the northern Drake Passage (Fig. 6h). In terms 1127 
of the relaIve contribuIon of key diatom taxa, F. cylindrus/nana increased its abundance 1128 
throughout the Drake Passage during the MHW (Fig 6i). It should be noted that although the 1129 
difference for the change in the relaIve abundance of this species was not significant for the 1130 
region south of the PF, when the two northernmost staIons of the AAZ (i.e. 126 and 127) are 1131 
removed from the analysis, the difference becomes significant (Wilcoxon test p-value = 0.0047; 1132 
box plot not shown). These results indicate that F. cylindrus/nana increased its relaIve 1133 
contribuIon in the southern Drake Passage during the MHW. Likewise, while F. kerguelensis 1134 
showed lower relaIve contribuIon south of the PF during the MHW (Fig. 6k), the decrease was 1135 
only significant when the two northernmost staIons of the AAZ are not considered (Wilcoxon 1136 
test p-value = 0.0318; box plot not shown). Lastly, F. pseudonana showed not staIsIcally 1137 
differences throughout the Drake Passage (Fig. 6j). In terms of coccolithophore distribuIons, 1138 
coccosphere concentraIons were significantly lower in the southern Drake Passage during the 1139 
onset of the MHW and lower but not significantly different in the northern Drake Passage (Fig. 1140 
6l).   1141 
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4. DISCUSION 1142 

4.1 Environmental variability and phytoplankton species distribu3on in the Drake Passage 1143 
and Antarc3c Peninsula in summer 2020 1144 

The meridional nutrient distribuIons documented during the POWELL-2020 campaign 1145 
reflected the changes in water masses depicted by the Southern Ocean fronts. The sharp silicate 1146 
gradient idenIfied at the Polar Front in both the northbound and southbound transits (Fig. 2b), 1147 
also known as the Silicate Front, represents the transiIon between silicate-poor waters to the 1148 
north and silicate-rich waters to the south (e.g. Trull et al., 2018; Freeman et al., 2019). The 1149 
poleward increase in nitrate and phosphate concentraIons across the Drake Passage in both 1150 
transits is also consistent with that documented in previous reports (Freeman et al., 2019). 1151 
However, it is important to note that concentraIons for nitrate and phosphate during the 1152 
POWELL-2020 expediIon were lower than average summer values for all the circumpolar 1153 
systems (Table 1). Nutrient meridional gradients across the Drake Passage were coupled with a 1154 
decrease of SST (Fig. 2) and close to monotonic changes of other environmental parameters (e.g. 1155 
pH; Charalampopoulou et al., 2016; Trull et al., 2018).  1156 

Overall, the abundance and distribuIon of the phytoplankton assemblages across the 1157 
Drake Passage and Bransfield Strait reflected changes in the physical and chemical properIes of 1158 
the water masses delineated by the fronts (Figs. 3, 4 and 5). The increase in diatom abundance 1159 
south of the PF (Fig. 3) is directly related to the increase in silicate concentraIons in the water 1160 
column that fuel diatom producIvity (Landry et al., 2002; Wright et al., 2010; Assmy et al., 2013; 1161 
Trull et al., 2018). The dominance of F. kerguelensis in the SubantarcIc Zone and Polar Frontal 1162 
Zones (i.e., north of the PF; Fig. 3c and 5) agrees well with previous work in the southwestern 1163 
AtlanIc Ocean where peak relaIve abundance of this species were documented in the Drake 1164 
Passage (Cefarelli et al., 2010). However, the meridional distribuIon in our study is somewhat 1165 
different from that documented in the southcentral AtlanIc, where Froneman et al. (1995) 1166 
observed maximum contribuIons of F. kerguelensis south of the Polar Front (i.e. an opposite 1167 
trend to that observed here; Fig. 3c). The reason for this discrepancy is most likely due to the 1168 
proliferaIon of small Fragilariopsis species in the southern Drake Passage. InteresIngly, F. 1169 
kerguelensis dominated in areas characterized by low silicate (< 4 µmol L-1) and low iron levels 1170 
(Supplementary Figure 3) during both the southbound and northbound transits. This finding is 1171 
surprising because the growth rate of large and heavily silicified diatoms such as F. kerguelensis 1172 
is limited at silicate concentraIons below 5 µM and substanIally curtailed below 2.5 µM (Frank 1173 
et al., 2000).   1174 

The distribuIon of F. cylindrus/nana during the POWELL-2020 campaign (Fig. 3b and 5) 1175 
is consistent with previous reports that documented the dominance of this species in the 1176 
southern Drake Passage and Weddell Sea (Kang and Fryxell, 1992; Kang and Fryxell, 1993; 1177 
Cefarelli et al., 2010). Moreover, our results underscore the strong affinity of this species towards 1178 
regions under the influence of sea ice, as previously reported in both water column and seafloor 1179 
sediments (Leventer, 1992; Zielinski and Gersonde, 1997; Armand et al., 2005, among others). 1180 
Likewise, the important contribuIon of F. pseudonana in the AAZ and SZ (Fig. 3b and 5), in both 1181 
early January and late January-early February, is in agreement with previous research that 1182 
reported this species as a major component of the diatom communiIes during summer in the 1183 
Drake Passage (Kang and Lee, 1995; Cefarelli et al., 2010) and NW Elephant Island (the most 1184 
northerly of the South Shetland Islands, Villafañe et al., 1995). This species has been also 1185 
described as an important contributor of the diatom assemblages in the high-nutrient, low-1186 
chlorophyll (HNLC) waters off Kerguelen Archipelago (Armand et al., 2008) and as part of the 1187 

Deleted: Characteriza;on of the marine water anomaly ¶1188 
The 2020 MHW observed across1189 
Formatted: Font: Bold

Deleted: (AP)1190 
Moved down [6]:  offers valuable insight into the nuanced 1191 
interplay between mesoscale ocean circula?on and 1192 
biogeochemical variability in the Southern Ocean. Our data 1193 
reveal that this extreme event was neither solely a product 1194 
of atmospheric forcing nor simply a reflec?on of long-term 1195 
warming trends. Instead, the development and persistence 1196 
of the 2020 MHW were closely ?ed to mesoscale an?cyclonic 1197 
eddy dynamics, as indicated by sustained posi?ve SLA 1198 
exceeding +20 cm along the northbound transect (Fig. 1199 
Deleted: 2a). This pa>ern1200 
Moved down [7]:  is characteris?c of the Drake Passage, 1355 
where the proximity of major circumpolar fronts enhances 1356 
eddy ac?vity rela?ve to other sectors of the Southern Ocean 1357 
(Rintoul et al., 1997; Beech et al., 2022), resul?ng in 1358 
Formatted: Font color: Auto

Formatted: Font color: Auto

Deleted: 2f1220 
Moved down [8]: ). Satellite-derived SST anomalies revealed 1354 
Formatted: Font color: Red

Deleted: 2b; see sec?on 4.2 for more details).1232 
Moved down [9]:  South of the major fronts, the 1353 
Deleted: ¶1241 
Moved down [10]: In summary, our findings demonstrate 1352 
Deleted: ¶1351 ... [9]
Deleted: 3b1258 
Deleted: The anomalously low concentra?ons,1259 
Deleted: par?cularly evident for the case1260 
Deleted: nitrate during the northbound transit, when nitrate 1350 ... [10]
Deleted: in the PFZ and SAZ were one order of magnitude 1349 ... [11]

Field Code Changed

Deleted: Table 1; Freeman1265 

Deleted: 20191266 

Deleted: The low temporal variability in silicate 1347 ... [12]

Moved down [11]:  that are characterized with a 1348 

Deleted: seems to be sufficient to sustain high diatom cell 1346 ... [13]
Deleted: mirrored the1338 
Deleted: column1339 
Deleted: .1340 
Deleted: 41341 
Deleted: 41342 
Deleted: are1343 
Deleted: F. cylindrus/nana1344 
Deleted: ,1345 



21 
 

sinking diatom assemblages collected by sediment traps in AZ south of Tasmania (Rigual-1359 
Hernández et al., 2015), suggesIng the capacity of this species to also thrive under low iron 1360 
levels.  1361 

The low contribuIon of Chaetoceros RS in our survey contrasts with the high abundance 1362 
of this taxon in the surface sediments of the Bransfield Strait (> 400 106 valves g-1 of dry sediment; 1363 
Crosta et al., 1997). Chaetoceros RS formaIon has been related to nitrogen depleIon and/or 1364 
light limitaIon (Bodungen et al., 1986; Kuwata and Takahashi, 1990; Leventer, 1991). In 1365 
parIcular, silicon to nitrate molar raIos above 9.3 have been documented to trigger resIng 1366 
spore formaIon in Chaetoceros populaIons (Kuwata and Takahashi, 1990). The only neriIc 1367 
staIons (i.e. the habitat of the resIng spore forming Chaetoceros subgenus Hyalochaete) with 1368 
relaIvely high silicon to nitrogen raIos during our survey were those in the Bransfield Strait and 1369 
Northern Weddell Sea with values ranging from 4.4 to 8.4. Despite these relaIvely high values, 1370 
only in the staIons South Bay of Livingston Island some Chaetoceros RS were registered in 1371 
concentraIons above 5%. Taken together, all the above indicate that the interplay of more 1372 
environmental factors aside from nitrogen limitaIon (e.g. light limitaIon) are required to trigger 1373 
Chaetoceros RS formaIon in the Bransfield Strait. It is likely that the moment of the sampling 1374 
was too early or too late in the seasonal succession to capture the formaIon of resIng spores 1375 
by Chaetoceros populaIons in the neriIc habitats of the AntarcIc Peninsula (Leventer, 1991). 1376 

The co-occurrence of the epiphyIc and sea-ice affiliated P. kamtscha9cum (Medlin, 1377 
1990; Scok and Marchant, 2005; Majewska et al., 2015) with elevated concentraIons of fine 1378 
sediments in the coastal waters of Livingston Island, is a clear reflecIon of the affinity of this 1379 
species for glacial meltwater discharge. It is important to note that the affinity of P.  1380 
kamtscha9cum for high saliniIes suggested by the CCA is considered an arIfact caused by the 1381 
exclusion of some staIons with high contribuIons of this species near meltwater sources (owing 1382 
to the lack of accompanying measurements of some environmental parameters, see methods 1383 
secIon). Indeed, the geographical distribuIon of P.  kamtscha9cum during our survey suggests 1384 
the potenIal of this species as proxy for glacial meltwater discharge in the paleorecord. 1385 
Moreover, the co-occurrence of peak relaIve contribuIon of Navicula spp. in the same staIons 1386 
also indicates that this taxon was also associated to the sediment input from subglacial waters 1387 
(Fig. 3e). However, the uIlity of Navicula as a proxy for glacial discharge should be made with 1388 
cauIon as this genus contains species both benthic and planktonic species (Al-Handal and Wulff, 1389 
2008; Majewska et al., 2015; Rigual-Hernández et al., 2015; Daglio et al., 2018; Silva et al., 2019).  1390 

Lastly, although the resoluIon of our light microscopy analysis was not sufficient to 1391 
resolve the idenIficaIon of small centric diatoms (grouped here as small centric < 20 µm group; 1392 
Fig. 3f), SEM analysis of selected samples indicate that, at least some of the specimens were 1393 
Minidiscus chilensis. This species had been previously documented in large numbers in the 1394 
western Bransfield Strait (Kang et al., 2003) and Ryder Bay (Annek et al., 2010). Owing to the 1395 
relevant contribuIon of the small centric group in some samples during the POWELL-2020 1396 
expediIon (Fig. 3f) and the potenIal relevant role of Minidiscus in the biological pump of the 1397 
region (Leblanc et al., 2018), we recommend invesIng extra efforts in idenIfying small diatom 1398 
species in future surveys in the AP. 1399 

In terms of coccolithophore distribuIons, the observed laItudinal pakern (i.e. 1400 
coccolithophores were most abundant north of the PF) is consistent with previous reports in the 1401 
Drake Passage and AP (Charalampopoulou et al., 2016; Saavedra-Pellitero et al., 2019) and in 1402 
other sectors of the Southern Ocean (Cubillos et al., 2007; Malinverno et al., 2015; Saavedra-1403 
Pellitero and Baumann, 2015; PaIl et al., 2017; Rigual Hernández et al., 2018; Trull et al., 2018; 1404 
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Rigual-Hernández et al., 2020b, among others). The substanIally lower cell numbers than those 1416 
of diatoms, together with the small size of their coccospheres indicate that coccolithophores 1417 
must account for only a small fracIon of the algal biomass during our survey. This observaIon is 1418 
consistent with previous studies where coccolithophore contribuIon to total phytoplankton 1419 
biomass accumulaIon has been shown to be small, accounIng for less than 10% in subantarcIc 1420 
waters and less than 1% in AntarcIc waters (Trull et al., 2018). Among all the environmental 1421 
parameters controlling coccolithophore distribuIon, temperature has been suggested to play a 1422 
major role their laItudinal distribuIon in the Southern Ocean (Boyd et al., 2010; Feng et al., 1423 
2017; Rigual-Hernández et al., 2020a). Moreover, temperature also represents a major control 1424 
for coccolithophore diversity (Rigual-Hernández et al., 2020b), with assemblages turning nearly 1425 
or enIrely monospecific south of the PF (Cubillos et al., 2007; Malinverno et al., 2015; PaIl et 1426 
al., 2017; Rigual Hernández et al., 2018; Saavedra-Pellitero et al., 2019).  1427 

4.2 Processes and implica3ons on surface water proper3es of the 2020 marine heatwave 1428 

The 2020 MHW observed across the Drake Passage and AP offers valuable insight into 1429 
the nuanced interplay between mesoscale ocean circulaIon and biogeochemical variability in 1430 
the Southern Ocean. Our data reveal that this extreme event was neither solely a product of 1431 
atmospheric forcing nor simply a reflecIon of long-term warming trends. Instead, the 1432 
development and persistence of the 2020 MHW were closely Ied to mesoscale anIcyclonic eddy 1433 
dynamics, as indicated by sustained posiIve SLA exceeding +20 cm along the northbound 1434 
transect (Fig. 7a). Mesoscale eddy formaIon is characterisIc of the Drake Passage, where the 1435 
proximity of major circumpolar fronts enhances eddy acIvity relaIve to other sectors of the 1436 
Southern Ocean (Rintoul et al., 1997; Beech et al., 2022), resulIng in pronounced horizontal and 1437 
verIcal gradients in water properIes. 1438 

The warm water anomaly recorded during the northbound transit of the POWELL-2020 1439 
campaign—immediately preceding the core of the heatwave—coincided with elevated SLA and 1440 
increased ADT, classic markers of surface-intensified anIcyclonic eddies. These features 1441 
effecIvely trap heat, suppressing verIcal mixing and allowing anomalously warm, straIfied 1442 
surface waters to persist. Our esImates of EKE and VIKE further support that these events were 1443 
primarily confined to the upper ocean, with deeper kineIc energy redistribuIon occurring only 1444 
ater the MHW’s peak (Fig. 7f). Satellite-derived SST anomalies revealed sustained surface 1445 
warming of more than +3°C above climatological values, underscoring the spaIal signature of 1446 
these mesoscale structures. 1447 

The impact of mesoscale circulaIon on nutrient distribuIon was likewise significant. The 1448 
advecIon of warm, low-nutrient waters from northern circumpolar regions—likely mediated by 1449 
these eddies—resulted in excepIonally low nitrate and phosphate concentraIons north of the 1450 
Polar Front, reaching levels nearly an order of magnitude below typical summer values (Fig. 2b). 1451 
South of the major fronts, the biogeochemical response was more nuanced: while nitrate and 1452 
phosphate remained relaIvely high, silicate displayed steep meridional gradients, consistent 1453 
with the established posiIon of the silicate front. This spaIal heterogeneity in nutrient 1454 
availability appears to have governed the observed phytoplankton community composiIon and 1455 
bloom dynamics. Comparable links between mesoscale circulaIon, MHWs and phytoplankton 1456 
dynamics have been observed in other AntarcIc sectors (Fernández-Barba et al., 2024; Frenger 1457 
et al., 2018; Ma and Chen, 2025), underscoring the Ight coupling between physics and 1458 
biogeochemistry in these areas. 1459 
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Analysis of the distribuIon and makeup of diatom communiIes provides further 1463 
evidence of the origin of the 2020 marine heat wave in the Drake Passage. The presence of 1464 
Chaetoceros resIng spores from the SAZ to the AAZ during the northbound transit (Fig. 3d) 1465 
supports the idea that the advecIon of an anIcyclonic eddy from the northernmost systems of 1466 
the Drake Passage was responsible for the anomalously high SSTs recorded during the 1467 
northbound transit. This is because the habitat of Chaetoceros subgenus Hyalochaete is 1468 
restricted to coastal and inshore waters (Hasle and Syvertsen, 1997), and therefore, the presence 1469 
of resIng spores of this taxon in pelagic environments can be taken as an indicator of influence 1470 
of coastal se�ngs (e.g. Lange et al., 1994; Treppke et al., 1996; Wilks et al., 2021). Likewise, it is 1471 
possible that the remarkable increase in the relaIve abundance of Thalassiosira spp. 1472 
documented in the SAZ during the northbound transit was also associated, or parIally 1473 
associated, with the transport of coastal diatom assemblages, which are oten rich in species of 1474 
the order Thalassiosirales (Ferrario et al., 2018), into the Southern Ocean. This idea is supported 1475 
by previous observaIons of  eddy and meander formaIon in the SubantarcIc Zone and their 1476 
subsequent transport across the Polar Front in the Southern Ocean in general (Hogg et al., 2008), 1477 
and in the Drake Passage (Meredith and Hogg, 2006) and the Weddell-ScoIa confluence (Kahru 1478 
et al., 2007), in parIcular. It could be argued that the advected Chaetoceros RS and Thalassiosira 1479 
spp., should have been accompanied by the transport of subantarcIc coccolithophores south of 1480 
the Polar Front. However, it should be noted Chaetoceros RS are highly resistant to degradaIon 1481 
(e.g. Rembauville et al., 2016; Rembauville et al., 2018) while coccospheres disarIculate rapidly 1482 
ater cell death. Therefore, it is possible that the advected waters transported a signal of 1483 
subantarcIc coccolithophores but in the form of detached coccoliths, which were not assessed 1484 
in the current study.   1485 

In summary, our findings demonstrate that the onset and maintenance of the 2020 1486 
MHW in the Drake Passage were driven primarily by internal oceanic processes—specifically, the 1487 
acIvity of energeIc anIcyclonic eddies—rather than by direct atmospheric heat input. These 1488 
eddy features not only structured the thermal characterisIcs of the upper ocean but also 1489 
modulated the spaIal distribuIon of key nutrients, fundamentally shaping the biogeochemical 1490 
and ecological environment experienced by primary producers. A deeper understanding of the 1491 
coupling between mesoscale circulaIon, nutrient fluxes, and biological responses is essenIal for 1492 
predicIng the sensiIvity of Southern Ocean ecosystems in an era of rapid, dynamic warming. 1493 

4.3 Influence of the marine heat wave on phytoplankton communi3es and nutrient 1494 
distribu3ons  1495 

The MHW documented in the Drake Passage in late-January early-February was coupled 1496 
with the development of a diatom bloom in the SZ and AAZ and substanIal shits in the relaIve 1497 
contribuIons of major components of the diatom assemblage (Fig. 3). AddiIonally, significant 1498 
changes in macronutrient distribuIons were observed throughout most of the Drake Passage as 1499 
well as changes in coccolithophore distribuIons. These changes are examined in detail next.   1500 

The diatom bloom observed in the SZ and AAZ during the MHW reached cell 1501 
concentraIons of up to ca. 5.5 x 106 and 5 x 106 cells L-1, respecIvely (Fig. 3a). These values were 1502 
one to three orders of magnitude greater than previous reports in the same zonal systems during 1503 
summer (Villafañe et al., 1995; Olguin et al., 2006; Cefarelli et al., 2010). The bloom was mainly 1504 
composed of F. cylindrus/nana which exhibited an increase in both its relaIve (Fig. 6i) and 1505 
absolute abundance. The posiIve effect of the warm water anomaly on the development of this 1506 
taxon is supported by the incubaIon experiments by Antoni et al. (2020) who documented that 1507 
warming has a posiIve effect on the growth rates of  F. cylindrus while decreasing its iron 1508 
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requirements (Jabre and Bertrand, 2020). The increase in the relaIve contribuIon of F. 1557 
cylindrus/nana was also coupled with an increase in the absolute abundance of F. pseudonana 1558 
(and a non-significant change in its relaIve contribuIon; Fig. 6j). This suggests that the warmer 1559 
water condiIons during the MHW sImulated the growth of F. pseudonana although to a lower 1560 
extent than for F. cylindrus/nana. In turn, the significant decrease in the relaIve contribuIon of 1561 
the larger F. kerguelensis in the southern Drake Passage suggests a poorer tolerance of this 1562 
species to warm water anomalies than its small-sized counterparts.  1563 

It is important to note that the diatom bloom in the SZ and AAZ was not coupled with a 1564 
significant change in the chlorophyll-a concentraIon - as suggested by the fluorescence - or in 1565 
the net primary producIvity (Fig. 6f and 6g, respecIvely). This mismatch with the increase in 1566 
diatom cell abundance can be akributed to several factors. Firstly, other phytoplankton 1567 
funcIonal groups (e.g. cryptophytes and prymnesiophytes) can contribute substanIally to the 1568 
total chlorophyll-a producIon in the study region (Moline et al., 2004; Montes-Hugo et al., 2008). 1569 
Therefore, changes in the relaIve contribuIon of these groups throughout our survey could have 1570 
contributed to the lack of a clear relaIonship between diatom cell numbers, fluorescence and 1571 
NPP. Secondly, diatom assemblages display a wide range of sizes with cellular biovolumes 1572 
spanning up to over nine orders of magnitude in the world ocean (Leblanc et al., 2012). 1573 
Therefore, a shit in the proporIons of the dominant diatom species does not necessarily imply 1574 
a proporIonal change in the chlorophyll-a signal, as the amount of chlorophyll-a content across 1575 
species may vary substanIally (Chan, 1978). Thirdly, variaIons in NPP do not always directly 1576 
reflect phytoplankton biomass, parIcularly in Southern Ocean environments that are co-limited 1577 
by nutrients and light. In these areas, phytoplankton can adjust their C:Chl-a cellular raIos in 1578 
response to transient climaIc events such as MHWs (Behrenfeld et al., 2016). This physiological 1579 
plasIcity is further modulated by light availability, which in the Southern Ocean is strongly 1580 
influenced by persistent cloud cover; under such condiIons, phytoplankton adjust their 1581 
pigmentaIon through photoacclimaIon, with important consequences for NPP esImates 1582 
(Begouen Demeaux et al., 2025). 1583 

It should be noted that although our evidence suggests that the relaIonship between 1584 
the occurrence of the MHW and the diatom bloom in the southern Drake Passage is causaIve, 1585 
it could be argued that the enhanced diatom abundance between early January and late January 1586 
may be the result of the regular seasonal progression of diatom producIvity. Chlorophyll-a 1587 
climatology (years 1998-2022) for the southern Drake Passage esImated by Ferreira et al. (2024) 1588 
indicates that average algal biomass accumulaIon between early January and early February 1589 
almost did not change (less than 0.1 mg Chl-a m-3 difference between them). Assuming a similar 1590 
relaIve contribuIon of diatoms to the total Chl-a signal between January and February, a similar 1591 
diatom abundance concentraIon could be expected in early January and in early February during 1592 
a regular year. It follows that the enhanced abundance in diatom concentraIons documented 1593 
during the northbound transit was most likely the result of an excepIonal event rather than the 1594 
regular phenological response of diatoms in this region. 1595 

Aside from the above-menIoned diatom bloom in the southern Drake Passage, the 1596 
onset of the MHW was associated with a pronounced and significaIve drawdown in nitrate 1597 
concentraIons and a reducIon of phosphate concentraIons in a large porIon of the Drake 1598 
Passage (Fig. 2b, 6c and 6d). We interpret the anomalously low nitrate and phosphate 1599 
concentraIons to result from limited verIcal nutrient supply to the euphoIc zone induced by 1600 
warming together with a steady consumpIon of nutrients by phytoplankton. This hypothesis is 1601 
supported by previous work that described that anomalous warming events, such as MHWs, 1602 
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generally drive a reducIon of mixed layer depths (Amaya et al., 2021; Oliver et al., 2021) and 1647 
widespread surface nutrient declines in subpolar and polar ecosystems (e.g. Peña et al., 2019; 1648 
Servekaz et al., 2025). However, aside from a reducIon of nutrient supply, enhanced nutrient 1649 
consumpIon by phytoplankton would be required to explain the unusually low nitrate 1650 
concentraIons observed during the northbound transit (Fig. 2 and Table 1). The development of 1651 
the diatom bloom to the south of the Polar Front might have been responsible, or significantly 1652 
contributed, to the nutrient depleIon. This noIon is in agreement with some studies in the 1653 
AntarcIc Peninsula where anomalously low nitrate concentraIons (below 5 µM L-1) had been 1654 
reported associated with the development of intense phytoplankton blooms (Holm-Hansen et 1655 
al., 1989; Karl et al., 1991; Servekaz et al., 2025). However, the lack of a significant reducIon in 1656 
silicate concentraIon associated with the diatom bloom south of the PF (Fig. 2b and 6e) may 1657 
seem puzzling at first. Looking in detail into the makeup of the diatom assemblage gives us some 1658 
hints to reconcile these results. As menIoned, previously, the main components of the diatom 1659 
bloom were small Fragilariopsis species (e.g. the apical axis length of F. nana is  3-10 µm length 1660 
in our study region; Cefarelli et al., 2010) that are characterized with a substanIally lower silica 1661 
requirement than larger, robustly silicified diatoms such as F. kerguelensis (apical length ranging 1662 
from 17 to 83 µm; Cefarelli et al., 2010). This feature, together with the rapid silicate recycling of 1663 
the frustules of small Fragilariopsis species in the upper water column (Grigorov et al., 2014; 1664 
Rigual-Hernández et al., 2016) appear to be sufficient to sustain high diatom cell concentraIons 1665 
without a remarkable silica consumpIon.  1666 

Regarding the coccolithophore response, it is worth noIng that average coccolithophore 1667 
abundance decreased two-fold in the SAZ and PFZ during the MHW compared with the 1668 
observaIons made in the southbound transit (Fig. 4) even though no staIsIcal difference was 1669 
found between both the southbound and northbound transits (Fig. 6l). Notably, coccolithophore 1670 
concentraIons were also substanIally lower than previous reports during the austral summer in 1671 
both the SAZ (23 x 104 coccospheres L-1, Charalampopoulou et al. 2016; 15 x 104 coccospheres L-1672 
1, Saavedra-Pellitero et al. 2019) and PFZ (58 x 104 coccospheres L-1, Charalampopoulou et al. 1673 
2016; 11 x 104 coccospheres L-1, Saavedra-Pellitero et al. 2019). Therefore, it could be speculated 1674 
that the warm water anomaly may be responsible for the low coccolithophore producIvity. As 1675 
menIoned before, both laboratory experiments (Feng et al., 2017) and field evidence (Rivero-1676 
Calle et al., 2015) have underscored the primary role of temperature in the control of 1677 
coccolithophore growth rates. However, according to these studies, an increase of SSTs would 1678 
imply an increase of growth rates, which is opposite to what we observed during the POWELL-1679 
2020 campaign. It follows that different environmental controls other than temperature must 1680 
have been responsible for the decrease in coccolithophore abundance within the SAZ and PFZ. 1681 
Notably, Trull et al. (2018)  indicated that macronutrient availability could be an important factor 1682 
determining the growth of coccolithophores in oligotrophic waters at the northern edge of the 1683 
Southern Ocean. This idea is reinforced by laboratory culture experiments that revealed that 1684 
nitrate concentraIon is a criIcal factor controlling the photosyntheIc and growth rates of 1685 
subantarcIc E. huxleyi (Feng et al., 2017). The laker study also demonstrated that, in contrast to 1686 
nitrate, the growth rate of E. huxleyi remained relaIvely constant across a wide range of 1687 
phosphate concentraIons. Taking into consideraIon all the above, it is possible that the drop of 1688 
ca. one order of magnitude of nitrate concentraIons during the northbound transit could have 1689 
been responsible for low coccolithophore abundance. However, it should be acknowledged that 1690 
this interpretaIon remains speculaIve and there are of course other possible explanaIons for 1691 
the low coccolithophore cell numbers, including zooplankton grazing control, which was not 1692 
assessed in our survey. Lastly, our data also suggests the change in nutrient concentraIons 1693 
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and/or warming induced by the warm water anomaly favoured the development of C. leptoporus 1700 
over E. huxleyi that is a good compeItor for phosphate, but does not grow well under low nitrate 1701 
levels (Egge and Heimdal, 1994). 1702 

Before extrapolaIng our results into a broader context, it is important to acknowledge 1703 
the limitaIons of our study, including the discrete sampling of the water column before and 1704 
during the MHW. MulI-day monitoring of the water column in the areas affected by the MHW 1705 
would be required to evaluate the evoluIon of phytoplankton communiIes through Ime (e.g. 1706 
Landry et al., 2024). Also, it should be acknowledged that the current study only provides 1707 
evidence of the response of phytoplankton assemblages in the surface layer (i.e. 5 m depth), but 1708 
it is possible that phytoplankton communiIes below the surface mixed layer may have 1709 
responded differently to the MHW. Moreover, our study focussed on two major phytoplankton 1710 
groups, but to be able to evaluate shits in the phytoplankton community future studies should 1711 
also address other relevant algal groups, including important sot-Issue phytoplankton, such as, 1712 
cryptophytes and Phaeocys9s. IdenIficaIon and quanIficaIon of chlorophyll-a and marker 1713 
pigments of the main phytoplankton taxonomic groups would also complement microscopy-1714 
based methods providing a more robust picture of the response of phytoplankton communiIes 1715 
to MHWs. Despite these limitaIons, our results tentaIvely suggest that an increase in the 1716 
frequency of warm water anomalies could potenIally favour the development of small diatom 1717 
species in the southern circumpolar systems of the Southern Ocean and a decrease in 1718 
coccolithophore numbers north of the PF. However, owing to low contribuIon of 1719 
coccolithophore communiIes to phytoplankton biomass and their mild response to the warming 1720 
event, it is likely that a moderate decrease in coccolithophore numbers does not represent a 1721 
major impact for trophic chain or the biogeochemical cycles in the low producIvity ecosystems 1722 
where they thrive (i.e. mainly SAZ and PFZ). In turn, the more pronounced shits in the 1723 
abundance and composiIon of diatom communiIes, which oten dominate algal biomass 1724 
accumulaIon in the most producIve ecosystems of AntarcIca, are likely to be far reaching. An 1725 
increase in the abundance of small diatom species is in agreement with in situ and model 1726 
observaIons that indicate that warm water anomalies will result in an increasing importance of 1727 
small size phytoplankton in the world’s oceans (Acevedo-Trejos et al., 2014; Peña et al., 2019; 1728 
Wyak et al., 2022). This shit in the composiIon and average size reducIon of phytoplankton 1729 
communiIes may result in impacts in the food chain and efficiency of the biological pump. 1730 
Previous studies indicate that an average reducIon in the cell size of phytoplankton communiIes 1731 
in the AntarcIc Ocean could have important impact on the abundance of keystone zooplankton 1732 
grazers, parIcularly salps and krill (Moline et al., 2008). Since krill feed mainly on phytoplankton 1733 
cells larger than 10 μm, the overall size reducIon of phytoplankton communiIes has resulted in 1734 
a decrease of krill numbers and an increase in salp abundance (grazers unaffected by the size of 1735 
their prey) (Moline et al., 2008). Because krill represents the primarily food source for many 1736 
AntarcIc birds and mammals (Atkinson et al., 2004), a shit in the phytoplankton communiIes, 1737 
and therefore krill abundance, is predicted to have a substanIal negaIve effect on the krill-1738 
dependent food chain (Murphy et al., 2007, 2016). The possible implicaIons in the efficiency of 1739 
the biological pump are less clear. While small diatom are tradiIonally regarded as less efficient 1740 
carbon vectors to the deep ocean than larger diatoms owing to their faster remineralizaIon in 1741 
the upper water column (e.g. Legendre and Le Fèvre, 1995), some studies have challenged this 1742 
view. Leblanc et al. (2018) demonstrated that small-sized diatoms (2–20 μm) can develop large 1743 
blooms across the global ocean (including the AntarcIc Peninsula) and reach the seafloor at high 1744 
sinking rates, thereby contribuIng substanIally to carbon sequestraIon. Therefore, the impact 1745 
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of an increase in the abundance of small size diatoms species in carbon sequestraIon in the 1753 
Southern Ocean is sIll uncertain and remain to be quanIfied and parameterized.  1754 

Conclusions  1755 

Our evidence, albeit circumstanIal, suggests that extreme warming events in 1756 
southernmost circumpolar systems of the Drake Passage can be driven by the advecIon of 1757 
mesoscale anIcyclonic eddies from lower laItudes. Notably, the unusually warmer condiIons 1758 
generated by these eddies can drive substanIal changes in the abundance and structure of 1759 
phytoplankton communiIes. Our results provide field-based evidence for observaIons made on 1760 
culture experiments that indicate that the growth of small Fragilariopsis species is sImulated by 1761 
warmer water temperatures. The remarkable nitrate drawdown observed in large swath of the 1762 
Drake during the onset of the MHW indirectly suggests that warm water anomalies may favour 1763 
the development of sot-Issue phytoplankton in the Drake Passage. Moreover, it is likely that the 1764 
low nitrate levels resulted in a reducIon of coccolithophore producIvity north of the PF. As both 1765 
the intensity and frequency of warm water anomalies are expected to increase in the Southern 1766 
Ocean in the coming decades, an increase in the abundance smaller diatom taxa could be 1767 
expected. This shit in the phytoplankton community structure, will most likely have an impact 1768 
on higher trophic levels, parIcularly krill and salps, ulImately affecIng higher trophic levels as 1769 
well as the funcIoning of the marine carbon cycle. While our study has provided valuable 1770 
insights into the intricate relaIonship between AntarcIc phytoplankton and environmental 1771 
change, it is evident that further research is required to fully comprehend their complex 1772 
response. This requires regular monitoring of key Southern Ocean regions to idenIfy shits in 1773 
phytoplankton composiIon and structure under extreme climaIc condiIons like MHW. 1774 
Achieving this ambiIous goal will require internaIonal cooperaIon and data sharing among 1775 
naIons (e.g. ICEPRO working group; Etourneau et al., 2025), as no single country can accomplish 1776 
it alone. 1777 
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