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Abstract. Tabular icebergs calve from ice shelves and glaciers in Antarctica, Greenland, and northern Ellesmere Island. These 

‘ice islands’, as they are referred to in the Arctic, drift, melt, and fragment, contributing freshwater and nutrients to the ocean, 

influencing circulation, carbon cycling and biodiversity in ways that remain poorly understood. Icebergs also pose risks to 

shipping, and maritime infrastructure. Improved understanding of iceberg drift and fragmentation will reduce uncertainties in  

climate simulations and operational hazards. This study presents the first comprehensively validated, scalable multi-10 

generational iceberg tracking approach and the first that is capable of reconstructing iceberg ‘lineages’ (here used to describe 

life histories including sources, where that source is a larger iceberg) through fragmentation events. This method enables a 

comprehensive reconstruction of iceberg paths from calving to their eventual disintegration, allowing for monitoring and 

source attribution across their life cycle.  

We propose CryoTrack, an unsupervised approach based on iceberg geometry that is agnostic to data source or delineation 15 

method. The system requires only vector outlines. Initially, icebergs are linked across timesteps when their shapes remain 

similar, forming ‘tracklets’. When significant shape changes occur, fragmented ‘child’ icebergs are linked to their ‘parents’ 

using a fuzzy geometric assembly method based on dynamic time warping, akin to assembling a jigsaw puzzle without image 

data. This approach reconstructs full iceberg lineages back to their calving origin. We evaluate system performance using 

manually tracked iceberg outlines originating from Petermann Glacier and other northwest Greenland ice tongues. Standard 20 

tracking metrics and custom iceberg specific metrics assess its accuracy in scientific and operational contexts. Our approach 

achieves excellent tracking of icebergs with an overall tracking accuracy of 0.98 and 94% of iceberg area are correctly linked 

to source when icebergs are last observed.  

This system, which focuses on the tracking of icebergs, but not the related and challenging problem of their detection, 

contributes to the need for scalable iceberg monitoring. It enhances understanding of iceberg behaviours, impacts, and 25 

fragmentation, supporting process based and data driven predictive modelling for environmental and operational applications. 

1 Introduction 

Freshwater inputs to the oceans due to iceberg melting have the potential to influence ocean circulations, sea ice formation and 

nutrient and carbon cycles, with global environmental repercussions, yet iceberg dynamics and impacts are poorly represented 
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in numerical models due to a paucity of observations (Cenedese & Straneo, 2023). Iceberg flux represents roughly half of the 30 

total freshwater discharge from both the Antarctic and Greenland ice sheets (J. Bamber et al., 2012; J. L. Bamber et al., 2018; 

Coulon et al., 2024; Davison et al., 2020; Depoorter et al., 2013; Mottram et al., 2024). The locations of this freshwater input 

to the oceans can be far from the source location and substantially temporally delayed (Wagner et al., 2017), making this input 

difficult to quantify and model. For tabular Antarctic icebergs, 80% of ice loss has been shown to result from fragmentation 

into smaller icebergs, compared to 18% from basal melt (Tournadre et al., 2015). Being able to identify the source of large 35 

bergs and their fragments is therefore crucial to understanding the location and timing of most of the freshwater input to the 

oceans from icebergs. This capability would enable better parameterizations of freshwater distributions in ocean models (Huth 

et al., 2022; Marsh et al., 2015), improve their coupling to ice sheet models (Shiggins et al., 2023), aid evaluation of ecological 

impacts (Arrigo et al., 2002; K. L. Smith et al., 2013) and help mitigate hazards posed to humans, infrastructure and the 

environment (Fuglem & Jordaan, 2017; Hill, 2001; Mueller et al., 2013; Sackinger et al., 1985).  40 

 

Icebergs are currently monitored by multiple national agencies for the provision of ice hazard information to marine 

stakeholders in the Arctic (e.g. Canadian Ice Service, International Ice Patrol), while the largest Antarctic icebergs (>18.5km 

in length) are tracked by the US National Ice Center. This tracking remains a largely manual endeavour. The requirement for 

substantial operator input limits current iceberg monitoring at both poles with restrictions to monitoring imposed based on 45 

geographical extents or iceberg size (e.g., Crawford et al., 2018a). Automated approaches to tracking will lead to more 

information being available to marine operators and will grow more extensive datasets for investigations into iceberg 

occurrence, drift and deterioration over time and space. As satellite technology improves, these automatically acquired datasets 

will also account for a greater proportion of the power law distribution that represents iceberg populations undergoing 

fragmentation (Crawford et al., 2018b; Enderlin et al., 2016; Tournadre et al., 2016). Such studies will furnish new insights to 50 

controls on motion (Crawford et al., 2016; Marson et al., 2018; Morison & Goldberg, 2012), fragmentation (A. J. Crawford et 

al., 2024; England et al., 2020; Huth, Adcroft, Sergienko, et al., 2022; Zeinali-Torbati et al., 2021)  and freshwater inputs 

(Crawford et al., 2018b; Huth et al., 2022; Stern et al., 2016). These advances will, in turn, support improved modelling of ice-

shelf fracture and calving by enabling more comprehensive evaluation and validation. Improved representation of the processes 

and drivers of iceberg drift and deterioration will also further efforts to integrate process based and data driven models across 55 

the ice sheet-ocean interface, enhancing the fidelity of global climate models (Ackermann et al., 2024; R. S. Smith et al., 2021). 

 

Advances have been made in automatic iceberg identification from satellite imagery in recent years (Barbat et al., 2019; Moyer 

et al., 2019; Shiggins et al., 2023), though most approaches are not yet sufficiently scalable to support operational monitoring 

(Evans et al., 2023) and developments in this field are ongoing. While iceberg detection is a necessary step, our work focuses 60 

specifically on the downstream task of tracking icebergs once they have been detected in a time series of satellite images. 

Previously Barbat et al. (2021) developed an automated approach for tracking icebergs present in satellite scenes of the Weddell 

Sea. That approach relied on Jaccard similarity between shape descriptors, principally a vector of radial distances from centroid 
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to perimeter. They used the tracked icebergs to infer drift and melt rates but did not attempt to link across fragmentation events. 

Indeed, they observed that their tracker’s principal failure mode was when fragmentation or large melt events occurred, 65 

although they did not offer a comprehensive evaluation of the tracker’s characteristics. Koo et al. (2023) used similar shape 

descriptors to track icebergs detected by their algorithm but did not present a substantial evaluation. Earlier attempts at tracking 

have also been made (e.g., Silva & Bigg, 2005) but no studies have yet tried to reconstruct lineages starting from an iceberg’s 

source location and spanning fragmentation events. The majority of smaller (yet often still tabular) icebergs are calved from 

larger icebergs rather than directly from ice shelves (Tournadre et al., 2016). Understanding the sources and fates of these 70 

fragments of larger icebergs is therefore a critical aspect of understanding freshwater fluxes and distributions. This study 

addresses some of the challenges to better understanding the impacts of icebergs on the global system by presenting the first 

comprehensively evaluated, automatable and scalable iceberg tracking methodology of which we are aware, and also the first 

iceberg tracking schema capable of maintaining lineage associations between icebergs across fragmentation events.  

 75 

Tracking of icebergs sits within the broad domain of Multiple Object Tracking (MOT) problems. Most MOT methods are 

based on tracking unchanging objects in sequences of natural images and transformer architectures have recently been widely 

employed to produce state-of-the-art (SOTA) trackers (e.g., Chu et al., n.d.; Meinhardt et al., n.d.; Sun et al., 2020). The iceberg 

tracking problem is, perhaps, most similar to the problem of tracking cells in live cell microscopy data since both contexts 

must be able to handle division of objects (fragmentation for icebergs / mitosis in the context of cells), as well as movement, 80 

changes in shape and other attributes, and disappearance (melt / apoptosis). Cell tracking is a well developed field (Ulman et 

al., 2017) with transformer based architectures also recently achieving SOTA performance. Gallusser & Weigert (2025) 

recently proposed the first transformer tracking approach that is capable of handling division events. Nevertheless, and 

irrespective of architecture, we are not aware of any tracking approaches explicitly designed to be capable of handling division 

into more than two child objects, which is necessary for tracing the lineage of large tabular icebergs that may experience large 85 

fragmentation events that produce many child icebergs.  

 

The iceberg tracking problem is further differentiated from other tracking challenges by the geospatial context, topological 

constraints, and complex environmental fields (wind, currents, sea ice concentration and drift etc.) that dictate iceberg 

movement. Additionally, the objects to be tracked vary dramatically in size. The surface area of tabular icebergs tracked in the 90 

the Canadian Ice Island Detection, Drift and Deterioration (CI2D3) Database, upon which we base this study, vary by 5 orders 

of magnitude (Crawford et al., 2018a). Their highly variable observed mobility, coupled with a sparse and irregular sampling 

frequency (relative to laboratory or video based sequence acquisitions available in microbiological studies) further exacerbates 

the tracking challenge for icebergs since they can move by hundreds of kilometres between observations to be well outside 

their previous footprint. There is also a pervasive missing data problem that arises from satellite acquisition schedules and 95 

meteorological conditions when constructing image sequences. Most MOT and cell tracking methods proposed to date are also 

supervised in nature and therefore require extensive datasets of manually labelled pairs of image and segmentation mask to 
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learn object associations. While the CI2D3 Database (Crawford et al., 2018a) that we use to develop our presented approach 

contains numerous segmentations, the underlying image data are not available to the authors for the purposes of this study, 

and we are not aware of any suitable annotated datasets upon which to train a supervised method. The approach proposed here 100 

is therefore fully unsupervised, which offers advantages for transferability across geographical contexts and data modalities. 

We employ tools and evaluation metrics developed for live cell tracking contexts but introduce a novel geometric assembly 

process along with evaluation metrics tailored to the expected downstream applications.  

2 Data  

We use the CI2D3 Database to develop and evaluate our proposed method. While other iceberg databases exist (e.g. Brigham-105 

Young University / National Ice Center ((Budge & Long, 2018)), the CI2D3 Database is, to our knowledge, unique in 

containing comprehensive lineage information for icebergs down to, at times, 0.1km² in areal extent. The CI2D3 Database 

contains more than 25000 polygons, manually delineated from a combination RADARSAT-1 and -2 and Envisat imagery 

selected with a target revisit period of two weeks, representing large, tabular icebergs (“ice islands”) that originated from 

calving events at the Petermann Glacier, northern Greenland in 2008, 2010, 2011 and 2012, along with calving events from 110 

other floating ice tongues in that region (Crawford et al., 2018a). Lineage associations were manually ascribed by the expert 

annotator, taking into account proximity, shape and appearance including surface patterns and textures. While manual 

determination of lineages implies a degree of uncertainty, it represents the most reliable method available. Nevertheless, the 

reference dataset’s limitations will affect the tracking results. For example, we have observed that at least one iceberg with 

near identical geometry and close proximity that we believe to be the same iceberg, but which lacks a track linking the 115 

observations in the CI2D3 dataset. Such artefacts of the manual annotation process are believed to be rare but have the potential 

to affect the performance metrics for our automated tracking approach. 

3 Methods 

We adopt a tracking-by-detection approach to the problem, as is common across many MOT domains (Gallusser & Weigert, 

2025). Within this framework, objects are initially segmented in a detection step before being tracked in a secondary step. In 120 

the case of manual delineations, as conducted for the generation of the CI2D3 Database, detections are in polygon (vector) 

format denoting the perimeter of the icebergs. Automated iceberg detection approaches vary but tend to produce segmentation 

masks representing presence or absence of iceberg on a per pixel basis. These can easily be converted to polygons. Some object 

detection methods may return properties of the identified regions (icebergs) such as texture or intensity, while others may 

return deep feature embeddings. However, these additional properties are not always available and would not be consistent 125 

across source data modalities. The tracker we propose here is therefore designed to operate on the lowest common denominator 

information supplied by all detection workflows, namely the geometry of each detection. This means it is highly generalizable 
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and agnostic to the process that generates the iceberg segmentation. The tracking process consists of five stages: data 

preparation, tracklet construction, generational linking, lineage reconstruction and evaluation.  

3.1 Data preparation 130 

The contents of the CI2D3 Database are shown in Figure 1. We selected a spatial subset for development and evaluation that 

contains the calving tongue of the Petermann Glacier, the source of most of the icebergs in the dataset. The subset (delineated 

red in Figure 1) encompasses any icebergs from Petermann Glacier and those drifting from more northerly glaciers as they 

follow the prevalent drift pattern to the south through the Nares Strait. As such, the spatial extent of our subset encompasses 

the source of most icebergs and the densest field of observations in the dataset and should present the most challenging 135 

environment in which to track icebergs because it contains the largest numbers of spatially close and contemporaneously 

observed icebergs, as well as the largest numbers of the smallest icebergs. 
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Figure 1: (a) Detections (black) in the CI2D3 Database spanning 2008-2013 with the spatial subset used here defined by 

the red box. (b) Example of tracklets and generational linkages for part of an iceberg lineage. (c) Schematic of partial 140 
lineage tree representing the fragmentation of an iceberg (ID 1167) within the CI2D3 Database, following the branches 

containing the largest fragment at each division. Colours of branches correspond to the iceberg outlines on the right, 

numbers denote iceberg ID. Map data: https://www.openstreetmap.org/copyright. 
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Within the CI2D3 Database, each iceberg observation has a unique identifier, with lineage information contained in a field 145 

denoting, in the case of drift, the identifier associated with the previous observation of that iceberg or, in the case of 

fragmentation, the identifier will be that of the parent iceberg prior to fracture. This representation was initially converted for 

this study such that an iceberg retains the same unique (integer) identity across time points unless it divides into two or more 

fragments, at which point each child iceberg is assigned a new unique identifier and a ‘parent’ attribute denoting the ID of the 

iceberg that fragmented to form it ((c), Figure 1).   150 

 

The domain contains multiple satellite scene footprints. Each observation timepoint, therefore, does not provide full coverage 

of the entire domain (even for the subset used in this study) and the remainder is effectively missing data. As such, the absence 

of icebergs in the missing data region does not imply an absence of icebergs at that point in time, merely an absence of 

observations. For any given location, therefore, the observations are temporally sparse relative to the overall sequence of all 155 

observation timepoints that comprise the whole domain. The target observation interval for any given point in the CI2D3 

Database was two weeks. For the purposes of demonstrating the proposed method, the dates at which any observation was 

contained in the database were stacked and a uniformly incrementing timestep assigned to that date, implying that the physical 

time interval between successive timesteps is non-uniform. For the test subset area this resulted in 706 observation timepoints 

between 2008 and 2013. We recognize that this simplistic treatment of the time domain presents issues but the development 160 

of a more general schema for simultaneously handling spatial and temporal sparsity within tracking problems is beyond the 

scope of the current work. Each polygon in the CI2D3 Database is represented by its geometry, which we resampled to a 

uniform 256 vertices equally spaced around the perimeter (see codebase for implementation), and has attributes of its own 

identity (‘ID’), its parent’s identity (‘parent’) and the timestep (‘t’) in which it was observed. In addition to these, the original 

iceberg to which each can track its lineage through its parents is denoted by a ‘root’ attribute. The 256 vertex resampling 165 

ensures that, even for very large icebergs, the outline alignment stage (3.3.1 Outline alignment:) remains computationally 

tractable, which would not be guaranteed if using a uniform-distance resampling or without resampling at all. Furthermore, 

resampling to a uniform number of vertices helps to propagate some scale awareness to the amplitude component of the 1-d 

distance vectors (Figure 2b) upon which iceberg associations are based, helping to exploit information on the relative sizes of 

the iceberg when proposing matches. 170 

 

3.2 Tracklet construction 

The tracklet construction stage is analogous to the tracking approaches described in previous studies (Barbat et al., 2021; Koo 

et al., 2023; Silva & Bigg, 2005). In this stage, icebergs that do not change shape substantially between observations are linked, 

as illustrated by the dashed lines in panel B of Figure 1, where a tracklet refers to the path of a single iceberg, potentially across 175 

multiple consecutive observations. A path covering a single time step within a tracklet or generational linkage is referred to as 
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an arc. The method must be able to associate icebergs that change slightly through time as they melt and small parts (below 

the detection limit) calve. We take a conceptually similar approach to that proposed by Barbat et al. (2021) in that we build 

associations between icebergs based on their size and shape. We derive five features to describe each shape. We use three 

simple features, namely area, length and perimeter. We use an additional two features to describe the complex geometry of the 180 

icebergs (UMAP-1 and UMAP-2). To compute these, we fit 10th order elliptical fourier descriptors (EFDs, Kuhl & Giardina, 

1982) to the perimeter shape, implemented using the pyefd python package (https://github.com/hbldh/pyefd, 2024). This 

results in 40 coefficients that are normalized to be rotation and translation invariant, but not size invariant. We then use a 

UMAP dimensionality reduction (McInnes et al., 2018) to reduce this to the two additional features. All five features are 

rescaled 0-1. We then use Bayesian Tracker (Btrack, Ulicna et al. (2021)), a python package developed for live cell tracking, 185 

to establish tracklets for which geometric characteristics do not change dramatically (i.e. they are similar enough that Btrack 

can recognise them as the same iceberg across successive observations). We use the ‘visual features’ linking but disable the 

motion model that places spatial priors on future iceberg locations since it is poorly suited to predicting the highly variable 

movement of icebergs and the non-uniform time spacing of observations. We also do not conduct global optimization, the step 

in which Btrack attempts to construct links between tracklets and establish parent-child relations since the heuristics are not 190 

appropriate for the iceberg context (see introduction). In the process of tracklet generation, Btrack constructs a Bayesian belief 

matrix for each timestep with uniform prior and dimensions N x (M+1), where N is the number of existing tracks and M is the 

number of objects detected in the current field of view. Bayesian updates are then performed based on cosine distances between 

the feature vectors for all pairs of icebergs within a given search radius of each other to calculate the probability of a link being 

established or the iceberg being considered lost (by reference to a tuneable parameter, see config file). Finally, iceberg 195 

associations are chosen, given the belief matrix, based on the maximum posterior probability of either an association or loss 

of the tracklet. Icebergs in the current frame that have not been associated with an existing tracklet generate a new tracklet 

while lost tracklets persist as dummies for a prescribed number of timesteps (see below). Using the five visual features, the 

median cosine distance between icebergs and other temporal instances of the same identity was 3.2E-9, whereas the median 

distance to the icebergs with a different identity was seven orders of magnitude larger at 0.05. This indicates effective 200 

separation of geometries in this 5-dimensional feature space. To handle the temporal data sparsity problem arising from the 

large domain and intermittent satellite coverage of any one location within it, Btrack is able to insert dummy instances for a 

prescribed number of timesteps between linked observations. If an iceberg is not observed again within the given time buffer 

the tracklet is terminated. The search radius and time buffer are tunable parameters that were set, through experimentation, at 

100km and 6 timesteps respectively. Optimal values of these will be a function of the domain extent, data frequency and 205 

environmental factors controlling iceberg motion. Increasing them will tend to increase the false positive linkage rate while 

decreasing them will tend to increase the false negative rate. Ulicna et al. (2021) provide a detailed explanation of how Btrack 

constructs tracklets, and the reader is referred there for further detail. The configuration file for the Btrack step is available 

alongside the codebase (see code availability). 

https://github.com/hbldh/pyefd
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3.3 Generational linking 210 

Generational linking matches ‘child’ fragments to their ‘parent’, which is a larger iceberg, as shown as solid black lines in (b) 

of Figure 1. This is achieved through a process of tessellating child fragments within the outline of the parent iceberg in a 

manner similar to assembling a jigsaw puzzle (Zhang et al., 2017) but without any image information to assist and in the 

presence of the potential for substantial portions of the parent to have been lost entirely from the detections due to melt and 

small scale fracture. We use this process to assess which shapes share similar parts of their geometries and between which it 215 

is possible to make legitimate parent-child linkages. The challenge is to match the high frequency components of the perimeter 

shape while ignoring the global invariances of translation and rotation that arise from iceberg drift between observations. 

Furthermore, due to melt and small scale calving (below the detection limit) modifying the edges of icebergs, imperfect 

segmentation recall, and sub-pixel uncertainties in edge position, it is unlikely that there will ever be perfect correspondence 

between any parts of the perimeter shapes of parent and child icebergs. Similarly, it is unlikely that the total area of children 220 

emanating from one parent will exactly match the original area of that parent.  

 

3.3.1 Outline alignment: 

The core of the process is an outline alignment step, whereby sub-sections of shape perimeters that are similar between icebergs 

are used to align potential children to potential parents (Figure 2).  225 
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Figure 2: Process for outline alignment of child with parent based on finding minimal dynamic time warping (DTW) distances 

between high frequency components of perimeter shapes – Represented as Process 4 in Figure 3. 

To isolate the high frequency shape components and remove translation and rotation we first smooth the raw perimeter of each 

shape using a 5th order EFD and reconstruct the shape from the coefficients and centroid. We then take the Euclidean distance 230 

from each vertex in the raw perimeter to the nearest point on the smoothed outline. Distances are negative where the raw 

outline is further from the centroid than the smoothed outline ((a), Figure 2). This produces a 1-dimensional (1-D) vector of 

deviations between raw and smoothed outlines. We then use dynamic time warping (DTW) to estimate similarity between 

subset regions of these 1-D vectors using a sliding window approach ((b), Figure 2). DTW is a curve matching algorithm that 

estimates dissimilarity between sequences as a warping distance, which is low when sequences align well and high when they 235 

align poorly. It is widely used in audio, speech and text recognition (Müller, 2007; Myers & Rabiner, 1981) and does not 

assume correspondences between the vertices of the two sequences. For each pair of sub-sections (in our case each 10 vertices 

long), we compute a DTW distance using the dtaidistance Python package (Meert et al., 2020), producing a matrix of DTW 

distances, in which areas where the shape perimeters align well are observable as minima ((c), Figure 2). We take the sliding 

window subsets corresponding to the lowest DTW distance found and use the geographic coordinates of the vertices to compute 240 

a least-squares transformation matrix between them. We apply this transformation to the child iceberg to translate and rotate 

it, thereby superimposing it on the parent iceberg ((d), Figure 2). We then perform an iterative closest points alignment on all 

vertices of the parent and aligned child to reconcile any small positional errors. These largely arise from angular errors in the 

transformation estimation. We impose an experimentally determined heuristic constraint that the alignment must result in more 
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than 96% of the area of the child being within its intersection with the parent ((e), Figure 2). This constrains children to fall 245 

largely within the parent geometry. If this constraint is breached we discard the alignment and iterate to the sub-sequences 

with the second smallest DTW distance, repeating the transformation and overlap checks. This process is repeated for DTW 

distances below the median of the matrix until a satisfactory alignment is found. If no alignment is found the child is not linked 

to the parent. Having accepted an alignment we compute the inlier RMSE (root mean squared error) of the vertex coordinates 

to represent how good the geometric fit between the outlines is and upon which to compare competing possible alignments 250 

((f), Figure 2). 

 

3.3.2 Tessellation 

At any given time step there may be multiple potential parents and children. The alignment process described above for a 

single parent-child linkage is deployed within an iterative workflow in such circumstances in order to tessellate multiple 255 

children within parents (Figure 3).  
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Figure 3: Tessellation workflow for associating multiple parent and child icebergs. Blue denotes parents, orange denotes children. 

Processes are shown in rectangular boxes. Insets i. and ii. illustrate Processes 2 and 6 respectively. Process 4 corresponds to the 

outline alignment represented in Figure 2. 260 

The workflow is triggered when a previously unseen iceberg appears (i.e. a new tracklet is initiated). In such situations we 

require an explanation for the appearance of an iceberg that we have not previously observed and calving from a larger iceberg 

is the most probable explanation (Barbat et al., 2021), particularly when far from glacier or ice shelf calving fronts (we discuss 

the limitations of this assumption further below).  The potential source could either be an iceberg that has disappeared (a 

tracklet that has ended, see process 1, Figure 3) or an iceberg that continues to be observed but has lost sufficient area to 265 

account for the newly observed iceberg (process 2, Figure 3). In the latter case, the most recent previous observations of such 
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icebergs are treated as a candidate parents (A, blue, in inset i. of Figure 3) while the corresponding iceberg at the same time 

point as the track appearance trigger becomes an additional candidate child (B, orange, in inset i. of Figure 3) such that its 

intersection is removed from the parent A following Process 6 (Figure 3) before testing the newly appeared iceberg for fit to 

any fragments that remain.   270 

 

We thus end up with a list of candidate parents and a list of candidate children. Starting with the largest candidate child, we 

identify possible parents within the preceding time range using a probabilistic spatial filter (process 3, Figure 3) based upon 

vector fields interpolated from the tracklet data (see Appendix A: Probabilistic spatial filter for constraining possible parent 

icebergs:). In contrast to the fixed search radius of 100km used for tracklet construction, this allows us to inform where we 275 

look for matches based upon the tracklet observations and the time interval between observations, helping to constrain the 

locations of proposed generational linkages to be consistent with the observed motion of icebergs between fragmentation 

events.  We perform alignment (Figure 2 and process 4, Figure 3) against all possible larger parents. We take the alignment 

with the lowest inlier RMSE following iterative closest point (ICP) registration as being the most likely parent-child 

relationship (process 5, Figure 3). We then remove the intersection of the aligned child’s geometry (orange in inset ii. to Figure 280 

3) from that of the parent (blue in inset ii. to Figure 3). This leaves parts of the parent unaccounted for, from which other 

children could be derived (inset ii. Figure 3). These remaining parts are added back to the candidate parents list while the 

aligned child is removed from the candidate children list and its parentage recorded and the parent is removed from the 

candidate parents list, having been accounted for. This process is repeated until all candidate children have been assigned to a 

parent or there are no more valid alignments found. Candidate children for which no alignment to a parent is found initiate a 285 

new lineage.  

 

We thus have five tuneable parameters within the generational linking stage. Sigma is the standard deviation of the gaussian 

used to model spatial source probabilities while probability threshold determines the probability above which the location of 

a candidate parent is accepted for consideration in generational linking (see Appendix A). Proportional overlap is the 290 

proportion of the child’s area that must fall within the parent for the match to be deemed valid, time buffer is the maximum 

number of timesteps over which matches are considered and sub-section lengths is the number of vertices used to calculate 

DTW distances. 

3.3.3 Lineage reconstruction 

 295 

The tessellation procedure is conducted across the dataset, iterating by time step. We then enforce rules about how lineages 

are represented. Icebergs maintain a single identity for as long as no fragmentation event is detected. A fragmentation event is 

defined as when two or more icebergs share a parent. Consequently, an iceberg may change shape and size substantially while 

maintaining an identity if no others can be aligned to the parts it loses. Conversely, it may remain substantially the same shape, 
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but if a small fragment calves and is associated with it (as in Figure 3, panel i), both that fragment and the largely unchanged 300 

iceberg will be assigned new identities (thereby initiating new tracklets) and their parent attribute set to the initial identity. 

Parents may be linked to many children but a child may only be linked to one parent. We are thus able to reconstruct the 

lineage trees of icebergs (Panel C, Figure 1) in an automated fashion for the first time. We discuss the limitations and 

uncertainties that arise, along with further work required to improve the performance of this step below.  

3.3.4 Evaluation 305 

To our knowledge, object movement and lineage tracking have not been previously explored in a geospatial context, nor in 

cases where track branching may result in more than two children, as seen in cell tracking. Consequently, there are no 

established performance metrics for our context. However, we adapt metrics from the cell tracking domain to assess 

CryoTrack’s performance. We used the traccuracy python package (github.com/live-image-tracking-tools/traccuracy), with a 

custom data loader to handle geospatial vector formats, to evaluate our outputs against the manually ascribed lineages encoded 310 

in the CI2D3 dataset (GT).  

 

We report three transferrable metrics derived from the Cell Tracking Challenge (Ulman et al., 2017): Tracking Accuracy 

(TRA), Target Effectiveness (TE) and Track Purity (TP). TRA describes how well all objects (icebergs) are both identified 

and tracked (although in this case there is no detection step). TE describes the proportion of each reference track for which the 315 

longest reconstructed track overlaps, averaged over all reference tracks. TP is the inverse of TE, being the proportion of each 

reconstructed track for which the longest reference track overlaps, averaged over all reconstructed tracks.  All three vary in the 

range 0-1, with 1 being perfect reconstruction of the tracking graph. The reader is referred to Matula et al. (2015) for further 

detail. In addition to these, we introduce new evaluation metrics tailored to scientific and operational applications of iceberg 

tracking. 320 

 

Scientific applications focus on identifying iceberg origins, reconstructing drift trajectories, determining fragmentation timing, 

and quantifying area loss rates over long timescales, potentially spanning years or decades. Performance in this context depends 

on whether an iceberg can be correctly linked back to its original source, regardless of where or when it is observed. We define 

Root Precision (RP) as the proportion of icebergs correctly attributed to their source at their last observed position. Root Area 325 

Precision (RAP) extends this by weighting RP according to iceberg area, emphasizing the accuracy of total ice mass attribution.  

Operational applications focus on hazard avoidance (Smith et al., 2025), where the priority would be accurately tracking 

icebergs over shorter timescales (days or weeks) to infer recent trajectories and predict future locations over relatively short 

timescales. To assess performance in this context, we evaluate how well predicted tracks match ground truth tracks over 

different time intervals. We report precision (true positives divided by all positives), recall (true positives divided by the sum 330 

of true positives and false negatives), and F1-score (harmonic mean of precision and recall) for different lead times, illustrating 

the reliability of tracks, and therefore trajectories, over those intervals.  
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Generational (parent-child) linkages between icebergs are assessed based on their agreement with the ground truth dataset. 

Since icebergs can divide into more than two fragments, these relationships are evaluated independently rather than requiring 335 

a strict two-child split, as in cell tracking literature. Generational linkages in the predicted set may also be represented by 

tracklets in a continuous track in the GT set, and vice versa. Such linkages themselves are also treated as true positives since 

they link the correct two objects, although they do imply either commission or omission of another generational linkage at the 

same stage. Division Precision (DP), Division Recall (DR), and Division F1-score (DF-1) measure the accuracy of these 

generational linkages. 340 

 

We anticipated tracking to be most challenging in the congested areas close to the calving front of Petermann Galcier. This is 

particularly true because the dataset currently does not allow for the glacier to be represented as a potential source of newly 

observed icebergs. To investigate the effect of near-glacier confusion we also evaluated performance for a subset that excludes 

the fjord (see Appendix B: Exclusion of fjord for method). 345 

 

4 Results 

4.1 Iceberg lineages:  

We tested a variety of combinations of parameters for the generational linking stage, observing the expected trade-offs between 

precision and recall as we varied the effective search radius defined by the sigma and probability threshold parameters (larger 350 

search domain increases precision and decreases recall, and vice versa). Allowing lower proportions of overlap when matching 

shapes leads to less well constrained matches, reducing precision while meaning that the shapes of remaining fragments for 

tessellation of smaller icebergs are less robust, decreasing recall. Lengthening or shortening the time buffer tends to decrease 

precision but is a function of the temporal sparsity of observations in the domain so is informed by the dataset structure. 

Lengthening the sub-section length for the DTW distance matrix comparison adds computational complexity and reduces 355 

performance for the smaller icebergs with fewer perimeter vertices while shortening it reduces the information available for 

DTW calculation too much. We did not observe any extreme, abrupt or unexpected sensitivity to any of the configurable 

parameters during our tests. The final configuration for which we report performance used the following parameters: sigma = 

5000 m; probability threshold = 0.05; proportional overlap = 0.96 (corresponding to the 96% threshold described above); time 

buffer = 6 timesteps; sub-section length = 10 vertices.  Figure 4 shows examples of lineages reconstructed using our method 360 

are shown for two timepoints (t=341 in main panel and t=370 in inset) to illustrate correct tracks and various possible failure 

modes. Five points of interest (A-E) are marked. Point A shows a fragmentation event that is identified by white circles on 

both panels to aid orientation. This event produced two FP generational linkages that also imply two FN arcs. B marks a single 

FN arc in an otherwise long and correct track for a small iceberg. C marks the fragmentation shown in more detail in Figure 
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5c(iii) where three children are correctly matched and one missed. D marks a correctly tracked fragmentation into two children 365 

and E shows successive failures (both FP and FN) in the track of a very small iceberg.   
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Figure 4: Example tracks reconstructed from the CI2D3 dataset prior to two timepoints (t=341 in main panel, t=370 for inset).  True 

positive (TP), false positive (FP) and false negative (FN) arcs and generational links are shown. Point A (white circle) denotes a 

fragmentation resulting in one TP generational link and two FP generational links. This event is identified in both pan els for 370 
orientation purposes. B denotes a FN link in an otherwise long correct track, C corresponds to the fragmentation shown in Figure 

5c(iii), D marks a correctly tracked fragmentation, E denotes a very small, poorly tracked iceberg with both FP an FN arcs 

Greenland elevation data from GIMP-DEM 90 (Howat et al., 2014). 

4.2 Performance:  

Performance, as evaluated against the metrics described in Sect. 3.3.4, is reported in Table 1. The tracker exhibits strong 375 

performance overall, with tracks closely reflecting the manually annotated ones with high overall accuracy and long periods 

of perfect track overlap, particularly between fragmentation events. Fragmentation is captured less well but demonstrates good 

performance given its novelty and presents clear avenues for future improvement.  

 

Table 1 - Tracker performance 380 

Metric Full study domain Domain excluding fjord 

Tracking Accuracy (TRA) 0.98 0.99 

Target Effectiveness (TE) 0.72 0.83 

Track Purity (TP) 0.87 0.88 

Root Precision (RP) 0.51 0.61 

Root Area Precision (RAP) 0.94 0.96 

Division precision (DP) 0.38 0.70 

Division Recall (DR) 0.35 0.34 

Division F1-score (DF-1) 0.37 0.46 

 

The discrepancy between RP and RAP arises from the size distribution of icebergs within the dataset and differential tracking 

performance for different sized icebergs. The relationship between RP and the size of the tracked iceberg is illustrated in Figure 

5a (blue bars), where the grey histogram illustrates the frequency of icebergs within each size class. Icebergs are grouped by 

order of magnitude of surface area, an approach that reflects the size categories proposed by Wesche & Dierking (2015). RP 385 

is high for the larger size classes, decreasing as iceberg surface area declines.  
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Figure 5: (a) Root precision (blue) by size class of iceberg with size classes A0-A4 following Wesche & Dierking (2015), histogram of 

iceberg observations (grey).  (b) Performance in maintaining iceberg identity over 50 non-uniform time intervals. (c) examples of 

automated tessellations (arbitrary scale and colours with contrasting outlines to illustrate where fitted shapes overlap. True positive 390 
(green plus) and false positive (red minus) associations are indicated. Shapes without outlines that fall outside the red parent outlines 

for (iii) and (iv) are false negative associations.  
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Performance, as it relates to navigational uses, was strong, with precision, recall and F1-score for maintaining correct iceberg 

identities across all single observational time intervals of 0.97, 0.90 and 0.93 respectively. Performance remains strong, with 

F1-score exceeding 0.75, out to lead times of 30 time steps as shown in Figure 5b.  395 

 

Performance in establishing generational linkages is weaker than for other aspects. Our geometric assembly method achieved 

a Division Precision of 0.39, Division Recall of 0.35 and Division F1-score of 0.37. Overall performance improved when the 

fjord area was excluded, this being driven by a substantial increase in DP to 0.70, bringing DF-1 to 0.46 despite a small drop 

in DR (0.34). Examples of tessellations enabling reconstruction of complex many-to-one generational associations are shown 400 

in Figure 5c illustrating various success and failure modes. Panels i and ii show wholly correct tessellations for medium and 

small parent icebergs respectively. Panel iii shows a large parent iceberg with three correct child linkages but one false negative 

association (shown outside parent outline) that was not made. Panel iv shows a largely incorrect set of linkages with only one 

child correctly attributed and four false positives and four false negatives.  

 405 

5 Discussion 

Our proposed method exhibits good performance when evaluated using metrics derived from the Cell Tracking Challenge 

(CTC) (Ulman et al., 2017). The TRA performance of 0.98 is artificially elevated since the metric includes a component of 

detection performance. We use the same detections for tracking and evaluation, which implies perfect detection. Nevertheless, 

this metric may serve as a useful benchmark for future studies applying similar methodologies to tracking objects in machine 410 

learning derived segmentations for which independent reference data are available. The values of TE and TP (0.72 and 0.87 

respectively) imply that we typically achieve overlap between reconstructed and reference tracks for substantial portions of 

their lengths.  

 

Our custom metrics derived to support expected scientific downstream applications (RP and RAP) show that we successfully 415 

track the vast majority of large icebergs (classes A3 and A4, >10 km²) such that we can correctly identify their source. For 

smaller icebergs (A0-A2), that ability declines, although for A1 (0.1-1 km²) and A2 (1-10 km²) sizes, moderate performance 

is still achieved. This decline is to be expected since there is less geometric information available (shorter perimeters and less 

scope for natural shape variability) to discriminate smaller icebergs from each other while they are also more numerous, which 

increases the chances of confusion. A4 was the largest class of iceberg represented in the CI2D3 dataset, but is approximately 420 

the smallest size of iceberg that would currently be named and tracked in an Antarctic context. Most named icebergs in the 

Antarctic are in the order 1010 m2 (class A5), with the largest iceberg on record, B15, being in the order 1011 m2. Consequently, 

our results on the CI2D3 dataset give us confidence that our method would perform well on named Antarctic icebergs as well 

as substantially smaller ones that are currently not routinely monitored, dramatically increasing the potential number that can 
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be tracked and allowing for a much more comprehensive representation of the diaspora of icebergs originating from continental 425 

sources. 

We can relate, on average, over 90% of the area of icebergs back to their source when tracklets end. This implies that we are 

capturing the spatial distribution of most of the ice volume following large calving events (likely greater than the RAP value 

due to the 3-dimensional geometry of icebergs (Sulak et al., 2017)) and are able to attribute it to particular ice shelves or 

glaciers in situations where they calve large icebergs. This will allow us to make inferences regarding the distal impacts of 430 

changes in ice stream velocity or calving behaviour at specific locations around the coasts of either Greenland or Antarctica 

that may be forecast by numerical ice sheet simulations.  

 

For operational contexts where recent motion is more informative than provenance we demonstrate a strong ability to maintain 

the correct identity of icebergs across multiple time intervals. The F1-score of our tracker exceeds 0.90 for lead times up to 435 

five intervals, which equates to approximately two months for the target observation frequency of the CI2D3 dataset, and 

remains above 0.75 to 30 intervals (approximately 1 year, (b) Figure 5). This performance provides a robust foundation for 

characterising iceberg motion recent to any given observation and informing inference (either human or machine-generated) 

about future drift patterns. Such insight represents a valuable decision support asset for navigation and hazard mitigation for 

fixed and mobile maritime infrastructure.  440 

 

Establishing robust generational linkages is the most challenging part of the proposed tracking scheme. This is reflected in the 

DP, DR, and DF-1, which are lower than for the other metrics. The generational linkage procedure presented (Figure 2, Figure 

3)  demonstrates a clear ability to correctly align multiple child icebergs within their parent (Figure 5c) and captures a 

reasonable proportion of fragmentations correctly (Table 1). This is a unique capability for an automated tracking system, the 445 

performance of which will be improved upon in future work. Figure 5c(iv) also illustrates two common failure modes of 

generational linking .  

 

The first failure mode is when all children are relatively small compared to the parent and a small total proportion of the 

parent’s area is represented by its surviving children. Both such situations mean that there are few and short perimeter sections 450 

could potentially match between any one child and the parent. There is also substantial scope for a child to be incorrectly 

placed within the parent since the 0.96 proportional overlap heuristic can be met more easily for child icebergs that are 

dramatically smaller than their parent. Furthermore, the uniform vertex count when resampling polygon outlines implies that 

the physical vertex spacing (in metres) varies between the sub-sequences being compared for DTW distance (Figure 2) more 

when parent and child have dramatically different perimeter lengths. Correspondences are therefore weaker and less certain. 455 

These problems may be mitigated in future by implementing fully probabilistic matching.  
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The second failure mode is when there are many candidate children that are not otherwise accounted for. In Figure 5c(iv), 

these generational linkages are made very close to the calving front of the glacier, where many small icebergs appear near-

simultaneously, but without the current method being able to represent their actual source because it is not an existing iceberg. 460 

A primary limitation of the generational matching is its greedy character that is not currently balanced by awareness of potential 

sources other than existing icebergs (such as calving fronts), or fates other than fragmentation (such as drifting beyond domain 

boundaries). This leads to erroneous linkages being made, particularly near the calving tongue of Petermann Glacier and at 

domain boundaries more generally. The problem could be mitigated by including the geometry of the calving tongue as a 

potential parent object within the tracking scheme such that newly calved icebergs could be matched to a change in calving 465 

front geometry. This would also help enhance our ability to track ice volumes right back to their sources. This was not possible 

in this study, using the CI2D3 dataset, because the calving front was not digitized and the underlying imagery were not 

available. When the fjord area was excluded (Appendix B: Exclusion of fjord) tracker performance generally improved (Table 

1) which implies that incorporating calving sources could substantially improve full lineage reconstructions.  

 470 

Icebergs may also appear after drifting from distal sources across the study domain boundary, while tracks may also end when 

icebergs drift outside the domain. In the Btrack optimization step (not used here as it is reliant upon the motion model which 

was disabled), hypotheses are tested that include appearance or disappearance across scene boundaries based on proximity and 

trajectory. Future work will implement probabilistic matching across all feasible associations based on the likelihood of 

geometric matches compared against the likelihood of alternative sources and fates by constructing spatial priors, like those 475 

generated for spatial filtering of potential parents (Appendix A: Probabilistic spatial filter for constraining possible parent 

icebergs:).  

 

In the geospatial context of this study, the domain spans many smaller, asynchronous image volume acquisitions such that 

many image footprints taken at different times combine to make up the domain. The consequence of this is that at any one 480 

time where some part of the domain is observed, most of the domain is unobserved. The naïve treatment of the time domain 

in this study stacks observations and assigns unique timesteps to every point at which valid data are acquired anywhere in the 

domain. Therefore, for any given point in the domain, the temporal sequence of valid observations is sparse and non-uniform. 

This is the principal cause of the need for a time buffer, and for that time buffer to be relatively long (6 timesteps). As the 

domain gets larger, the sparsity of observations at any given location becomes more acute. This motivated the selection of a 485 

relatively small subset of the total dataset extent around the main calving fronts while retaining the majority of lineages. 

Nevertheless, a more sophisticated schema for handling the representation and tracking of moving objects in an asynchronously 

acquired domain is required if larger domains are to be studied. This problem is encountered in other domains and development 

of a generalized solution is beyond the scope of this study but offers an opportunity for collaboration across research 

disciplines.  490 
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Central to our contribution is a novel generalizable geometric assembly algorithm suited to geospatial contexts, capable of 

tessellating shapes to reconstruct other, larger geometries in the presence of large global invariances and imperfect 

correspondences between vertices. This approach should operate in any context where shapes have characteristic, high 

frequency, perimeter curves, although tuning of the smoothing and sliding window parameters is likely to be necessary, 495 

including when applying it to machine-generated iceberg segmentations. Applications include tracking of ice floes or 

reassembly of archaeological artefacts. Unlike pictorial jigsaw puzzle assembly approaches (Markaki & Panagiotakis, 2023; 

Shen et al., 2018), our method does not rely on any textural or image data, so is potentially more broadly applicable where 

only segmentation masks or silhouettes are available.  

 500 

We have evaluated our approach for the CI2D3 dataset but further work is required to evaluate its generalisability to data from 

other sources and regions, including other areas of Greenland with differing calving regimes and for Antarctic icebergs (Guan 

et al., 2025). Future work will apply the approach to machine-generated segmentations and evaluate performance in an 

Antarctic context, then apply the tracker at a continental scale to underpin future freshwater distribution and mechanistic 

calving models. There is also scope for exploring supervised tracking and fragment assembly algorithms. The underlying SAR 505 

image data were not available to the authors for the purposes of this work, but if imagery corresponding to the masks in CI2D3 

were available, this would offer the chance to explore supervised methods such as the transformer based cell tracking package 

Trackastra (Gallusser & Weigert, 2025). 

6 Conclusions 

We present a novel geospatial tracking approach for monitoring and reconstructing tracks and lineages of icebergs, evaluated 510 

against a large, unique manually annotated dataset of icebergs originating from Greenland ice tongues. We extend previous 

work attempting to track icebergs (Barbat et al., 2021; Koo et al., 2023; Koo et al., 2021) by developing a fully automated, 

unsupervised tracking methodology that establishes linkages between icebergs across fragmentation events, thus enabling 

reconstruction of lineage trees and full drift paths that can be traced back to the initial calving location even if the iceberg has 

broken up in the interim. We provide extensive evaluation of the tracker’s performance using generalized metrics and those 515 

tailored to the expected downstream use cases for enhanced iceberg monitoring. This opens new opportunities to understand 

iceberg drift and deterioration at scale, improve iceberg motion, melt and fragmentation models as well as predict distal impacts 

of calving events in a much more granular manner than has hitherto been possible. The geometric assembly approach is 

theoretically transferrable to other domains while the whole tracking pipeline is also suited to geometry based geospatial 

tracking problems. The CryoTrack code is available at https://github.com/lupinthief/CryoTrack. 520 

 

https://github.com/lupinthief/CryoTrack
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Appendix A: Probabilistic spatial filter for constraining possible parent icebergs: 705 

The search domain for potential parent icebergs when conducting the generational linkage stage is constrained by vector fields 

learned from the tracklets generated for unchanged iceberg identities and the time-lag between observations of the child and 

potential parent icebergs.  

Tracklets are initially temporally densified such that each arc represents a single time step. This is achieved by linear 

interpolation of the iceberg locations between start and end point for cases where an arc’s duration is greater than one time 710 

interval. Radial Basis Function interpolation (scipy.interpolation.RBFInterpolator ((Virtanen et al., 2020), linear kernel, 

smoothing 1e5) is then applied to the tracklet arcs with uniform time duration (1) and predicted onto a 25 by 25 grid covering 

the study domain to produce vector fields describing the interpolated motion of icebergs dependent on their location within 

the domain (vx and vy). These are shown in Figure A1.  
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When constraining potential parents for a child iceberg, probabilistic fields of source location are generated by ‘backtracking’ 715 

through the vector fields for the number of time intervals between the child observation and the potential parent observation, 

starting at the grid centroid closest to the child observation. At each time interval, the source probabilities for the location are 

calculated based on the vector fields and a gaussian representation of uncertainty (we used σ=5000 as a compromise between 

the standard deviations within our observed vector field (σvx = 3392 m, σvy = 8662 m)) and accumulated over the number of 

timesteps before being normalised in 0-1. The result is a probability field describing likelihoods for the source location of the 720 

child iceberg at a given lead time (inset panels to Figure A1). If a potential parent is located such that its associated probability 

of being a source is above a given, tuned, threshold of 0.05 (e.g it falls within the contour in Figure A1) it is included in the 

list of potential parents for that child iceberg.  

 

Figure A1 - temporally-densified tracklet arcs (red arrows) and radial basis function interpolated vector field (black arrows). Insets 725 
show illustrative probabilistic source map for example location of cyan dot within sub-region (black box) for lead times of 1 (top 

tight) and 6 (bottom right), with p=0.05 contour shown. 
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Appendix B: Exclusion of fjord 

We tested the performance of generational linking in locations outside the fjord of Petermann Glacier. Within the fjord there 730 

is a propensity of the method to allocate newly-appearing icebergs to fragmentation of existing icebergs when in reality they 

are calving from the glacier tongue. As outlined in the discussion, this arises because out dataset does not include digitisations 

of the shape of the calving front itself so the tessellation process cannot allocate new tracklets to it as a source. Where the 

process finds a potential generational linkage, therefore, it allocates it without comparing with any geometric fit to the calving 

front.  735 

To assess the impact of this limitation on the performance of our generational linking we evaluated our tracks against a subset 

of the dataset that excludes the fjord. Figure B1 shows the fjord area with only those icebergs calved in 2008 shown for clarity. 

All iceberg outlines that intersected with an area representing the fjord (hatched on  Figure B1) were excluded from the dataset. 

The orange filled iceberg re-entered the fjord after being observed in this location and subsequently fragmented, with its 

children first being observed outside the fjord. The ID of this iceberg was manually updated to that of its last observed instance 740 

within the fjord prior to fragmentation to allow for correct assessment of the lineage of its children. The remainder of the 

tracking and evaluation procedure was unchanged.  
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Figure B1 - Exclusion of icebergs within Petermann Fjord, showing only 2008 icebergs for clarity. Those intersecting with hatched 

fjord area were removed from dataset. The filled iceberg re-entered the hatched area before fragmenting so its ID was updated 745 
manually to allow correct evaluation of the lineage of the fragments. Map data: https://www.openstreetmap.org/copyright. 

 

 


