Response to reviewer’s comments

# Reviewer 1
We thank the reviewer for their comments. Our responses to all the comments are provided below.

Initial summary comment: The manuscript mainly examines the downscaling of GRACE mascon-based total
water storage anomalies over India, introducing a mascon-scale mass conservation approach and validating the
product with in-situ groundwater well observations. The topic is of broad interest to researchers in hydrology
and remote sensing, and the dataset produced could be potentially useful for regional water resource studies.
However, the study builds closely on previous work (Vishwakarma et al., 2021), and the novelty is therefore
somewhat limited. In addition, the manuscript suffers from some shortcomings in the literature review,
methodological justification, interpretation of the results, and presentation of figures and references. Therefore,
the manuscript requires substantial revisions before it can be considered for publication.

Response: Thank you for the constructive feedback and acknowledging the relevance of our study in the field of
hydrology and remote sensing, as well as the potential value of the produced downscaled product. Although the
study is closely built on the work of Vishwakarma et al. (2021); the proposed Mascon-wise Mass Conservation
(MMC) approach substantially improves the efficacy of downscaled product. Moreover, the validation
performed in this study provides a robust assessment of the efficacy of downscaled products which was lacking
in earlier studies. For this evaluation, we adopted the temporal gain metric proposed by Pascal et al. (2022),
which is an important step towards standardizing validation practices. These factors (MMC and validation) have
also been recognised by reviewer two as main strength and novelty of this manuscript.

We will substantially revise the manuscript to address all the comments. Some of the major changes will be:

e Expanding the literature survey (including the articles Jyolsna et al. 2021, Karunakalage et al. 2021: list
of the articles will be added as table in the revised manuscript).

e Providing a more detailed and clearer justification of methodology.

e Improving the interpretation and discussion of results within different hydrogeological contexts across
India.

e Improving the readability and presentation of figures and references.

Major Comments

Comment 1: [Introduction] The literature review does not sufficiently describe international developments in
GRACE downscaling methods. The limited set of references makes it difficult to see how the study advances
beyond existing work.

Response 1: We thank the reviewer for this valuable comment. We agree that the current version does not
sufficiently cover international developments in GRACE downscaling research. In the revised manuscript, the
literature review will be substantially expanded to include national and international studies (listed in the Table
below). Following modified paragraph will be inserted in the manuscript:

TWSA from GRACE is difficult to validate due to unavailability of in-situ TWSA data (Scanlon et al., 2016) but not
impossible if one compartment of TWSA is changing rapidly while others stay stable, especially over India where
groundwater decline is alarming (Sarkar et al., 2020). Another major challenging task to deal with is a coarse
spatial resolution of GRACE data. Several hydrological, and agricultural studies demand regional/local scale
inputs. To cater this demand several attempts to downscale GRACE TWSA have been conducted. Broadly those
downscaling methods are categorised in two types: model-based/dynamic and data-based/statistical method.
The model-based/dynamic approach is physically based, strongly depends on boundary conditions and
computationally expensive (Schumacher et al., 2018; Sun et al., 2023). Whereas, in the data-based/statistical
approach an empirical relationship is developed between coarse scale variables and fine scale variables. Owing



to its computational efficiency and ease of implementation, the model-based/statistical approach has gained
popularity among researchers. Related studies are summarized in Table. The statistical approach has been
primarily implemented in three ways: simple linear regression, multivariate linear regression, and machine
learning algorithms. In simple linear regression, a single variable is regressed against GRACE TWSA. For instance,
Gemitzi et al. (2021) and Yin et al. (2018) used only precipitation and evapotranspiration, respectively, to
downscale GRACE data, as these were identified as the dominant drivers in their respective regions. To address
cases where a single variable is insufficient to explain TWSA variability, multivariate linear regression with a
water budget constraint has been applied (Karunakalage et al., 2021; Ning et al., 2014; Vishwakarma et al., 2021).
To account for nonlinearity, researchers have also implemented machine learning algorithms such as random
forest, artificial neural networks, and long short-term memory etc. (Ali et al., 2021; Arshad et al., 2025; Chen et
al., 2019; Gorugantula and Kambhammettu, 2022; Gou and Soja, 2024; Jyolsna et al., 2021; Kalu et al., 2024;
Miro and Famiglietti, 2018; Pascal et al., 2022). Despite ongoing efforts to enhance the spatial resolution of
GRACE data, continued advancements in data processing techniques and the availability of improved data

products offer substantial scope for further improvement.

Table. Summary of the statistical downscaling studies applied to GRACE data.

L. i Original Downscaled .
Reference Statistical downscaling method . . Study region
resolution resolution
Simple linear regression
Simple linear regression using GPM-
Gemitzi et al. (2021) IMERG precipitation 1°x 1° 0.1° x 0.1° |Greece
North  China
Yin et al. (2018) Simple linear regression using ET 110 X 110 km 2 X 2km Plain
|Multivariate linear regression
Mehsana
Karunakalage et alJMultivariate regression model district,
(2021) with water budget closure constraint 1° x 1° 0.25° x 0.25° |Gujarat, India
Yunnan
Multivariate regression model province,
Ning et al. (2014) with water budget closure constraint 1° x 1° 0.25° x 0.25° |China
Multivariate regression model
Vishwakarma et al. (2021) jwith water budget closure constraint 3° x 3° 0.5° x 0.5° |Global
|[Machine learning algorithms
Indus basin
Artificial neural network and Random irrigation
Ali et al. (2021) Forest 1° x 1° 0.25° X 0.25° [system
Random forest, CART, Gradient tree
Arshad et al. (2025) boosting algorithms 55 X 55 km 1x 1 km Saudi Arabia
Northeast of
mainland
Chen et al. (2019) Random Forest 1° x 1° 0.25° x 0.25° |China
Gorugantula and Kambha Krishna River|
mmettu (2022) Long Short-Term Memory 1° x 1° 0.25° x 0.25° [Basin, India




Gou and Soja (2024) Convolutional eural network 3°x 3° 0.5°x 0.5° |Global

Four
contrasting

hydrogeologic
Multi variate regression, Random al  basins of
Jyolsna et al. (2021) Forest 1° x 1° 0.25° x 0.25° [India
Northern

Australia (the

Cambrian
Support Vector Machine (SVM) with Limestone
Kalu et al. (2024) water budget closure constraint 1° x 1° 0.25° x 0.25° JAquifer—CLA)
Miro and  Famiglietti California’s
(2018) Artificial neural network 2,00,000 km? 16 km? Central Valley
A fractured
crystalline
Multi  linear regression, Random aquifer in
Pascal et al. (2022) Forest 3°x 3° 0.5° X 0.5° [southern India

Comment 2: [Methodology, Line 165] The use of k = 8 in the k-means clustering requires further justification.
Please explain the reason for this choice and whether sensitivity tests were performed.

Response 2: Thanks for this insightful comment. We now recognize that the use of k-means clustering on RGB
values introduces unnecessary uncertainty and risks misclassifying hydrogeological units. Hence, we will replace
this approach with a vectorization-based method using Quantum Geographic Information System (QGIS) as
adopted by Kuruva et al. (2025).

For this vectorization-based approach, the hydrogeology map is used in TIF format. Each polygon within this file
is assigned with corresponding Specific Yield (SY) value as mention in Table 2 (Bhanja et al., 2016). This TIF file is
then used to extract SY values for the quality-controlled groundwater well observations. Thus, following section
will be inserted in methodology section of manuscript:

3.1.1 Conversion of GWL changes to groundwater storage changes

To compute GWSC (m EWH), quality controlled GWL change (GWLC) is multiplied with Specific Yield (SY). Where
SY is a dimensionless factor that indicates the fraction of total ground water volume that would yield under
gravity and is used to convert change in water level to change in water storage. Fundamentally it is a
hydrogeological property of an aquifer.

These SY values are extracted from hydrogeology map of India (Figure and Table. Source: Bhanja et al., (2016))
at quality-controlled well locations using vectorization method in Quantum Geographic Information System
(QGIS) platform. The required raster layer of hydrogeology map is downloaded from
https://doi.org/10.6084/m9.figshare.29293877.v3 (Kuruva et al., 2025). Then quality controlled GWLs are
converted into point shape file and overlaid on this raster layer to extract SY values at each well location using
“sample raster values” tool in QGIS. The obtained SY is multiplied with quality controlled GWLC to get reference
groundwater storage changes hereafter referred as Ref-GWSC.



72°0'0"E 78°0'0"E 84°0'0"E 90°0'0"E 96°0'0"E

z=7
36°00"N

36°0'0"N
30°0'0"N

30°0'0"N

24°0'0"N
24°0'0"N

" Legends

18°0'0"N
18°0'0"N

I Unconsolidated sedimentary aquifers

[ Consolidated, permeable sedimentary
aquifers

I sedimentary aquitards

z ) i .|z
£ \ (] Folqed metasediments/metamorphic | £
8 S / aquifers g
= \ [ Joined crystalline aquifers a
‘\ | Fractured crystalline
= - — —lometers
0 170 340 60 100 1360
72°0'0"E 78°0'0"E 84°0'0"E 90°0'0"E 96°0'0"E

Figure. Hydrogeology map of India (Kuruva et al., 2025)
Table. Specific yield values for varying hydrogeologic setting shown in Figure x (Source: Bhanja et al., 2016)

S.No Hydrogeology Sy range Mean S,
1 Unconsolidated sedimentary 0.06 t0 0.20 0.130
2 Consolidated, permeable sedimentary 0to 0.08 0.043
3 Sedimentary aquitards 0to0 0.03 0.018
4 Folded metasediments/metamorphics 0to0 0.03 0.018
5 Jointed crystalline 0.01t00.03 0.020
6 Fractured crystalline 0to 0.04 0.023

Comment 3: [Methodology] Some equations are not clearly defined in this manuscript. For example, the
meaning of LM3g04-2000 in equation (1) is not presented. All variables and symbols should be explained in detail to
avoid confusion.

Response 3: We apologize for not clearly defining this in the original manuscript. In the revised version, we will
ensure that all equations are clearly explained, including the meaning of LM2oos-2009 in Equation (1), and that all
variables and symbols are explicitly defined to avoid any confusion. Indeed LM2o04-2000 Stands for Long-term Mean
(LM) of total water storage from 2004 to 2009. Following details will be mentioned in the manuscript.

3.1.2 Validation of GRACE-GWSC with Ref-GWSC

GRACE TWSA are in centimetres (cm) of EWH which are converted to meters (m) of EWH. Thereafter,
contemporaneous datasets of all variables i.e., quality controlled well measurements, storage anomalies from
conopy, river, lake, reservoir, soil moisture, wet land, and snow, and GRACE TWSA are analysed. GRACE provides
TWSA with respect to the mean TWS over 2004 to 2009, whereas other variables are not anomalies hence they
are converted to anomalies by removing a Long-term Mean over 2004 to 2009 (LM,04—2009)- This can be
implemented for all variables except well observations which are available only at seasonal interval. Therefore,
to resolve this issue, we compute the differences between consecutive observations where CGWB GWL data is
available, as the change in anomalies is equivalent to the change in the actual values at the corresponding times.
This method provides a more robust and consistent basis for validation compared to interpolating the CGWB
seasonal GWL data, which may introduce additional uncertainties and potential errors. The concept can be
expressed mathematically as follows:

TWSA; = TWS; — LM3g04-2009 (3)
TWSCij = TWSA; —TWSA; =TWS; —TWS; (4)
GRACE GWSC;; = TWSC;; — CSCyj — SnSCyj — SMSC;; — SWSC;; (5)



where i = present month (January/May/August/November) and j represents the data for the previous month.
Eq. 3 is used to compute TWSA for i" month (TWSA;) where TWS; represent the TWS of i** the month. Eq.4
shows that TWSC;; i.e., TWS change (TWSC) obtained after subtracting TWSA of j** month (TWSA;) from the
i month (TWSA;) is equal to subtracting TWS of j** month (TWS;) from the i*" month (TWS;) since the
LM,004—2009 cancels out. Using Eq. 5 GRACE-GWSC of j* month w.r.t. i*"* month (GRACE GWSC;j) is computed
after removal of Storage Changes due to Canopy (CSC;;), Snow (SnSC;;), Soil Moisture (SMSC;;), and Surface
Water Storage Changes (SWSC;;) which includes storages of river streams, lakes, reservoirs, and wetlands. The
resulting GRACE GWSC;; are validated against Ref-GWSC. To validate the GRACE product at its native
resolution, median of quality controlled GWLs is computed over a mascon whereas to validate the downscaled
product, median computation is done over a grid of 0.5° x 0.5°.

Further the downscaling methodology will be explained in a detailed manner in the revised manuscript as
follows:

3.2 Statistical downscaling to generate Mascon-wise Mass Conservation (MMC) downscaled product

We used Partial Least square Regression (PLR) method to downscale GRACE TWSA to 0.5° X 0.5° from its native
resolution of about 3° X 3°. Flow chart of the methodology is as shown in Figure 3. Our method is a modified
version of the method elaborated in Vishwakarma et al. (2021) which uses regression model as shown in Eq.6.
S=LH (6)
Where S represent predictand matrix with n (total number of months) x g (total number of 0.5° X 0.5° grids in
a mascon) dimensions. WGHM TWSA performs the role of this predictand matrix (S). L is a predictor matrix i.e.,
observation matrix. Its dimensions are n X d. Where d represent columns of P, ET, R, and GRACE TWSA. Eq. 6
is solved to obtain H (prediction matrix, d X g). The modification we implemented here is that mass is
conserved at mascon scale instead of catchment scale i.e., for whole set of operations Vishwakarma et al. (2021)
unit was a catchment; in this study it is changed to a mascon.

To set up the predictor matrix (L) is the first and very important step here. L consists of residuals of four
variables (P, ET, R, and GRACE TWSA). In fact, there exist a temporal lead or lag amongst the water budget
components (P, ET and R). Hence, K (=12) shifted time series of these datasets are generated and cyclostationary
mean is removed to obtain residuals. To generate residuals of GRACE TWSA trend and annual cycle is removed
from it.

Consider a mascon where total 36 0.5° X 0.5° grids are present. Our study period (January 2004 —December
2023) contains total 240 months. Thus, data matrix dimensions for a given mascon are 240 (rows) X 36
(columns). To generate 12 months shifted time series of P, ET and R, data from January 2003 is required. When
K =1, rows run from Jan 2003 to Dec 2022. For K = 2, row starts with Feb 2003 and ends at Jan 2023 and it
goes on. To remove cyclostationary mean, month wise average is computed for the period between 2004 and
2023 resulting into 12 values which are removed from individual datasets. Thus, for a single variable after
combining all 12 shifted timeseries, matrix dimensions become 240 X 432. Next, GRACE TWSA are detrended
and annual cycle is removed to obtain residuals (240 X 36). Combining P, ET, R and GRACE TWSA generates our
final observation matrix (L) with dimensions (240 X (1332=432+432+432+36)). Thereafter, residuals of WGHM
TWSA are obtained after detrending and removal of GRACE annual cycle. This represents S (240 X 36) in Eq. 6.
Eg. 6 represents ideal case but in reality, measurements contain inherent noise. Thus, multivariate model
becomes:

S=LH+E (7)
Where E in Eq. 7 represents the noise. Once Eq. 7 is set up, PLR obtains Principal Components (PCs) via Singular
Value Decomposition (SVD). i.e., H will be computed. Please note dimensions of Hisd X g, which suggests
grid wise coefficient will be determined unlike traditional regression method.

To solve Eq. 7, covariance matrix (C) is computed using Eq. (8) which is decomposed via SVD (Eg. 9).

c=1TS (8)
€=UV )



Where U, (d X 1) and V; (r X d) are canonical modes (joint normalised eigen vectors for L and S), 2,
(r X r)isadiagonal matrix which will contain covariance between L and S. r represents canonical modes from
SVD. To obtain PCs of L (U,) which are significantly correlated with S, L is projected on U, using Eq. 10.

U, =LU; (10)
Rearranging Eqg. 10, Eq. 11 can be obtained as follows,

L=UU}f (11)
Eqg. 11 substituted to Eq.7 gives,

S=UUIH+E (12)
This can be written as,

S=UK+E (13)

Where K (r X g) is transformed regression matrix obtained by projecting H on U.. Now, we want to conserve
the mass over a mascon unlike a catchment (Vishwakarma et al., 2021) even after downscaling, a mass budget
constraint is applied here. i.e., S = AM = Average TWSA over a mascon.

AM = UK +E (14)

Finally bringing the constraint in the observation space and solving for K using least squares method,

K= (XTX)"xTy (15)
_ (U _ (S

X= (Ui) andY = (AM) (16)

In a simplified manner Egs. 15,16 suggests that solutions should converge to S and further only those solutions
should be retained which will conserve the mass over a mascon. The K obtained after solving Eq. 15 is then
substituted in Eq.17 (obtained after rearranging K = UL H ) to get H.

H=UK (17)
This computed H when put back to Eq. 6 with already prepared L matrix, downscaled GRACE residuals are
obtained. To which trend and annual cycle are added back to get final downscaled GRACE TWSA referred as
MMC downscaled product.

Section 3.3 will be modified to justify the implementation of evaluation metric as follows:
3.3 Evaluation of downscaled products

First, validation of all three downscaled products is performed using Ref-GWSC measurements by computing
the Correlation Coefficient (r) and Root-Mean-Square Error (RMSE). In addition to these classical evaluation
metrics, the temporal metric gain proposed by Pascal et al. (2022) is implemented to compare the performance
of the downscaled products. As noted by Pascal et al. (2022) most studies do not assess the performance of
downscaled GRACE products relative to the original GRACE data. By using the temporal gain metric, we can
quantitatively evaluate the accuracy of the downscaled products.

In the present study, GRACE JPL mascon data are used as the low-resolution reference without applying the
scale factor. These scale factors, being multiplicative and model-based, can amplify any uncertainties in the
GRACE product if the model does not align with reality. Vishwakarma et al. (2017) and Pascal et al. (2022) have
shown that applying the scale factor can degrade rather than improve the results. Consequently, we have not
extended the validation framework to compute spatial gain, since our low-resolution reference does not
incorporate the scale factor and thus does not contain spatial variability. As illustrated in Figure, the reference
values are uniform over each mascon.
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Figure. GRACE mascons over India for September 2004. Red boxes represent mascon boundaries.

Comment 4: [Results and Discussion] The performance varies significantly across mascons, with some showing
improvement and others even negative correlation. These spatial differences are only described in this
manuscript, but they are not explained in sufficient detail. Potential reasons, such as groundwater abstraction,
geological conditions, or climatic variability, should be discussed in this part.

Response 4: We thank the reviewer for this comment. In the revised manuscript, we will discuss the reasons for
the varying performance across mascons, including factors such as groundwater abstraction, geological
conditions, and climate variability, to provide a clearer interpretation of the results.

For example, Section 4.1 will be updated as shown below.

4.1 Validation statistics for GRACE GWSC at native resolution (3° X 3°) across India

Figure indicates mascon-wise maps of r and RMSE between GRACE GWSC and ref-GWSC across India. The
validation is performed only for 36 mascons out of 52 owing to missing well observations. Out of 36, 28 mascons
showed positive r ranging from 0.06 to 0.91. Mascons 5 and 27 showed a maximum r value of 0.91, indicating
that GRACE is capable of explaining 83% of GWSC variability in these mascons. Mascons 19, 26, 35, 36 and 41
showed r values varying between 0.83 to 0.86 explaining the variability of GWSC between 69% to 74%. For
mascons 9, 10, 15, 18, 24, 25, 28, 34, 37, 40, 45, 49 r is ranging between 0.63 and 0.79, explaining 40 to 60% of
GWSC variability. These results indicates that GRACE GWSC is capable of explaining variability in GWSC over 40%
for majority of the mascons. In contrast, mascons 16, 32, 43, and 48 showed low r values (0.15, 0.06, 0.17 and
0.10, respectively), indicating that GRACE is not even capturing a 3% of GWSC variability. Mascons 4, 8, 17, 22,
23, 44 and 50 exhibited negative correlations. RMSE values observed to be ranging between 0.06 m to 0.32 m.
The best (minimum) RMSE is observed for mascon 6 whereas worst (maximum) is shown by mascon 16. Overall
RMSE remained low for majority of the mascons (< 0.16 m) whereas mascon 9, 16, 17 showed higher RMSE
varying between 0.29 m and 0.32 m.

Interestingly, we also found that the validation performance is independent of number and distribution of wells
in the mascon. For instance, mascon 17, with 112 wells, exhibited a negative correlation of -0.32, whereas
mascon 5, with only 33 wells showed maximum correlation of 0.91. Similarly, mascon 15, where all wells are
clutered in the right side of the mascon, still showed a good correlation of 0.63. Whereas mascon 16 has a fairly
well distributed network of wells, still showed a poor correlation of 0.15. Thus, the failure of GRACE in capturing
groundwater signal in some mascons can be attributed to multiple factors such as, errors in measurements of
GWL, high irrigational activities occurring at local scales, inadequacy of WGHM model in computing exact
storages of canopy, snow, soil moisture, river streams, lakes, reservoirs, and wetlands. Conversely, in some
mascons GRACE performs exceptionally well, achieving r = 0.91 and RMSE = 0.09 m. The strong agreement also
underscores the superiority of the difference-based validation method, as it preserves the integrity of observed



data and vyields more reliable results than approaches that rely on temporal interpolation of CGWB
measurements.
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Figure. Mascon-wise maps of (a) the correlation coefficient (r) and (b) RMSE between GRACE GWSC and Ref-
GWSC over India.

Comment 5: [Results and Discussion] The MMC method fails for mascon 9, but no further explanation is given
in this part. A discussion of why the method fails here would be valuable.

Response 5: Thanks for the comment. This was a misunderstanding as the color scale was limited between -0.2
to 0.2 m. Here is the figure with modified extended scale where spatial variability in mascon 9 is clearly visible.
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Please note that additionally, in the revised manuscript, we will extend the Mascon-wise Mass Conservation
(MMC) downscaled product up to December 2023, thereby improving the temporal coverage of the dataset.

Comment 6: [Results and Discussion] The manuscript does not adequately discuss uncertainties or limitations
of the proposed method, including sparse well distribution, specific yield estimation, errors in the forcing data,
and model bias.

Response 6: We appreciate the reviewer’'s comment. In the revised manuscript, we will discuss the main
uncertainties and limitations of our method.

For example, Secti. 4.1 will be updated as shown below. Similarly, the downscaling results and their associated
uncertainties will be presented and discussed in detail in the revised manuscript.

4.1 Validation statistics for GRACE GWSC at native resolution (3° X 3°) across India

Figure indicates mascon-wise maps of r and RMSE between GRACE GWSC and ref-GWSC across India. The
validation is performed only for 36 mascons out of 52 owing to missing well observations. Out of 36, 28 mascons
showed positive r ranging from 0.06 to 0.91. Mascons 5 and 27 showed a maximum r value of 0.91, indicating
that GRACE is capable of explaining 83% of GWSC variability in these mascons. Mascons 19, 26, 35, 36 and 41
showed r values varying between 0.83 to 0.86 explaining the variability of GWSC between 69% to 74%. For
mascons 9, 10, 15, 18, 24, 25, 28, 34, 37, 40, 45, 49 r is ranging between 0.63 and 0.79, explaining 40 to 60% of
GWSC variability. These results indicates that GRACE GWSC is capable of explaining variability in GWSC over 40%
for majority of the mascons. In contrast, mascons 16, 32, 43, and 48 showed low r values (0.15, 0.06, 0.17 and
0.10, respectively), indicating that GRACE is not even capturing a 3% of GWSC variability. Mascons 4, 8, 17, 22,
23, 44 and 50 exhibited negative correlations. RMSE values observed to be ranging between 0.06 m to 0.32 m.
The best (minimum) RMSE is observed for mascon 6 whereas worst (maximum) is shown by mascon 16. Overall
RMSE remained low for majority of the mascons (< 0.16 m) whereas mascon 9, 16, 17 showed higher RMSE
varying between 0.29 m and 0.32 m.

Interestingly, we also found that the validation performance is independent of number and distribution of wells
in the mascon. For instance, mascon 17, with 112 wells, exhibited a negative correlation of -0.32, whereas
mascon 5, with only 33 wells showed maximum correlation of 0.91. Similarly, mascon 15, where all wells are
clutered in the right side of the mascon, still showed a good correlation of 0.63. Whereas mascon 16 has a fairly
well distributed network of wells, still showed a poor correlation of 0.15. Thus, the failure of GRACE in capturing
groundwater signal in some mascons can be attributed to multiple factors such as, errors in measurements of
GWL, high irrigational activities occurring at local scales, inadequacy of WGHM model in computing exact
storages of canopy, snow, soil moisture, river streams, lakes, reservoirs, and wetlands. Conversely, in some
mascons GRACE performs exceptionally well, achieving r = 0.91 and RMSE = 0.09 m. The strong agreement also
underscores the superiority of the difference-based validation method, as it preserves the integrity of observed
data and vyields more reliable results than approaches that rely on temporal interpolation of CGWB
measurements.
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Figure. Mascon-wise maps of (a) the correlation coefficient (r) and (b) RMSE between GRACE GWSC and Ref-
GWSC over India.

Comment 7: [Results and Discussion] The conclusions are too general. The practical implications for
groundwater management and policy are not sufficiently discussed and should be strengthened.

Response 7: In the revised manuscript, we will strengthen the conclusions by highlighting the practical
implications of our findings for groundwater management and policy, emphasizing how the downscaled product
can inform regional water resource planning and decision-making. In the revised manuscript, the following
modified conclusion will be inserted:

5 Conclusions

In this study, we carried out validation and downscaling of GRACE observations over India. For proper validation
of GWSC specifically contributions from other storage components such as canopy, snow, soil moisture, river
streams, lakes, reservoirs, and wetlands removed from GRACE TWSA. We conclude that GRACE at its native
resolution (about 3° X 3°) when compared with in-situ well data showed varied performance over mascons. At
some mascons GRACE successfully captures the observed variations with high r (> 0.86) and RMSE (< 0.16 m)
values. However, there were a few mascons where GRACE didn’t perform well possibly due to errors in GWL
data and inadequate accounting of water storages other than groundwater. By implementing modified
downscaling approach, a new downscaled product (MMC) is developed and compared with CMC. Over several
mascons MMC approach showed a drastic improvement by converting negative correlation seen in CMC into
positive ones over CMC approach. The DL approach also performs better than CMC but in terms of RMSE, MMC
outperformed both CMC and DL when validated with in-situ.

The resulting high-resolution groundwater storage datasets hold immense potential for a wide range of scientific
and practical applications in water resource research and management. By providing spatially varied information
on groundwater, they can significantly improve drought characterization and severity mapping, especially in
regions with sparse in-situ data. These downscaled products can serve as critical inputs to hydrologic and
groundwater models, enabling more accurate representation of subsurface storage dynamics at regional and
basin scales. These all together can help in evaluating effectiveness of groundwater recharge/extraction policies.
The fine resolution information can further support in basin-planning, watershed restorations and river
rejuvenation initiatives by helping to identify zones of water stress and potential recharge areas. Consequently,



the developed downscaled storage product can play a crucial role in guiding sustainable groundwater
management, enhancing climate resilience and informed evidence-based decision making for India’s ongoing
water resource and rejuvenation program.

Minor Comments

Comment 8: [Introduction, Line 22 and Line 26] Several language errors exist in this manuscript (e.g., “Gao and
Soja” should be “Gou and Soja”). Careful proofreading is required.

Response 8: We thank the reviewer for pointing this out. In the revised manuscript, we will carefully proofread
the manuscript and correct all language errors, including reference names such as “Gao and Soja,” which will be
corrected to “Gou and Soja.”

Comment 9: [Results and Discussion, Figure 6] The presentation of “0.5°x0.5°” is questionable and should be
replaced with the multiplication sign (x).

Response 9: Thanks. In the revised manuscript, we will correct the presentation of “0.5°x0.5°” and replace it
with the proper multiplication sign (x) for clarity and accuracy. The same will be followed throughout the
manuscript:

Comment 10: [Results and Discussion] Too many boxplots are included in this manuscript. Consider integrating
these figures to make the results more clear.

Response 10: We thank the reviewer for this suggestion. In the revised manuscript, we will introduce following
heatmaps replacing box plots for more clarity. We have replotted them and are shown below for your reference.
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Figure. Left panel showing Correlation Coefficient (r) for GRACE, CMC and MMC. Right panel showing Root Mean
Square Error (RMSE) for GRACE, CMC and MMC.

Similar heat maps will be generated for displaying gain in r and RMSE for all three products (GRACE, CMC and
MMC). Also, to show r between products (CMC, MMC) and WGHM heat maps will be generated. However, to
display DL results we will use the box plot just to break the monotony.

Comment 11: [References] The reference list is inconsistent in format. Please carefully check the references
throughout the manuscript.
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