
Response to reviewer’s comments 

# Reviewer 1  

We thank the reviewer for their comments. Our responses to all the comments are provided below. 

Initial summary comment: The manuscript mainly examines the downscaling of GRACE mascon-based total 
water storage anomalies over India, introducing a mascon-scale mass conservation approach and validating the 
product with in-situ groundwater well observations. The topic is of broad interest to researchers in hydrology 
and remote sensing, and the dataset produced could be potentially useful for regional water resource studies. 
However, the study builds closely on previous work (Vishwakarma et al., 2021), and the novelty is therefore 
somewhat limited. In addition, the manuscript suffers from some shortcomings in the literature review, 
methodological justification, interpretation of the results, and presentation of figures and references. Therefore, 
the manuscript requires substantial revisions before it can be considered for publication. 

Response: Thank you for the constructive feedback and acknowledging the relevance of our study in the field of 
hydrology and remote sensing, as well as the potential value of the produced downscaled product. Although the 
study is closely built on the work of Vishwakarma et al. (2021); the proposed Mascon-wise Mass Conservation 
(MMC) approach substantially improves the efficacy of downscaled product.  Moreover, the validation 
performed in this study provides a robust assessment of the efficacy of downscaled products which was lacking 
in earlier studies. For this evaluation, we adopted the temporal gain metric proposed by Pascal et al. (2022), 
which is an important step towards standardizing validation practices. These factors (MMC and validation) have 
also been recognised by reviewer two as main strength and novelty of this manuscript.   

We will substantially revise the manuscript to address all the comments. Some of the major changes will be:  

• Expanding the literature survey (including the articles Jyolsna et al. 2021, Karunakalage et al. 2021: list 
of the articles will be added as table in the revised manuscript). 

• Providing a more detailed and clearer justification of methodology. 
• Improving the interpretation and discussion of results within different hydrogeological contexts across 

India.  
• Improving the readability and presentation of figures and references.  

Major Comments 

Comment 1: [Introduction] The literature review does not sufficiently describe international developments in 
GRACE downscaling methods. The limited set of references makes it difficult to see how the study advances 
beyond existing work. 
Response 1: We thank the reviewer for this valuable comment. We agree that the current version does not 
sufficiently cover international developments in GRACE downscaling research. In the revised manuscript, the 
literature review will be substantially expanded to include national and international studies (listed in the Table 
below). Following modified paragraph will be inserted in the manuscript: 
TWSA from GRACE is difficult to validate due to unavailability of in-situ TWSA data (Scanlon et al., 2016) but not 
impossible if one compartment of TWSA is changing rapidly while others stay stable, especially over India where 
groundwater decline is alarming (Sarkar et al., 2020).  Another major challenging task to deal with is a coarse 
spatial resolution of GRACE data. Several hydrological, and agricultural studies demand regional/local scale 
inputs. To cater this demand several attempts to downscale GRACE TWSA have been conducted. Broadly those 
downscaling methods are categorised in two types: model-based/dynamic and data-based/statistical method. 
The model-based/dynamic approach is physically based, strongly depends on boundary conditions and 
computationally expensive (Schumacher et al., 2018; Sun et al., 2023). Whereas, in the data-based/statistical 
approach an empirical relationship is developed between coarse scale variables and fine scale variables. Owing 



to its computational efficiency and ease of implementation, the model-based/statistical approach has gained 
popularity among researchers. Related studies are summarized in Table. The statistical approach has been 
primarily implemented in three ways: simple linear regression, multivariate linear regression, and machine 
learning algorithms. In simple linear regression, a single variable is regressed against GRACE TWSA. For instance, 
Gemitzi et al. (2021) and Yin et al. (2018) used only precipitation and evapotranspiration, respectively, to 
downscale GRACE data, as these were identified as the dominant drivers in their respective regions. To address 
cases where a single variable is insufficient to explain TWSA variability, multivariate linear regression with a 
water budget constraint has been applied (Karunakalage et al., 2021; Ning et al., 2014; Vishwakarma et al., 2021). 
To account for nonlinearity, researchers have also implemented machine learning algorithms such as random 
forest, artificial neural networks, and long short-term memory etc. (Ali et al., 2021; Arshad et al., 2025; Chen et 
al., 2019; Gorugantula and Kambhammettu, 2022; Gou and Soja, 2024; Jyolsna et al., 2021; Kalu et al., 2024; 
Miro and Famiglietti, 2018; Pascal et al., 2022). Despite ongoing efforts to enhance the spatial resolution of 
GRACE data, continued advancements in data processing techniques and the availability of improved data 
products offer substantial scope for further improvement.  
 
Table. Summary of the statistical downscaling studies applied to GRACE data. 

Reference Statistical downscaling method 
        Original 

resolution 
Downscaled 
resolution 

Study region 

Simple linear regression  

Gemitzi et al. (2021)  
Simple linear regression using GPM-
IMERG precipitation  1° × 1° 0.1° × 0.1° Greece  

Yin et al. (2018)  Simple linear regression using ET   110  ×	110 km 2 ×	2 km 
North China 
Plain  

Multivariate linear regression  

Karunakalage et al. 
(2021)  

Multivariate regression model 
with water budget closure constraint  1° × 1° 0.25° × 0.25° 

Mehsana 
district,  
Gujarat, India   

Ning et al. (2014)  
Multivariate regression model 
with water budget closure constraint  1° × 1° 0.25° × 0.25° 

Yunnan 
province, 
China  

Vishwakarma et al. (2021)  
Multivariate regression model 
with water budget closure constraint  3° × 3° 0.5° × 0.5° Global  

Machine learning algorithms  

Ali et al. (2021)  
Artificial neural network and Random 
Forest   1° × 1° 0.25° × 0.25° 

Indus basin 
irrigation 
system  

Arshad et al. (2025)  
Random forest, CART, Gradient tree 
boosting algorithms  55 ×	55 km 1× 1 km Saudi Arabia  

Chen et al. (2019)  Random Forest  1° × 1° 0.25° × 0.25° 

Northeast of 
mainland 
China   

Gorugantula and Kambha
mmettu (2022)  Long Short-Term Memory  1° × 1° 0.25° × 0.25° 

Krishna River 
Basin, India  



Gou and Soja (2024)  Convolutional eural network  3° × 3° 0.5° × 0.5° Global  

Jyolsna et al. (2021)  
Multi variate regression, Random 
Forest   1° × 1° 0.25° × 0.25° 

Four 
contrasting 
hydrogeologic
al basins of 
India   

Kalu et al. (2024)  
Support Vector Machine (SVM) with 
water budget closure constraint  1° × 1° 0.25° × 0.25° 

Northern 
Australia (the 
Cambrian 
Limestone  
Aquifer—CLA)  

Miro and Famiglietti 
(2018)  Artificial neural network  2,00,000 km2 16 km2 

California’s 
Central Valley  

Pascal et al. (2022)  
Multi linear regression, Random 
Forest  3° × 3° 0.5° × 0.5° 

A fractured 
crystalline 
aquifer in 
southern India  

 
 
Comment 2: [Methodology, Line 165] The use of k = 8 in the k-means clustering requires further justification. 
Please explain the reason for this choice and whether sensitivity tests were performed. 
Response 2: Thanks for this insightful comment. We now recognize that the use of k-means clustering on RGB 
values introduces unnecessary uncertainty and risks misclassifying hydrogeological units. Hence, we will replace 
this approach with a vectorization-based method using Quantum Geographic Information System (QGIS) as 
adopted by Kuruva et al. (2025).  
For this vectorization-based approach, the hydrogeology map is used in TIF format. Each polygon within this file 
is assigned with corresponding Specific Yield (SY) value as mention in Table 2 (Bhanja et al., 2016). This TIF file is 
then used to extract SY values for the quality-controlled groundwater well observations. Thus, following section 
will be inserted in methodology section of manuscript: 
3.1.1 Conversion of GWL changes to groundwater storage changes 
To compute GWSC (m EWH), quality controlled GWL change (GWLC) is multiplied with Specific Yield (SY). Where 
SY is a dimensionless factor that indicates the fraction of total ground water volume that would yield under 
gravity and is used to convert change in water level to change in water storage. Fundamentally it is a 
hydrogeological property of an aquifer.  
These SY values are extracted from hydrogeology map of India (Figure and Table. Source: Bhanja et al., (2016)) 
at quality-controlled well locations using vectorization method in Quantum Geographic Information System 
(QGIS) platform. The required raster layer of hydrogeology map is downloaded from 
https://doi.org/10.6084/m9.figshare.29293877.v3 (Kuruva et al., 2025). Then quality controlled GWLs are 
converted into point shape file and overlaid on this raster layer to extract SY values at each well location using 
“sample raster values” tool in QGIS. The obtained SY is multiplied with quality controlled GWLC to get reference 
groundwater storage changes hereafter referred as Ref-GWSC. 
 



 
Figure. Hydrogeology map of India (Kuruva et al., 2025) 

Table. Specific yield values for varying hydrogeologic setting shown in Figure x (Source: Bhanja et al., 2016) 
 

S.No Hydrogeology Sy range Mean Sy 
1 Unconsolidated sedimentary 0.06 to 0.20 0.130 
2 Consolidated, permeable sedimentary 0 to 0.08 0.043 
3 Sedimentary aquitards 0 to 0.03 0.018 
4 Folded metasediments/metamorphics 0 to 0.03 0.018 
5 Jointed crystalline 0.01 to 0.03 0.020 
6 Fractured crystalline 0 to 0.04 0.023 

 
 
Comment 3: [Methodology] Some equations are not clearly defined in this manuscript. For example, the 
meaning of LM2004-2009 in equation (1) is not presented. All variables and symbols should be explained in detail to 
avoid confusion. 
Response 3: We apologize for not clearly defining this in the original manuscript. In the revised version, we will 
ensure that all equations are clearly explained, including the meaning of LM2004-2009 in Equation (1), and that all 
variables and symbols are explicitly defined to avoid any confusion. Indeed LM2004-2009 stands for Long-term Mean 
(LM) of total water storage from 2004 to 2009. Following details will be mentioned in the manuscript. 
 
3.1.2 Validation of GRACE-GWSC with Ref-GWSC 
GRACE TWSA are in centimetres (cm) of EWH which are converted to meters (m) of EWH. Thereafter, 
contemporaneous datasets of all variables i.e., quality controlled well measurements, storage anomalies from 
conopy, river, lake, reservoir, soil moisture, wet land, and snow, and GRACE TWSA are analysed. GRACE provides 
TWSA with respect to the mean TWS over 2004 to 2009, whereas other variables are not anomalies hence they 
are converted to anomalies by removing a Long-term Mean over 2004 to 2009 (𝐿𝑀!""#$!""%). This can be 
implemented for all variables except well observations which are available only at seasonal interval. Therefore, 
to resolve this issue, we compute the differences between consecutive observations where CGWB GWL data is 
available, as the change in anomalies is equivalent to the change in the actual values at the corresponding times. 
This method provides a more robust and consistent basis for validation compared to interpolating the CGWB 
seasonal GWL data, which may introduce additional uncertainties and potential errors. The concept can be 
expressed mathematically as follows: 
𝑇𝑊𝑆𝐴& = 𝑇𝑊𝑆& − 𝐿𝑀!""#$!""%                                                                                                                                               (3) 
𝑇𝑊𝑆𝐶&' = 𝑇𝑊𝑆𝐴& − 𝑇𝑊𝑆𝐴' = 𝑇𝑊𝑆& − 𝑇𝑊𝑆'                                                                                                                       (4) 
𝐺𝑅𝐴𝐶𝐸	𝐺𝑊𝑆𝐶&' = 𝑇𝑊𝑆𝐶&' − 𝐶𝑆𝐶&' − 𝑆𝑛𝑆𝐶&' − 𝑆𝑀𝑆𝐶&' − 𝑆𝑊𝑆𝐶&'                                                                                      (5)                                                            



where 𝑖	 = present month (January/May/August/November) and 𝑗	 represents the data for the previous month. 
Eq. 3 is used to compute TWSA for 𝑖() month (𝑇𝑊𝑆𝐴&) where 𝑇𝑊𝑆& represent the TWS of 𝑖() the month. Eq.4 
shows that 𝑇𝑊𝑆𝐶&' i.e., TWS change (TWSC) obtained after subtracting TWSA of 𝑗() month (𝑇𝑊𝑆𝐴') from the 
𝑖()  month (𝑇𝑊𝑆𝐴& ) is equal to subtracting TWS of 𝑗()  month (𝑇𝑊𝑆' ) from the 𝑖()  month (𝑇𝑊𝑆& ) since the 
𝐿𝑀!""#$!""% cancels out. Using Eq. 5 GRACE-GWSC of 𝑗() month w.r.t. 𝑖() month (𝐺𝑅𝐴𝐶𝐸	𝐺𝑊𝑆𝐶&') is computed 
after removal of Storage Changes due to Canopy (𝐶𝑆𝐶&'), Snow (𝑆𝑛𝑆𝐶&'), Soil Moisture (𝑆𝑀𝑆𝐶&'), and Surface 
Water Storage Changes (𝑆𝑊𝑆𝐶&') which includes storages of river streams, lakes, reservoirs, and wetlands. The 
resulting 𝐺𝑅𝐴𝐶𝐸	𝐺𝑊𝑆𝐶&'  are validated against Ref-GWSC. To validate the GRACE product at its native 
resolution, median of quality controlled GWLs is computed over a mascon whereas to validate the downscaled 
product, median computation is done over a grid of 0.5° × 0.5°.  
 
Further the downscaling methodology will be explained in a detailed manner in the revised manuscript as 
follows: 
3.2 Statistical downscaling to generate Mascon-wise Mass Conservation (MMC) downscaled product 
We used Partial Least square Regression (PLR) method to downscale GRACE TWSA to 0.5° × 0.5° from its native 
resolution of about 3° × 3°. Flow chart of the methodology is as shown in Figure 3. Our method is a modified 
version of the method elaborated in Vishwakarma et al. (2021) which uses regression model as shown in Eq.6. 
𝑆 = 𝐿𝐻	                                                                                                                                                                                                       (6) 
Where 𝑆	represent predictand matrix with 𝑛 (total number of months) ´ 𝑔 (total number of 0.5° × 0.5° grids in 
a mascon) dimensions. WGHM TWSA performs the role of this predictand matrix (𝑆). 𝐿 is a predictor matrix i.e., 
observation matrix. Its dimensions are 𝑛	 × 𝑑. Where 𝑑 represent columns of P, ET, R, and GRACE TWSA. Eq. 6 
is solved to obtain 𝐻  (prediction matrix, 𝑑	 × 	𝑔 ). The modification we implemented here is that mass is 
conserved at mascon scale instead of catchment scale i.e., for whole set of operations Vishwakarma et al. (2021) 
unit was a catchment; in this study it is changed to a mascon. 
To set up the predictor matrix (𝐿) is the first and very important step here. 𝐿  consists of residuals of four 
variables (P, ET, R, and GRACE TWSA). In fact, there exist a temporal lead or lag amongst the water budget 
components (P, ET and R). Hence, K (=12) shifted time series of these datasets are generated and cyclostationary 
mean is removed to obtain residuals. To generate residuals of GRACE TWSA trend and annual cycle is removed 
from it. 
Consider a mascon where total 36 0.5° × 0.5° grids are present. Our study period (January 2004 –December 
2023) contains total 240 months. Thus, data matrix dimensions for a given mascon are 240 (rows) ×  36 
(columns).  To generate 12 months shifted time series of P, ET and R, data from January 2003 is required. When 
𝐾 = 1, rows run from Jan 2003 to Dec 2022. For 𝐾 = 2, row starts with Feb 2003 and ends at Jan 2023 and it 
goes on. To remove cyclostationary mean, month wise average is computed for the period between 2004 and 
2023 resulting into 12 values which are removed from individual datasets. Thus, for a single variable after 
combining all 12 shifted timeseries, matrix dimensions become 240 ×	432. Next, GRACE TWSA are detrended 
and annual cycle is removed to obtain residuals (240 × 36). Combining P, ET, R and GRACE TWSA generates our 
final observation matrix (𝐿) with dimensions (240 × (1332=432+432+432+36)). Thereafter, residuals of WGHM 
TWSA are obtained after detrending and removal of GRACE annual cycle. This represents 𝑆 (240 × 36) in Eq. 6.  
Eq. 6 represents ideal case but in reality, measurements contain inherent noise. Thus, multivariate model 
becomes: 
 𝑆 = 𝐿𝐻 + 𝐸                                                                                                                                                                                              (7)       
Where 𝐸 in Eq. 7 represents the noise. Once Eq. 7 is set up, PLR obtains Principal Components (PCs) via Singular 
Value Decomposition (SVD). i.e., 𝐻 will be computed. Please note dimensions of 𝐻 is 𝑑	 × 	𝑔, which suggests 
grid wise coefficient will be determined unlike traditional regression method.  
To solve Eq. 7, covariance matrix (𝐶) is computed using Eq. (8) which is decomposed via SVD (Eq. 9).    
𝐶 = 𝐿*𝑆                                                                                                                                                                                                       (8)    
𝐶 = 𝑈+S+𝑉+*                                                                                                                                                                                              (9) 



Where 𝑈+  (𝑑	 × 	𝑟)  and 𝑉+  (𝑟 × 𝑑)  are canonical modes (joint normalised eigen vectors for 𝐿  and 𝑆 ),  S+  
(𝑟	 × 	𝑟) is a diagonal matrix which will contain covariance between 𝐿 and 𝑆. 𝑟 represents canonical modes from 
SVD. To obtain PCs of 𝐿 (𝑈,) which are significantly correlated with 𝑆 , 𝐿 is projected on  𝑈+  using Eq. 10. 
𝑈, = 𝐿𝑈+                                                                                                                                                                                                    (10)           
Rearranging Eq. 10, Eq. 11 can be obtained as follows, 
𝐿 = 𝑈,𝑈+*                                                                                                                                                                                                   (11)           
Eq. 11 substituted to Eq.7 gives, 
𝑆 = 𝑈,𝑈+*𝐻 + 𝐸                                                                                                                                                                                       (12)       
This can be written as,  
𝑆 = 𝑈,𝐾 + 𝐸                                                                                                                                                                                               (13)       
Where 𝐾 (𝑟	 × 𝑔) is transformed regression matrix obtained by projecting 𝐻 on 𝑈+. Now, we want to conserve 
the mass over a mascon unlike a catchment (Vishwakarma et al., 2021) even after downscaling, a mass budget 
constraint is applied here. i.e., 𝑆 = D𝑀 = Average TWSA over a mascon. 
D𝑀 = 𝑈,𝐾 + 𝐸                                                                                                                                                                                      (14) 
Finally bringing the constraint in the observation space and solving for 𝐾 using least squares method, 
𝐾 =	 (𝑋*𝑋)$-𝑋*𝑌                                                                                                                                                                                (15) 

𝑋 = F.!.!G  and 𝑌 = H /
D0I                                                                                                                                                                     (16) 

In a simplified manner Eqs. 15,16 suggests that solutions should converge to 𝑆 and further only those solutions 
should be retained which will conserve the mass over a mascon.  The 𝐾 obtained after solving Eq. 15 is then 
substituted in Eq.17 (obtained after rearranging  𝐾 = 𝑈+*𝐻 ) to get 𝐻. 
𝐻 = 𝑈1𝐾                                                                                                                                                                                                   (17) 
This computed 𝐻  when put back to Eq. 6 with already prepared 𝐿 matrix, downscaled GRACE residuals are 
obtained. To which trend and annual cycle are added back to get final downscaled GRACE TWSA referred as 
MMC downscaled product. 
 
Section 3.3 will be modified to justify the implementation of evaluation metric as follows: 

3.3 Evaluation of downscaled products  

First, validation of all three downscaled products is performed using Ref-GWSC measurements by computing 
the Correlation Coefficient (r) and Root-Mean-Square Error (RMSE). In addition to these classical evaluation 
metrics, the temporal metric gain proposed by Pascal et al. (2022) is implemented to compare the performance 
of the downscaled products. As noted by Pascal et al. (2022) most studies do not assess the performance of 
downscaled GRACE products relative to the original GRACE data. By using the temporal gain metric, we can 
quantitatively evaluate the accuracy of the downscaled products. 
In the present study, GRACE JPL mascon data are used as the low-resolution reference without applying the 
scale factor. These scale factors, being multiplicative and model-based, can amplify any uncertainties in the 
GRACE product if the model does not align with reality. Vishwakarma et al. (2017) and Pascal et al. (2022) have 
shown that applying the scale factor can degrade rather than improve the results. Consequently, we have not 
extended the validation framework to compute spatial gain, since our low-resolution reference does not 
incorporate the scale factor and thus does not contain spatial variability. As illustrated in Figure, the reference 
values are uniform over each mascon. 



 

Figure. GRACE mascons over India for September 2004. Red boxes represent mascon boundaries. 

Comment 4: [Results and Discussion] The performance varies significantly across mascons, with some showing 
improvement and others even negative correlation. These spatial differences are only described in this 
manuscript, but they are not explained in sufficient detail. Potential reasons, such as groundwater abstraction, 
geological conditions, or climatic variability, should be discussed in this part. 
Response 4: We thank the reviewer for this comment. In the revised manuscript, we will discuss the reasons for 
the varying performance across mascons, including factors such as groundwater abstraction, geological 
conditions, and climate variability, to provide a clearer interpretation of the results.  
For example, Section 4.1 will be updated as shown below. 
4.1 Validation statistics for GRACE GWSC at native resolution (𝟑° × 𝟑°) across India 
Figure indicates mascon-wise maps of r and RMSE between GRACE GWSC and ref-GWSC across India. The 
validation is performed only for 36 mascons out of 52 owing to missing well observations. Out of 36, 28 mascons 
showed positive r ranging from 0.06 to 0.91. Mascons 5 and 27 showed a maximum r value of 0.91, indicating 
that GRACE is capable of explaining 83% of GWSC variability in these mascons. Mascons 19, 26, 35, 36 and 41 
showed r values varying between 0.83 to 0.86 explaining the variability of GWSC between 69% to 74%. For 
mascons 9, 10, 15, 18, 24, 25, 28, 34, 37, 40, 45, 49 r is ranging between 0.63 and 0.79, explaining 40 to 60% of 
GWSC variability. These results indicates that GRACE GWSC is capable of explaining variability in GWSC over 40% 
for majority of the mascons. In contrast, mascons 16, 32, 43, and 48 showed low r values (0.15, 0.06, 0.17 and 
0.10, respectively), indicating that GRACE is not even capturing a 3% of GWSC variability. Mascons 4, 8, 17, 22, 
23, 44 and 50 exhibited negative correlations. RMSE values observed to be ranging between 0.06 m to 0.32 m. 
The best (minimum) RMSE is observed for mascon 6 whereas worst (maximum) is shown by mascon 16. Overall 
RMSE remained low for majority of the mascons (< 0.16 m) whereas mascon 9, 16, 17 showed higher RMSE 
varying between 0.29 m and 0.32 m. 
Interestingly, we also found that the validation performance is independent of number and distribution of wells 
in the mascon. For instance, mascon 17, with 112 wells, exhibited a negative correlation of -0.32, whereas 
mascon 5, with only 33 wells showed maximum correlation of 0.91. Similarly, mascon 15, where all wells are 
clutered in the right side of the mascon, still showed a good correlation of 0.63. Whereas mascon 16 has a fairly 
well distributed network of wells, still  showed a poor correlation of 0.15. Thus, the failure of GRACE in capturing 
groundwater signal in some mascons can be attributed to multiple factors such as, errors in measurements of 
GWL, high irrigational activities occurring at local scales, inadequacy of WGHM model in computing exact 
storages of canopy, snow, soil moisture, river streams, lakes, reservoirs, and wetlands. Conversely, in some 
mascons GRACE performs exceptionally well, achieving r = 0.91 and RMSE = 0.09 m. The strong agreement also 
underscores the superiority of the difference-based validation method, as it preserves the integrity of observed 



data and yields more reliable results than approaches that rely on temporal interpolation of CGWB 
measurements. 

 
Figure. Mascon-wise maps of (a) the correlation coefficient (r) and (b) RMSE between GRACE GWSC and Ref-
GWSC over India. 
 
 
Comment 5: [Results and Discussion] The MMC method fails for mascon 9, but no further explanation is given 
in this part. A discussion of why the method fails here would be valuable. 
Response 5: Thanks for the comment. This was a misunderstanding as the color scale was limited between -0.2 
to 0.2 m. Here is the figure with modified extended scale where spatial variability in mascon 9 is clearly visible.   

 
Figure. Mascon-wise Mass Conservation (MMC) downscaled TWSA (m) for September 2004. 



 

Please note that additionally, in the revised manuscript, we will extend the Mascon-wise Mass Conservation 
(MMC) downscaled product up to December 2023, thereby improving the temporal coverage of the dataset. 

Comment 6: [Results and Discussion] The manuscript does not adequately discuss uncertainties or limitations 
of the proposed method, including sparse well distribution, specific yield estimation, errors in the forcing data, 
and model bias. 
Response 6: We appreciate the reviewer’s comment. In the revised manuscript, we will discuss the main 
uncertainties and limitations of our method. 
For example, Secti. 4.1 will be updated as shown below. Similarly, the downscaling results and their associated 
uncertainties will be presented and discussed in detail in the revised manuscript. 
4.1 Validation statistics for GRACE GWSC at native resolution (𝟑° × 𝟑°) across India 
Figure indicates mascon-wise maps of r and RMSE between GRACE GWSC and ref-GWSC across India. The 
validation is performed only for 36 mascons out of 52 owing to missing well observations. Out of 36, 28 mascons 
showed positive r ranging from 0.06 to 0.91. Mascons 5 and 27 showed a maximum r value of 0.91, indicating 
that GRACE is capable of explaining 83% of GWSC variability in these mascons. Mascons 19, 26, 35, 36 and 41 
showed r values varying between 0.83 to 0.86 explaining the variability of GWSC between 69% to 74%. For 
mascons 9, 10, 15, 18, 24, 25, 28, 34, 37, 40, 45, 49 r is ranging between 0.63 and 0.79, explaining 40 to 60% of 
GWSC variability. These results indicates that GRACE GWSC is capable of explaining variability in GWSC over 40% 
for majority of the mascons. In contrast, mascons 16, 32, 43, and 48 showed low r values (0.15, 0.06, 0.17 and 
0.10, respectively), indicating that GRACE is not even capturing a 3% of GWSC variability. Mascons 4, 8, 17, 22, 
23, 44 and 50 exhibited negative correlations. RMSE values observed to be ranging between 0.06 m to 0.32 m. 
The best (minimum) RMSE is observed for mascon 6 whereas worst (maximum) is shown by mascon 16. Overall 
RMSE remained low for majority of the mascons (< 0.16 m) whereas mascon 9, 16, 17 showed higher RMSE 
varying between 0.29 m and 0.32 m. 
Interestingly, we also found that the validation performance is independent of number and distribution of wells 
in the mascon. For instance, mascon 17, with 112 wells, exhibited a negative correlation of -0.32, whereas 
mascon 5, with only 33 wells showed maximum correlation of 0.91. Similarly, mascon 15, where all wells are 
clutered in the right side of the mascon, still showed a good correlation of 0.63. Whereas mascon 16 has a fairly 
well distributed network of wells, still  showed a poor correlation of 0.15. Thus, the failure of GRACE in capturing 
groundwater signal in some mascons can be attributed to multiple factors such as, errors in measurements of 
GWL, high irrigational activities occurring at local scales, inadequacy of WGHM model in computing exact 
storages of canopy, snow, soil moisture, river streams, lakes, reservoirs, and wetlands. Conversely, in some 
mascons GRACE performs exceptionally well, achieving r = 0.91 and RMSE = 0.09 m. The strong agreement also 
underscores the superiority of the difference-based validation method, as it preserves the integrity of observed 
data and yields more reliable results than approaches that rely on temporal interpolation of CGWB 
measurements. 



 
Figure. Mascon-wise maps of (a) the correlation coefficient (r) and (b) RMSE between GRACE GWSC and Ref-
GWSC over India. 
 
Comment 7: [Results and Discussion] The conclusions are too general. The practical implications for 
groundwater management and policy are not sufficiently discussed and should be strengthened. 
Response 7: In the revised manuscript, we will strengthen the conclusions by highlighting the practical 
implications of our findings for groundwater management and policy, emphasizing how the downscaled product 
can inform regional water resource planning and decision-making. In the revised manuscript, the following 
modified conclusion will be inserted: 
5 Conclusions 
In this study, we carried out validation and downscaling of GRACE observations over India. For proper validation 
of GWSC specifically contributions from other storage components such as canopy, snow, soil moisture, river 
streams, lakes, reservoirs, and wetlands removed from GRACE TWSA. We conclude that GRACE at its native 
resolution (about 3° × 3°) when compared with in-situ well data showed varied performance over mascons. At 
some mascons GRACE successfully captures the observed variations with high r (> 0.86) and RMSE (< 0.16 m) 
values. However, there were a few mascons where GRACE didn’t perform well possibly due to errors in GWL 
data and inadequate accounting of water storages other than groundwater. By implementing modified 
downscaling approach, a new downscaled product (MMC) is developed and compared with CMC. Over several 
mascons MMC approach showed a drastic improvement by converting negative correlation seen in CMC into 
positive ones over CMC approach. The DL approach also performs better than CMC but in terms of RMSE, MMC 
outperformed both CMC and DL when validated with in-situ.  
The resulting high-resolution groundwater storage datasets hold immense potential for a wide range of scientific 
and practical applications in water resource research and management. By providing spatially varied information 
on groundwater, they can significantly improve drought characterization and severity mapping, especially in 
regions with sparse in-situ data. These downscaled products can serve as critical inputs to hydrologic and 
groundwater models, enabling more accurate representation of subsurface storage dynamics at regional and 
basin scales.  These all together can help in evaluating effectiveness of groundwater recharge/extraction policies. 
The fine resolution information can further support in basin-planning, watershed restorations and river 
rejuvenation initiatives by helping to identify zones of water stress and potential recharge areas.  Consequently, 



the developed downscaled storage product can play a crucial role in guiding sustainable groundwater 
management, enhancing climate resilience and informed evidence-based decision making for India’s ongoing 
water resource and rejuvenation program. 
 
 
Minor Comments 

Comment 8: [Introduction, Line 22 and Line 26] Several language errors exist in this manuscript (e.g., “Gao and 
Soja” should be “Gou and Soja”). Careful proofreading is required. 
Response 8: We thank the reviewer for pointing this out. In the revised manuscript, we will carefully proofread 
the manuscript and correct all language errors, including reference names such as “Gao and Soja,” which will be 
corrected to “Gou and Soja.” 
 
Comment 9: [Results and Discussion, Figure 6] The presentation of “0.5°x0.5°” is questionable and should be 
replaced with the multiplication sign (×). 

Response 9: Thanks. In the revised manuscript, we will correct the presentation of “0.5°x0.5°” and replace it 
with the proper multiplication sign (×) for clarity and accuracy. The same will be followed throughout the 
manuscript: 

Comment 10: [Results and Discussion] Too many boxplots are included in this manuscript. Consider integrating 
these figures to make the results more clear. 
Response 10: We thank the reviewer for this suggestion. In the revised manuscript, we will introduce following 
heatmaps replacing box plots for more clarity. We have replotted them and are shown below for your reference. 
 

              



Figure. Left panel showing Correlation Coefficient (r) for GRACE, CMC and MMC. Right panel showing Root Mean 
Square Error (RMSE) for GRACE, CMC and MMC. 
 
Similar heat maps will be generated for displaying gain in r and RMSE for all three products (GRACE, CMC and 
MMC). Also, to show r between products (CMC, MMC) and WGHM heat maps will be generated. However, to 
display DL results we will use the box plot just to break the monotony. 
 
Comment 11: [References] The reference list is inconsistent in format. Please carefully check the references 
throughout the manuscript. 
Response 11: We apologize for the inconsistencies in the reference list. In the revised manuscript, we will 
carefully check and standardize all references to ensure consistent formatting throughout.  
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