

1 Low site diversity but high diversity across sites of depauperate Crustacea and Annelida 2 communities in groundwater of urban wells in Kraków, Poland

4 Elżbieta Dumnicka¹, Joanna Galas¹, Tadeusz Namiotko², Agnieszka Pociecha*¹

6 ¹ Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, 31-
7 120 Krakow, Poland;

8 dumnicka@iop.krakow.pl; galas@iop.krakow.pl; pociecha@iop.krakow.pl

² Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Witolda Stwosza 59, 80-308 Gdańsk, Poland;

12 tadeusz.namiotko@ug.edu.pl

14 *Corresponding author: Agnieszka Pociecha (pociecha@iop.krakow.pl)

15

16

17 ORCID

18 Elzbieta Dumnicka 0000-0002-7604-8794

19 Joanna Galas 0000-0001-9134-3585

20 Tadeusz Namiotko 0000-0002-0209-2925

21 Agnieszka Fociechna 0000-0002-0208-8800

22

25

24

25

27 **Abstract**

28

29 Crustaceans and annelids are key components of groundwater communities, influenced
30 by both abiotic conditions and biotic interactions. This study assessed their diversity in urban
31 groundwaters accessed via 91 dug/drilled wells in Kraków, southern Poland, subject to
32 chronic anthropogenic disturbance. Invertebrates were recorded in 47 wells, with 19 species-
33 group taxa identified from 28 wells, including eight annelid and 11 crustacean taxa
34 (Ostracoda: 3; Copepoda: 6; Bathynellacea: 1; Amphipoda: 1). Six stygobitic taxa were
35 detected in 10 wells: *Trichodrilus cernosvitovi*, *Trichodrilus* sp., *Typhlocypris* cf. *eremita*,
36 *Diacyclops* gr. *languidoides*, *Bathynella natans*, and *Niphargus* cf. *tatrensis*. Due to some
37 taxonomic uncertainties, open nomenclature was used where necessary. Species accumulation
38 did not reach saturation, but extrapolation suggested the sampling was exhaustive,
39 near complete. Alpha diversity was low (1–3 species per well, mean = 1.4), while beta diversity
40 was high (Whittaker index = 12.3), indicating substantial species turnover, a typical feature of
41 groundwater ecosystems. No clear seasonal trends were observed, consistent with previous
42 studies in Kraków. Four main community types were identified. One, dominated by
43 *Enchytraeus* gr. *buchholzi*, may indicate degraded conditions, another, with *Bathynella natans*
44 and *Aeolosoma* spp., suggests transitional states; a third, dominated by *Trichodrilus* spp.,
45 likely reflects relatively undisturbed groundwater; and a fourth, more heterogeneous type
46 dominated by surface copepods, was ecologically ambiguous. Despite generally low richness
47 and dominance by surface taxa, the presence of six stygobiotic species suggests that at least
48 20% of the surveyed wells retain relatively good ecological conditions.

49

50

51 **Keywords:** subterranean waters, municipal wells, stygobionts, expected species richness

52

53

54

Sformatowano: Czcionka: Nie Kursywa

55 **1. Introduction**

56

57 Urban wells, constructed for various purposes, provide convenient access to
58 groundwater and offer valuable opportunities for studying subterranean aquatic fauna. Urban
59 expansion is a global phenomenon, with cities continuously increasing in area (Kraków in
60 southern Poland, for instance, has expanded by 42% since 1950), often encompassing regions
61 of high conservation value. In urban settings, groundwater is frequently exposed to various
62 types of pollution, including chemical, organic, and thermal contaminants (Kim, 1992; Burri
63 et al., 2019; Becher et al., 2022), which pose significant risks to subterranean fauna. These
64 threats are increasingly recognized, prompting frequent assessments of water chemistry and
65 microbial communities. Consequently, the monitoring of groundwater quality has become a
66 standard practice in many European countries under the EU Water Framework Directive
67 (WFD, 2000) and the Groundwater Directive (GWD, 2006).

68 Despite the ecological significance of urban groundwater ecosystems, the invertebrate
69 fauna of urban wells has historically been studied in only a limited number of European cities.
70 Some of the earliest and most extensive research was conducted in Prague, Czech Republic,
71 by Vejdovský (1882), Sládeček and Řehačková (1952), Řehačková (1953), and Ertl (1957).

72 Additional historical studies include those by [Moniez \(1888-1889\) in Lille \(France\)](#),
73 Jaworowski (1893) in wells of Lviv (Ukraine) and Kraków, Chappuis (1924) in Basel, and
74 Vornatscher (1972) on crustaceans in Vienna. After a long hiatus, interest in urban
75 groundwater fauna has recently resurged, with studies by Koch et al. (2021), Becher et al.
76 (2022, 2024), Englisch et al. (2024), and Meyer et al. (2024). Only very recently have
77 systematic efforts to monitor groundwater fauna in cities been initiated (Johns, 2024),
78 underscoring the growing importance of this field. Earlier publications focused primarily on
79 species inventories, whereas recent studies have increasingly addressed the impacts of
80 urbanization and patterns of biodiversity.

81 The most commonly encountered invertebrate groups in urban wells are annelids and
82 crustaceans. In Poland, annelids have been relatively well studied in various subterranean
83 habitats, including rural wells, and additional records have been provided in the course of
84 other ecological research. These data were comprehensively reviewed by Dumnicka et al.
85 (2020). A checklist of Polish groundwater crustaceans was compiled by Pociecha et al.
86 (2021), and subsequently complemented by Karpowicz et al. (2021) and Karpowicz and
87 Smolska (2024). The distribution of the amphipod genus *Niphargus* in Poland has been
88 particularly well documented, primarily through the work of Skalski (e.g., 1970, 1981), with a

89 synthesis provided by Dumnicka and Galas (2017) and additional records recently reported
90 (pers. comm. A. Górný).

91 Despite this progress, the subterranean aquatic fauna of urban areas in Poland remains
92 insufficiently explored. In Kraków, local geology and contamination patterns have been
93 shown to influence species presence and distribution (Dumnicka et al., 2025).

94 The aim of this study was to assess the taxonomic diversity of annelid and crustacean
95 communities inhabiting groundwater from 91 urban wells in Kraków, estimate total species
96 richness, evaluate seasonal variation, and identify major community types. These insights
97 may help determine whether groundwater in at least some of these wells still retains a
98 reasonably good ecological state.

99

100 **2. Material and Methods**

101

102 **2.1. Study area and sampling sites**

103 Kraków is located at the junction of three tectonic units: the Silesian-Kraków
104 Monocline, the Miechów Basin, and the Precarpathian Depression, which results in a highly
105 complex geological and hydrogeological structure of this area (Kleczkowski et al., 2009). The
106 studied urban wells are distributed across the city, from the historic Old Market Square to the
107 outer residential districts (Fig. 1). Most wells are situated in Quaternary sediments composed
108 of gravel and sand, with occasional inclusions of peat and silt. In the city center, these are
109 overlain by a few-meter-thick layer of anthropogenic deposits. Other wells are located in
110 Neogene (Miocene) sediments composed of various lithologies, such as marls, shales, and
111 gypsum (gypsum-salt formations) (Rutkowski, 1989). The Vistula River flows through
112 Kraków center and is fed by several tributaries (Fig. 1). Holocene fluvial sediments, mainly
113 sands and gravels, occur within the river valleys.

114 According to the list obtained from the Kraków Water Company, approximately 350
115 bored/dug, driven or drilled wells were constructed in the area between the early 19th century
116 and the 1980s. Currently, only about half of these are operational. For the present study, 83
117 such relatively shallow bored/dug wells were selected. Their depths range from 2.3 to 30.0
118 meters, with a typical water column height of 2–4 meters. These wells are primarily fed by
119 percolating water from Quaternary aquifers; however, hydraulic connections with deeper
120 Jurassic or Cretaceous layers have been identified in some locations (Chowaniec et al., 2007).
121 Each well is equipped with a piston pump and is fully sealed at the surface (Fig. 2, left).

122 In addition, 11 deep artesian wells are present in the area. These wells reach the
123 Jurassic aquifer at depths of 80–100 meters and discharge groundwater to the surface without
124 mechanical pumping due to artesian pressure (Rajchel, 1998). The emerging water is directed
125 through pipes (Fig. 2, right). Five of these artesian wells were included in the study.

126 Finally, tap water samples were collected from three separate municipal water intakes.
127 Although well water is not potable, it is occasionally used for purposes such as plant
128 irrigation.

129

130 2.2. Sampling, sample processing and invertebrate identification

131 Sampling was conducted in two consecutive years, 2019 (59 wells) and 2020 (32 wells),
132 with two sampling events per year: spring (April–June) and autumn (September–October). At
133 each of the 91 sampling sites (see Supplementary Table 1 and Fig. 1) and during each
134 sampling event, 100 L of groundwater were filtered using a plankton net with a mesh size of
135 50 µm. Invertebrates were sorted live under a stereoscopic microscope and subsequently
136 preserved in 95% ethanol. Crustaceans and annelids were identified to the species level
137 whenever possible, based on available literature (e.g., Meisch, 2000; Timm, 2009; Błędzki
138 and Rybak, 2016). All taxa were analyzed in samples from both sampling years, with the
139 exception of copepods, which were identified to species level only in the samples collected
140 during the second year.

141 Water chemical and physical parameters properties were measured concurrently with
142 biological sampling. Temperature and specific conductivity (at 25°C) were recorded *in situ*
143 using a portable multimeter (Elmetron CX-401). Ion concentrations were determined in the
144 laboratory of the Institute of Geography and Spatial Management, Jagiellonian University,
145 Kraków, Poland, using ion chromatography following the methods described in Dumnicka et
146 al. (2025).

147

148 2.3. Ecological and statistical analyses

149 To assess whether the sampling effort was sufficient to capture the theoretical species
150 richness of the studied area, species accumulation curves were generated using all 182 samples
151 collected from the 91 wells. These curves illustrate how the number of detected species
152 increases with the number of accumulated samples. Four standard non-parametric richness
153 estimators based on abundance data (Chao 1, Jackknife 1, Bootstrap, and Michaelis-Menten)
154 were also calculated to predict the total expected species richness. The mean (and standard
155 deviation for Chao 1) of both observed and estimated species richness were calculated from

156 9,999 permutations, with samples added in random order, using PAST v. 4.10 (Hammer et al.,
157 2001) and the Species-Accumulation Plot routine in PRIMER 7 software (Clarke and Gorley,
158 2015).

159 To evaluate biodiversity across the wells, several diversity metrics were computed using
160 PAST v. 4.10 (Hammer et al., 2001) and in PRIMER 7 (Clarke and Gorley, 2015). These
161 included: a) Alpha diversity (α) – species richness per site, b) species frequency – number of
162 wells in which each species was present, c) ~~G~~amma diversity (γ) – total species richness
163 across all sites, and d) ~~B~~eta diversity (β) – computed as Whittaker's species turnover index
164 ($\beta = \gamma / \alpha - 1$). For both alpha diversity and species frequency, mean values, ranges, standard
165 deviations, and 95% confidence intervals were estimated using the bias-corrected and
166 accelerated (BCa) bootstrap method with 9,999 replicates. These diversity metrics were
167 calculated separately for three datasets: 1) all species, 2) stygobitic species stygobiontic
168 species, and 3) non-stygobitic non-stygobiontic species. Differences in mean alpha diversity
169 and mean species frequency between stygobitic and non-stygobitic stygobiontic and non
170 stygobiontic groups were tested using one-way permutational analysis of variance
171 (PERMANOVA) with 9,999 permutations in PRIMER 7 with the PERMANOVA+ add-on
172 (Anderson et al., 2008).

173 To assess seasonal differences in the composition and structure of crustacean and
174 annelid communities, non-metric multidimensional scaling (nMDS) was performed based on
175 Bray-Curtis similarity matrices derived from species abundance data (with all-zero samples
176 excluded). Seasonal differences were further tested using PERMANOVA (9,999
177 permutations), implemented in PRIMER 7 with the PERMANOVA+ add-on.

178 Finally, Principal Coordinates Analysis (PCoA) based on Bray-Curtis similarity of
179 relative abundance (percentage) data was used to visualize differences in community structure
180 and composition of crustaceans and annelids among wells. Pearson correlation vectors
181 (threshold > 0.2) were overlaid on the PCoA plot to highlight taxa contributing most strongly
182 to observed patterns. This analysis was also conducted using PRIMER 7 with the
183 PERMANOVA+ add-on.

184

185 3. Results

186

187 3.1. Groundwater physical and chemical properties

188 A summary of the variation in physical and chemical water properties across the studied
189 wells is provided in Fig. 3, with detailed data available in Dunnicka et al. (2025).

190 Water temperature in all wells was relatively high, ranging from 9.7 to 16.2°C, while pH
191 values were predominantly circumneutral (6.5–8.2). Electrical conductivity ranged from 314 to
192 3641 µS/cm, with a mean of 1276 µS/cm, indicating soft to moderately hard water and generally
193 low to moderate dissolved ion concentrations. Some wells exhibited elevated concentrations of
194 sulphates and/or chlorides (> 250 mg / L), with values varying depending on well location and
195 local pollution sources (Dumnicka et al., 2025). Nitrogen concentrations, in the form of nitrates
196 and ammonium, also varied widely. A considerable proportion of wells were nitrate-enriched
197 (> 50 mg NO₃⁻ / L) or ammonium-enriched (> 0.5 mg NH₄⁺ / L). Additionally, relatively high
198 concentration of phosphates (> 0.1 mg PO₄³⁻ / L) and of fluorides (> 1.5 mg F⁻ / L) were recorded
199 in some wells (see Dumnicka et al., 2025; Fig. 3 [here](#)).
200

201 3.2. Taxonomic richness and diversity

202 Crustaceans or annelids were recorded in 47 out of 91 wells (52%), but these could be
203 identified to species level in 28 wells (31%), resulting in 19 species-group taxa (gamma
204 diversity) belonging in Annelida and in four crustacean groups: Ostracoda, Copepoda,
205 Bathynellacea, and Amphipoda, and representing both stygobitic and non-stygobitic
206 stygobiontic and non-stygobiontic ecological groups. Interestingly, there is low co-occurrence
207 annelids and crustaceans within the same wells occurred largely allopatrically (Table 1).
208 Other invertebrate taxa, including Microturbellaria, Nematoda, Rotifera, Collembola, and
209 Diptera larvae, were also found but were excluded from further analysis as they were not
210 identified to species level (see Dumnicka et al., 2025).

211 As expected given the rarity of many species, the species accumulation curve of the
212 observed number of annelid and crustacean species based on all 182 samples from 91 wells
213 did not reach an asymptote (Fig. 4), indicating incomplete sampling. Extrapolated species
214 richness estimates ranged from 23.2 (Bootstrap) to 31.5 (Chao 1), suggesting that between
215 60.3% and 81.9% of the estimated total species pool of the studied area was captured (Table
216 2).

217 Annelids were found in 17 wells (Table 1), and conservatively assigned to at least
218 eight species. Many specimens were immature and were therefore left in open nomenclature.
219 The semi-aquatic family Enchytraeidae was considered as represented by two species: one
220 identified as *Enchytraeus* gr. *buchholzi* and one taxon of the genus *Achaeta*. Other recorded
221 annelids included surface-dwelling *Rhynchelmis* (Lumbriculidae), treated as a single species
222 due to immature material, two *Aeolosoma* species-group taxa, one identified as *A. hyalinum*,

223 and stygobitic stygobiontic *Trichodrilus*, conservatively treated as two species-group taxa,
224 one of which (*T. cernosvitovi*) was confirmed by a single mature individual.

225 Ostracods were recorded only in three wells and they were represented by at least three
226 species of the family Candonidae, one stygobitic stygobiontic *Typhlocypris* cf. *eremita*, and
227 two other surface dwelling species left in open nomenclature since the collected juvenile
228 specimens were not identified down to the species level (representatives of the genus
229 *Pseudocandona*) and neither at the species nor at the genus level (representatives of the
230 family Candonidae) (Table 1).

231 Copepods were the most frequently recorded group, present in 37 wells. However,
232 only specimens from the second sampling year were identified to species level and considered
233 in further analyses. Six species were identified, most typical of small, astatic surface waters.

234 A species belonging to *Diacyclops languidoides* group, recorded in a single well, was
235 considered stygobitic Only one stygobiontic species, *Diacyclops languidoides*, was recorded
236 in a single well (Table 1).

237 Two additional stygobitic stygobiontic crustaceans were recorded: *Bathynella natans*
238 (Bathynellacea) and *Niphargus* cf. *tatrensis* (Amphipoda) (Table 1).

239 Among the 28 wells where crustaceans and/or annelids were identified to species level,
240 the most frequent species were *Enchytraeus* gr. *buchholzi* (found in 10 wells, 36%) and
241 *Trichodrilus* spp. (4 wells, 14%). Notably, 10 species (53%) were found in only one well
242 (Table 1). The mean species occurrence frequency across the full dataset was 2.1 ± 2.0 wells
243 (mean \pm standard deviation SD), with no significant difference between stygobionts ($2.0 \pm$
244 1.3) and non-stygobionts (2.2 ± 2.5) (PERMANOVA: $F = 0.020$, $P = 0.953$; Table 3).

245 Alpha diversity averaged 1.4 ± 0.7 species per well, ranging from 1 to 3. Stygobitic
246 Stygobiontic species exhibited significantly lower mean alpha diversity (0.4 ± 0.7) compared
247 to non-stygobionts (1.0 ± 0.7) (PERMANOVA: $F = 4.874$, $P = 0.026$). Despite generally low
248 alpha diversity, beta diversity (Whittaker index) was high for the entire dataset (12.3) and for
249 both stygobionts (13.0) and non-stygobionts (12.0), indicating high species turnover among
250 wells (Table 3). This is consistent with the PCoA results based on Bray-Curtis similarity for
251 each pair of wells (see below).

252
253 3.3. Seasonal variation in community structure and composition

254 Non-metric Multidimensional Scaling (nMDS) ordination revealed overlap between
255 samples collected in spring and autumn (Fig. 5), suggesting no significant seasonal

256 differences in the structure and composition of crustacean and annelid communities. This was
257 supported by PERMANOVA ($F = 1.30$, $P = 0.171$).

258

259 **3.4. Major community types**

260 Principal Coordinate Analysis (PCoA) revealed four distinct community types, with
261 the first two axes explaining 35.7% of the total variance (Fig. 6). Eight species/taxa exhibited
262 the strongest correlations with the first two PCoA axes and contributed most to the observed
263 pattern (Table 4). The first PCoA axis separated seven wells dominated by nearly
264 monospecific community of *Enchytraeus* gr. *buchholzi* (with minor contribution from
265 Candonidae ostracods), positioned on the right side of the plot, from three additional
266 community types on the left. The lower-left quadrant grouped four wells dominated by
267 stygobitic stygobiontic *Trichodrilus* spp. and *Niphargus* cf. *tatrensis* (with minor enchytraeid
268 presence). The upper-left quadrant contained five wells with the community type
269 characterized by *Bathynella natans* and *Aeolosoma* spp. Between these two community types
270 were 12 wells representing a fourth, less clearly structured community type, distinguished
271 primarily by the surface-dwelling copepods *Acanthocyclops venustus* and *Paracyclops*
272 *iminutus*, along with various copepods, ostracods, amphipods, and annelids, including
273 stygobionts.

274

275 **4. Discussion**

276
277 Although invertebrates have been recorded in 74 of the 91 wells examined in this study,
278 representing 81.3% of the total (Dumnicka et al., 2025), which is comparable to the 81.6%
279 colonization rate observed in 201 wells in Munich (Becher et al., 2024), crustaceans and/or
280 annelids were detected in only about half of these wells (52%). Given the absence of significant
281 differences in the main environmental variables between wells with and without invertebrates
282 (Dumnicka et al., 2025), the absence of crustaceans and annelids in some wells is likely
283 attributable to other natural factors or methodological constraints. These may include the limited
284 dispersal capacity of these taxa in groundwater, the isolation of some aquifers, low population
285 densities leading to non-detection during sampling, or unexamined environmental factors known
286 to influence groundwater fauna (e.g., Marmonier et al., 2023; Hotèkpo et al., 2025), particularly in
287 urban settings. Potential anthropogenic stressors include chemical pollution, oxygen depletion,
288 and thermal disturbances (Becher et al., 2022). Notably, groundwater temperatures in Kraków

289 wells were approximately 3°C higher than those in rural wells located 30–40 km from the city
290 (Dumnicka et al., 2017, 2025).

291 The availability of organic matter and dissolved oxygen, largely dependent on surface-
292 subsurface water exchange, is essential for sustaining groundwater faunal communities. In
293 urban environments, such exchange is often impeded by extensive built-up areas, impervious
294 surfaces, and drainage infrastructure (Becher et al., 2022). Other water chemistry parameters
295 of Kraków urban wells, such as mineralization and nutrient levels, shaped in part by the
296 complex geology of the region (Kleczkowski et al., 2009; Gradziński and Gradziński, 2015),
297 as well as local contamination, may also affect the faunal presence (Chowaniec et al., 2007;
298 Dumnicka et al., 2025). Similar variability in groundwater chemistry has been reported from
299 other European cities (Koch et al., 2021; Becher et al., 2022; Englisch et al., 2022; Meyer et
300 al., 2024). Unfavourable chemical conditions, such as low oxygen or high salinity, may
301 explain the absence of invertebrates in certain wells. Furthermore, the complete sealing of
302 some wells and their location in “urban desert” areas likely inhibit colonization by surface-
303 dwelling species, which can otherwise enhance local groundwater biodiversity. Given this
304 isolation, colonization pathways for surface annelids and crustaceans remain difficult to trace
305 – entry into groundwater likely occurs by chance, and populations may or may not persist.
306 Surface water proximity and rainwater infiltration probably facilitate invertebrate access. In
307 the wells studied in Kraków, a substantial proportion of the annelid and crustacean
308 communities consisted of surface-water taxa, a pattern also observed in other Polish wells
309 (Dumnicka et al., 2020; Karpowicz et al., 2021; Pociecha et al., 2021) and those in other
310 countries (e.g., Vejdovský, 1882; [Moniez 1888-1889](#); Řehačkova, 1953; Dalmas, 1973; [Hahn](#)
311 [et al., 2013](#); Bozkurt, 2023).

312 The frequencies of annelids (19%) and crustaceans (46%) observed in this study fall
313 within the broad range reported for other large European and North African cities, where
314 annelids and crustaceans have been found in 7–58% and 3–75% of wells, respectively
315 (Vejdovský, 1882; Jaworowski, 1893; Řehačkova, 1953; Vornatscher, 1972; Koch et al.,
316 2021; El Moustaine et al., 2022; Dumnicka et al., 2025).

317 We found no clear pattern of seasonal variation in the composition of crustacean and
318 annelid communities [what can be partially caused by low number of taxa](#). This aligns with
319 previous findings in the urban wells in Kraków showing no significant differences in total or
320 group-specific abundances, although taxa richness and the Shannon–Wiener diversity index
321 were significantly higher in autumn than in spring (Dumnicka et al., 2025). Seasonal
322 dynamics in invertebrate communities in urban wells remain unexplored. Bozkurt (2023), for

323 example, found only minor seasonal differences in copepods, cladocerans and rotifers in 29
324 wells in Kilis, southern Turkey, although these were not statistically tested.

325 The gamma diversity of crustaceans and annelids in Kraków wells was relatively high,
326 with 19 species recorded, including six stygobionts, although some uncertainty remains to
327 whether all juvenile *Trichodrilus* specimens represent true stygobiont species. These values
328 upper higher than those reported for urban wells in other Central and Northwestern European
329 cities (Moniez, 1888-1889; Jaworowski, 1893; Řehačkova, 1953; Hahn et al., 2013), where
330 the number of recorded stygobitic species was generally low, ranging from zero in the
331 historical survey in Kraków (Jaworowski, 1893) to five in Prague (Vejdovský, 1882).

332 The species accumulation curve based on our data did not reach saturation. The low
333 mean species frequency (2.1 wells), with no significant differences between stygobionts and
334 non-stygobionts, suggests that additional sampling would likely yield further species.
335 However, the species accumulation curve did not reach saturation. The low mean species
336 frequency (2.1 wells), with no significant differences between stygobionts and non-
337 stygobionts, suggests that additional sampling would likely yield further species.

338 Extrapolation metrics indicate, however, that 4 to 13 additional species might be detected,
339 implying that the current sampling effort approached completeness.

340 Alpha diversity was relatively low, ranging from one to three species per well, with an
341 average of 1.4 ± 0.7 . Notably, the alpha diversity was significantly lower for the stygobitic
342 stygobiontic species (on average < 1 species) than for surface-dwelling species (on average 1
343 species). Similar alpha diversity (mean 1.3, range 1–2) for crustaceans and annelids has been
344 historically reported in urban wells in Lviv, Ukraine as well as in Kraków (Jaworowski,
345 1893), while more diverse communities of these invertebrate groups have also been reported
346 in wells in other cities. For instance, El Moustaine et al. (2022) documented alpha diversity
347 ranging from 1 to 6 species (mean 2.8) in eight well in Meknes, Morocco, although some taxa
348 were identified only to genus or family level. Comparative analyses remain limited due to a
349 paucity of detailed taxonomic studies in urban well fauna in Europe and the tendency of some
350 to report only higher taxonomic groups (e.g., Cyclopoida, Amphipoda, Oligochaeta) (Koch et
351 al., 2021).

352 Copepods were the most frequently encountered in Kraków wells, with six species
353 identified, including *Diacyclops* gr. *languidoides*, only one stygobiont: *Diacyclops*
354 *languidoides*, previously recorded in Poland from five caves, a well and an interstitial habitat
355 (Kur et al., 2020; Pociecha et al., 2021). This taxon has also been occasionally recorded from
356 lakes in Poland (Kur and Wojtasik, 2007) but due to its sporadic occurrence in surface inland

357 waters, its predominantly subterranean distribution, and existing taxonomic uncertainties
358 within this complex, *Diacyclops* gr. *longuidoides* from the Kraków well is treated here as a
359 stygobitic species. Stoch (1995) highlighted the difficulties associated with classifying this
360 species complex, arguing that such classification should take into account ecological factors,
361 such as habitat heterogeneity, environmental stability, and biotic interactions, as well as
362 evolutionary processes, including multiple colonization events and diversification through
363 niche differentiation. Later, Stoch (2001) also pointed out that the importance of these factors
364 in the formation of freshwater invertebrate communities – especially subterranean ones –
365 remains poorly understood, and suggested that advances in copepod taxonomy would
366 contribute to our our understanding of broader questions in theoretical biology. Moreover, the
367 genus *Diacyclops* appears to be highly diversified in the underground waters of Romania,
368 where several species of the *D. longuidoides* group are yet to be described (Iepure et al.,
369 2021).

370 Copepods are key components of groundwater fauna, often comprising true
371 stygobionts and taxa adapted to subsurface habitats (Galassi et al., 2009). Previous surveys of
372 Polish groundwater habitats have reported 51 copepod species, with only four true
373 stygobionts (Karpowicz et al., 2021; Pociecha et al., 2021; Karpowicz and Smolska, 2024). In
374 wells 37 species have been recorded (including three stygobionts), primarily Cyclopoida (30
375 species) plus one Calanoida and six Harpacticoida. Most non-stygobitic Most non-
376 stygobiontic copepods in our study likely originated from surface waters in the Kraków area,
377 as suggested by the presence of *Acanthocyclops venustus* and *A. vernalis*, known from local
378 surface habitats (see Ślusarczyk, 2003; Kur, 2012; Pociecha and Bielańska-Grajner, 2015;
379 Żurek, 2000 and Żurek et al., 2019 for surface water copepods in Kraków).

380 Despite the relatively high total number of ostracod species recorded in Polish
381 groundwater environments (38 species, including nine stygobionts) and specifically from
382 wells (22 species, including eight stygobionts), only three species were found in present
383 study: one stygobiont (*Typhlocypris* cf. *eremita*) and two surface dwelling juvenile candonids.
384 *Typhlocypris eremita* is a most common representative of the stygobitic stygobiontic genus
385 *Typhlocypris*, with representatives found mainly in the interstitial habitats of alluvial aquifers,
386 in the hyporheic zone along rivers and in cavernicolous habitats of central and south-eastern
387 Europe (Namotko and Danielopol, 2004; Namotko et al., 2004; 2014). In Poland *T. eremita*
388 is a most common stygobitic stygobiontic ostracod (Sywula, 1981; Pociecha et al., 2021),
389 occasionally collected in surface waters connected to groundwater (Namotko, 1990;
390 Namotko and Sywula, 1993).

391 Two additional crustacean stygobionts were recorded: the bathynellacean *Bathynella*
392 *natans* and the amphipod *Niphargus* cf. *tatrensis*. The former has been found in one well and
393 five interstitial sites in southern Poland (Sywula, 1989; Pociecha et al., 2021), while the latter
394 is the most widespread Polish stygobiont amphipod, commonly found in caves, wells, and
395 interstitial habitats (Dumnicka and Galas, 2017; Pociecha et al., 2021).

396 Subterranean waters in Poland are known to host 111 annelid species (Dumnicka et
397 al., 2020), with Enchytraeidae being particularly diverse, including soil-dwelling or semi-
398 aquatic species. In Kraków, surface water oligochaetes have been rarely studied (Szarski,
399 1947, Dumnicka, 2002), with *Nais elinguis* being the most common taxon, mainly in lotic
400 habitats. Previous surveys found Enchytraeidae to be relatively rare in Polish wells, with more
401 common Tubificidae and Naididae including several stygophiles (Dumnicka et al., 2020).
402 Similarly, our study found relatively few annelid species. Beside semi-aquatic taxa, also
403 occasional individuals of surface-dwelling genera *Rhynchelmis* and *Aeolosoma*, were
404 unexpectedly observed in the wells in the Kraków centre. **Stygobiont Stygobiontic**
405 *Trichodrilus* spp. were found in four wells, potentially indicating higher water quality.

406 Despite low alpha diversity, beta diversity among wells was high – a pattern
407 characteristic of groundwater ecosystems **where total number of species most often is low**
408 (Hahn and Fuchs, 2009; Malard et al., 2009; Stoch and Galassi, 2010; Zagmajster et al., 2014;
409 Hose et al., 2022). Crustaceans and annelids generally occurred allopatrically, forming four
410 main community types. One type, dominated by *Enchytraeus* gr. *buchholzi* and observed in
411 seven wells may reflect degraded conditions according to the German groundwater ecosystem
412 status index (GESI) (Koch et al., 2021). Another type, dominated by *Bathynella natans* with
413 *Aeolosoma* spp. which was observed in five studied wells may indicate transitional ecological
414 conditions, while the third type dominated in four wells by *Trichodrilus* spp. suggest
415 relatively unaffected conditions. The forth, more heterogeneous community, distinguished
416 primarily by the surface copepods *Acanthocyclops venustus* and *Paracyclops inminutus* is
417 difficult to interpret ecologically. **This community occurred in old city center (wells 84-86**
418 **and 91) or in elevated area (well 69) with no direct connection to surface water. In conclusion,**
419 **although species richness and abundances of annelids and crustaceans were relatively low and**
420 **dominated by surface water taxa, the occurrence of six stygobitic species in 10 of 47 wells**
421 **with crustaceans and/or annelids (or of 28 wells with species-level identifications) suggests**
422 **that 1/5 to 1/3 of wells in Kraków may offer relatively good ecological conditions. In**
423 **conclusion, although species richness and abundances of annelids and crustaceans were**
424 **relatively low and dominated by surface water taxa, the occurrence of six stygobiontic species**

425 ~~in 10 of 47 wells with crustaceans and/or annelids (or of 28 wells with species level~~
426 ~~identifications) suggests that 1/5 to 1/3 of wells in Kraków may offer relatively good~~
427 ~~ecological conditions.~~ Even in urban environments, groundwater fauna play a vital ecological
428 role and may serve as bioindicators, reflecting environmental changes over multiple time
429 scales. Accordingly, the development of a biomonitoring framework for subterranean waters,
430 as proposed by Johns (2024), is warranted.

431 Although the fauna of urban wells in Central Europe is generally species-poor, studies
432 of these habitats may help explain important questions, for example the pathways and timing
433 of species migration from surface to underground waters or between isolated aquifers.
434 Moreover, identifying sites that host the richest fauna and stygobiont populations may serve
435 as a basis for establishing appropriate conservation.

436

437 Conclusion

438

439 This study reveals that despite the relatively low alpha diversity of annelids and crustaceans in
440 urban wells of Kraków, their beta and gamma diversity indicate a heterogeneous and partially
441 natural subterranean ecosystem. The occurrence of ~~stygobitic species~~ ~~stygobiont species~~ in a
442 notable proportion of wells suggests that some groundwater habitats in the city retain
443 ecological integrity. These findings highlight the importance of including urban groundwater
444 fauna in biodiversity assessments and support the need for long-term biomonitoring systems
445 to track environmental changes and protect subterranean ecosystems in urban areas.

446

447

448 Author Contributions

449 E. D.: conceptualization, investigation, methodology (collection, analysis, and interpretation of
450 data), formal analysis, writing – original draft, writing – review and editing, project
451 administration; J. G.: investigation, methodology (collection, analysis of data), writing – original
452 draft, writing – review and editing, project administration; T. N.: conceptualization, investigation,
453 methodology (analysis and interpretation of data), formal analysis, writing – original draft, writing
454 – review and editing; A. P.: conceptualization, investigation, methodology (analysis, and
455 interpretation of data), formal analysis, writing – original draft, writing – review and editing.

456

457 Acknowledgments

458 We are very much indebted to Mirosław Żelazny from the Institute of Geography and Spatial
459 Management, Jagiellonian University, Kraków for allowing the use of the water chemical
460 analyses.

461 We also would like to thank the Management of the Kraków Water Company for sharing the list
462 of wells existing in city area.

463

464

465 **Funding**

466
467 This research was funded by subvention of Institute of Nature Conservation, Polish Academy of
468 Sciences (E.D., J.G., A.P.) and partly by the University of Gdańsk attributed to T.N.

469

470 **Conflicts of Interest**

471 The authors declare no conflicts of interest.

472

473 **Data Availability Statement**

474 The authors confirm that data supporting the findings of this study are available in the article.
475 Readers interested in other materials can request this information from the corresponding author.

476

477 **Supporting Information**

478 Additional supporting information can be found online in the Supporting Information section.

479

480 **References**

481

482 Anderson, M. J., Gorley, R. N., and Clarke, K. R.: PERMANOVA+ for PRIMER: Guide to
483 Software and Statistical Methods. PRIMER-E, Plymouth, UK, 2008.

484 Becher, J., Englisch, C., Griebler, C., and Bayer P.: Groundwater fauna downtown – drivers,
485 impacts and implications for subsurface ecosystems in urban areas, *J. Contam. Hydrol.*,
486 248, 1–16, <https://doi.org/10.1016/j.jconhyd.2022.104021>, 2022.

487 Becher, J., Griebler, C., Fuchs, A., Gaviria, S., Pfingstl, T., Eisendle, U., Duda, M., and Bayer
488 P. B.: Groundwater fauna below the city of Munich and relationships to urbanization
489 effects, 26th Internat. Conf. Subter. Biol., – 6th Internat. Symp. on Anchialine
490 Ecosystems, Cagliari 9–14 Sept., Book of Abstracts, 77, 2024.

491 Błędzki, L.A., and Rybak J.I.: Freshwater Crustacean Zooplankton of Europe: Cladocera &
492 Copepoda (Calanoida, Cyclopoida). Key to Species Identification, with Notes on

493 Ecology, Distribution, Methods and Introduction to Data Analysis, Springer:
494 Berlin/Heidelberg, Germany, 2016.

495 Bozkurt, A.: Investigation of groundwater zooplankton fauna from water wells in Kilis
496 Province from Türkiye, Nat. Engin. Sci., 8, 86–105, 2023.

497 Burri, N.M., Weatherl, R., Moeck, Ch., and Schirmer M.: A review of threats to groundwater
498 quality in the Anthropocene, Sci.Total Environ., 684, 136–154,
499 <https://doi.org/10.1016/j.scitotenv.2019.05.236>, 2019.

500 Chappuis, P. A.: Die Fauna der unterirdischen Gewässer der Umgebung von Basel, Arch.
501 Hydrobiol., 14, 1–88, 1924.

502 Chowaniec, J., Freiwald, P., Patorski, R., and Witek, K.: Kraków. In: Wody podziemne miast
503 wojewódzkich Polski, Ed. Nowicki, Z. 72–88, Warszawa, Polska: Informator
504 Państwowej Służby Hydrogeologicznej, PGI, 2007. [in Polish]

505 Clarke, K. R., and Gorley R. N.: PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth,
506 UK, 2015.

507 Dalmas, A.: Zoocenoses de puits artificiels en provence. Ann. Spélélol., 28, 517–522, 1973.

508 Dumnicka, E.: Upper Vistula River: Response of aquatic communities to pollution and
509 impoundment. X. Oligochaete taxocens, Pol. J. Ecol., 50, 237–247, 2002.

510 Dumnicka, E., and Galas, J.: An overview of stygobiotic invertebrates of Poland based on
511 published data, Subterranean Biology, 23, 1-18, DOI: 10.3897/subtbiol.23.11877, 2017.

512 Dumnicka, E., Galas, J., and Krodkiewska, M.: Patterns of benthic fauna distribution in wells:
513 the role of anthropogenic impact and geology, Vadose Zone J., 16, 1–9,
514 DOI:10.2136/vzj2016.07.0057oi:10.2136, 2017.

515 Dumnicka, E., Galas, J., Krodkiewska, M., and Pociecha, A.: The diversity of annelids in
516 subterranean waters: a case study from Poland, Knowl. Manag. Aquat. Ecosyst., 421,
517 16, doi.org/10.1051/kmae/2020007, 2020.

518 Dumnicka, E., Galas, J., Krodkiewska, M., Pociecha, A., Żelazny, M., Biernacka, A., and
519 Jelonkiewicz, Ł.: Ecohydrological conditions in municipal wells and patterns of
520 invertebrate fauna distribution (Kraków, Poland), Ecohydrology, 18,
521 doi.org/10.1002/eco.2757, 2025.

522 El Moustaine, R., Chahlaoui, A., Khaffou, M., Rour, E., and Boulal, M.: Groundwater quality
523 and aquatic fauna of some wells and springs from Meknes area (Morocco), Geology,
524 Ecology, and Landscapes, DOI: 10.1080/24749508.2022.2134636, 2022.

525 Englisch, C., Kaminsky, E., Steiner, C., Stumpp, C., Götzl, G., and Griebler, C.: Heat Below
526 the City – Is Temperature a Key Driver in Urban Groundwater Ecosystems? In:

527 ARPHA Conference Abstracts, 5, e89677, Sofia, Bulgaria, Pensoft Publishers, <https://doi.org/10.3897/aca.5.e89677>, 2022.

528

529 Englisch, C., Kaminsky, E., Steiner, C., Buga-Nyeki, E., Stumpp, C., and Griebler C.: Life
530 below the City of Vienna - Drivers of groundwater fauna distribution in an urban
531 ecosystem, 26th Internat. Conf. Subter.- Biol., 6th Internat. Symp. on Anchialine
532 Ecosystems, Cagliari 9-14 Sept., Book of Abstracts, 74, 2024.

533 Ertl, M.: Jahreszeitliche Veränderungen der Brunnenorganismen im Verhältnis zur
534 oberflächlichen Verunreinigung der Brunnen, Biologica: Universitas Carolina, 3, 109–
535 131, 1957. [in Czech with German Summary].

536 Galassi, D.M.P., Huys, R., and Reid, J.W.: Diversity, ecology and evolution of groundwater
537 copepods, Freshw. Biol., 54, 691–708, doi:10.1111/j.1365-2427.2009.02185.x, 2009.

538 Gradziński, M., and Gradziński, R.: Budowa Geologiczna. [Geology]. In: Natural
539 Environment of Krakow. Resources-Protection-Management. Eds: Baścik, M., and
540 Degórska, B. Kraków, Poland, Institute of Geography and Spatial Management
541 Jagiellonian University, 23–32, 2015. [in Polish with English Summary].

542 GWD 2006. Directive 2006/118/EC of the European Parliament and of the Council of 12
543 December 2006 on the Protection of groundwater against pollution and deterioration,
544 <http://data.europa.eu/eli/dir/2006/118/oi> 2006.

545 Hahn, H. J., and Fuchs, A.: Distribution patterns of groundwater communities across aquifer
546 types in South-Western Germany, Freshw. Biol., 54, 848–860, 2009.

547 Hahn, H. J., Matzke, D., Kolberg, A., and Limberg, A. : Untersuchungen zur Fauna des
548 Berliner Grundwassers - erste Ergebnisse, Brandenburg. geowiss. Beitr., 20, 85–92,
549 2013.

550 Hammer, O., Harper, D. A. T., and Ryan, P. D.: Past: paleontological statistics software
551 package for education and data analysis, Palaeontologia Electronica, 4, 1–9, 2001.

552 Hose, G. C., Chariton, A. A., Daam, M. A., Di Lorenzo, T., Galassi, D. M. P., Halse, S. A.,
553 Reboleira, A. S. P. S., Robertson, A. L., Schmidt, S. I., and Korbel, K. L.: Invertebrate
554 traits, diversity and the vulnerability of groundwater ecosystems, Functional Ecology,
555 36, 2200–2214, 2022.

556 Hotèkpo, S. J., Namiotko, T., Lagnika, M., Ibikounle, M., Martin, P., Schon, I., and Martens,
557 K.: Stygobitic Candonidae (Crustacea, Ostracoda) are potential environmental
558 indicators of groundwater quality in tropical West Africa, Freshw. Biol., 0:e70043,
559 <https://doi.org/10.1111/fwb.70043>, 2025.

560 [Iepure, S., Bădăluță, C. A., Moldovan, O. T.: An annotated checklist of groundwater](#)
561 [Cyclopoida and Harpacticoida \(Crustacea, Copepoda\) from Romania with notes on their](#)
562 [distribution and ecology, Subterranean Biology, 41, 87–108, 2021. doi:](#)
563 [10.3897/subtbiol.41.72542](#)

564 Jaworowski, A.: Fauna studzienna miast Krakowa i Lwowa [Fauna of Wells in Kraków and
565 Lwów Cities], Spraw. Kom. Fizyograf., AU w Krakowie 28, 29–48, 1893. [in Polish].

566 Johns, T.: Developing the first national monitoring network for groundwater ecology in
567 England, 26th Internat. Conf. Subter. Biol., - 6th Internat. Symp. on Anchialine
568 Ecosystems, Cagliari 9-14 Sept., Book of Abstracts, 6, 2024.

569 Karpowicz, M., Smolska, S., Świsłocka, M., and Moroz, J.: First insight into groundwater
570 copepods of the Polish lowland, Water, 13, 2086, 2021.

571 Karpowicz, M., and Smolska, S.: Ephemeral Puddles - Potential Sites for Feeding and
572 Reproduction of Hyporheic Copepoda, Water, 16, 1068, 2024.

573 Kleczkowski, A.S., Czop, M., Motyka, J., and Rajchel L.Z.: Influence of the geogenic and
574 anthropogenic factors on the groundwater chemistry in Krakow (south Poland),
575 Geologia, 35, 117–129, 2009.

576 Kim, H. H.: Urban Heat Island, Internat. J. Remote Sensing, 13, 2319–2336, <https://doi.org/10.1080/01431169208904271>, 1992.

577 Koch, F., Menberg, K., Schweikert, S., Spengle, C., Hahn, H. J., and Blum P.: Groundwater
578 Fauna in an Urban Area: Natural Or Affected?, Hydrol. Earth Syst. Sci., 25, 3053–3070,
579 <https://doi.org/10.5194/hess-25>, 2021.

580 Kur, J.: Zmienność populacyjna widłonogów Copepoda w wodach podziemnych Południowej
581 Polski [Population variability of copepods in subterranean waters of Southern Poland],
582 Praca doktorska, IOP, 127 pp., 2012. [in Polish].

583 [Kur, J., and Wojtasik, B.: Widłonogi Cyclopoida wybranych jezior zlewni górnej Raduni.](#)
584 [Jeziora Kaszubskiego Parku Krajobrazowego, 145–163, 2007. \[In Polish\]](#)

585 [Kur, J., Mioduchowska, M., Kilikowska, A.: Distribution of cyclopoid copepods in different](#)
586 [subterranean habitats \(southern Poland\), Oceanological and Hydrobiological Studies,](#)
587 [49\(3\), 255-266, 2020.](#)

588 Malard, F., Boutin, C., Camacho, A. I., Ferreira, D., Michel, G., Sket, B., and Stoch, F.:
589 Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe,
590 Freshw. Biol., 54, 756–776, 2009.

591 Marmonier, P., Galassi, D. M. P., Korbel, K., Close, M., Datry, T., and Karwautz, C.:
592 Groundwater biodiversity and constraints to biological distribution. Chapter 5. In:
593

594 Groundwater Ecology and Evolution, Eds: Malard, F., Griebler, C., and Réaux, S.,
595 Academic Press, 113–140, <https://doi.org/10.1016/B978-0-12-819119-4.00003-2>, 2023.

596 Meisch, C.: Freshwater Ostracoda of Western and Central Europe, Spektrum Akademischer
597 Verlag, Heidelberg Berlin, 522 pp., 2000.

598 Meyer, L., Becher, J., Griebler, C., Herrmann, M., Küsel, M., and Bayer, P.: Biodiversity
599 patterns in the urban groundwater of Halle (Saale), Germany, 24th Internat. Conf.
600 Subter. Biol., - 6th Internat. Symp. on Anchialine Ecosystems, Cagliari 9–14 Sept., Book
601 of Abstracts, 39, 2024.

602 Moniez, R.: Faune des eaux souterraines du Département du Nord et en particulier
603 de la ville de Lille. Rev. Biol. Nord France, 3-4, 81–94; 142–153; 170–182; 241–262,
604 1888–1889.

605 Namiotko, T.: Freshwater Ostracoda (Crustacea) of Żuławy Wiślane (Vistula Fen Country,
606 Northern Poland), Acta Zool. Cracov., 33, 459–484, 1990.

607 Namiotko, T., and Sywula, T.: Crustacean assemblages from the irrigation ditches near
608 Szymankowo (Vistula Delta), Zesz. Nauk. UG, Biologia, 10, 159–162, 1993. [in Polish
609 with English abstract].

610 Namiotko, T., and Danielopol D. L.: Review of the *eremita* species-group of the genus
611 *Pseudocandona* Kaufmann (Ostracoda, Crustacea), with the description of a new
612 species, Revista Española de Micropaleontología, 36, 117–134, 2004.

613 Namiotko, T., Danielopol, D. L., and Rađa, T.: *Pseudocandona sywulai* sp. nov., a new
614 stygobitic ostracode (Ostracoda, Candonidae) from Croatia, Crustaceana, 77, 311–331,
615 2004.

616 Namiotko, T., Danielopol, D. L., Meisch, C., Gross, M., and Mori, N.: Redefinition of the
617 genus *Typhlocypris* Vejdovský, 1882 (Ostracoda, Candonidae), Crustaceana, 87, 952–
618 984, 2014.

619 Pociecha, A., and Bielańska-Grajner, I.: Large-scale assessment of planktonic organisms
620 biodiversity in artificial water reservoirs in Poland, Institute of Nature Conservation
621 Polish Academy of Sciences, pp. 272, 2015.

622 Pociecha, A., Karpowicz, M., Namiotko, T., Dumnicka, E., and Galas, J.: Diversity of
623 groundwater crustaceans in wells in various geologic formations of southern Poland,
624 Water, 13, 2193, doi.org10.2290/w13162193, 2021.

625 Rajchel, L.: Wody mineralne i akratopegi Krakowa [Mineral waters and akratopegs in
626 Kraków], Przegląd Geologiczny, 46, 1139–1145, 1998. [in Polish].

Sformatowano: Wcięcie: Pierwszy wiersz: 0 cm, Dopasuj
odstęp między tekstem łacińskim i azjatyckim, Dopasuj odstęp
między azjatyckim tekstem i liczbami

627 Řehačkova, V.: Well-Water Organisms of Prague, *Rozpr. Českoslov. Akad. Věd*, 63, 1–35,
628 1953. [in Czech with English Summary].

629 Rutkowski, J.: Szczegółowa Mapa Geologiczna Polski 1:50 000, arkusz Kraków (973),
630 [Detailed Geological Map of Poland, 1:50 000, Sheet Kraków], Warszawa, Poland,
631 Państwowy Instytut Geologiczny, 1989. [in Polish].

632 Skalski, A.W.: The hypogeous gammarids in Poland (Crustacea, Amphipoda, Gammaridae),
633 *Acta Hydrobiol.*, 12, 431–437, 1970.

634 Skalski, A.W.: Underground Amphipoda in Poland, *V Rocznik Muzeum Okręgowego w
635 Częstochowie, Przyroda* 2, 61–83, 1981. [in Polish with English summary].

636 Sládeček, V., and Řehačkova, V.: Les Cyclopides des puits de Prague, *Časopis Narod. Mus.*,
637 Oddil přírodovědný, 120, 118–125, 1952. [In Czech with French Summary].

638 Stoch, F.: Diversity in groundwaters, or: why are there so many, Mémoires de Biospéologie,
639 22, 139–160, 1995.

640 Stoch, F.: How many species of *Diacyclops*? New taxonomic characters and species richness
641 in a freshwater cyclopid genus (Copepoda, Cyclopoida), *Hydrobiologia*, 453(1), 525–
642 531, 2001.

643 Stoch, F., Galassi, D. M. P.: Stygobiotic crustacean species richness: A question of numbers,
644 a matter of scale, *Hydrobiologia*, 653, 217–234, 2010.

645 Sywula, T.: Ostracoda of underground water in Poland, *V Rocznik Muzeum Okręgowego w
646 Częstochowie, Przyroda* 2, 89–96, 1981. [in Polish with English summary].

647 Sywula, T.: *Bathynella natans* Vejdovský, 1882 and *Proasellus slavus* (Remy, 1948),
648 subterranean crustaceans new for Poland, *Przeg. Zool.*, 33, 77–82, 1989. [in Polish with
649 English summary].

650 Szarski, H.: Oligochaeta limicola found in the neighbourhood of Kraków in the year 1942,
651 *Kosmos*, ser. A, 65, 150–158, 1947. [in Polish with English summary].

652 Ślusarczyk, A.: Limnological study of a lake formed in limestone quarry (Kraków, Poland). I.
653 Zooplankton community, *Pol. J. Environ. Stud.*, 12, 489–493, 2003.

654 Timm, T.: A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central
655 Europe, *Lauterbornia*, 66, 1–235, 2009.

656 Vejdovský, F.: Thierische Organismen der Brunnenwässer von Prag, *Selbstverlag*, Prag, pp.
657 70 mit 8 Tafeln, 1882.

658 Vornatscher, J.: Die Tierwelt des Grundwassers – Leben im Dunkeln, In: *Die
659 Naturgeschichte Wiens*, Band 2, *Naturnahe Landschaften, Pflanzen- Und Tierwelt*, Eds:
660 Starmühler, F., and Ehendorfer, F., 659–674, *Jugend und Volk*, Wien/München, 1972.

661 WFD 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23
662 October 2000 establishing a framework for Community action in the field of water
663 policy, <http://data.europa.eu/eli/dir/2000/60/oj> 2000.

664 Zagmajster, M., Eme, D., Fišer, C., Galassi, D., Marmonier, P., Stoch, F., Cornu, J. F., and
665 Malard, F.: Geographic variation in range size and beta diversity of groundwater
666 crustaceans: insights from habitats with low thermal seasonality, *Global Ecol.*
667 *Biogeogr.*, 23, 1135–1145, DOI: 10.1111/geb.12200, 2014.

668 Źurek, R.: Diversity of flora and fauna in running waters of the Province of Cracow (southern
669 Poland) in relation to water quality, 4. *Zooseston, Acta Hydrobiol.*, 42, 331–345, 2000.

670 Źurek, R., Baś, G., Dumnicka, E., Gołąb, M.J., Profus, P., Szarek-Gwiazda, E., Walusiak, E.,
671 Ciężak, K.: Płaszów pond in Kraków – biocenoses, *Chrońmy Przyr. Ojcz.*, 75, 345–362,
672 2019. [in Polish with English summary].

673

674

675

676 **Table 1.** Occurrences of annelids and crustaceans in the studied urban wells in Kraków,
 677 Poland. Stygobiotic species are shown in bold. Asterisks (*) indicate identifications based on
 678 samples collected only in 2020. Addresses of the numbered wells are provided in Table S1.
 679 Complete data on water properties and the occurrences of other invertebrate groups are
 680 available in Dumnicka et al. (2025).
 681

Taxon	Number of individuals	Wells
Annelida		
<i>Aeolosoma hyalinum</i> Bunke, 1967	2	3
<i>Aeolosoma</i> spp.	4	21, 73, 82
<i>Achaeta</i> sp. juv.	1	35
<i>Enchytraeus</i> gr. <i>buchholzi</i> Vejdovský, 1879	3	61, 68
Enchytraeidae gen. sp. juv. (mainly <i>Enchytraeus</i>)	8	18, 29, 32, 44, 55, 56, 68, 77, 82
<i>Marionina argentea</i> (Michaelsen, 1889)	1	3
<i>Rhynchelmis</i> sp. juv.	1	57
<i>Trichodrilus cernosvitovi</i> Hrabě, 1938	1	28
<i>Trichodrilus</i> spp. juv.	11	12, 28, 29, 55
Oligochaeta gen. spp. juv.	2	18, 35
Crustacea Ostracoda		
<i>Pseudocandona</i> sp. juv.	61	19, 48
<i>Typhlocypris</i> cf. <i>eremita</i> (Vejdovský, 1882)	5	48
Candonidae gen. sp. juv.	1	18
Crustacea Copepoda		
<i>Acanthocyclops robustus</i> (Sars, 1863) *	6	84
<i>Acanthocyclops venustus</i> (Norman & Scott, 1906) *	9	69, 84, 85
<i>Acanthocyclops vernalis</i> (Fischer, 1853) *	108	84
<i>Diacyclops crassicaudis</i> (Sars, 1863) *	3	83
<i>Diacyclops languidoides</i> (Lilljeborg, 1901) *	4	84a
<i>Paracyclops imminutus</i> Kiefer, 1929 *	14	86, 91
Cyclopoida <u>copepodids eopepodites</u> *	9	69, 82, 84, 85, 86, 88, 91
Cyclopoida nauplii *	4	84, 91
Copepoda not identified to species	ca. 500	2, 3, 6, 9, 12, 21, 23, 25, 26, 27, 29, 31, 32, 35, 37, 40, 48, 49, 50, 52, 56, 57, 58, 59, 60, 61, 62
Crustacea Bathynellacea		
<i>Bathynella natans</i> Vejdovský, 1882	38	64, 73, 75
Crustacea Amphipoda		
<i>Niphargus</i> cf. <i>tatrensis</i> Wrześniowski, 1888	7	48, 50

682
 683

684 **Table 2.** Estimated total number of species predicted by four extrapolation estimators based
685 on abundance data for 19 crustacean and annelid species from 182 samples collected in 91
686 urban wells in Kraków. SD = standard deviation.

687

Estimator	Expected species richness
Chao 1 ± SD	31.5 ± 17.1
Jackknife 1	28.9
Bootstrap	23.2
Michaelis-Menten	31.4

688

689

690

691 **Table 3.** Diversity measures for crustaceans and annelids found in the 28 out of 91 studied
 692 urban wells in Kraków, shown for the full dataset and separately for stygobitic and non-
 693 stygobitic stygobiontic and non-stygobiontic species subsets. Gamma diversity = total species
 694 richness, Beta diversity = global Whittaker species turnover index, Alpha diversity = average
 695 species richness per well, Species frequency = number of wells in which species occurred. SD
 696 = standard deviation, BCa = bias-corrected and accelerated bootstrap method. Differences in
 697 mean alpha diversity and species frequency between stygobiontic and non-stygobiontic datasets
 698 were tested using one-way permutational analysis of variance PERMANOVA: F =
 699 permutation-based test statistic, P = probability based on 9,999 permutations. Statistically
 700 significant value is bolded.

701

	Full species dataset	<u>Stygobitic</u> <u>Stygobiontic</u> species subset	<u>Non-stygobitic</u> <u>Non-stygobiontic</u> species subset	Statistical difference
Gamma diversity	19	6	13	
Beta diversity	12.3	13.0	12.0	
Alpha diversity				
Range	1–3	0–2	0–3	
Mean	1.43	0.43	1.00	F = 4.874 P = 0.026
SD	0.69	0.69	0.67	
BCa 95% Lower limit	1.18	0.14	0.71	
BCa 95% Upper limit	1.64	0.64	1.21	
Species frequency				
Range	1–10	1–4	1–10	
Mean	2.11	2.00	2.15	F = 0.020 P = 0.953
SD	2.13	1.26	2.48	
BCa 95% Lower limit	1.26	1.00	1.08	
BCa 95% Upper limit	3.05	2.83	3.38	

702

703

704

705 **Table 4.** Pearson correlation coefficients between the first two axes of Principal Coordinate
706 Analysis (PCoA) and relative abundance of eight crustacean and annelid species showing
707 correlation values > 0.2 with at least one axis. Stygobitic Stygotontic species are shown in
708 bold.

709

Species	PCoA1	PCoA2
<i>Enchytraeus</i> spp.	0.979	0.061
<i>Trichodrillus</i> sp. juv.	-0.130	-0.903
<i>Bathynella natans</i>	-0.303	0.419
<i>Trichodrilus cernosvitovi</i>	-0.130	-0.412
<i>Aeolosoma</i> spp.	-0.090	0.339
<i>Acanthocyclops venustus</i>	-0.210	0.085
<i>Paracyclops imminutus</i>	-0.203	0.080
<i>Candonidae</i> juv.	0.247	0.021

710

711

712

713 **Captions of Figures**

714

715 **Fig. 1.** Map of the study area showing the locations of urban wells sampled within the
716 Kraków metropolitan area for the study of annelids and crustaceans (modified from
717 Dunnicka et al. 2025). Wells where stygobionts were detected are marked as follows: B =
718 *Bathynella natans*, D = *Diacyclops gr. languidoides*, N = *Niphargus cf. tatreensis*, T =
719 *Typhlocypris cf. eremita*, Tr = *Trichodrilus* spp. juv. + *T. cernosvitovi*.

720

721 **Fig. 2.** Photographs of representative surveyed wells: left – bored/dug well with piston pump;
722 right – artesian deep well with tap.

723

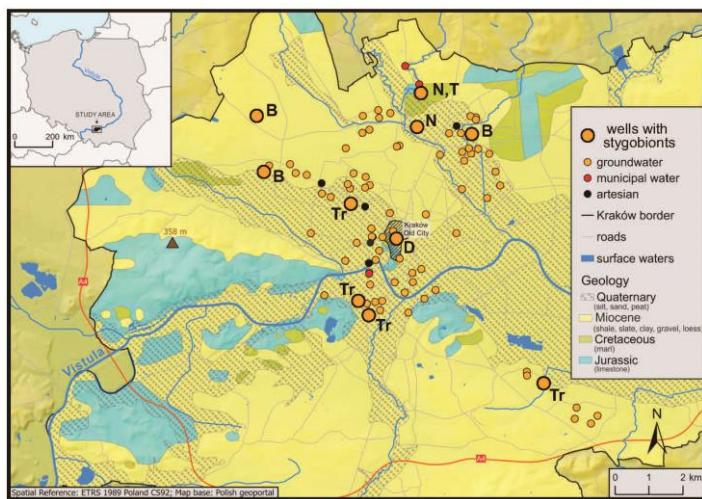
724 **Fig. 3.** Boxplots summarizing the chemical and physical characteristics of groundwater in the
725 studied urban wells in Kraków, Poland. Boxes represent the mean \pm standard deviation, with
726 whiskers indicating full range (minimum to maximum) of values.

727

728 **Fig. 4.** Mean cumulative species richness of the 19 studied invertebrate species (including
729 stygobitic and non-stygobitic ~~stygobiontic and non-stygobiontic~~ annelids, ostracods,
730 copepods, bathynellaceans, and amphipods) plotted against the number of 182 samples from
731 91 urban wells in Kraków. Whiskers represent ± 1 standard deviation.

732

733 **Fig. 5.** Non-metric Multidimensional Scaling (nMDS) ordination plot showing no significant
734 differences in annelid and crustacean community structure between groundwater samples
735 collected in spring (light green circles) and autumn (brown diamonds) from the studied urban
736 wells in Kraków, Poland.


737

738 **Fig. 6.** Principal Coordinate Analysis (PCoA) of annelid and crustacean community
739 composition in groundwater from the studied urban wells in Kraków, Poland. Points represent
740 individual wells (well numbers correspond to Table 1 and Supplementary Table 1). Pearson
741 correlation vectors with values > 0.2 on at least one axis are overlaid.

742

743

744

748 **Fig. 1.** Map of the study area showing the locations of urban wells sampled within the
 749 Kraków metropolitan area for the study of annelids and crustaceans (modified from
 750 Dunnicka et al. 2025). Wells where stygobionts were detected are marked as follows: B =
 751 *Bathynella natans*, D = *Diacyclops gr. languidoides*, N = *Niphargus cf. tatraensis*, T =
 752 *Typhlocypris cf. eremita*, Tr = *Trichodrilus* spp. juv. + *T. cernosvitovi*.

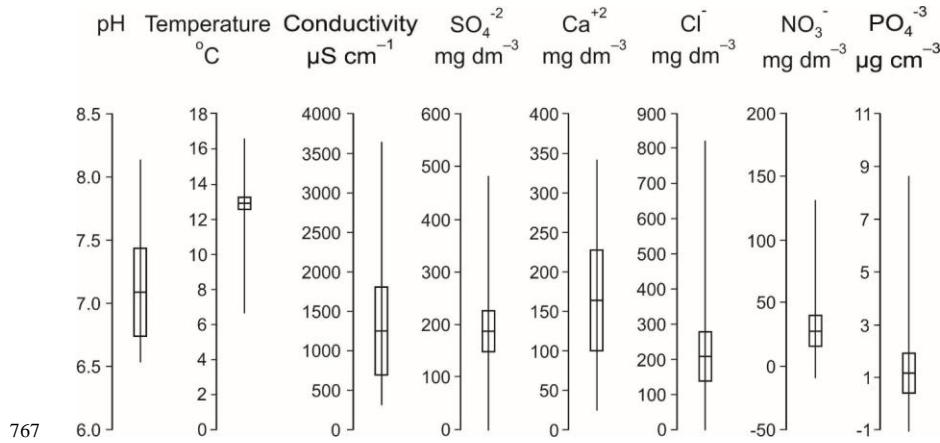
756

757

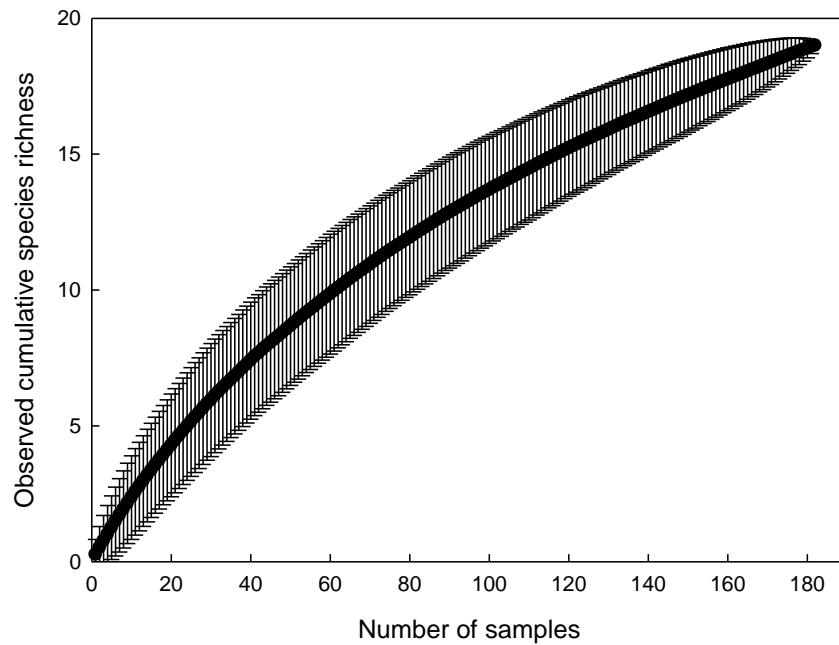
758

759

Fig. 2. Photographs of representative surveyed wells: left – bored/dug well with piston pump; right – artesian deep well with tap.

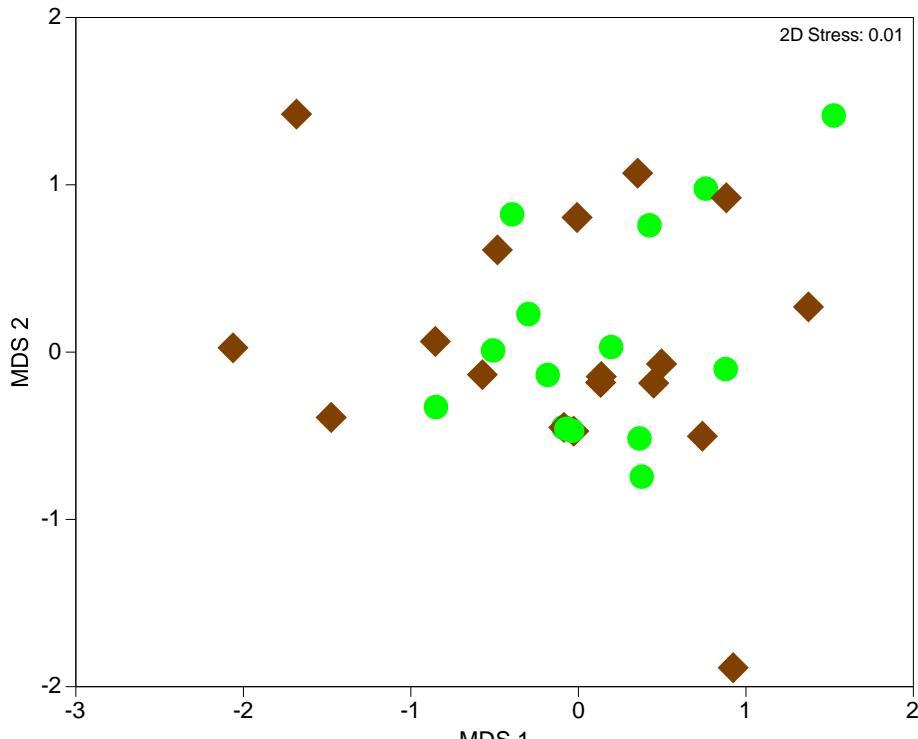

760

761


762

763

764
765
766



768
769
770 **Fig. 3.** Boxplots summarizing the chemical and physical characteristics of groundwater in the
771 studied urban wells in Kraków, Poland. Boxes represent the mean \pm standard deviation, with
772 whiskers indicating full range (minimum to maximum) of values.
773
774
775
776

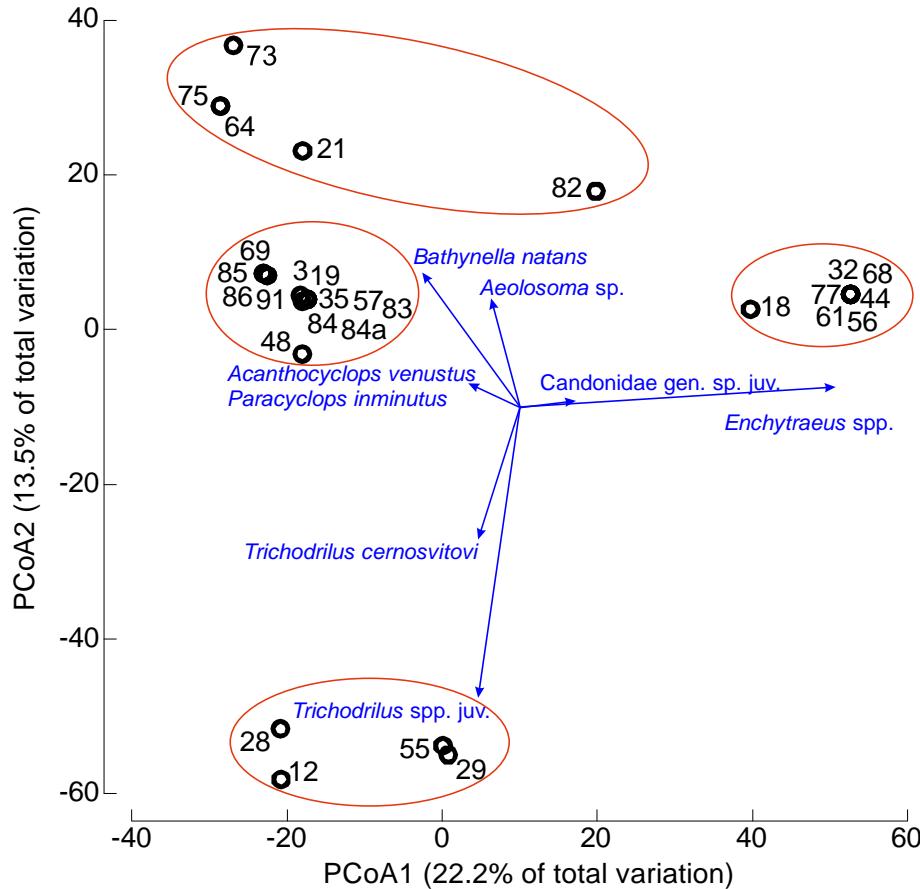
780 **Fig. 4.** Mean cumulative species richness of the 19 studied invertebrate species (including
781 ~~stygobitic and non-stygobitic~~ ~~stygobiontic and non-stygobiontic~~ annelids, ostracods,
782 copepods, bathynellaceans, and amphipods) plotted against the number of 182 samples from
783 91 urban wells in Kraków. Whiskers represent ± 1 standard deviation.

787

788

789

790 **Fig. 5.** Non-metric Multidimensional Scaling (nMDS) ordination plot showing no significant
 791 differences in annelid and crustacean community structure between groundwater samples
 792 collected in spring (light green circles) and autumn (brown diamonds) from the studied urban
 793 wells in Kraków, Poland.


794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Fig. 6. Principal Coordinate Analysis (PCoA) of annelid and crustacean community composition in groundwater from the studied urban wells in Kraków, Poland. Points represent individual wells (well numbers correspond to Table 1 and Supplementary Table 1). Pearson correlation vectors with values > 0.2 on at least one axis are overlaid.